AN IMPROVISED APPROACH TO ROBUSTNESS IN LINEAR OPTIMIZATION

MEHDI KARIMI, SOMAYEH MOAZENI, AND LEVENT TUNCEL

ABSTRACT. We treat uncertain linear programming problems by utilizing the notion of weighted ana-
lytic centers and notions from the area of multi-criteria decision making. In addition to many practical
advantages, due to the flexibility of our approach, we are able to prove that the robust optimal so-
lutions generated by our algorithms are at least as desirable to the decision maker as any solution
generated by many other robust optimization algorithms. We then develop interactive cutting-plane
algorithms for robust optimization, based on concave and quasi-concave utility functions. We present
some probabilistic bounds for feasibility of robust solutions and evaluate our approach by means of
computational experiments.

1. INTRODUCTION

Optimization problems are widespread in real life decision making situations. However, data per-
turbations as well as uncertainty in at least part of the data are very difficult to avoid in practice.
Therefore, in most cases we have to deal with the reality that some aspects of the data of the opti-
mization problem are uncertain. This uncertainty is caused by many sources such as forecasting or
data approximation or noise in measurements. For example,

e factors such as change in government policies or emergence of new products can cause demand
uncertainty in the market;

e the amount of rain next year is clearly uncertain which can have a profound effect on the
agriculture sector among others;

e the amount of profit depends on the prices of the products which are uncertain. This uncer-
tainty is further affected by factors such as cost of raw materials, customers’ budgets and their
changing preferences.

In order to handle optimization problems under uncertainty, several techniques have been proposed.
The most common, widely-known approaches are
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Sensitivity analysis,

Chance constrained programming,
Stochastic programming,

Robust optimization.

In sensitivity analysis, the influence of data uncertainty is initially ignored, and then the obtained
solution is justified based on the data perturbations [14]. Sensitivity analysis shows how much the
optimal solution to a perturbed problem can differ from that of the nominal problem. In other words,
it gives information about the local stability of a solution without any clue about improving it. This
method becomes impractical for large number of uncertain parameters.

In chance constrained programming, we use some stochastic models of uncertain data to replace
the deterministic constraints by their probabilistic counterparts [29, 33, 19]. It is a natural way
of converting the uncertain optimization problem into a deterministic one. However, most of the
time the result is a computationally intractable problem for two reasons [4]: i) evaluation of the
probabilities with high accuracy is difficult even for simple probability distributions; i) most of the
time, the feasible region of the resulting problem is non-convex which makes the utilization of chance
constrained programming highly problematic.

In stochastic programming the goal is to find a solution that is feasible for all (or almost all)
possible instances of the data and to optimize the expectation of some function of the decisions and
the random variables. The most widely used stochastic programming models are two-stage programs.
At the first stage, the Decision Maker (DM) makes a decision. After that, a random event occurs and
the solution from the first stage might not satisfy some of the constraints. At the second stage, a
recourse decision is made which compensates for any bad effects of the first stage solution. The main
assumption is that probability distributions governing the data are known or can be estimated which
is a major drawback in many applications. Distributions of the random parameters are almost never
known exactly, and have to be estimated which typically yields an approximate solution. Another
problem with stochastic programming is that the problems can become unmanageably huge to be
able to draw valid conclusions. It is discussed in [39] (for supply chain networks) that the number
of scenarios might become so huge that the underlying optimization problems become ultimately
unmanageable, even for a small dimensional uncertain problem.

Robust optimization is the method that is most closely related to our approach. Generally speak-
ing, robust optimization can be applied to any optimization problem where the uncertain data can be
separated from the problem’s structure. This method is applicable to convex optimization problems
including semidefinite programming [4]. Our focus in this paper is on uncertain linear programming
problems. Uncertainty in the data means that the exact values of the data are not known, at the time
when the solution has to be determined. In robust optimization framework, uncertainty in the data is
described through uncertainty sets, which contain all (or most of ) possible values that may be realized
for the uncertain parameters.

Since the interest in robust formulations was revived in the 1990s, many researchers have intro-
duced new formulations for robust optimization framework in linear programming and general convex
programming [41, 7, 6, 8, 5, 12, 13, 11, 9, 32]. Ben-Tal and Nemirovski [7, 6] provided some of the
first formulations for robust LP with detailed mathematical analysis. Bertsimas and Sim proposed an
approach that offers control on the degree of conservatism for every constraint as well as the objective
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function. Bertsimas et al. [9] characterize the robust counterpart of an LP problem with uncertainty
set described by an arbitrary norm. By choosing appropriate norms, they recover the formulations
proposed in the above papers [7, 6, 9].

The goal of classical robust optimization is to find a solution that is capable to cope best of all
with all realizations of the data from a given (usually bounded) uncertainty set [4, 3]. By the classical
definition of robustness [4, 8, 11, 21], a robust optimal solution is the solution of the following problem:

(1) max{inf(é,w):AxSIN),V?)EB,VAEA},
zeR™ | ¢eC

where C, A, and B are given uncertainty sets for ¢, A, and b, respectively. Throughout this paper, we

refer to the formulation of (1) as classical robust formulation.

1.1. Some drawbacks of robust optimization. Classical robust optimization is a powerful method
to deal with optimization problems with uncertain data, however, we can raise some valid criticisms.
One of the assumptions for robust optimization is that the uncertainty set must be precisely specified
before solving the problem. Even if the uncertainty is only in the RHS, expecting the DM to construct
accurately an ellipsoid or even a hypercube for uncertainty set is not always reasonable. Another
main criticism to classical robust optimization is that satisfying all of the constraints, if not make
the problem infeasible, may lead to an objective value very far from the optimal value of the nominal
problem. This problem is more critical for large deviations. As an example, [6, 30] considered some
of the problems of NETLIB library (under reasonable assumptions on uncertainty of certain entries)
and showed that classical robust counterparts of most of the problems in NETLIB become infeasible
for a small perturbation. Moreover, in other problems, objective value of the classical robust optimal
solution is very low and may be unsatisfactory for the decision maker.

Several modifications of classical robust optimization have been introduced to deal with this is-
sue. One, for example, is globalized robust conterparts introduced in Section 3 of [4]. The idea is to
consider some constraints as “soft” whose violation can be tolerated to some degree. In this method,
we take care of what happens when data leaves the nominal uncertainty set. In other words, we have
“controlled deterioration” of the constraint. These modified approaches have more flexibility than the
classical robust methodology, but we have the problem that the modified robust counterpart of uncer-
tain problems may become computationally intractable. Although the modified robust optimization
framework rectifies this drawback to some extent, it intensifies the first criticism by putting more
pressure on the DM to specify deterministic uncertainty sets before solving the problem.

Another criticism of the classical robust optimization is that it gives the same “weight” to all the
constraints. In practice, this is not the case as some constraints are more important for the DM.
There are some options in classical robust optimization like changing the uncertainty set which again
intensifies the first criticism. We see that our approach can alleviate this difficulty.

1.2. Contributions of this paper. We use a utility function model rather than an uncertainty
region model. Our utility function approach is at least as powerful as classical robust optimization
from a theoretical point of view, but it is also advantageous in practice, since it involves the DM
continuously in the optimization process in an overall less taxing way.
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One of the main contributions of this paper is the development of cutting-plane algorithms for
robust optimization using the notion of weighted analytic centers in a small dimensional weight-space.
We also design algorithms in the slack variable space as a theoretical stepping stone towards the more
applicable weight-space cutting-plane algorithms. Ultimately, we are proposing that our approach
be used in practice with a small number (say somewhere in the order of 4 to 20) of driving factors
that really matter to the DM. These driving factors are independent of the number of variables and
constraints, and determine the dimension of the weight space (for interaction with the DM). Working
in a low dimensional weight-space not only simplifies the interaction for the DM, but also makes the
cutting-plane algorithm more efficient.

The notion of weight has been widely used in the area of multi-criteria decision making: when we
have several objective values to optimize, a natural way is to optimize a weighted sum of them [27],
[26]. Authors in [27] presented an algorithm for evaluating and ranking items with multiple attributes.
[27] is related to our work as the proposed algorithm is a cutting-plane one. However, our algorithm
uses the concept of weighted analytic center which is completely different. Authors in [26] proposed a
family of models (denoted my McRow) for multi-expert multi-criteria decision making. Their work is
close to ours as they derived compact formulations of the McRow model by assuming some structure
for the weight region, such as polyhedral or conic descriptions. Our work has fundamental differences
with [26]: cutting-plane algorithms in the weight-space find a weight vector w in a fixed weight region
(the unit simplex) such that the weighted analytic center of w, say z(w), is the desired solution for the
decision maker. The algorithms we design in this paper make it possible to implement the ideas we
mentioned above to help overcome some of the difficulties for robust optimization to reach a broader,
practicing user base. For some further details and related discussion, also see Moazeni [30] and Karimi
[28].

1.3. Notations and assumptions. Before introducing our approach in the next section, let us first
explain some of the assumptions and notations we are going to use. Much of the prior work on robust
linear programming addresses the uncertainty through the coefficient matrix. Bertsimas and Sim [13]
considered linear programming problems in which all data except the right-hand-side (RHS) vector
is uncertain. In [8, 7, 11], it is assumed that the uncertainty affects the coefficient matrix and the
RHS vector. Some papers deal with uncertainty only in the coefficient matrix [6, 12, 9]. Optimization
problems in which all of the data in the objective function, RHS vector and the coefficient matrix are
subject to uncertainty, have been considered in [5]. As we explain in Section 2, the nominal data and
a rough approximation of the uncertainty set are enough for our approach. However, the structure of
uncertainty region is useful for the probability analysis. In this paper, we assume that the coefficient
matrix is deterministic, where the coefficients of the objective function and the RHS vector are subject
to uncertainty. Some of the reasons we may assume uncertainty in the objective value and the RHS
(at least in some applications) are:

(1) Instead of specifying uncertainty for each local variable, we handle the whole uncertainty with
some global variables. These global variables can be, for example, the whole budget, human
resources, availability of certain critical raw materials, government quotas, etc. It is easier for
the DM to specify the uncertainty set for these global variables. Then, we can approximate
the uncertainty in the coefficient matrix with the uncertainty in the RHS and the objective
function. In other words, we may fix the coefficient matrix on one of the samples from the
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uncertainty set and then handle the uncertainty by introducing uncertainty to the RHS vector
as in [10].

A certain coefficient matrix is typical for many real world problems. In many applications
of planning and network design problems such as scheduling, manufacturing, electric utilities,
telecommunications, inventory management and transportation, uncertainty might only affect
costs (coefficients of the objective function) and demands (the RHS vector)[31, 37]:

e Transportation system: In many problems in this domain, we can assume that in a
road network, the nodes and the arcs are fixed. However, the cost associated to each arc,
i.e. the vehicle travel time, and/or the capacity associated to each arc are not known
precisely.

e Traffic assignment problem: In some problems, we assume that the drivers have
perfect information about the arcs and nodes, which are the structure of the road network
and the existing streets. However, their route choice behavior makes the travelling time
uncertain.

e Distribution system: In some applications, the locations of warehouses and their ca-
pacities (in inventory planning and distribution problems) are well-known and fixed for
the DM. However, the size of orders and the demand rate of an item could translate to
an uncertain RHS vector. Holding costs, set up costs and shortage costs, which affect the
optimal inventory cost, are also typically uncertain. These affect at least the objective
function.

e Medical/health applications: In these applications (see for instance, [18, 15, 40, 17])
the DM may be a group of people (including medical doctors and a patient who are more
comfortable with a few, say 4-20, driving factors which may be more easily handled by
the mathematical model, if these factors could be represented as uncertain RHS values.

In all of the aforementioned applications, well-understood existing resources, reliable structures
(well-established street and road networks, warehouses, and machines which are not going to
change), and logical components of the formulation are translated into a certain coefficient
matrix. The data in the objective function and the RHS vector are usually estimated by
statistical techniques by the DM, or affected by uncertain elements such as institutional, social,
or economical market conditions. Therefore, determining these coefficients with precision
is often difficult or practically impossible. Hence, considering uncertainty in the objective
function and the RHS vector seems to be very applicable, and motivates us to consider such
formulation in LP problems separately.

In our approach, we need the uncertainty sets for probabilistic analysis. Uncertainty in the
RHS and the objective value is easier to handle mathematically.

