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Abstract

We survey tensor triangular geometry: Its examples, early theory and first ap-
plications. We also discuss perspectives and suggest some problems.
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Introduction

Tensor triangular geometry is the study of tensor triangulated categories by
algebro-geometric methods. We invite the reader to discover this relatively new
subject.

A great charm of this theory is the profusion of examples to be found
throughout pure mathematics, be it in algebraic geometry, stable homotopy
theory, modular representation theory, motivic theory, noncommutative topol-
ogy, or symplectic geometry, to mention some of the most popular. We review
them in Section 1. Here is an early photograph of tensor triangular geometry,
in the crib:
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Before climbing into vertiginous abstraction, it is legitimate to enquire about
the presence of oxygen in the higher spheres. For instance, some readers might
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wonder whether tensor triangulated categories do not lose too much informa-
tion about the more concrete mathematical objects to which they are asso-
ciated. Our first answer is Theorem 54 below, which asserts that a scheme
can be reconstructed from the associated tensor triangulated category, whereas
a well-known result of Mukai excludes such reconstruction from the triangu-
lar structure alone. Informally speaking, algebraic geometry embeds into tensor
triangular geometry.

The main tool for this result is the construction of a locally ringed space
Spec(K) =

(

Spc(K) , OK

)

for any tensor triangulated category K, which gives
back the scheme in the above geometric example. Interestingly, this construc-
tion also gives the projective support variety, VG(k), in modular representation
theory. This unification is one of the first achievements of tensor triangular
geometry.

The most interesting part of our Spec(K) is the underlying space Spc(K),
called the spectrum of K. We shall see that determining Spc(K) is equivalent
to the classification of thick triangulated tensor-ideals of K. Indeed, in almost
all examples, the classification of all objects of K is a wild problem. Neverthe-
less, using subsets of Spc(K), one can always classify objects of K modulo the
basic operations available in K: cones, direct summands and tensor products
(Theorem 14). This marks the beginning of tensor triangular geometry, per se.
See Section 2.

A general goal of this theory is to transpose ideas and techniques between
the various areas of the above picture, via the abstract platform of tensor trian-
gulated categories. For instance, from algebraic geometry, we shall abstract the
technique of gluing and the concept of being local. From modular representation
theory, we shall abstract Carlson’s Theorem [18] and Rickard’s idempotents.
And of course many techniques used in triangulated categories have been bor-
rowed from homotopy theory, not the least being the above idea of classifying
thick tensor-ideals.

Finally, we also want applications, especially strict applications, i. e. results
without tensor triangulated categories in the statement but only in the proof.
Such applications already exist in algebraic geometry (for K-theory and Witt
groups) and in modular representation theory (for endotrivial modules). And
applications start to emerge in other areas as well. We discuss this in Section 3.

Let us illustrate our philosophy with a concrete abstraction. Take the no-
tion of ⊗-invertible object u ∈ K (i. e. u ⊗ v ' 11 for some v ∈ K). This
perfectly ⊗-triangular concept covers line bundles in algebraic geometry and
endotrivial modules in modular representation theory. Now, in algebraic geom-
etry, a line bundle is locally isomorphic to 11. Hence, the ⊗-triangular geometer
asks:

(a) Can one make sense of “locally” in any ⊗-triangulated category?

(b) Are all ⊗-invertible objects “locally” isomorphic to 11, say, up to suspen-
sion?
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(c) Can one use these ideas to relate line bundles and endotrivial modules?

We shall see that the respective answers are: yes, no (!) and, nonetheless, yes.

Acknowledgements. I’m indebted to many friends and colleagues, that
I would like to thank, collectively but very sincerely, for their help and support.

1. Tensor Triangulated Categories in Nature

1.1. Basic definitions. Let us remind the reader of the notion of trian-
gulated category, introduced by Grothendieck-Verdier [50] forty years ago. See
Neeman [41] for a modern reference.

Definition 1. A triangulated category is an additive category K (we can add
objects a⊕ b and morphisms f + g) with a suspension Σ : K

∼→ K (treated here
as an isomorphism of categories) and a class of so-called distinguished triangles

∆ =

(

a
f // b

g // c h // Σa

)

which are like exact sequences in spirit and are subject to a list of simple axioms:

(TC1) Bookkeeping axiom: Isomorphic triangles are simultaneously distin-
guished; ∆ as above is distinguished if and only if its rotated

b
g // c h // Σa

−Σf// Σb is distinguished; a
1 // a // 0 // Σa is distin-

guished for every object a.

(TC2) Existence axiom: Every morphism f : a → b fits in some distinguished
triangle ∆.

(TC3) Morphism axiom: For every pair of distinguished triangles ∆ and ∆′

∆ =

(

a
f //

k ��

b
g //

` ��

c
h //

∃m ��

Σ(a)
)

Σk��

∆′ =

(

a′
f ′

// b′
g′

// c′
h′

// Σ(a′)
)

,

every commutative square (on the left) fits in a morphism of triangles.

This was also proposed by Puppe in topology but Verdier’s notorious addition
is:
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(TC4) Octahedron axiom: Any two composable morphisms a
f−→ a′

f ′

−→ a′′ fit

in a commutative diagram (marked arrows c · // c′ mean c−→Σ(c′))
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in which the four triangles of the form

•

·�
�

����
•

//
•

^^=====
are distinguished.

A functor between triangulated categories is exact if it commutes with suspen-
sion (up to isomorphism) and preserves distinguished triangles in the obvious
way.

Remark 2. Assuming (TC1)-(TC3), the third object c in a distinguished
triangle ∆ over a given f : a → b is unique up to (non-unique) isomorphism
and is called the cone of f , denoted cone(f). The octahedron axiom simply
says that there is a nice distinguished triangle relating cone(f), cone(f ′) and
cone(f ′ ◦ f).