By the above explanation, in this paper, we fix the coefficient matrix A. It is clear that changing
each entry of A could change the geometry of the feasible region. On the other hand, neither we nor
the DM know how each coefficient may affect the optimal solution before starting to solve the problem.
Therefore, to fix matrix A, we rely on the nominal values (expected values) of the coefficients esti-
mated by a method agreed by the DM. An uncertain linear programming problem with deterministic
coefficient matrix A € R™*" is of the form:

(2)

max (¢, x)
s.t. Az < l~),
xz e R",
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where ¢ € C and b € B are an n-vector and an m-vector respectively, whose entries are subject to
uncertainty. C and B are called uncertainty sets. In this paper, we deal with problem (2) and suppose
that the data uncertainty affects only the elements of the vectors b and é. We assume entries of ¢
and b are random variables with unknown distributions, as it is impractical to assume that the exact
distribution is explicitly known. By classical view of robust optimization, classical robust counterpart
of problem (2) is defined in (1) with a certain A. Feasible/Optimal solutions of problem (1) are called
classical robust feasible/classical robust optimal solutions of problem (2) [4]. Without loss of generality,
we make the following assumptions on b and ¢

e For every i € {1,2,---,m}, b; can be written as b; = bgo) + ZlN:’I AbLzl where {Zf}fill are
independent random variables for every i € {1,--- ,m}.
e For each ¢, i € {1,---,n}, we have ¢; = Cgo) + 3 Ne Ackzl where {21V are independent

random variables.

As can be seen above, each variable b; is the summation of a nominal value bgo) with scaled random
variables {2%}5\[:11 In practice, the number of these random variables N; is small compared to the

dimension of A as we explained above: each random variable Zf represents a major source of uncertainty
in the system.

Here, we impose the following restrictions on the problem (2) [30]:
e The matrix A has full column rank, i.e., rank(A) =n < m.
e The set {z € R" : Az < b} is bounded.
e The set {x € R" : Az < b(?} has nonempty interior.

If A does not have full column rank, then a problem of the form

(3) max (9 z)
s.t. Az < b(o),
xz € R",

either is unbounded, or can be projected to a smaller dimensional space, with the same optimal
value. Let p be a (n — 1)-vector such that Y7 ' y1;4; = A,, where A; is the i-th column of A. By
some simple linear algebra, we can eliminate z,, and represent problem (2) in the (n — 1)-dimensional
space. If the problem is not unbounded, the optimal objective function value of the problem in the
(n — 1)-dimensional space equals the optimal objective function value of the original problem. If
the LP represent a practical problem such as a combinatorial optimization problem, typically non-
negativity constraints imply that A has a full column rank. The assumption on the boundedness of
{r eR": Az < b(o)} is not very restrictive as it is satisfied in many practical problems representing
integer programming and combinatorial optimization problems.

For the third property, assume that the polyhedron P := {x € R" : Ax < b(o)} is nonempty with
empty interior. Then, the dimension of the affine hull of P, say d, is less than n. Hence, we can
represent the affine space of P as {x = h + By : y € R?}, where B has full column rank d. We can
define a polyhedron P := {reRe: Az < 13} with non-empty interior such that there is a one-to-one
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map between P and 7?, using the fact that B has full column rank. We can rewrite the problem in R?
with feasible region P.

In this paper, vectors and matrices are denoted, respectively, by lower and uppercase letters. The
matrices Y and S represent diagonal matrices, having the components of vectors y and s on their main
diagonals, respectively. The letter e and e; denote a vector of ones and a vector that is everywhere
zero except at the i-th entry with the appropriate dimension, respectively. The rows of a matrix are
shown by superscripts of the row, i.e., (¥ is the i-th row of the matrix A. The inner product of two
vectors a,b € R” is shown both by (a,b) and a'b. For a matrix A, we show the range of A with R(A)
and the null space of A with NV/(A).

1.4. Overview of the paper. In this paper, we design new algorithms which alleviate some of the
drawbacks of classical robust optimization approach mentioned above. We employ an interactive
decision making approach to involve DM in the optimization process, and to increase the reliability of
the information extracted from the DM. We also utilize the notion of weighted analytic centers, and
implement our algorithms in the space of weight vectors which makes the interaction with the DM
easier.

In Section 2, we explain our approach and the scheme of our algorithm. In Section 3, we consider
the properties of the weight-space that help us to design the algorithm and perform the probabilis-
tic analysis. In Section 4, we prove that our approach is as least as strong as the classical robust
optimization approach. In Section 5, we design the cutting-plane algorithms, talk about the modi-
fications of the algorithm, and explain some practical concerns of our approach. Section 6 is about
the probabilistic analysis that is important for interaction with the decision maker. Some preliminary
computational results are presented in Section 7. In Section 8, we briefly talk about the extension of
the approach to semidefinite programming and quasi-concave utility functions, and then conclude the

paper.

2. A UTILITY FUNCTION APPROACH

In Section 1, we introduced different methods for dealing with LP problems under uncertainty. For
each method, we explained the drawbacks and practical difficulties. In this section, we introduce our
new approach that helps us overcome some of these difficulties. Let us focus on the robust optimization
method that from many points of view is the strongest among the methods we introduced in Section 1.
One of the main problems with robust optimization is that the uncertainty region must be specified
before solving the problem. As we explained, in practice, even if the uncertainty is only in the RHS,
expecting the DM to construct accurately an ellipsoid or a hypercube for uncertainty set may not be
reasonable.

The proposed method removes DM’s anxiety about determining the uncertainty set precisely, and
a nominal value of the data is enough. We just need to have an estimate from the uncertainty set
to evaluate the proposed solution and derive the probability bounds for our approach. We propose
a tractable method to find a solution in the expected feasible region (nominal feasible region) which
satisfies the expectations of the decision maker. Although in this approach the robustness of some
constraints is ignored, the proposed solution is robust from DM’s point of view. In this paper, we
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assume that A, ¢(9, and b(®) are the nominal values of the uncertain LP problem in (2). Hence, the
nominal LP problem that we use to design our algorithm is (3).

The proposed solution is obtained efficiently by using the notion of weighted analytic centers. As
we explain in Section 3, there is a correspondence between the feasible region and the weight-space.
To any weight vector w € R, , we can assign three vectors (z(w), s(w),y(w)), s > 0, y > 0, where
s = b — Az is the slack vector. We will mention that for any feasible vector Z, there exists w € R,
such that x(w) = &. This property shows that we can sweep the whole feasible region by moving in
the weight-space. Working in the weight-space is equivalent to working with the slack variables which
gives a tangible understanding about how far we are from the boundary of the feasible region. As
will be explained latter, we can also add a constraint to the problem for the objective function and
translate the objective value to a slack variable. This helps us work just with the slack variables to
solve the problem.

By using the notion of weighted center, we benefit from the differentiability. Weight-space and
weighted-analytic-centers approach embeds a “highly differentiable” structure into the algorithms.
Such tools are extremely useful in both the theory and applications of optimization. In contrast,
classical robust optimization and other competing techniques usually end up delivering a final solution
where differentiability cannot be expected; this happens because their potential solutions located on
the boundary of some of the structures defining the problem. In this paper, we assume that the DM’s
preferences can be modeled by a utility function U : R™ — R. By this assumption, we can write our
problem as

max U(s)
(4) s.t. s € B,

where B is the set of centric s-vectors that we define later in Section 3 (Definition 3.1). We do not
have access to this utility function, however assume that, for a centric slack vector s, we can ask the
DM for some information about the function. The questions we are going to ask are the supergradient
of U(s) at some points and some pairwise comparison questions if needed. The goal of our algorithm
is to maximize this utility function. At each step, we use the information from the DM to produce a
cut in the s-space or w-space to shrink the corresponding set such that an optimal solution is kept in
the shrunken set. The design of the algorithms, some convergence theory, and some practical issues
are covered in Section 5.

3. WEIGHTED ANALYTIC CENTERS

In this section, we first define the notion of weighted analytic center in Subsection 3.1. In Subsection
3.2, we prove many useful results about the properties of the weight-space, which are useful in the
design of the algorithms in Section 5.

3.1. Definition of weighted center. For every i € {1,2,--- ,m}, let F; be a closed convex subset
of R™ such that F := (%, F; is bounded and has nonempty interior.



AN IMPROVISED APPROACH TO ROBUSTNESS IN LINEAR OPTIMIZATION 9

Let F; : int(F;) — R be a self-concordant barrier for F;, i € {1,2,--- ,m} (For a definition of self-
concordant barrier functions see [35]). For every w € R, we define the w-center of F as

arg min {Z wiFi(x) :x € ]:} :
i=1

Consider the special case when each F; is a closed half-space in R™. Then the following result is
well-known.

Theorem 3.1. Suppose for every i € {1,2,--- ,m}, a® € R*\ {0} and b; € R are given such that:
F = {3: eR™: (a(i),x> < b;,Vi € {1,2, ..,m}},

is bounded and int(F) is nonempty. Also, for everyi € {1,2,--- ,m} define Fi(z) := —In(b; — (a®, z)).
Then for every w € R, , there exists a unique w-center in the interior of F, x(w). Conversely, for
every x € int(F), there exists some weight vector w(x) € R, such that x is the unique w(x)-center

of F.
Define the following convex optimization problems:

(5) min  (c,x) — Z w; In(s;)
i=1

st. Ar+s=0b,
se Ry, zeR",

(6) min  (b,y) — Y w;In(y;)
=1

st. Aly=c,
y € RT+7

where A € R™*" h € R™, and ¢ € R"™. For every weight vector w > 0, the objective functions of
the above problems are strictly convex on their domains. Moreover, the objective function values
tend to +o0o along any sequence of their interior points (strictly feasible points), converging to a
point on their respective boundary. So, the above problems have minimizers in the interior of their
respective feasible regions. Since the objective functions are strictly convex, the minimizers are unique.
Therefore, for every given w > 0, the above problems have unique solutions (z(w), s(w)) and y(w).
These solutions can be used to define many primal-dual weighted-central-paths as the solution set
{(z(tw), y(tw), s(tw)) : t > 0} of the following system of equations and strict inequalities:

(7) Az +s=0b, s> 0,
Aly=c,
Sy = w,

where S := Diag(s). When we set w := e in {(z(tw),y(tw), s(tw)) : t > 0}, we obtain the usual
primal-dual weighted-central-path. Figure 1 illustrates some weighted central paths.
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T T min ¢ x

J, J, max ¢ x

FIGURE 1. Primal-dual central paths.

In this paper, we prefer to start working only with the slack variables. Hence, we add a constraint
that represents the objective function. This constraint is (¢, z) > v, where v is a lower bound specified
by the information from the DM. For example, if the DM decides that the objective value must not be
below a certain value, we can put v equal to that value. So, we change the definition of F as follows

(8) F = {:L" ER™: (c,z) > v, (P, z) < b;,Vie {1,2, ,m}}

In the above formulation, the new matrix A is (m + 1)-by-n. Now, we may redefine m and assume
that A € R™*"™ also contains the last added constraint. As we embedded the objective function in A,
we can put ¢ := 0, and solve the following set of equations to find the weighted analytic center:

(9) Ar+s=b, s>0,
ATy =0,
Sy = w,

For every given weight vector w, (z(w), y(w), s(w)) is obtained uniquely and z(w) is called the weighted
center of w. We may also refer to (z(w),y(w),s(w)) as the weighted center of w. For every given
x € R" and y € R™, y > 0, that satisfy the above system, w and s(w) are obtained uniquely. However,
for a given x € R", there are many weight vectors w that give z as the w-center of the corresponding
polytope.
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Example 3.1. [30] Let

1 1 0
b= 0 A= -0 ,

1 0 1

0 0 -1

then the point x = (0.5 0.5)" is both (0.25, 0.25, 0.25, 0.25)-center (corresponding to y = 0.5¢) and
(0.35, 0.35, 0.15, 0.15)-center (corresponding to y = (0.7, 0.7, 0.3, 0.3)7) of the polytope.

The following well-known lemma is useful.

Lemma 3.1. Let (z,y,s) and (z,9,8) be the solutions of system (9) corresponding to the weight
vectors w, w € R, , respectively. For every y in the null space of AT we have:

(5.5) = (s.9)

Proof. From (9), we have s = b — Az and § = b — A%, which results in s — § = A(x — &). Hence we
have s — 5§ € R(A). As the null space of AT and the range of A are orthogonal, for every § € N'(A")
we can write:
(s—=81y)=0 = (59)=/(s1).
O

Let (&,7, $) be the solution of system (9) corresponding to the weight vector w. Moreover, assume
that 4 > 0 is such that ATg = 0. Then, by using Lemma 3.1, we can show that (&, 7, §) is the solution
of system (9) corresponding to the weight vector Y(Y)—lw. Hence, there may be many weight vectors
that give the same w-center. A stronger result is the following lemma which shows that in some cases,
we can find the weighted center for a combination of weight vectors by using the combination of their
weighted centers.