The power of this axiomatic comes from its remarkable flexibility, compared
for instance to the concepts of abelian or exact categories, which are somewhat
too “algebraic”. As we shall recall below, triangulated categories appear in a
priori non-additive frameworks. In fact, the homotopy category of any stable
Quillen model category is triangulated, see Hovey [27, Chap. 7].

Definition 3. A tensor triangulated category (K,⊗, 11) is a triangulated cate-
gory K equipped with a monoidal structure (see Mac Lane [33, Chap.VII])

K×K
⊗−→ K

with unit object 11 ∈ K. We assume − ⊗ − exact in each variable, i. e. both
functors a ⊗ − : K → K and − ⊗ a : K → K are exact, for every a ∈ K. This
involves natural isomorphisms (Σa)⊗b ' Σ(a⊗b) and a⊗ (Σb) ' Σ(a⊗b) that
we assume compatible, in that the two ways from (Σa)⊗ (Σb) to Σ2(a⊗ b) only
differ by a sign. Although some of the theory holds without further assumption,
we are going to assume moreover that ⊗ is symmetric monoidal : a⊗ b ∼= b⊗ a,
see [33, §VII.7].

An exact functor F between tensor triangulated categories is ⊗-exact if it
preserves the tensor structure, including the 11, up to isomorphisms which are
compatible with the isomorphism FΣ ' ΣF , in the hopefully obvious way.
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Remark 4. This is the most elementary axiomatic for “tensor triangulated”;
see details in Hovey-Palmieri-Strickland [28, App.A]. May [34] proposed further
compatibility axioms between tensor and octahedra, later extended by Keller-
Neeman [30]. However, the elementary Definition 3 suffices for our purpose.

Such structures abound throughout pure mathematics, as we now review.
See also [28, 1.2.3] for examples. We cannot provide background, motivation and
explanations on all the following subjects and we assume some familiarity with
at least some of the examples below, depending on the reader’s own interests.

1.2. Examples from algebraic geometry. Let X be a scheme, here
always assumed quasi-compact and quasi-separated (i. e. X admits a basis of
quasi-compact open subsets); e.g. X affine, or X noetherian, like a variety over
a field. Then K = Dperf(X), the derived category of perfect complexes over X,
is a tensor triangulated category. See SGA6 [14] or Thomason [49]. It sits
K ⊂ T inside the tensor triangulated category T = DQcoh(X)(X) of complexes
of OX -modules with quasi-coherent homology. Such a complex is perfect if it is
locally quasi-isomorphic to a bounded complex of finitely generated projective
modules. When X is a quasi-projective variety over a field, Dperf(X) is simply
Db(VBX) the bounded derived category of vector bundles. The conceptual way
of thinking of perfect complexes is as the compact objects in T (Def. 44). See
Neeman [40] or Bondal-van denBergh [15, Thm. 3.1.1]. The tensor ⊗ = ⊗L

OX
is

the left derived tensor product and the unit 11 is OX (as a complex concentrated
in degree 0).

When X = Spec(A) is affine, these categories are T = D(A–Mod), the
derived category of A-modules, andK = Dperf(A) ∼= Kb(A–proj), the homotopy
category of bounded complexes of finitely generated projective A-modules.

1.3. Examples from stable homotopy theory. Let K = SHfin

be the Spanier-Whitehead stable homotopy category of finite pointed CW-
complexes. It sits K ⊂ T as a tensor triangulated subcategory inside T = SH,
the stable homotopy category of topological spectra. The tensor ⊗ = ∧ is the
smash product and the unit 11 = S0 is the sphere spectrum. See Vogt [53].
One can also replace these by equivariant versions, use modules over a ring
spectrum, or treat everything over a fixed base space.

1.4. Examples from modular representation theory. Let k be
a field of positive characteristic and let G be a finite group, or a finite group
scheme over k. (The adjective modular refers to kG not being semi-simple, i. e.
to the existence of non-projective kG-modules.) Then K = stab(kG), the stable
module category of finitely generated kG-modules, modulo the projectives, is a
tensor triangulated category. It sits K ⊂ T inside the bigger tensor triangulated
category T = Stab(kG), the stable category of arbitrary kG-modules. Objects
of Stab(kG) are k-representations of G and morphisms are equivalence classes
of kG-linear maps under the relation f ∼ 0 when f factors via a projective
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(which is the same as an injective). The tensor is ⊗k with diagonal G-action
and the unit is the trivial representation 11 = k. See Happel [23], Carlson [19] or
Benson [11]. One can alternatively consider Db(kG–mod), inside D(kG–Mod),
with tensor product as above. Rickard [45] proved that the obvious functor
kG–mod→ Db(kG–mod) induces an equivalence of ⊗-triangulated categories

(5) stab(kG) ∼= Db(kG–mod)/Kb(kG–proj) .

1.5. Examples from motivic theory. Let S be the spectrum of a
perfect field (or some general base scheme). Then K = DMgm(S), Voevodsky’s
derived category of geometric motives over S, is a tensor triangulated category.
It sitsK ⊂ T = DM(S) inside the derived category of motives over S. The tensor
product extends the fiber product X ×S Y . See [52]. The unit 11 is simply the
motive of the base S (in degree zero).

1.6. Examples from A1-homotopy theory. Denote by K =

SHA1

gm(S) the triangulated subcategory generated by smooth S-schemes in the

stable A1-homotopy category T = SHA1(S) of Morel-Voevodsky; see [51] or [36].
Again, the tensor ⊗ is essentially characterized as extending the fiber product
×S of S-schemes; and again 11 is the base S. In some sense, § 1.6 is to § 1.5 what
§ 1.3 is to § 1.2.

1.7. Examples from noncommutative topology. It is custom-
ary to think of C∗-algebras as noncommutative topological spaces. Let G be a
second countable locally compact Hausdorff group – evenG trivial is interesting.
Then KKG, the G-equivariant Kasparov category of separable G-C∗-algebras,
is a tensor triangulated category, with ⊗ given by the minimal tensor product
with diagonal G-action. See Meyer [35, § 4] for instance.

As the full category KKG might be a little too overwhelming at first, we can
follow Dell’Ambrogio [21] and consider the triangulated subcategory K = KG

generated by the unit 11 = C. It actually sits inside the Bootstrap category
T = T G, which is the localizing subcategory of KKG generated by the unit.

1.8. Further examples. There are examples in other areas of math-
ematics. For instance, triangulated categories famously appear in symplectic
geometry, where Kontsevich’s homological mirror symmetry conjecture [31] pre-
dicts an equivalence between the homotopy category of the Fukaya category of
Calabi-Yau manifolds and the derived category of their mirror variety. Here,
the tensor is a very interesting problem, which has seen recent progress in the
work of Subotic [47].

As yet another example, Bühler recently proposed a triangulated category
approach to bounded cohomology in [17]. Actually, examples of triangulated
categories flourish in many directions, be it in connection to cluster algebras,
knot theory, or theoretical physics, to mention a few less traditional examples.
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In this luxuriant production of triangulated categories, we focus on tensor tri-
angulated ones. And even if we “only” have the examples presented so far, the
theory already calls for a unified treatment. Well, precisely, here comes one.

2. Abstract tensor triangular geometry

2.1. The spectrum. The basic idea of tensor triangular geometry, formu-
lated in [1], is the construction of a topological space for every ⊗-triangulated
category K, called the spectrum of K, in which every object b of K would have
a support. This support should be understood as the non-zero locus of b. Since
this idea admits no obvious formalization a priori, we follow the Grothendieck-
ian philosophy of looking for the best such space, in a universal sense. To do
this, we have to decide which properties this support should satisfy.

Theorem 6 ([1, Thm. 3.2]). Let K be an essentially small ⊗-triangulated cat-
egory. There exists a topological space Spc(K) and closed subsets supp(a) ⊂
Spc(K) for all objects a ∈ K, which form a support datum on K, i. e. such that

(SD 1) supp(0) = ∅ and supp(11) = Spc(K),

(SD 2) supp(a⊕ b) = supp(a) ∪ supp(b) for every a, b ∈ K,

(SD 3) supp(Σa) = supp(a) for every a ∈ K,

(SD 4) supp(c) ⊂ supp(a)∪ supp(b) for every distinguished a→ b→ c→ Σa,

(SD 5) supp(a⊗ b) = supp(a) ∩ supp(b) for every a, b ∈ K

and such that (Spc(K), supp) is the final support datum on K in the sense that
for every support datum (X,σ) on K (i. e. X a space with closed subsets σ(a) ⊂
X for all a ∈ K satisfying (SD1-5) above), there exists a unique continuous
map ϕ : X → Spc(K) such that σ(a) = ϕ−1(supp(a)) for every object a ∈ K.

Before explicitly constructing Spc(K), let us recall some standard terminol-
ogy:

Definition 7. A non-empty full subcategory J ⊂ K is a triangulated subcate-
gory if for every distinguished triangle a → b → c → Σa in K, when two out
of a, b, c belong to J, so does the third; here, we call J thick if it is stable by
direct summands: a⊕ b ∈ J⇒ a, b ∈ J (usual definition of thick) and triangu-
lated; we say that J is ⊗-ideal if K ⊗ J ⊂ J; it is radical if ⊗

√
J = J, that is,

a⊗n ∈ J⇒ a ∈ J.

Construction 8. We baptize the universal support datum (Spc(K), supp) of
Theorem 6 the spectrum of K. The content of the proof is the explicit construc-
tion of Spc(K). A thick ⊗-ideal P ( K is called prime if it is proper (11 /∈ P)
and if a⊗ b ∈ P implies a ∈ P or b ∈ P. The spectrum of K is the set of primes:

Spc(K) :=
{

P ( K
∣

∣P is prime
}

.
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(This is where we use K essentially small.) The support of an object a ∈ K is

supp(a) :=
{

P ∈ Spc(K)
∣

∣ a /∈ P
}

.

The complements U(a) :=
{

P ∈ Spc(K)
∣

∣ a ∈ P
}

, for all a ∈ K, define an open
basis of the topology of Spc(K). Examples of Spc(K) are given in § 3.1 below.

Remark 9. Of course, the above notion of prime reminds us of commutative
algebra. Yet, this analogy is not a good reason for considering primes P ⊂ K.
On the contrary, ⊗-triangular geometers should refrain from believing that
everything works in all areas covered by ⊗-triangular geometry as simply as in
their favorite toy area. The justification for the definition of Spc(K) is given
by the universal property of Theorem 6 and by the Classification Theorem 14
below.

Remark 10. An important question is: Why do we ask supp(a) to be closed?
After all, several notions of support involve non-closed subsets, if we deal with
“big” objects. For instance, in D(Z–Mod), the object Q should certainly be
supported only at (0), which is not closed in Spec(Z). This is a first indication
that our theory is actually well suited for so-called compact objects (Def. 44).
In fact, the assumption that K is essentially small points in the same direction:
For instance, D(Z–Mod) is not essentially small but Dperf(Z) is. We shall return
to this discussion in a few places below, culminating in § 2.6.

Let us now collect some basic facts about the space Spc(K), all proven in [1].

Proposition 11. Let K be an essentially small ⊗-triangulated category.

(a) If K is non-zero then Spc(K) is non-empty.

(b) The space Spc(K) is spectral in the sense of Hochster [24], that is, it is
quasi-compact and quasi-separated (has a basis of quasi-compact open sub-
sets) and every non-empty closed irreducible subset has a unique generic
point (hence Spc(K) is T0).