Lemma 3.2. Let (9 40 s0) i e {1,--- ¢}, be solutions of system (9), corresponding to the
weights w®). Then, for every set of B; € [0,1], i € {1,---,£}, such that Zle Bi = 1, and for every
je{l,--- ¢}, we have (Zle Bix®, yl9), Zle Bis™) is the w-center of F, where

14
W= Z/@iy(j) (v @)=y @),

i=1
Moreover,
m m .
> =Y ul)
i=1 i=1
Proof. See Appendix A. O

Before starting the next subsection about the properties of w-space, without loss of generality,
we restrict ourselves to the weights on the unit simplex, i.e., we consider weighted center (z,y, s)

corresponding to weight vectors w such that > ", w; = 1. A special case can be w = %e, where e
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is the vector of all ones. We will show that this subset of weight vectors is enough to represent the
feasible region. We call this simplex of weight vectors W':

Wi={weR":w>0, e w=1}.
We can define the following notion for future reference:

Definition 3.1. A vector s € R™ or y € R™ is called centric if there exists x such that (x,y,s)
satisfies (9) for a weight vector w > 0 where e w = 1.

3.2. Properties of w-space. In this subsection, we study the structure of the w-space, which is
important for the design of the algorithms in Section 5. Let s and y be centric. First, we note that
the simplex of the weight vectors can be divided into regions of constant y-vector (IW,) and constant
s-vector (Ws). By using Lemma 3.2, if (#,7,5) is the solution of system (9) corresponding to the
weight vector w € W, and § > 0 is any centric y-vector, then (&,7,8) is the solution of system (9)
corresponding to the weight vector Y(f/)—lw. This means that for every centric vector § and any
centric vector y, S'y is a weight vector in the simplex.

For every pair of centric vectors s and y, W, and W, are convex. To see this, let (z,7, s) and (z, y, s)
be the weighted centers of w and w. Then, it is easy to see that for every 8 € [0,1], (z, 8y+ (1 —5)y, s)
is the weighted center of S + (1 — f)w. With a similar reasoning, W, is convex for every centric y.

Using (9), we can express W, and W, as follows:
W, = {Y(b—Am)  Ax <b, y (b— Az) = 1}
= {w>0 s YAx +w =YD, eTwzl}
(10) = Y[(R(A)+0b)NRY, N B(0,1),

Ws = {Sy:ATyzo,y>0,sTy:1}
= {w >0: ATS'w=0, e'w= 1}
(11) = SIN(AT)NRTL] N Bi(0,1),

where Bj(0,1) is the unit ball in 1-norm centered at zero vector. Here, we want to find another
formulation for W, that might work better in some cases. We use the following lemma.

Lemma 3.3. Assume that the rows of By € RM=)%XM make a basis for the null space of ATY . Then
there exists x € R™ such that Y Ax +w = Y'b if and only if Byw = B,Yb. Le., (Yb—w) € R(YA) iff
(Yb—w) e N(By).

Proof. Assume that there exists x such that Y Az +w = Y'b. By multiplying both sides with B,, from
the left and using the fact that B,YA = 0 we have the result. For the other direction, assume that
Byw = ByY'b. Then By(w — Yb) = 0 which means w — Y'b is in the null space of B,. Then, using the
orthogonal decomposition theorem, we have N'(By) = R(BJ)L =N(ATY)t = R(YA). Thus, there
exists  such that YAz +w = Yb. O
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Assume that B € R(M=)>m g guch that its rows make a basis for the null space of AT. For every
vector y, we have ATy = ATY (Y ~1y), so if y is in the null space of AT, Y~y is in the null space of
ATY . Hence, if the rows of B make a basis for the null space of A", the rows of BY ~! make a basis
for the null space of ATY and we can write B, = BY~!. Using Lemma 3.3, there exists « such that
YAz +w = Yb if and only if BY “'w = BY ~'Y'b = Bb, and we can write (10) as:

Wy = {w>0: YAz tw=vb Tw=1}
(12) - {w >0 : BY lw=DBb, ¢ w= 1}.
Let us denote the affine hull with aff(.). We can prove the following lemma about W and W,,.

Lemma 3.4. Assume that s and y are centric, we have

Wy =aff(W,) NnW and W, = aff(W,) N W.
Proof. See Appendix A. O

We conclude that W is sliced in two ways by W,’s and Wj’s for centric s and y vectors. For each
centric s and each centric y, W, and Wj intersect at a single point Sy on the simplex. We want to
prove that the smallest affine subspace containing Wy and Wy, is aff(W) = {w : e"w = 1}. To that end,
we prove some results on the intersection of affine subspaces. We start with the following definition:

Definition 3.2. The recession cone of a convex set C € R™ is denoted by rec(C) and defined as:
rec(C):={yeR" : (x+y)eC, Vzel}.
The lineality space of a convez set C' is denoted by lin(C) and defined as:
lin(C) := (rec(C)) N (—rec(C)).
Let U be an affine subspace of R™. If y € rec(U), then —y € rec(U), which means (rec(U)) =

(—rec(U)). Therefore, by Definition 3.2, we have lin(U) = rec(U). Then, by using the definition of
the affine space we have:

(13) Iin(U) == {u1 —ug : Yui,ug € U}.

In other words, lin(U) is a linear subspace such that U = u + lin(U) for all u € U where '+’ is the
Minkowski sum. The following two lemmas are standard, see, for instance, [20].

Lemma 3.5. Given a pair of nonempty affine subspaces U and V' in R™, the following facts hold:
(1) UNV # 0 iff for every uw € U and v € V, we have (v —u) € lin(U) + lin(V).
(2) UNV consists of a single point iff for every uw € U and v € V, we have

(v—u) €lin(U) +lin(V) and lin(U)Nlin(V) = {0}.
(3) For every u € U and v € V, we have

lin(aff(U U V)) =lin(U) +lin(V) + {a(v —u) : a € R}.
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Lemma 3.6. Let U and V' be nonempty affine subspaces in R™. Then we have the following properties:

(1) ifUNV =10, then
dim(aff(U UV)) = dim(U) + dim(V) + 1 — dim(lin(U) N lin(V)),

(2)if UNV #0, then
dim(aff(U UV)) = dim(U) + dim(V) — dim(U N'V).

Using the above lemmas, we deduce the following proposition.

Proposition 3.1. Assume that s and y are centric s-vector and y-vector, respectively. Then the
smallest affine subspace containing Ws and Wy is af(W) = {w : e w = 1}.

Proof. See Appendix A. O

The following simple examples make the geometry of W and W), clearer.

Example 3.2. Here, we bring two examples for m = 3, n = 1. For the first example, letb:=[1 0 O]T
and A:=[1 —1 —1]". Byusing (9), the set of centric s-vectors is Bs = {[(1-x), =, z]" : € (0,1)}.
The set of centric y-vectors is specified by solving A’y = 0 and by = 1, while y > 0. We can see
that in this example, as shown in Figure 2, Ws are parallel line segments while Wys are line segments
which all intersect at [1 0 0]". For the second example, let A :=1[1 —10]" and b:=[1 0 1]". The

w A

FIGURE 2. Wys and Wys for the first example in Example 3.2.

set of Wss and Wys are shown in Figure 3 derived by solving (9). As can be seen, this time Wys are
parallel line segments and Ws are line segments which intersect at the point [0 0 1] 7.
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W, -

FIGURE 3. Wys and Wys for the second example in Example 3.2.

These examples show that the affine hulls of Wy and W2 might not intersect for two centric
y-vectors y' and y?. This is also true for the affine hulls of W1 and W, for two centric s-vectors s!

and s2.

Example 3.3. For the second example, let A:=1[3 —3 —2]" andb:=[110]". The set of Wss and
Wys are shown in Figure 4, derived by solving (9). In this example, none of Wys, Wys, or their affine
hulls intersect in a single point.

4. IMPROVISED ROBUST OPTIMIZATION VIA UTILITY FUNCTIONS

In previous sections, we introduced our new methodology to deal with LP problems with uncer-
tainty. We explained in Section 2 that our approach has many good features in terms of interaction
with the decision maker and usability, and its practical advantages over the classical robust optimiza-
tion approach are clear. In this section, we prove that the robust optimal solutions generated by our
algorithms are at least as desirable to the decision maker as any solution generated by many other
robust optimization algorithms.

In most of the papers in the robust optimization literature, the uncertainty is considered in the
coefficient matrix A while we consider it in the RHS. We want to show that by choosing a suitable
utility function U(s) we can model many of the classical robust formulations. In other words, we can
find a solution of a classical robust optimization problem by solving

max  ¢g(z) :=U(b— Ax)
(14) st ajx<b, ie{l,---,m}.
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FIGURE 4. Wys and Wys for Example 3.3.

Many classical robust optimization models and their approximations can be written as follows

(15) max  c'z

s.t. (I;rl""fz(x)gbla Ze{la 7m}7

where fi(z), i € {1,--- ,m}, is a convex function such that f;(z) > 0 for all feasible . By changing
fi(x), different formulations can be derived. In the following we bring some examples. Assume that
for each entry A;; of matrix A we have A;; € [a;; — Gij, aij + Gi;]. It can easily be seen [12] that the
classical robust optimization problem is equivalent to (15) for f;(z) = a, |z|.

For the second example, assume that A € {A : || M(vec(A) — vec(A))|| < A} for a given A where
|||l is a general norm and M is an invertible matrix. vec(A) is a vector in R™"*! created by stacking
the columns of A on top of one another. It is proved in [9] that many approximate robust optimization
models can be formulated by changing the norm. It is also proved in [9] that this robust optimization
model can be formulated as (15) by f;(z) = A HM_Txi‘ .» where |||, is the dual norm and z; € R™"*?
is a vector that contains z in entries (i — 1)n 4+ 1 through in, and 0 everywhere else. Now, utilizing
Karush-Kuhn-Tucker (KKT) theorem, we prove that for every robust optimization problem that can
be put into form (15), there exists a concave utility function U for which (14) has the same optimal
solution as (15).

Theorem 4.1. Assume that (15) has Slater points. Then, there exists a concave function g(zx) (or
equivalently U(s)) such that optimization problems (14) and (15) have the same optimal solutions.
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Proof. For the optimality condition of (15) we have: There exists A € R’ such that

m

c— > Aiai+ Vfi(z) =0
i=1
(16) Nlajz+ fi(x) —=b;) =0, ie{l,---,m}.

Since the Slater condition holds for (15), optimality conditions (16) are necessary and sufficient. Let z*
be an optimal solution of (15), and let J C {1,--- ,m} denote the set of indices for which \; # 0,7 € J.
Let h(x) be an increasing concave function such that its domain contains the positive orthant. We
define g(x) as follows:

(17) 9@) = o+ 3" ph(bi + 1 —a] w — file)),

ieJ

where t; > 0,4 € J, are arbitrary numbers. We claim that g(z) is concave. b; +t; — a] x — fi(z) is a
concave function and h(z) is increasing concave, hence h(b; +t; — a] x — fi(z)) is a concave function

for i € {1,--- ,m}. g(x) is the summation of an affine function and some concave functions and so is
concave. The gradient of g(x) is
(18) Vg(a) =c—> b/ (bi +ti —a v — fi(x))(ai + Vfi(x)).

icJ

Now choose p;,¢ € J, such that
(19) ,ul-h'(bl- +t; — a;rx* — fl(l‘*)) =\

By using (19) and comparison of (18) and (16), we conclude that z* is a solution of (14), as we wanted.
The other direction can be proved similarly. ([l

For example, let A(z) := In(z), then we have
glz) =c'z+ Z piln(b; +t; — a; x — fi(x))
icJ

(20) = Vg(:c):C—Zb e C':‘ix_fl( )(ai—i—Vfi(x)).

Therefore, choosing
Wi = N [bi +t; —aiTa;* — fl(a:*)} , VYied{l,...,m}

works. The above argument proves the existence of a suitable utility function. A remaining question
is that can we construct such a utility function without having a solution of (16)? In the following,
we construct a function with objective value arbitrarily close to the objective value of (15). Assume
that strong duality holds for (15). Let us define g(x) := ¢ o +pY | In(b; — a/ z — f;(x)) and assume
that & is the maximizer of g(x). We have

(21) =Y e @ V@ =0

=1
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This means that & is the maximizer of the Lagrangian of the problem in (15), L(\, z), for
A=/ (b — a2 — fi(#)), 3 € {1,--- ,m}. So by strong duality, we have

U O R 2 _aTE— fi(d
(22) = cT;%—I—m,u.

(22) shows that by choosing i small enough, we can construct g(x) such that the optimal objective
value of (14) is arbitrarily close to the optimal objective value of (15).