(c) For every ⊗-exact functor F : K→ L, the assignment Q 7→ F−1(Q) defines
a map ϕ = Spc(F ) : Spc(L) → Spc(K) which is continuous and spec-
tral (the preimage of a quasi-compact open subset is quasi-compact). So,
Spc(−) is a contravariant functor. For every a ∈ K, we have supp(F (a)) =
ϕ−1(supp(a)).

Remark 12. Hochster [24] observed that a spectral space X has a dual topol-
ogy with dual-open subsets Y ⊂ X being the arbitrary unions

(13) Y = ∪i∈I Yi with each complement XrYi open and quasi-compact.

We call such a dual-open Y a Thomason subset of X, in honor of Thoma-
son’s insightful result [48, Thm. 4.1], which transposes remarkably well beyond
algebraic geometry. When the space X is noetherian (every open is quasi-
compact), a subset Y is Thomason if and only if it is specialization closed
(y ∈ Y ⇒ {y} ⊂ Y ).
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The next two results show that the computation of Spc(K) is equivalent
to the classification of thick ⊗-ideals (see Definition 7 for terminology about
ideals).

Theorem 14 (Classification of thick tensor-ideals [1, Thm. 4.10]). Let K be an
essentially small ⊗-triangulated category. Then the assignment

(15) Y 7−→ KY :=
{

a ∈ K
∣

∣ supp(a) ⊂ Y
}

,

induces a bijection between Thomason subsets Y of the spectrum, see (13), and
radical thick ⊗-ideals J of K. Its inverse is J 7→ supp(J) := ∪

a∈J
supp(a).

Being radical is a mild condition, as we shall see in Remark 23. Theorem 14
admits the following converse:

Theorem 16. If the radical thick ⊗-ideals of K are classified as in (15), by
the Thomason subsets of a support datum (X,σ) with X spectral in the sense
of Hochster, then the map ϕ : X → Spc(K) of Theorem 6 is a homeomorphism.

Theorem 16 was originally proven in [1, Thm. 5.2] under the assumption that
X be a noetherian space. The ideal proof is due to Buan-Krause-Solberg [16,
Cor. 5.2], who also extended our spectrum to lattices of ideals.

Remark 17. In categories likeK = SHfin orK = Dperf(A), which are generated
by the unit 11, any thick subcategory is automatically ⊗-ideal. Similarly, K =
stab(kG) is generated by the unit 11 = k for G a p-group. However, the global
study requires the tensor, see Remark 53.

We now indicate what happens to the spectrum under the few general con-
structions which are available for arbitrary ⊗-triangulated categories.

Theorem 18. Let K be an essentially small ⊗-triangulated category.

(a) Let J ⊂ K be a thick ⊗-ideal. Then Verdier localization K
q→ K/J (Re-

mark 19) induces a homeomorphism from Spc(K/J) onto the subspace
{

P
∣

∣P ⊃ J
}

of Spc(K). For instance, if J = 〈a〉 = Ksupp(a) is the thick
⊗-ideal generated by one object a ∈ K, then Spc(K/〈a〉) ' U(a) is open
in Spc(K).

(b) Idempotent completion ι : K → K\ (see [10] or Remark 22 below) induces
a homeomorphism Spc(ι) : Spc(K\)

∼→ Spc(K).

(c) Let u ∈ K be an object such that the cyclic permutation (123) : u⊗3 ∼→
u⊗3 is the identity and consider F : K → K[u⊗−1]. Then Spc(F ) yields
a homeomorphism from Spc(K[u⊗−1]) onto the closed subspace supp(u)
of Spc(K).
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Proof. (a) and (b) are [1, Prop. 3.11 and Cor. 3.14]. For (c), recall that K[u⊗−1]
has objects (a,m) with a ∈ K and m ∈ Z (the formal a⊗u⊗m) and morphisms
Hom

(

(a,m), (b, n)
)

= colimk→+∞ HomK(a⊗u⊗m+k, b⊗u⊗n+k). This category
inherits from K a unique ⊗-triangulation and the functor F : a 7→ (a, 0) is ⊗-
exact. The assumption on (123) ensures that the tensor structure on K[u⊗−1]
is well-defined on morphisms. Then, the inverse of Spc(F ) is defined by P 7→
P[u⊗−1] for every prime P ⊂ K such that P ∈ supp(u), that is, u /∈ P. Indeed,
the latter condition implies that P[u⊗−1] is both proper and prime in K[u⊗−1].

Remark 19. Recall that the Verdier quotient q : K−→K/J is the universal
functor out of K such that q(J) = 0. It is the localization of K with respect to
the morphisms s in K such that cone(s) ∈ J. It can be constructed by keeping
the same objects asK and defining morphisms as equivalence classes of fractions
· s← · → · with cone(s) ∈ J, under amplification.

We now introduce a very useful condition on K:

Definition 20. A ⊗-triangulated category K is rigid if there exists an ex-
act functor D : Kop → K and a natural isomorphism HomK(a ⊗ b, c) ∼=
HomK(b,Da ⊗ c) for every a, b, c ∈ K. One calls Da the dual of a. In the
terminology of [33] and [28], (K,⊗) is closed symmetric monoidal and every
object is strongly dualizable.

Hypothesis 21. From now on, we assume our ⊗-triangulated category K to
be essentially small, rigid and idempotent complete.

Remark 22. Following up on Remark 10, the assumption that K is rigid is
another indication that our input category K cannot be chosen too big. Much
milder is the assumption that K is idempotent-complete, i. e. every idempotent
e = e2 : a → a in K yields a decomposition a = im(e) ⊕ ker(e), since K

can always be idempotent completed K
ι
↪→ K\ (see [10]) without changing the

spectrum (Thm. 18 (b)).

Remark 23. Under Hypothesis 21, some natural properties become true in K.
For instance, supp(a) = ∅ forces a = 0 (not only ⊗-nilpotent) by [3, Cor. 2.5].
Moreover, if supp(a) ∩ supp(b) = ∅ then HomK(a, b) = 0, see [3, Cor. 2.8].
Finally, every thick ⊗-ideal J ⊂ K is automatically radical ⊗

√
J = J by [3,

Prop. 2.4].

2.2. Localization. Let us introduce the most important basic construc-
tion of ⊗-triangular geometry, which gives a meaning to “the category K over
some open U of its spectrum”.

Construction 24. For every quasi-compact open U ⊂ Spc(K), with closed
complement Z := Spc(K)rU , we define the tensor triangulated category K(U)
as

K(U) :=
(

K/KZ

)\
.
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It is the idempotent completion of the Verdier quotient (Rem. 19) K/KZ of K
by the thick ⊗-ideal KZ =

{

a ∈ K
∣

∣ supp(a) ⊂ Z
}

of those objects supported
outside U . We have a natural functor resU : K → K(U). One can prove that
Spc(resU ) induces a conceptually pleasant homeomorphism, see [9, Prop. 1.11],

Spc(K(U)) ∼= U .

Hence quasi-compactness of U is necessary since Spc(K) is always quasi-
compact, see Prop. 11 (b). Informally, the category K(U) is the piece of K living
above the open U . For every a, b ∈ K, we abbreviate HomK(U)(resU (a), resU (b))
by HomU (a, b). In the same spirit, we say that something about K happens
“over U”, when it happens in the category K(U) after applying the restriction
functor resU .

Theorem 25 ([5, § 4]). Let K be a ⊗-triangulated category as in Hypothesis 21.

(a) The topological space Spc(K) is local (i. e. every open cover contains the
whole space) if and only if a ⊗ b = 0 implies a = 0 or b = 0. Then {0}
is the unique closed point of Spc(K) and we call K a local ⊗-triangulated
category.

(b) For every P ∈ Spc(K), the category K/P is local in the above sense. Its

idempotent completion (K/P)
\
is the colimit of the K(U) over those quasi-

compact open U ⊂ Spc(K) containing the point P ∈ Spc(K).

Remark 26. Roughly speaking,K/P (or rather (K/P)
\
) is the stalk ofK at the

point P ∈ Spc(K). The support supp(a) =
{

P
∣

∣ a /∈ P
}

=
{

P
∣

∣ a 6= 0 in K/P
}

of an object a ∈ K can now be understood as the points of Spc(K) where a
does not vanish in the stalk. This expresses the non-zero locus of a, as initially
wanted.

Remark 27. Amusingly, a local ⊗-triangulated category K (i. e. a⊗ b = 0 ⇒
a or b = 0) could hastily be baptized “integral” if one was to follow algebraic
gut feeling. Extending standard terminology to ⊗-triangular geometry requires
some care. Indeed, “local” is correct because of the conceptual characteriza-
tion of Theorem 25 (a). And comfortingly, for X a scheme, the ⊗-triangulated
category K = Dperf(X) is local if and only if X ∼= Spec(A) with A a local
ring.

Remark 28. WhenK is local, Spc(K) has a unique closed point by Thm. 25 (a).
Then, the smallest possible support for a non-zero object is exactly that closed
point ∗. We define FL(K) :=

{

a ∈ K
∣

∣ supp(a) ⊂ ∗
}

and call such objects the
finite length objects, by analogy with commutative algebra. (This somewhat im-
proper terminology might need improvement; see the comments in Remark 27.)

We now use K(U) to create a structure sheaf on Spc(K).
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Construction 29. For every quasi-compact open U ⊂ Spc(K), we can consider
the commutative ring EndK(U)(11). Since the unit 11 of K(U) is simply the
restriction of the unit 11 of K, and since (K(U))(V ) ∼= K(V ) for every V ⊂ U ∼=
Spc(K(U)), we obtain a presheaf of commutative rings pOK, at least on the
open basis consisting of quasi-compact open subsets. This presheaf pOK(U) =
EndU (11) is already useful in itself but can also be sheafified into a sheaf OK of
commutative rings on Spc(K). We denote by

Spec(K) :=
(

Spc(K) , OK

)

the corresponding ringed space. It is a locally ringed space by [5, Cor. 6.6].

Remark 30. The above construction has an obvious algebro-geometric bias
and one should not expect too much from this sheaf of rings OK in general.
Still, it will be important in Theorems 54 and 57 below. Our preferred presheaf
on Spc(K) is not OK but the more fundamental “presheaf” of ⊗-triangulated
categories: U 7→ K(U) of Construction 24.

2.3. Support and decomposition. Here comes the first ⊗-triangular
result which really opens the door to geometry. It extends a famous result of
Carlson [18] in representation theory.

Theorem 31 ([3, Thm. 2.11]). Let K be a ⊗-triangulated category as in Hypoth-
esis 21 and let a ∈ K be an object. Suppose that its support is disconnected, i. e.
supp(a) = Y1 tY2 with each Yi closed and Y1 ∩Y2 = ∅. Then the object decom-
poses accordingly, that is, a ' a1 ⊕ a2 with supp(a1) = Y1 and supp(a2) = Y2.

It is easy to build counter-examples to the above statement if we remove the
assumption that K is idempotent complete, see [3, Ex. 2.13]. This explains why
we insist on idempotent-completion, for instance in the construction of K(U)
above. Theorem 31 has the following application.