5. ALGORITHMS

In this section, we develop the cutting-plane algorithms that find an optimal solution for the DM,
using the facts we proved in the previous sections. As we mentioned in Section 2, we assume that
the DM’s preferences, knowledge, wisdom, expertise, etc. can be modeled by a utility function (as a
function of the slack variables s), i.e., U(s), and our problem is to maximize this utility function over
the set of centric (Definition 3.1) s-vectors Bs. (Of course, we do not assume to have access to this
function U, except through our limited interactions with the DM.) Therefore, our problem becomes

max U(s)
(23) s.t. s € Bs.

In the following, we denote an optimal solution of (23) with s°!. In many applications, it is possible
to capture choices with concave, quasi-concave, or nondecreasing utility functions. We are going to
start with the assumption of concave U(s). We see in Subsection 8.2 that the algorithm can easily be
refined to be used for quasi-concave functions. Here, we want to use the concept of supergradient we
introduce shortly. Supergradients (subgradients for convex functions) have been widely used before to
design cutting-plane and ellipsoid algorithms. Our goal is to use the concept to design cutting-plane
algorithms.

Assume that we start the algorithm from a point w® € R™ with the corresponding s-vector s € R™.
By using the idea of supergradient, we can introduce cuts in the s-space or w-space to shrink the set
of s-vectors or w-vectors, such that the shrunken space contains an optimal point. In the following
subsections, we discuss these algorithms in s-space and w-space. Our main algorithm is the one in the
w-space, however, the s-space algorithm helps us understand the second one better.

As mentioned above, our algorithms are based on the notion of supergradient of a concave function.
Therefore, before starting to talk about the algorithms, we express a summary of the results we want
to use. These properties are typically proven for convex functions in the literature [38, 16], however
we can translate all of them to concave functions.

Theorem 5.1. For a concave function f : R™ — R, any local mazimizer is also a global mazximizer.
If a strictly concave function attains its global mazimizer, it is unique.

The following theorem is fundamental for developing our cutting-plane algorithms.
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Theorem 5.2. Assume that f : R" — R is a concave function and let z° € relint(domf). Then there
exists g € R™ such that

(24) f(x) < f@")+g¢" (-2, VzeR™
If f is differentiable at 2°, then g is unique, and g = V f(zV).

The vector g that satisfies (24) is called the supergradient of f at 2°. The set of all supergradients
of f at xq is called the superdifferential of f at z°, and is denoted df(2"). By Theorem 5.2, if f is
differentiable at 20, then df(2°) = {V f(z°)}.

The following lemma about supergradient, which is a simple application of the chain rule, is also
useful.

Lemma 5.1. Let f : R™ — R be a concave function, and D € R™*™ and b € R™ be arbitrary
matrices. Then, g(x) := f(Dx + b) is a concave function and we have:

dg(x) = DTOf(Dx + b)

5.1. Cutting-plane algorithm in the s-space. Assume that we have a starting point s and we
can obtain a supergradient of U at s from the DM, e.g. ¢*, (¢° = VU(s") if U is differentiable at s").
By using (24), for every s,

(25) Uis)—UE) >0 = (99T (s—5%>0.

This means that all optimal points are in the half-space (¢°) " (s — s%) > 0. So, by adding this cut, we
can shrink the s-space and guarantee that there exists an optimal solution in the shrunken part. We
can translate this cut to a cut in the z-space by using (9):

(9°) " (s = ") = (¢") " (b — Ax — b+ A2®) = (") TA(” — ).

Using this equation, we can consider the cut as a new constraint of the original problem:;

(¢°)T Az < (¢°)TAz0. Let us define a(™*t) = (¢°)TA and by,1 = (¢°) T Az°. We can redefine F in
(8) by adding this new constraint and find the weighted center for a chosen weight vector w'. The
step-by-step algorithm is as follows:

S-space Algorithm:

Step 1: Set w® = %e and find the w®-centers (2, %, s%) with respect to F.
Step 2: Set k=0, Ag= A, ¥ =b, and Fy = F.
Step 3: If s* satisfies the DM, return (z¥,4*, s*) and stop.

Step 4: Set k = k + 1. Find g;_1, the supergradient of U(s) at s*~1. Set

A bkfl
Ap=| =1 - k-1 |
gkflAk—l gkflAk—LT
(26) Fp = {x eR": (a7 z) <BEVie {2, m+ k:}} .

Step 5: Set wf = L fori e {m+1,--- ,m+k} and wf = %—% for i € {1,--- ,m}. Find
the w¥-center (2*,y*, s*) with respect to F;. Return to Step 3.
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The logic behind Step 5 is that we want to give smaller weights to the new constraints than
the original ones (however, our choices above are just examples; implementers should make suitable,
practical choices that are tailored to their specific application). A main problem with the algorithm is
that the dimension of the weight-space is increased by one every time we add a constraint. We show
that this problem is solved by our w-space algorithm in the following subsections.

5.2. Cutting-plane algorithm in the w-space. In this subsection, we consider the cuts in the
w-space. To do that, we first try a natural way of extending the algorithm in the s-space to the one
in the w-space. We will show that this extension does not work for all utility functions. Then, we
develop an algorithm applicable to all concave utility functions.

Like the s-space, we try to use the supergradients of U(s). Let U, denote the utility function
as a function of w. From (9) we have Y's = w; so, Uy (w) = U(s) = U(Y tw). If Y were constant
for all weight vectors, Uy, (w) would be a concave function, and we could use Lemma 5.1 to find the
supergradient at each point. The problem here is that Y is not necessarily the same for different
weight vectors. Assume that we confine ourselves to weight vectors in the simplex W with the same
y-vector (Wy). Uy(w) is a concave function on Wy, so, we can define its supergradient. By Lemma
5.1, we conclude that U, (w) = Y 19U (s) for all w € W,.

Suppose we start at w® with the weighted center (2%, 1%, s%). Let us define " := (Y?)~1¢%, where
go is a supergradient of U(s) at s”. Then from (24) we have,

(27) U (w) < Up(w®) + (¢°) T (w — w®), Vw € W,,.

If we confine the weight-space to Wy, by the same procedure used for s-space, we can introduce
cuts in the w-space by using (27). The problem is that we do not have a proper characterization of
Wy. On the other hand, U,, may not be a concave function on the whole simplex.

Assume that s°P¢
with s-vector s°Pt

is an optimal solution of (23), and W is the set of weight vectors in the simplex
. It is easy to see that Wopt is convex. We also have the following lemma:

Lemma 5.2. Let (2/,1/,s') be the weighted center corresponding to w', s°Pt be an optimal solution of

23) , and ¢' be the supergradient of U(s) at s’. Then S"pty’ is in the half-space ¢',(w — w') > 0,
w
where g{v = Y’_lg'.

Proof. We have ¢/ (SPty' — w') = ¢/TY' 18Pty — §'y/) = ¢/T (st — §') > 0. The last inequality
follows from the fact that s?! is a maximizer and ¢’ is a supergradient of U(s) at s’. O

The above lemma shows that using hyperplanes of the form ¢'TY'~!(w — w'), we can always
keep a point from Wopt. Now, by using the fact that Wopt is convex and the above lemma, the
question is: if we use a sequence of these hyperplanes, can we always keep a point from Wopt? A
simpler question is: We start with w® and shrink the simplex W into the intersection of the half-space
(¢°)T(w — w®) > 0 and the simplex, say Wy. Then we choose an arbitrary weight vector w! with
weighted center (z!,y!, s!) from the shrunken space Wy. If ¢g* is a supergradient of U(s) at s!, then we
shrink W into the intersection of Wy and the half-space (¢'*) T (w — w') > 0, where g'* = (Y1)~ 1g},
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t

and call the last shrunken space Wj. Is it always true that a weight vector with s-vector s°P* exists in

Wi?

In the following, we show that this is true for some utility functions, but not true in general. We
define a special set of functions that have good properties for cuts in the w-space, and the above
algorithm works for them.

Definition 5.1. A function f : R", — R is called Non-Decreasing under Affine Scaling (NDAS) if
for every d € R, we have:

(1) f(s) <max{f(Ds), [(D"'s)}, Vs eRY,.
(2) If for a single s° € RT we have f(s°) < f(Ds), then f(s) < f(Ds) for all s € RT, .

For every ¢ € R™ the function fi(s) := >, t;logs; is NDAS. Indeed, for every s,d € R}, we
have:

fi(s) = fi(Ds) = —th’ log d;,
=1
fils) = fi(D7's) = =t log% =Y tilogd;,
i=1 ti=1

and so we have 2f1(s) = fi(Ds) + fi(D~'s). The second property is also easy to verify and the
function is NDAS. fi(s) is also important due to its relation to a family of classical utility functions
in mathematical economics; Cobb-Douglas production function which is defined as Upq(s) = [[1%; s¥',
where ¢ € R, . Using this function to simulate problems in economics goes back to 1920’s. Maxi-
mization of Ug4(s) is equivalent to the maximization of its logarithm which is equal to

fi(s) =In(Uea(s)) = >0 tilog s;.

Authors in [27] considered the Cobb-Douglas utility function to present an algorithm for evaluating
and ranking items with multiple attributes. [27] is related to our work as the proposed algorithm is a
cutting-plane one. [27] also used the idea of weight-space as the utility function is the weighted sum of
the attributes. However, our algorithm uses the concept of weighted analytic center which is different.
Now, we have the following proposition.

Proposition 5.1. Assume that U(s) is a NDAS concave function. Let (2°,9°,s°) and (2',y',s!)

be the weighted centers of w® and w', and ¢° and g' be the supergradients of U(s) at s° and s',
respectively. Then we have
{w: (") (w=u") 20, (") (w=w') >0} "W £ 6,
where g% = (Y9)71¢° and g** = (Y1)~ lgt.
Proof. See Appendix A. O

By Proposition 5.1, using the first two hyperplanes, the intersection of the shrunken space and
Wopt is not empty. Now, we want to show that we can continue shrinking the space and have nonempty
intersection with Wopt.
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Proposition 5.2. Assume that U(s) is a NDAS concave function. Let (x%, 5%, s%) be the weighted
centers of w', i € {0,--- ,k}, and g* be the supergradients of U(s) at s*. Let us define

W= {w (g™ (w — w?) > 0} Nnw,

where g™ = (Y*)"lg'. Assume we picked the points such that

i1
(28) w' €relint | (Y W7 |, i€l k}
j=0
Then we have
k -
(29) W] N W # 6,
j=0
where s°P' is an optimal solution of (23).
Proof. See Appendix A. O

Proposition 5.2 shows that the above-mentioned cutting-plane algorithm works for the NDAS
functions. It would be very helpful in designing a cutting-plane algorithm in the w-space if this
Proposition were true in general. However, this is not true for a general concave function. For a
counter example, see Example A.1 in Appendix A. To be able to perform a cutting-plane algorithm
in the w-space, we have to modify the definition of cutting hyperplanes. In the next two propositions,
we introduce a new set of cutting-planes.

Proposition 5.3. For every point Y°sY € W, there exists a hyperplane P passing through it such
that:

1- P contains all the points in Wy, and

2- P cuts Wy the same way as (¢°)" (Y?) ™ (w — YOs%) = 0 cuts it; the intersections of P and
()T (YO w—YOs%) = 0 with W is the same, and the projections of their normals onto W0 have
the same direction.

Proof. Assume that w® = Y?s? is the point that is chosen and let u® be the normal vector to the
desired hyperplane P. First, we want the hyperplane to contain Wy. This means that for all centric
7, the vector $%° — S% is on P, i.e., we have (u%)"S%(y° — ¢) = 0. Since A" (y° — §) = 0, we can
put u® = (S°)~1AR® with an arbitrary h° and we have:
(W) TS%(y" = 9) = (h°)TAT(S”) 718" — 9) = 0.

Now, we want to find h° such that (u°)T (w — Y s%) cuts Wyo the same way as

(@) T (Y9~ (w—Y05%) cuts it. We actually want to find h? which satisfies the stronger property that
(W) T (w—Y0% = (¢°) T (Yo) H(w — Ys%) for all w € W,0. All the points in Wy are of the form Y3,
so we must have (u%)TY?(5 —s%) = (¢°)T (5 — sY). Since (5 — s°) is in the range of A, this equation is

true if and only if:

W) "YUz = (¢°)TAz = ((°)TY° - (") )Az =0, VzeR"™
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This means that Y%u® — ¢° must be in the R(A)* = N(AT), which means AT(Y%u" — ¢%) = 0.
However, we had from above that u® = (S%)~1Ah® and hence:

(30) ATY%' =ATg" = ATYO(SO)PAR0 = AT¢" = n0 = (ATYO(S%)~1a)~1AaT 4.