Theorem 32 ([3, Thm. 3.24]). Let K be a ⊗-triangulated category as in Hy-
pothesis 21 and assume that Spc(K) is a noetherian topological space (every
open is quasi-compact). Let dim : Spc(K) → Z ∪ {±∞} be a dimension func-
tion, i. e. Q $ P ⇒ dim(Q) + 1 ≤ dim(P). Consider the filtration of K by the
⊗-ideals K(d) :=

{

a ∈ K
∣

∣ dim(P) ≤ d for all P ∈ supp(a)
}

. Then for every
finite d ∈ Z, the corresponding subquotient K(d)/K(d−1) decomposes into a co-
product of local parts. More precisely, after idempotent completion, we have an
equivalence

(

K(d)/K(d−1)

)\ ∼−→
∐

P∈Spc(K), dim(P)=d

(

FL(K/P)
)\

where the subcategories of finite-length objects FL(K/P) are as in Remark 28.
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Examples of dimension functions, dim(P), include the Krull dimension of
the irreducible closed {P}, or the opposite of its Krull codimension, in Spc(K).

2.4. Gluing and Picard groups. The true power of Theorem 31 ap-
pears in the following gluing method.

Theorem 33 (B.-Favi [9, Cor. 5.8 and 5.10]). Let K be a ⊗-triangulated cat-
egory as in Hypothesis 21 and let Spc(K) = U1 ∪ U2 be a cover with both Ui

quasi-compact open. Set U12 := U1 ∩ U2 and consider the commutative square
of ⊗-triangulated categories and restriction functors

K //

��

K(U1)

��
K(U2) // K(U12) .

(a) Gluing of morphisms: For every pair of objects a, b ∈ K, we have a Mayer-
Vietoris long exact sequence of abelian groups

HomU1
(a, b)

· · ·
∂ // HomK(a, b) // ⊕ // HomU12

(a, b)
∂ // HomK(a,Σb) // · · ·

HomU2
(a, b)

(b) Gluing of objects: Given two objects ai ∈ K(Ui), i = 1, 2, and an isomor-
phism σ : a1

∼→ a2 over U12, there exists a triple (a, f1, f2) where a is an
object of K and fi : a

∼→ ai is an isomorphism over Ui such that σ ◦f1 = f2
over U12. This gluing is unique up to possibly non-unique isomorphism of
triples in K.

Remark 34. The apparently anodyne non-uniqueness of the isomorphism
in (b) has a cost. Namely, gluing of three objects over three open subsets is
still possible but without uniqueness [9, Cor. 5.11]. And gluing of more than
three pieces might simply not exist unless some connectivity conditions are
imposed [9, Thm. 5.13].

Here is an application of the gluing technique to Picard groups.

Definition 35. The Picard group, Pic(K), is the group of isomorphism classes
of ⊗-invertible objects of K, that is, those u ∈ K for which there exists v ∈ K

with u⊗ v ' 11. (As K is rigid, v ' Du.) This does not use the triangulation.

We can now construct ⊗-invertible objects by gluing copies of the ⊗-unit 11.

Definition 36. For every quasi-compact open U ⊂ Spc(K), denote by
Gm(U) := AutU (11) the group of automorphisms of 11 in K(U).
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Theorem 37 (B.-Favi [9, Thm. 6.7]). Under Hypothesis 21, if Spc(K) = U1∪U2

with each Ui quasi-compact, then gluing induces a well-defined group homomor-
phism δ : Gm(U12)→ Pic(K), where U12 := U1∩U2. We have an exact sequence

· · ·HomU12
(Σ11, 11)

1+∂ // Gm(Spc(K)) // Gm(U1)⊕Gm(U2) // Gm(U12)BC

GF
δ

��
Pic(K) // Pic(K(U1))⊕ Pic(K(U2)) // Pic(K(U12)) ,

which continues on the left as in Theorem 33 (where ∂ also comes from).

It remains an open problem how to extend this sequence on the right, say,
with Brauer groups. The other natural thing one might want to do is to glue
any Gm-cocycle on Spc(K) into an invertible object of K. Then the difficulty
of gluing more than three pieces (Remark 34) becomes an obstacle. It can be
circumvented in positive characteristic p, at the price of inverting p on the
Picard group:

Theorem 38 ([6, Thm. 3.9]). Let p be a prime and K a ⊗-triangulated
Z/p-category satisfying Hypothesis 21. Let Ȟ1(Spc(K),Gm) be the first Čech
cohomology group with coefficients in the above presheaf of units Gm. Let
Picloc.tr.(K) :=

{

[u]
∣

∣u ' 11 in K/P for all P ∈ Spc(K)
}

⊂ Pic(K) be the
subgroup of locally (very) trivial invertibles. Then, gluing induces a well-defined
isomorphism β

Ȟ1(Spc(K),Gm) ⊗
Z
Z[1/p]

β−→
'

Picloc.tr.(K) ⊗
Z
Z[1/p] ⊂ Pic(K)⊗

Z
Z[1/p] .

We call 11 the very trivial ⊗-invertible because the right notion of a triv-
ial ⊗-invertible is probably one of the form Σn11 for some n ∈ Z. See more
in § 4.5.

Remark 39. In algebraic geometry, invertible objects are (shifted) line bun-
dles. Hence they are locally trivial for the Zariski topology, which explains why
the Picard group, Pic(X), is the first Zariski cohomology group of Gm. How-
ever, there are local ⊗-triangulated categories with non-trivial Picard group.
See Remark 71 for an example in modular representation theory. The following
result shows that the Picard group can be as large as one wants with given
(even local) spectrum.

Proposition 40 (B. - Rahbar Virk). Let K be a local ⊗-triangulated category
( Spc(K) connected is enough). Let G be an abelian group. Define a tensor on
the triangulated category L :=

∐

G K by ag ⊗ bh := (a ⊗ b)g+h, where ag ∈ L

is the object corresponding to a ∈ K in the copy indexed by g ∈ G. Then
Spc(L) ∼= Spc(K) whereas Pic(L) ∼= Pic(K)×G.
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Proof. Easy exercise using the ⊗-invertible objects 11g ∈ L for all g ∈ G and
the fact that every object of L is a finite direct sum ⊕

g∈G
a(g)0 ⊗ 11g for objects

a(g) ∈ K.

2.5. Comparing triangular spectra and algebraic spectra.

Remark 41. It should be clear by now that the main key to the geometry of a
given ⊗-triangulated category K, is the determination of its spectrum, Spc(K).
We have seen in Theorem 16 that this problem amounts to the classification
of thick ⊗-ideals of K. This is very nice when the latter classification has been
kindly performed by our predecessors but in most new areas such a classification
is not yet under roof and actually constitutes a very interesting challenge. See
§ 4.1 below. To study Spc(K) without classification, we need some comparison
with other spaces that might appear in examples. This is the purpose of [5],
where we relate Spc(K) to the spectrum of the endomorphism ring RK =
EndK(11) of the ⊗-unit 11, and to the homogeneous spectrum of the graded ring
R•

K = HomK(11,Σ•11).

Theorem 42 ([5, Thm. 5.3]). There exist two natural continuous maps

ρ•

K : Spc(K)−→ Spech(R•

K) and ρK : Spc(K)−→ Spec(RK)

defined by ρ•

K(P) = ⊕
d∈Z

{

f ∈ Rd
K

∣

∣ cone(f) /∈ P
}

and ρK(P) = ρ0K(P).

In fact, these maps are often surjective (yet, not always, see [5, Ex. 8.3]):

Theorem 43 ([5, § 7]). With the notation of Theorem 42, we have:

(a) Suppose that K is connective, i. e. that Hom(Σi11, 11) = 0 for i < 0 (which
reads Rd

K = 0 for d > 0). Then ρK : Spc(K) → Spec(RK) is a surjective
map.

(b) Suppose that R•

K is coherent (e.g. noetherian) in the graded sense. Then
both ρ•

K : Spc(K)→ Spech(R•

K) and ρK are surjective maps.

Injectivity is more delicate, see Theorem 51. However, in “algebraic” exam-
ples, these maps are (local) homeomorphisms, see Remark 56 and Theorem 57.

2.6. Non-compact objects. As indicated a couple of times above, the
natural input K to our ⊗-triangular geometry machine consists of small enough
categories. Let us now be more precise.

Definition 44. Let T be a triangulated category admitting arbitrary small
coproducts

∐

i∈I ti. An object c ∈ T is called compact if for every set of ob-
jects {ti}i∈I in T, the natural map

∐

i∈I HomT(c, ti) → HomT(c,
∐

i∈I ti) is
an isomorphism. The subcategory Tc of compact objects is triangulated but
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not closed under coproducts. We say that T is a compactly generated tensor
triangulated category if

(i) Tc generates T, that is, T = Loc(Tc) is the smallest localizing (i. e. closed
under small coproducts) triangulated subcategory of T which contains Tc.

(ii) Tc is essentially small, Tc is rigid and 11 is compact.

In that case, an object is compact if and only if it is rigid (i. e. strongly du-
alizable) and the ⊗-triangulated category K := Tc of rigid-compact objects
satisfies our Hypothesis 21. We can then apply the above ⊗-triangular geome-
try to K = Tc.

Examples 45. Examples § 1.2-1.4 fit in this picture with the T provided each
time. (Examples § 1.5–1.7 require some care.) In [28], ⊗-triangulated cate-
gories T as above are studied under the name unital algebraic stable homotopy
categories.

Remark 46. Our spectrum Spc(K) is the right space for the compact part
but Spc(T) is not an appropriate invariant of T for it might not even be a set.
Moreover, we do not need supports of non-compact objects to be closed and
we would like supp(

∐

i∈I ti) = ∪i∈I supp(ti). The question of supp(s⊗ t) is not
entirely clear. One expects supp(s⊗t) ⊂ supp(s)∩supp(t) with equality when s
is compact. Putting all this together, one can actually define a “big spectrum”
of T as the universal space with supports, satisfying (SD’ 1)-(SD’ 7) below. Since
it is not clear yet how useful this big spectrum can be, we do not make a theory
out of this. The following result, due independently to Pevtsova-Smith [43] and
Dell’Ambrogio, indicates that such a big spectrum might often coincide with
Spc(K) anyway.

Theorem 47 ([21, Thm. 3.1]). Let T be a compactly generated ⊗-triangulated
category as in Definition 44. Let X be a topological space with a choice of a
subset σ(t) ⊂ X for every object t ∈ T satisfying the following conditions:

(SD’ 1) σ(0) = ∅ and σ(11) = X,

(SD’ 2) σ(s⊕ t) = σ(s) ∪ σ(t) for every s, t ∈ T,

(SD’ 3) σ(Σt) = σ(t) for every t ∈ T,

(SD’ 4) σ(u) ⊂ σ(s) ∪ σ(t) for every distinguished triangle s→ t→ u→ Σs,

(SD’ 5) σ(s ⊗ t) ⊂ σ(s) ∩ σ(t) for every s, t ∈ T, with equality if s or t is
compact,

(SD’ 6) σ(
∐

i∈I ti) = ∪i∈Iσ(ti) for every set {ti}i∈I of objects of T,

(SD’ 7) σ(c) is closed for every compact object c ∈ Tc .
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In particular (X,σ) is a support datum on K = Tc. Suppose moreover:

(i) X is spectral in the sense of Hochster [24], see Proposition 11 (b).

(ii) An open U ⊂ X is quasi-compact if and only if U = X r σ(c) for c ∈ Tc.

(iii) For t ∈ T, if σ(t) = ∅ then t = 0.

Then the canonical map X → Spc(Tc) of Theorem 6 is a homeomorphism.