So, the hyperplane with normal vector u® = (S%)~1ARY, where h°® = (ATY9(S9)71A)~1 A" ¢° has the
required properties. Since this hyperplane cuts W,o the same way as (g") T (Y9~ (w—Y"s%) does, we
conclude that (u®) T (Y?sP! —Y05%) > 0. Therefore, Y5 is in the half-space (u°) " (w—Y%s?) > 0. O

The normal of the hyperplane derived in Proposition 5.3 has a nice interpretation with respect to
orthogonal projection and the primal-dual scaling Y ~1S. We have:

uO _ (SO)flA(ATy(J(SO)flA)flATgO
(YO)—l/Q(SO)—l/Q
[((YO)I/Z(SO)—I/ZA)(ATYo(SO)—lA)—l(AT(SO)—I/Z(YO)l/Q)](YO)—1/2(50)1/290
II
(31) — (Y0)71/2(SO)fI/ZP(YO)fl/Q(50)1/290’

where II is the orthogonal projection onto the range of (Y°)1/2(§%)~1/24. Note that a main benefit
of the hyperplane in Proposition 5.3 is that when we choose a point, we can cut away all the points
with the same s-vector. Now, we prove the following proposition which shows we can cut the simplex
with a sequence of hyperplanes such that the intersection of their corresponding half-spaces contain a
point from Wopt.

Proposition 5.4. Assume that we choose the points Y0s°,Y1sl € W. The hyperplane P passing

through Y's', with the normal vector u' := (SV)71AR! |, Al = (ATYO(SH)~TA)"TAT ¢! satisfies the
following properties:

1- P contains all the points in Wa, and

2- (uh) T (Y05t —Y1s1) > 0 for every feasible mazimizer of U(s).

Proof. See Appendix A. d

By Proposition 5.4, we can create a sequence of points and hyperplanes such that the corresponding
half-spaces contain Y?s°P!. The algorithm is as follows:

W-space Algorithm:

Step 1: Set w® = %e and find the w'-centers (2, °, s°) with respect to F.

Step 2: Set k=0, and Wy = W.

Step 3: If s* satisfies the optimality condition, return (z*, %", s*) and stop.

Step 4: Find g*, the supergradient of U(s) at s*. Find h* by solving the following equation

(32) ATYO(SF)~LARk = AT gF,
Step 5: Set uf = (S*)"'AR* and Wiy = Wi n{w: (u¥)"(w —w*) > 0}. Pick an arbitrary

point w*! from W, and find the w¥*l-center (xF*1, y**1 sk+1) with respect to F. Set
k =k + 1 and return to Step 3.
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A clear advantage of this algorithm over the one in the s-space is that we do not have to increase
the dimension of the w-space at each step and subsequently we do not have to assign weights to the
new added constraints. So, the above algorithm is straightforward to implement.

5.3. Choosing the next weight vector. In the above algorithm, we did not explain about choosing
the next weight vector in the shrunken space. In the case of little information about the function,
different centers can be chosen to achieve better convergence, as we explain in Subsection 5.5. If we
have enough information about the utility function, we might be able to choose a more appropriate
weight vector. Assume that U(s) := Y /", t;logs; where t € R, . By comparison of (23) with the
optimization problem for the weighted analytic center, we see that our problem is actually finding the
weighted analytic center for the weight vector ¢. Hence, if we had ¢, our problem would be finding the
weighted center of t. However, t can be computed by using the gradient of the function.

Assume that we start with w® with the weighted center (2°,s°,4°). Defining ¢° := VU(s"), it is
easy to see that t = S%g°. Now we can choose w! = $5%°? where 3 is the scaling factor such that
BeT 8% =1, and the s-vector of w' is the solution of the problem. The same idea can be used if we
know that the utility function is close to the sum of the logarithms.

Assume that U(s) is non-decreasing on each entry, i.e., VU(s) > 0 for all s € R"'. Consider W-
space algorithm introduced above and the point w* = S*y* from the simplex. The corresponding half-
space is (uF) T (w—w*) > 0 where u* = (S*)~TAh¥, and h* is the solution of ATY?(S¥)~LARF = AT g*,
It is easy to show that S*g¢* lies in that half space. We have:

(W) T (S"g" —wh) = (uF)T(SFg") = (BF)TAT(S%) 71 (S%d")
(33) = (¢")"AATY (SH)TTA) T AT > 0,
where the last inequality is from the fact that A(ATY?(S*)71A)~1AT is positive semidefinite. The
problem here is that $*S*¢* may not be in the shrunken space, where 5* is again the scaling factor.

So, we can perform a line search to find a point on the line segment [S*y*, 3S*¢¥] in the interior of
the shrunken space.

5.4. Modified algorithm in the w-space. We designed a cutting-plane algorithm in the w-space
for maximizing the utility function. In this subsection, we are going to use the properties of the
weighted center we derived in Section 2 to improve the performance of the algorithm. We introduce
two modified versions of the w-space algorithms in this subsection.

5.4.1. First modified algorithm. As we proved in Section 2, for every centric y-vector § and any centric
s-vector 8, w = Y3 is a weight vector in the simplex W. As we are maximizing U(s) over s, roughly
speaking, only the s-vector of the weighted center is important for us for each w € W. This is
somehow explicit in our algorithm as, for example, the normal to the cutting-plane at each step, given
in Proposition 5.4, depends on s and 3° which is the y-vector of the starting point w”. The algorithm
also guarantees to keep Y?s! in the shrunken region at each step. Hence, we lose nothing if we try
to work with weight vectors with y = 2/°.

Consider Lemma 3.2 which is about the convex combination of weight vectors. Assume that we
have weight vectors w', i € {1,--- 1}, with weighted centers (z%,4°, s'), which means they have the
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same y-vector. By Lemma 3.2, for every set of g; € [0,1], i« € {1,---,l}, such that Zé:l B =1
we have (22:1 Bz, y°, Zi‘:l Bis') is the w-center where w := 22:1 Biw'. In other words, when the
y-vectors are the same, s-vector (equivalently z-vector) of the convex combination of w’ is equal to
the convex combination of si, i € {1,---,1}. This is interesting because if we can update the weight
vectors by using the convex combination, we do not need to compute the weighted center. We are
going to use this to modify our algorithm.

Assume that the starting point is w® with weighted center (2,4, s"). The modified algorithm
is similar to the algorithm in Subsection 5.2 and the normal to the cutting-plane is derived by using
(63). However, in the modified one, all w’ have y-vector equal to °. The modified algorithm has two
modules:

Module 1: Assume that at Step i, we have w’ = Y%s* and w*~! = Ys*~! with the corresponding
normals of the cutting-planes u’ and u~!. By the choice of w!, we must have (u i_l)T(wi w1 > 0.
In the modified algorithm, if we have (u?)T (w™! — w') > 0, then we put w'*! = (w® + w'™ 1)/2 (it is
easy to see this weight vector is in the required cut simplex). In this case, we have 3'*! = 40 and

st = (st 4+ 571 /2.

If we have (u?) T (w*™! — w?) > 0, then the line segment [w [w? wi] is no longer in the required cut
simplex. However, there exists ¢ > 0 such that @ := w’ + t(w’ — w*~1) is in the required cut simplex.

We can do a line search to find ¢ and then we set w't! = . In this case, we have 't = ¢° and
s =5t 4 (st — 5071,

Module 2: In Module 1, the algorithm always moves along a single line. When the weight vectors
in Module 1 get close to each other, we perform Module 2 to get out of that line. To do that, we
choose a constant € > 0 and whenever in Module 1 we have ||w’ — w'" || < ¢, we perform Module
2. In Module 2, like the algorithm in Subsection 5.2, we pick an arbitrary weight vector w in the
remaining cut simplex and compute the weighted center (&, 7, §). The problem now is that y-vector is
not necessarily equal to y°. However, we said that § is important for our algorithm; hence, we consider
the weight vector Y°5. This new weight vector is not necessarily in the required cut simplex. To solve
this problem, we use the same technique as in Module 1. We consider the line containing the line
segment [w’, Y%5] and do a line search to find an appropriate weight vector on this line. To simplify
the line search, we consider (u?)" (Y95 — w') > 0 and (u") " (Y5 — w’) < 0 separately.

At the end of Module 2, we again come back to Module 1 to continue the algorithm. As can
be seen, we only have to find a weighted center in Module 1 which makes the modified algorithm
computationally more efficient than the original algorithm, in practice.

5.4.2. Second modified algorithm. Consider the main algorithm and the proof of Proposition 5.4. We
constructed normal vectors that satisfy (62). By using the supergradient inequality, (¢g')T (5 —s') <0
results in U(8) < U(s'). Assume that a sequence of s-vectors {s%,s!, - s/} has been created by the
algorithm up to iteration j. We may not have access to the value of U(s;), i € {1,---,j}, however,
we know that there exists p € {1,---,j} such that U(s?) > U(s Y for all i € {1 -,7}. By the
supergradient inequality we must have (¢°) " (s? — s?) >0 for all 4 € {1,---,} and from (62)

(ui)T(Yosp —Y'is') = (gi)T(sp —s) >0, Vie{l,---,j}.
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This means that Y9s? is a weight vector in the desired cut simplex. Let {p1,---,px} be the indices
that (g') " (s? — s') >0 for all s € {1,---,5},1 € {1,--- ,k}. By the above explanation, we know that
k > 1 (the s-vector with the largest value so far is in this set.). The idea of the modified algorithm is
that when k£ > 1, we put a convex combination of these s-vectors as the new s-vector. We can divide
the new algorithm into three modules.

Module 1: k > 1: Define s/ := L(sPt + ... 4+ sP*) and wit! := YO/ +1,

Module 2: k = 1. We only have one point s? that (¢%)"(s? — s’) > 0 for all i € {1,---,} and by
the above explanation we have U(sP) > U(s?) for all i € {1,---,5}. Hence, sP is our best point so far
and we use it to find the next one. To do that, we choose a direction ds such that s/t1 = s? + ads.
5711 — sP = ads must be in R(A) and therefore a good choice is the projection of g on R(A). Let us
define P4 as the projection matrix to R(A), then we define ds = P4gP and do a line search to find the
appropriate a such that s/*1 := sP 4 ads is in the desired cut simplex. We also have w/*! := YVsi+1,

Module 3: In the first two modules, we do not have to calculate the weighted center. In this module,
like the first modified algorithm, when [|w/*! — /|| in Module 1 or 2 is smaller than a specified value,
we perform an iteration like the original algorithm; pick an arbitrary point inside the cut simplex and
compute the weighted center for that.

5.5. Convergence of the algorithm. Introduction of cutting-plane algorithms goes back to 1960’s
and one of the first appealing ones is the center of gravity version [36]. The center of gravity algorithm
has not been used in practice because computing the center of gravity, in general, is difficult. However,
it is noteworthy due to its theoretical properties. For example, Griinbaum [24] proved that by using
any cutting-plane through the center, more than 0.37 of the feasible set is cut out which guarantees
a geometric convergence rate with a sizeable constant. Many different types of centers have been
proposed in the literature. A group of algorithms use the center of a specific localization set, which is
updated at each step. One of them is the ellipsoid method [44] where the localization set is represented
by an ellipsoid containing an optimal solution. Ellipsoid method can be related to our algorithm as we
can use it to find the new weight vectors at each iteration. The cutting-plane method which is most
relevant to our algorithm is the analytic center one, see [23] for a survey. In this method, the new
point at each iteration is an approximate analytic center of the remaining polytope. The complexity of
such algorithms has been widely studied in the literature. Nesterov [34] proved the e-accuracy bound
of O(Lifﬁ) when the objective function is Lipschitz continuous with constant L, and the optimal set
lies in a ball of diameter R. Goffin, Luo, and Ye [22] considered the feasibility version of the problem

and derived an upper bound of O(Z—;) calls to the cutting-plane oracle.

Another family of cutting-plane algorithms are based on volumetric barriers or volumetric centers
[42, 43, 1]. Vaidya used the volumetric center to design a new algorithm for minimizing a convex
function over a convex set [42]. More sophisticated algorithms have been developed based on Vaidya’s
volumetric cutting plane method [43, 1].

5.6. Solutions for Practical Concerns. In the previous subsections, we introduced an algorithm
that is highly cooperative with the DM and proved many interesting features about it. In this sub-
section, we set forth some practical concerns about our algorithm and introduce solutions for them.
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5.6.1. Driving factors. As we mentioned, one of the main criticisms of classical robust optimization
is that it is not practical to ask the DM to specify an m-dimensional ellipsoid for the uncertainty set.
Our approach improves this situation by asking much simpler questions. However, as the DM might
not be a technical expert, asking the supergradient or gradient of a function in R™ still has many
practical difficulties. Here, we are going to show how to solve this problem.

The idea is similar to those used in the area of multi-criteria optimization. Consider the system
of inequalities Az < b and the corresponding slack vector s = b — Ax representing the problem. What
happens in practice is that the DM might prefer to directly consider only a few factors that really
matter, we call them Driving Factors. For example, the driving factors for a DM might be budget
amount, profit, human resources, etc. We can represent k driving factors by (c¢!) Tz, i € {1,...,k},
and the problem for the DM is to maximize the utility function U((c!)"x,...,(c¥)T2). Similar to
the way we added the objective of the linear program to the constraints, we can add k constraints to
problem and write (23) as:

max  U(€n.o &) + Us1,-- - 5m)
s.t. &:l;i—(ci)T;gZ()7 Z’E{l,---,k;}
(34) s=b— Ax.

As can be seen, the supergradient vector has only k nonzero elements which makes it much easier
for the DM to specify it for & << m. In problem (34), the utility function U can be managed by
the technical people (perhaps picking relatively uniform weights and only adjusting it globally with
strategic input from the DM).

5.6.2. Approximate gradients. In the previous subsection, we derived a cutting-plane algorithm in the
w-space. As can be seen from Propositions 5.3 and 5.4, for the algorithm we need the supergradients
of the utility function U(s). However, we usually do not have an explicit formula for U(s) and our
knowledge about it comes from the interaction with the DM. Supplying supergradient information on
preferences (i.e., the utility function) might still be a difficult task for the DM. So, we have to simplify
our questions for the DM and try to adapt our algorithm accordingly.

We try to derive approximate supergradients based on simple questions from the DM. The idea is
similar to the one used by Arbel and Oren in [2]. Assume that U(s) is differentiable which means the
supergradient at each point is unique and equal to the gradient of the function at that point. Assume
that the algorithm is at the point s. By Taylor’s Theorem (first order expansion) for arbitrarily small
scalars ¢; > 0 we have:

oUu
wi == U(s + €e;) = U(s) + (8)67;
882‘
6U(S) U; — UQ o
(35) = 95, ~ o uo = U(s).
Assume that we have m + 1 points s and s + €e;, ¢ € {1,--- ,m}. By the above equations, if we

have the value of U(s) at these points, we can find the approximate gradient. But in the absence of
true utility function, we have to find these values through proper questions from the DM. Here, we
assume that we can ask the DM about the relative preference for the value of the function at these
m + 1 points. For example, DM can use a method called Analytic Hierarchy Process (AHP) to assess
relative preference. We use these relative preferences to find the approximate gradient.
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Assume that the DM provides us with the priority vector p, then we have the following relationship
between p and wu;’s

W .
J:&7 ’L,jE{O,7m},
uj pj
- Uz‘_’UJO:pi—P07
Uuo Po
Uo
(36) = ui—uo=Po(pi—po), Po:= o

Now, we can substitute the values of u; — ug from (36) into (35) and we have

T
Bo Pr—po  Pm—DPo
€1 €Em

(37) VU(s) =

The problem here is that we do not have the parameter 5y. However, this parameter is not important
in our algorithm because we are looking for normals to our proper hyperplanes and, as it can be seen in
Propositions 5.3 and 5.4, a scaled gradient vector can also be used to calculate h® and h'. Therefore,
we can simply ignore Sy in our algorithm.

6. PROBABILISTIC ANALYSIS

Probabilistic analysis is tied to robust optimization. One of the recent trends in robust optimization
research is the attempt to try reducing conservatism to get better results, and at the same time
keeping a good level of robustness. In other words, we have to show that our proposed answer has a
low probability of infeasibility. In this section, we derive some probability bounds for our algorithms
based on weight and slack vectors. These bounds can be given to the DM with each answer and the
DM can use them to improve the next feedback.

6.1. Representing the robust feasible region with weight vectors. Before starting the proba-
bilistic analysis, want to relate the notion of weights to the parameters of the uncertainty set. As we
explained in Subsection 1.3, we consider our uncertainty sets as follows:

N;
(38) B = {b D=5 2N e -1, 1)N st b =0 4 ZAbng} ,

=1
where {él}fv i el m} are independent random variables, and Ab! is the scaling factor of ..
We assume that the support of ! contains 2! = —1, i.e.,, Pr{z/ = —1} # 0. Let us define another set

which is related to the weight Vectors

(39) W= {(wl,--',wm) i € [yi(w)||Abill1,1) sz—l}

where y(w) is the y-vector of w. Our goal is to explicitly specify a set of weights whose corresponding
w-center makes the feasible solution of the robust counterpart.
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Proposition 6.1. Let z satisfy Ax < b for every b€ By x By X -+ X By,. Then there exists some
w € W, so that x is the weighted analytic center with respect to the weight vector w, i.e., z = x(w).
In other words,

{x . Az <D, Vi)Eleng---me}g{:p(w) we Wh.
Proof. See Appendix A. O

The above proposition shows that when the robust counterpart problem with respect to the un-
certainty set By X Ba X - -+ X By, is feasible, the set W is nonempty. In the next proposition we prove
that the equality holds in the above inclusion.

Proposition 6.2. (a)We have
{ : Az <b, Vbe By x By X -+ X By} = {z(w) : we W}

(b) Assume that w > 0 satisfies Y ;= w; = 1, and y is its corresponding y-vector. For every
ie{l,---,m}, we have

w; > ylHAszl = (ai,x(w)) < Bi, V[;Z € B;.
Proof. See Appendix A. O

6.2. Probability bounds. Suppose we wish to find a robust feasible solution with respect to the
uncertainty set By X By X -+ X By,, where B; was defined in (38). By Proposition 6.2, it is equivalent
to finding the weighted center for a w € W, where W is defined in (39). However, finding such a
weight vector is not straight forward as we do not have an explicit formula for W. Assume that we
pick an arbitrary weight vector w > 0 such that > ", w; = 1, with the weighted center (z,y,s). Let

us define the vector § for w as
Wy .
5Z_yZHAbZ||1) 16{1727"',7’77/},
where Ab; was defined in (38). For each i € {1,---,m}, if 1 < §;, by Proposition 6.2-(b) we have
(az,z(w)) < b; for all b; € B;. So, the problem is with the constraints that 1 > ;. For every such
constraint, we can find a bound on the probability that (a;, z(w)) > I;j. As in the proof of Proposition
6.2-(b), in general we can write:

N;
Pr{(aj,x> > E]} = Pr {_ylZAbi 5,5 > w; = y251||Asz1}
=1

N;
= Pr {_ DAY > 5i||AbZ-H1}
=1

52 Ab11)?
1o = o <_2ziva <Abé>2) |

where the last inequality is derived by using Hoeffding’s inequality:
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Lemma 6.1. (Hoeffding’s inequality[25]) Let vy, va,--- ,v, be independent random variables with
finite first and second moments, and for everyi € {1,2,--- ,n}, 7, <wv; < p;. Then for every ¢ >0
n n
_2n2§02
Pr v; — F v | >npp <exp []
{; Z (Z; Z) } >oima (pi —Ti)?

Bertsimas and Sim [12] derived the best possible bound, i.e., a bound that is achievable. The
corresponding lemma proved in [12] is as follows:

Lemma 6.2. (a) If 2, 1 € {1,--- ,N;}, are independent and symmetrically distributed random vari-
ables in [—1,1], p is a positive constant, and vy < 1,1 € {1,---,N;}, then

N;

=1
where

N;
s =5 |- () 3 (V)]
i=|v]+1
where v := (N; +p)/2, and p:=v — |v].
(b) The bound in (41) is tight for Zt having a discrete probability distribution:
Pr{zl =1} = Pr{zl = -1} = 1/2, vy = 1, L € {1,--- ,N;}, an integral value of p > 1, and p + N;
being even.

We can use the bound for our relation (40) as follows. Assume that z, [ € {1,---,N;}, are
independent and symmetrically distributed random variables in [—1,1]. Also denote by max(Ab;), the
maximum entry of Ab;. Using (40), We can write

N;
Pr{(aj,x) > b;} = Pr{z AbL 2> 51-\\&%”1}

=1

N.
N AY [[Abi|
< P i L> 5 :
g {; max(Ab;) e max(Ab;)

[ Abi|1
42 < B[N, 6 12%0
(42) - ( 5max(Abi)

To compare these two bounds, assume that all the entries of Ab; are equal. Bound (40) reduces to
exp(—02N;/2), and bound (42) reduces to B(N;, §;N;). Figure 5 is the comparison of these two bounds
for 0; = 0.8. Bound (42) dominates bound (40). Moreover, bound (42) is somehow the best possible
bound as it can be achieved by a special probability distribution as in Lemma 6.2.

The above probability bounds do not take part in our algorithm explicitly. However, for each
solution, we can present these bounds to the DM and s/he can use them to improve the feedback to
the algorithm. As an example of how these bounds may be used for the DM, we show how to construct
a concave utility function U(s) based on these probability bounds.
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FIGURE 5. Comparison of bounds (40) and (42).

Bounds (40) and (42) are functions of ¢; = y'llxz\h = HASZ-Ih and as a result, functions of s. Now,

assume that based on the probability bounds, the DM defines a function u;(s;) for each slack variable
s; as shown in Figure 6. w;(s;) increases as s; increases, and then at the point e} becomes flat. At
S; = e? it starts to decrease to reach zero. Parameters 611 and e? are specified by the DM’s desired
bounds. Now, we can define the utility function as U(s) := H;"Zl u;(s;). This function is not concave,
but maximization of it is equivalent to the maximization of In(U(s)) which is concave.

7. ILLUSTRATIVE PRELIMINARY COMPUTATIONAL EXPERIMENTS

In this section, we present some numerical results to show the performance of the algorithms in
the w-space designed in Section 5. LP problems we use are chosen from the NETLIB library of LPs.
Most of these LP problems are not in the format we have used throughout the paper which is the
standard inequality form. Hence, we convert each problem to the standard equality form and then
use the dual problem. In this section, the problem max{(c(®)Tz : Az < b} is the converted one.
In the following, we consider several numerical examples.

Example 1: In this example, we consider a simple problem of maximizing a quadratic function.
Consider the ADLITTLE problem (in the converted form) with 139 constraints and 56 variables. We
apply the algorithm to function U;;(s) = —(s; — s;)? which makes two slack variables as close as
possible. This function may not have any practical application, however, shows a simple example
difficult to solve by classical robust optimization.
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FIGURE 6. The function u;(s;) defined for the slack variable s;

The stopping criteria is [|g]] < 107%. For U3 the algorithm takes 36 iterations and returns
U3 = —5 x 1071, For Usy the algorithm takes 35 iterations and returns Usy = —2.4 x 10712

Example 2: Consider the ADLITTLE problem and assume that three constraints {68, 71, 74} are
important for the DM. Assume that the DM estimates that there is 20 percent uncertainty in the RHS
of these inequalities. We have (bgs, b71,b74) = (500,493,506) and so the desired slack variables are
around (sgs, $71, S74) = (100,98,101). By using the classical robust optimization method that satisfies
the worst case scenario, the optimal objective value is obj, = 1.6894 x 10°.

Now assume that the following utility function represents DM’s preferences:
Ul(S) = tg3 111(868) +tn 1n(571) + t74 ln(374) +tn ln(sm).

This function is a NDAS function that we defined in Definition 5.1. Assume that the DM set ¢, = 10
and tgg = t71 = ty4 = 1. By using our algorithm, we get the objective value of obj; = 1.7137 x 10°
with the slack variables (sgs, s71, 574) = (82,83,132). As we observe, the objective value is higher than
the classical robust optimization method while two of the slack conditions are not satisfied. However,
the slack variables are close to the desired ones. If the DM sets t,, = 20, we get the objective value
of obja = 1.9694 x 10° with the slack variables (sgg, 571, 574) = (40,41,79). However, all the iterates
might be interesting for the DM. The following results are also returned by the algorithm before the
optimal one:

objz = 1.8847 x 10°, (ss, 571, 574) = (56, 58, 83),
objy = 1.7 x 10°, (ses, s71,574) = (82,84,125).

Now assume that the DM wants to put more weight on constraints 68 and 71 and so set tgg = t71 = 2,
t74 = 1 and t,, = 20. In this case, the algorithm returns objs = 1.8026 x 10° with the slack variables
(s6s, 71, S74) = (82,84, 64).
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Example 3: In this example, we consider the DEGEN2 problem (in the converted form) with 757
constraints and 442 variables. The optimal solution of this LP is obj; = —1.4352 x 10%. Assume that
constraints 245, 246, and 247 are important for the DM who wants them as large as possible, however,
at the optimal solution we have s(245) = s(246) = s(247) = 0. The DM also wants the optimal
objective value to be at least —1.5 x 103. As we stated before, we add the objective function as a
constraint to the system. To have the objective value at least —1.5 x 102, we can add this constraint
as ¢! x = —1500 + s,,41. For the utility function, the DM can use the NDAS function

U(S) = 111(8245) + 111(8246) + 111(8247).

By running the algorithm for the above utility function, we get
(8245, S246, S247) = (7.75,17.31,17.8) with objective value objs &~ —1500 after 50 iterations and
(8245, S246, S247) = (15.6,27.58,27.58) with objz ~ —1500 after 100 iterations.

Example 4: We include a stopping criterion in the algorithm based on the norm of the super-
gradient. The DM should also have some control over the stopping criteria (perhaps because of being
satisfied or getting tired of the process). In this example, we consider the SCORPION problem (in
the converted form) with 466 constraints and 358 variables. The optimal objective value of this LP is
obj; = 1.8781 x 103. We consider the following two NDAS utility functions:

274
Ui(s) = In(sm+1) Z In(s;),
1=265
274
(43) Us(s) = 51n(sm+1) Z In(s;).
=265

In this example, we apply the original and the 2nd modified algorithms to both Uj(s) and Usa(s).
The improvement in the utility function value after 200 iterations is shown in Figure 7. As can be

90 T T T T T T T T T

80

~
o

Value of the utility function
(o2}
o

a
o

40

Original Algorithm

------ 2nd Modified Algorithm

30 r r r r r r r r r
0 20 40 60 80 100 120 140 160 180 200

# of iterations

F1GURE 7. Value of the utility function versus the number of iterations.
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seen, the rate of increase in the utility function is decreasing after each iteration. For this problem,
the algorithm does not stop by itself and continues until the satisfaction of the DM. The DM can
stop the algorithm, for example, when the rate of increase is less than a specified threshold. For this
example, the rate of improvement for the 2nd modified algorithm is almost as good as the original
one. However, in the modified algorithm, the weighted center is computed around 40 times during the
200 iterations which is much less computational work.

Example 5: In this example, we consider utility functions introduced at the end of Section 6.

Consider problem SCORPION with optimal objective value of obj; = 1.8781 x 103. Assume that

the uncertainty in constraints 211 to 215 are important for the DM and we have ||Ab;|; = 0.7b§0),

i € {211,--- ,215}, where Ab; was defined in (38). Let Z be the solution of MATLAB’s LP solver,
then we have s311 = -+ = s915 = 0 which is not satisfactory for the DM. Besides, assume that the
DM wants the objective value to be at least 1800. To satisfy that, we add the (m + 1)th constraint as
Smi1 = —1800 + (¢9) Tz which guarantees (¢{?))Tz > 1800. For the utility function, first we define
ui(s;), i € {211,---,215} similar to Figure 6 with €} = ||Ab;]|; = 0.7b§0) and €2 = 0o. So we have for
i€ {211,215}

(44) wi(si) =4 si < [[Abill
Al s > ||Abills-

Now, we can define U(s) := 2125211 Inwu;(s;). By running the algorithm, the supergradient goes to
zero after 65 iterations and the algorithm stops. Denote the solution by x*, then the results are as
follows:

(O Tz* = 1800.3,
0 0 0 0 0
b\ =3.86, b =48.26, by, =21.81, b)) =48.26, b\ =3.86,

Now, assume that the DM wants the objective value to be at least 1850 and the (m + 1)th constraint
becomes $,+1 = —1850 + (C(O))TZL'. In this case, the norm of the supergradient reaches zero, after 104

iterations. The norm of supergradients versus the number of iterations are shown in Figure 8 for these
two cases. Denote the solution after 100 iterations by z*, then we have:

()T z* = 1850,
Let & be the returned value in the second case after 65 iterations. It is clearly not robust feasible;
however, we can use bound (42) to find an upper bound on the probability of infeasibility. Assume

that N = 10 and all the entries of Ab; are equal. Then, bound (42) reduces to B(N,§;N), where
0; = ”AST’?HI. The probabilities of infeasibility of Z for constraints 211 to 215 are given in Table 7 (using

bound (42)).

8. EXTENSIONS AND CONCLUSION

8.1. Extension to Semidefinite Optimization (SDP). Semidefinite Programming is a special
case of Conic Programming where the cone is a direct product of semidefinite cones. Many convex
optimization problems can be modeled by SDP. Since our method is based on a barrier function for
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FiGURE 8. Norm of the supergradient versus the number of iterations for Example 5.

) Pr((aj,@ > 5])
211 0
212 0.0827
213 0.0018
214 0.0866
215 0

TABLE 1. The probability of infeasibility of Z for constraints 211 to 215.

a polytope in R™, it can be generalized and used as an approximation method for robust semidefinite
programming that is IV P-hard for ellipsoidal uncertainty sets. An SDP problem can be formulated as
follows

sup (¢, ),

t;
st Y AV + 5 =B, vie{l,2,.,m},
j=1
S; =0, Vie{l,2,...m},
where Al(»j ) and B; are symmetric matrices of appropriate size, and > is the Lowner order; for two

square, symmetric matrices C; and Cs with the same size, we have C = Cs iff C1 — Cs is a semidefinite
matrix. For every i € {1,---,m}, define

ti )
Fi={zeR": ZAEJ)xj = B;}.
j=1
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Assume that int(F;) # 0 and let F; : int(F;) — R be a self-concordant barrier for F;. The typical
self-concordant barrier for SDP is Fj(z) = — log det(B; — Z§;1 AZ(] )xj). Assume

F = ﬁ]:z
i=1

is bounded and its interior is nonempty. Now, as in the definition of the weighted center for LP, we
can define a weighted center for SDP. For every w € R'", , we can define the weighted center as follows:

(47) arg min {Z wiFi(z) :x € .7-"}
i=1

The problem with this definition is that we do not have many of the interesting properties we proved
for LP. The main one is that the weighted centers do not cover the relative interior of the whole
feasible region and we cannot sweep the whole feasible region by moving in the w-space. There are
other notions of weighted centers that address this problem; however, they are more difficult to work
with algorithmically. Extending the results we derived for LP to SDP can be a good future research
direction to follow.

8.2. Quasi-concave utility functions. The definition of the quasi-concave function is as follows:

Definition 8.1. A function f : R™ — R is quasi-concave if its domain is convex, and for every
a € R, the set

{z e domf : f(z)>a}
is also convex.

All concave functions are quasi-concave, however, the converse is not true. Quasi-concave functions
are important in many fields such as game theory and economics. In microeconomics, many utility
functions are modeled as quasi-concave functions. For differentiable functions, we have the following
useful proposition:

Proposition 8.1. A differentiable function f is quasi-concave if and only if the domain of f is convex
and for every x and y in domf we have:

(48) f) > fl@) = (Vi) (y—2)>0

(48) is similar to (25), which is the property of the supergradient we used to design our algorithms.
The whole point is that for a differentiable quasi-concave function U(s) and any arbitrary point s°,
the maximizers of U(s) are in the half-space
(VU(s°))T (s —s%) > 0. This means that we can extend our algorithms to differentiable quasi-concave
utility functions simply by replacing supergradient with gradient, and all the results for s-space and
w-space stay valid.

8.3. Conclusion. In this paper, we presented new algorithms in a framework for robust optimization
designed to mitigate some of the major drawbacks of robust optimization in practice. Our algorithms
have the potential of increasing the applicability of robust optimization. Some of the advantages of
our new algorithms are:
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(1) Instead of a single, isolated, and very demanding interaction with the DM, our algorithms
interact continuously with the DM throughout the optimization process with more reasonable
demands from the DM in each iteration. One of the benefits of our approach is that the DM
“learns” what is feasible to achieve throughout the process. Another benefit is that the DM
is more likely to be satisfied (or at least be content) with the final solution. Moreover, being
personally involved in the production of the final solution, the DM bears some responsibility
for it and is more likely to adapt it in practice.

(2) Our algorithms operate in the weight-space using only driving factors with the DM. This helps
reduce the dimension of the problem, simplify the demands on the DM while computing the
most important aspect of the problem at hand.

(3) Weight-space and weighted-analytic-centers approach embeds a “highly differentiable” struc-
ture into the algorithms. Such tools are extremely useful in both the theory and applications
of optimization. In contrast, classical robust optimization and other competing techniques
usually end up delivering a final solution where differentiability cannot be expected.

Developing similar algorithms for semidefinite programming is left as a future research topic. As
we explained in Subsection 8.1, we can define a similar notion of weighted center for SDP. However,
these weighted centers do not have many properties we used for LP, and we may have to switch to
other notions of weighted centers that are more difficult to work with algorithmically, and have fewer
desired properties compared to the LP setting.
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APPENDIX A
Lemma 3.2 Let (29,5 s0) i e {1,---,0}, be solutions of system (9), corresponding to the

weights w®. Then for every set of 51 [0,1], ¢ 6 {1, -+ U}, such that Zle Bi = 1, and for every
je{1,--- ¢}, we have (Zz 15z ), yU Z 151 i) is the w-center of F, where

W= Z’Biy(j) (v @)1 @),

=1

Moreover
m m .
SRR L
=1 i=1
Proof. According to the assumptions, for every i € {1,---,¢}, we have
Az® 4 (0 = b(o), 5> 0,
ATy® =0,

Sy — ),

Now, it can be seen that (Zle BixD) ), Zle B;s(™) satisfies the system:

¢ ¢ ¢
A(Z BizW) + (Z Bis®) = b0, (Z BisW) > 0,
i=1 i=1 i=1

ATy(j) =0,
¢ L
(49) (Z 8;8@)y@) = Z BY @ (v () =145(0)
i=1 i=1

Since the w-center of F is unique, the proof for the first part is done.
For the second part, from (49) we can write

¢

m l m
3= 3 = TS = 300
=1 =1

i=1 p=1 i=1 p=1

By Lemma 3.1, we have (s y00)) = (s(i),y(j)>. Therefore, we can continue the above series of
equations as follows:

m m , .
2= Zﬁp )l Zﬂp > ) = (w3 5= 3wl
= i=1 p=1 i=1

Lemma 3.4 Assume that s and y are centric, we have

Wy = aff(W) "W and W, = aff(W,) N W.
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Proof. We prove the first one and our proof for the second one is the same. Clearly we have Wy C
aff(Ws) N W. To prove the other side, assume by contradiction that there exist w € aff(W;) N W such
that w ¢ W;. Pick an arbitrary @ € relint(Ws) and consider all the points w(5) = fw + (1 — B)w for
B € [0,1]. Both w and @ are in aff(WWs), so all the points w(3) are also in aff(Ws). w(0) € W, and
w(1) ¢ Wy, so let § be sup{S : w(B) € W,}.

~

Note that all the points in W has the same s-vector, so we have w(8) = Sy(p) for g € [0, ). By

A~

using (9) we must also have w(f3) € Ws. We want to prove that § = 1. Assume that § < 1. All the

~

points on the line segment between w(0) and w(f) have the same s-vector and we can write them as

~

S(yy(0) + (1 —v)y(B)) for v € [0,1]. But note that y(8) > 0, so there is a small enough € > 0 such

that ye = (—ey(0) + (1 + €)y(B)) > 0 and hence Sy, is a weight vector in W,. However, it is also a

vector on the line segment between w(f) and w which is a contradiction to 5 = sup{S : w(B) € Ws}.

So f=1and w =w(l) € Wy which is a contradiction. Hence Wy D aff(W,)NW and we are done. [

Proposition 3.1 Assume that s and y are centric s-vector and y-vector, respectively. Then the
smallest affine subspace containing Ws and Wy is af(W) = {w : e w = 1}.

Proof. We assumed that A € R™*™ has full column rank, i.e., rank(A) = n < m and the interior of
{z : Az < b} is not empty. Let B, denote the set of all centric s-vectors, i.e., the set of s-vectors for
which there exist (z,y, s) satisfies all the equations in (9). We claim that B; = {s > 0:s=0— Azx}.
For every s € {s > 0:s = b— Ax}, pick an arbitrary y > 0 such that ATy = 0. For every scalar a
we have A" (ay) = 0, so we can choose a such that ay's = 1. Hence (z, ay, s) satisfies (9) and we
conclude that Bs = {s > 0: s =b— Az}. The range of A has dimension n and since Bj is not empty;
it is easy to see that the dimension of By is also n. Moreover, we have W, = Y B, and since Y is
non-singular, we have dim(W,) = n.

Now denote by B, the set of centric y-vectors. By (9), we have ATy = 0. The dimension of the
null space of AT is (n —m). In addition, we have to consider the restriction e '
l=c'w=e'(Ys)=s'y=0b-—Az) y=b"y—a ' Aly=>0"y.

So, we have b'y = 1 for centric y-vectors which reduces the dimension by one (since b ¢ R(A)), and
dim(By) = m —n — 1. We have Wy = SB, and so by the same explanation dim(W,) =m —n — 1.

w = 1; we have

We proved that Wy and W, intersect at only a single point w = Sy, so dim(Wy N W,) = 0. By
using Lemma 3.6-(2) the dimension of the smallest affine subspace containing W, and W), is

dim(W) + dim(W,) —dim(WsNWy) =n+m—-n—-1=m — 1.

The dimension of aff(WW) is also m — 1, so by Lemma 3.4 aff(WW) is the least affine subspace containing
W, and W,,. O

Proposition 5.1 Assume that U(s) is a NDAS concave function. Let (z°,4",s°) and (z!,y!, s!)
be the weighted centers of w® and w', and ¢° and g' be the supergradients of U(s) at s° and s',
respectively. Then we have

{w: @) T@=u) >0, (") (w=w") >0} W £ ¢,
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where g°% = (Y9)71¢° and g'* = (Y1) lgt.

Proof. Consider the weight vectors Y"s?" and Y!s°P!. Our two hyperplanes are
Py:={w: ()T (¥ Hw-Y%" =0},
Po={w: (¢H"(vYH Hw-Ylsh) =0}

By Lemma 5.2, Y%5%! is in the half-space (¢) " (Y?)~}(w — Y%s%) > 0 and Y15 is in the half-space
(gHT(YH ™Y w — Yls1) > 0. If one of these two points is also in the other half-space, then we are
done. So, assume that

(@) T (YO) LY LsP — V0% <0 and (¢})T (Y1) "L(¥YOsPt — Ylsl) <0
(we are seeking contradiction), which is equivalent to
(50) () T(YO) 1y Ls? — %) <0 and (¢1)T (Y)Y 0s — 1) <.
Using (27) and (50) we conclude that
U((YO)_IYlsopt) < U(so) < U(sP") and
U(YH 1y )soPt) < U(s') < U(sPh).

However, note that (Y?)71Y! = ((Y1)~1Y?)~! and this is a contradiction to Definition 5.1. So (50)
is not true and at least one of Y5 and Y1s°" is in

fw: (™) (w—u® >0, (") (w—w')>0}.
O

Proposition 5.2 Assume that U(s) is a NDAS concave function. Let (2%, y', %) be the weighted
centers of w', i € {0,--- ,k}, and g* be the supergradients of U(s) at s*. Let us define
W= {w : (g™ (w —w') > 0} Nnw,

where g = (Y9)~1g'. Assume we picked the points such that

i—1
(51) w' € relint ﬂ Wi, de{l,---,k}.
j=0
Then we have
k .
(52) (YW | N Ween # ¢,
j=0

t

where sP* is an optimal solution of (23).

Proof. Among the three representations of W were given in (11), we use the second one in the
following. If (52) is not true, then the following system is infeasible:

AT(8PHY Ly =0, e'w=1, w>0,
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By Farkas’ Lemma, there exist v € R", p € R, and g € Rf‘; such that:

k k
(SOpt)_lAU + pe — Z g >0 = Av+psPl— Z qiS‘)pt(Yi)_lgi >0,
1=0 i=0
(54) P Z a(g™) Tw' <0 = p— Z gi(g") st < 0.
1=0 i=0

Now for each j € {0,--- ,k}, we multiply both sides of the first inequality in (54) with e Y7, then we
have:

k
p= (™) YY) g 20, Vie{0,- k},
=0
k . .
(55) p—Y alg) s <0,
i=0

where we used the facts that e Y7Av = (ATy?)Tv = 0 and e"Y75°Pt = 1. If we multiply the first set
of inequalities in (55) with —1 and add it to the second one we have

(56) gj(g") " (s = s)) + Y ailg) (YY) — ) <0,

i#]
for all j € {0, ,k}. ¢ € RE and (¢7) T (s — s7) > 0 by supergradient inequality. Hence, from (56),
for each j € {0,--- ,k}, there exists ¢; € {0, ,k}\{j} such that (¢%/)" (Y7 (Y%)~1sPt — 5%) < 0
which, using (25), means U (Y7 (Y%)~1sP!) < U(s%) < U(s°P!). Therefore, by the first property of
NDAS functions, we must have
(57) U(Y % (y7)=LsoPty > U(s°Ph).

Now, it is easy to see that there exists a sequence ji,---,j; € {0,---,k} such that ¢;, = ji;1 and
®j, = j1. By using (57) and the second property of NDAS functions ¢t — 1 times we can write:

U(Sopt) U(Yj2 (le)—lsopt)

U(yjs (sz)*lyjz (yjl )*lsopt)

e < U(th(th—l)_l . sz(yjl)—lsopt)
(58) U (Y7t (y7r)=Lsort),

However, we had U (Y7t (Y71)~1s%Pt) = U (YJt(Y %)~ 1s%Pt) < U(s°P) which is a contradiction to (58).
This means the system (53) is feasible and we are done. O

ININ A

Example A.1. The statement of Proposition 5.1 is not true for a general concave function.

Proof. Consider the first example of Example 3.2. We have m =3, n =1,
A=[1, =1, —=1]7,and b= [1, 0, 0]". Using (9), the set of centric s-vectors is
Bs={[1—-2 =z 2]":2€(0,1)}.
The set of centric y-vectors, By, is specified by solving ATy =0and y'b=1 while y > 0 and we can

see that B, = {[1, z, 1—2]" : 2 € (0,1)}. As shown in Figure 2, Wys are parallel line segments
while Ws are line segments that all intersect at [1, 0, 0] .
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Now, assume that the function U(s) is as follows (does not depend on s3)

351 — S2, if s < s
—51 + 359, if S1 > S2.

(59) U(s) = {

This function is piecewise linear and it is easy to see that it is concave. U(s) is also differentiable at all
the points except the points s;1 = s9. At any point that the function is differentiable, the supergradient
is equal to the gradient of the function at that point. Hence, we have OU (s) = {[3, —1, 0] "} for s1 < so
and 9U(s) = {[~1, 3, 0]"} for s; > so.

If we consider U(s) on Bs, we can see that the maximum of the function is attained at the point
that s1 = s2, S0 Sopt = [1/2, 1/2, 1/2]T. Now assume that we start at w® = S%° = [0.4, 0.1, 0.5]".
Because we have y; = 1 for all centric y-vectors, w = s!, and we can easily find s and 3° as
59 =[0.4, 0.6, 0.6]" and 3° = [1, 1/6, 5/6]". The hyperplane passing through w" is
(@) T (Y)Y w — w®) = 0 and since s{ < s we have

(60) ()Tt =03, -1, 0J(Y°) =3, -6, 0],

and we can write the hyperplane as 3(w; — 0.4) — 6(wa — 0.1) = 0. In the next step, we have
to choose a point w! such that (¢°)"(Y9)~!(w! — w®) > 0. Let us pick w' = [0.6, 0.19, 0.21]"
for which we can easily find s' = [0.6, 0.4, 0.4]" and y' = [1, 0.475, 0.525]". For this point
we have si > s2 so (¢1)T(YY)™! = [~1, 6.32, 0]" and the hyperplane passing through w! is
—(w1 —0.6) 4+ 6.32(w2 — 0.19) = 0. The intersection of two hyperplanes on the simplex can be found
by solving the following system of equations:

3wy — 6w = 0.6 0.57
(61) —wy — 6wy =0.6 = w*=| 0.185
wy +we +wsg =1 0.245

The intersection of simplex and the hyperplanes (¢°) T (Y?) " (w—w®) = 0 and (¢") " (YN (w—w') =0
are shown in Figure 9. The intersection of simplex with

{fw: ()T Hw—-w") >0, (¢")T(Y) ! (w—w") >0} is shown by hatching lines. As can be
seen, we have:

{w: (™) (w=u") 20, (") (w—-w') =0} W, = 0.
O

Proposition 5.4 Assume that we choose the points Y°s?, Y1s' € W. The hyperplane P passing
through Y's', with the normal vector u' := (SH)"'AR' | bt = (ATYO(SY)71A)~1ATg! satisfies the
following properties:

1- P contains all the points in W, and
2- (uh) T (Y05t —Y1sl) > 0 for every feasible mazimizer of U(s).

Proof. As in the proof of Proposition 5.3, if we set u' = (S')~tAh!, then the hyperplane contains all
the points in Wy1. To satisfy the second property, we want to find ! with the stronger property that

(62) (wh) (Y% —Y'sh) = (¢")" (3 - s1),
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FIGURE 9. Intersection of simplex and the hyperplanes (¢°) T (Y?)~!(w — w®) = 0 and
()T (YY) (w — w') = 0 in Example A.1.

for all the centric 3. The reason is that we already have (g')T (sopt — s') > 0. By the choice of
ul = (S1)~1 AR, for every centric y we have

(’U,l)TSly _ (h1>TAT(Sl)—151y _ (hl)TATy = 0.
So, we have (u!)TY!'s! = (u!)TY%s! = 0 and we can continue the above equation as follows:
(9N G=s) = @) (¥%-Y's") = (') (¥%)

_ (ul)T(Y0§ o YOSI)

= (Wh)TY%5—sh).
Now we can continue in a similar way as in the proof of Proposition 5.3. Since (5 — s°) is in the range
of A, we must have:

(u))TY? — (g1 Az =0, VzeR™

By the same reasoning, we have:
(63) ATYO 1_ ATgl = ATyO(sl)flAhl — ATgl = hl _ (ATYo(Sl)flA)flATgll

So, the hyperplane with normal vector u! = (S')~!Ah!, where h' = (ATY?(S1)71A)"1ATg! has the
required properties. O

Propositions 6.1 Let x satisfy Ax < b for every b € By x By X - -- X By,. Then there exists some
w €W, so that x is the weighted analytic center with respect to the weight vector w, i.e., x = x(w).
In other words,

{x Az <b, VBEleng---me}g{x(w) D w e Wh.
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Proof. Let @ > 0 be an arbitrary vector such that >, @; = 1, and let (Z, g, §) be the weighted center

corresponding to it. Assume that z is in the robust feasible region; we must have (a;, z) < bgo)—f—(Abi, Zi)
for every Z; with nonzero probability, particularly for Z; = —e where e is all ones vector. So

(i, ) — b < (Ab, ) = (Abs, —e) = —|| Aby]|.
Define s; := bgo) — (aj,x). Thus, from the above equation, for every i € {1,--- ,m} we have
0 < ||Ab;|]1 < si,
and consequently 7;||Ab;||1 < g;s; using the fact that g; > 0. For every i € {1,--- ,m}, we set
w; = iSi.

Since (z,7, s) satisfies the optimality conditions, we have z = z(w). It remains to show that w € W.
First note that:
m m m m
Yowi=Y sifi=p =y wi=1
i=1 ‘ =1 =1

=1 % 7

where for the second equality we used Lemma 3.1. Now, using the fact that w; > 0 for every
i€ {l,---,m}, we have w; < Z;n:l w; = 1. We already proved that ;||Abs||1 < 938; = w;. These two
inequalities prove that w; € [g;]|Abi|1,1). O

Proposition 6.2 (a)We have {x € R" : Az <b, Vb€ By X By X - x By} = {z(w) : we W}
(b) Assume that w > 0 satisfies Y ;= w; = 1, and y 1is its corresponding y-vector. For every i €
{1,--- ,m}, we have w; > y;||Ab;||1 = (a;, z(w)) < b;, Vb; € B;.

Proof. (a) C part was proved in Proposition 6.1. For DO, let w € W and (z,y, s) be its corresponding
weighted center. By w € W we have

yill Abi 11 < w; = siys = (00 = (a5, 2))ys = [Abi]l1 < (B — (ai, z)).

i

Therefore, for all z; € x,[-1,1],
N
(g z) < b — [ Abill < b = ST Ab 2 =0 + (7, Aby),
=1

which proves x is a robust feasible solution with respect to the uncertainty set By X By X -+ X By,.
(b) Assume that w > 0 satisfies > /-, w; = 1, y is its corresponding y-vector, and there exists

i € {1,---,m} such that w; > y;||Abs||;. If there exists b; € B; such that (a;,z(w)) > b; where
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b = bgo) + va’ ABLZL by using 2! > —1 we have

=1 17

Ni Ni
() > b = (g aw) >0 + 3 Azt > o Y Al
=1 =1

N;
= S AN > b — (a;, 2(w)) = si(w)
=1

Ni Ni
= Y Z AbL > yisi(w) = w; > y; ZAbli
=1 =1

N N,
= Y AN > > A,
=1 =1

which is a contradiction. We conclude that (a;, z(w)) < b; for all b; € B;.