In examples where T is given with such supports, Theorem 47 might be used
to compute Spc(K). Conversely, Spc(K), for K = Tc, yields information about
the big category T, via the following inflating technique, see [41, Chap. 4]:

Remark 48. For U ⊂ Spc(K) quasi-compact open with closed complement Z,
set TZ = Loc(KZ) the localizing subcategory of T generated by KZ ⊂ K.
In [8], we define the category “T over U” as the localization T(U) := T/TZ .
The ⊗-triangulated category T(U) remains compactly generated and Neeman’s
generalization [41, Thm. 4.4.9] of Thomason’s result (Rem. 55) reads:

(

T(U)
)c

=
K(U). This also justifies the idempotent completion in the definition of K(U).

Transposing Rickard’s idempotents [46] to ⊗-triangular geometry gives:

Theorem 49 (B.-Favi [8]). Let T be a compactly generated ⊗-triangulated cat-
egory (Def. 44) and K = Tc its compact objects. For every Thomason subset
Y ⊂ Spc(K), there exists a distinguished triangle e(Y )→ 11→ f(Y )→ Σ(e(Y ))
in T such that e(Y ) ⊗ f(Y ) = 0 (hence e(Y )⊗2 ' e(Y ) and f(Y )⊗2 ' f(Y )
are ⊗-idempotents) and such that f(Y ) ⊗ − : T−→T realizes Bousfield local-
ization with respect to TY := Loc(KY ) = e(Y )⊗T, the localizing subcategory of
T generated by the compact objects KY =

{

a ∈ K
∣

∣ supp(a) ⊂ Y
}

. Moreover,
for every pair of Thomason subsets Y1 , Y2 ⊂ Spc(K), we have isomorphisms
e(Y1 ∩ Y2) ∼= e(Y1) ⊗ e(Y2) and f(Y1 ∪ Y2) ∼= f(Y1) ⊗ f(Y2) and two Mayer-
Vietoris distinguished triangles in T:

e(Y1 ∩ Y2) // e(Y1)⊕ e(Y2) // e(Y1 ∪ Y2) // Σe(Y1 ∩ Y2)

f(Y1 ∩ Y2) // f(Y1)⊕ f(Y2) // f(Y1 ∪ Y2) // Σf(Y1 ∩ Y2) .

Using these ⊗-idempotents, we get the announced definition of a support
inside Spc(K), for all objects of T (compare Benson-Iyengar-Krause [13]):

Theorem 50 (B.-Favi [8, § 7]). Let T and K = Tc be as above and suppose
that Spc(K) is noetherian. Define κ(P) = e({P}) ⊗ f(supp(P)) ∈ T, for all
P ∈ Spc(K) (here supp(P) is the Thomason subset corresponding to P in the
Classification Theorem 14). Then, the support admits the following extension
to all objects t ∈ T:

supp(t) :=
{

P ∈ Spc(K)
∣

∣ t⊗ κ(P) 6= 0
}

.

This support satisfies all properties (SD’ 1)-(SD’ 7) of Theorem 47.
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Note that (i) and (ii) of Theorem 47 are trivial here. It is not clear when this
support detects vanishing, i. e. when t ⊗ κ(P) = 0 for all P ∈ Spc(K) implies
t = 0.

3. Examples and Applications

We now apply the theory of Part 2 to the examples of Part 1.

3.1. Classification of thick ⊗-ideals, after Hopkins. Such clas-
sifications began in stable homotopy theory, see § 1.3, long before the start of
⊗-triangular geometry. Via Theorem 16, this becomes:

Theorem 51 (Hopkins-Smith [26], see [5, Cor. 9.5]). The spectrum of SHfin is

P2,∞ P3,∞ · · · Pp,∞ · · ·

...
...

...

P2,n+1 P3,n+1 · · · Pp,n+1 · · ·

P2,n P3,n · · · Pp,n · · ·

...
...

...

P2,1

VVVVVVVVVVVV P3,1
MMM

M
· · · Pp,1

lllllll
· · ·

SHfin
tor

The lines P−P′ indicate that the higher prime is in the closure of the lower one.
For every prime number p and every n ≥ 1, the prime Pp,n of SHfin is the kernel
of the n-th Morava K-theory (composed with localization at p) and Pp,∞ =

∩n≥1Pp,n is the kernel of localization at p. Finally, SHfin
tor := Ker(H(−,Q)) is

the subcategory of torsion spectra. The surjective continuous map ρ = ρSHfin :
Spc(SHfin)−→Spec(Z) of Theorem 42 is given by ρ(SHfin

tor) = (0) and ρ(Pp,n) =
pZ for all 1 ≤ n ≤ ∞.

Remark 52. This example yields many observations. First, Spc(SHfin) is not
noetherian and the closed subsets {Pn,∞} are not the support of any object.

In particular, in the local category SHfin
p at p, we have FL(SHfin

p ) = 0. Finally,

Spec(SHfin) is a locally ringed space but is not a scheme. See more in [5].

Remark 53. Hopkins [25] also understood that this classification could be
transposed to algebra and indicated that (15) should provide the classification
for K = Dperf(A), with the subsets Y ⊂ Spec(A) being all specialization closed
subsets. The actual proof of this statement requires A to be noetherian and
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was given by Neeman [39]. But it is Thomason who nailed down the dual-open
subsets (our Thomason subsets) in [48, Thm. 3.15]. His result settles the non-
noetherian affine case and, most interestingly, works for any quasi-separated
scheme if one insists on ⊗-ideal thick subcategories. Via Theorem 16 and Con-
struction 29, this yields:

Theorem 54 (Reconstruction [1, Thm. 6.3]). Let X be a quasi-separated
scheme; see Section 1.2. We have an isomorphism Spec(Dperf(X)) ' X of
ringed spaces.

Remark 55. Under the underlying homemorphism Spc(Dperf(X)) ' X, we
can reformulate another famous result of Thomason’s [49, § 5]: For every quasi-
compact U ⊂ X, we have K(U) ∼= Dperf(U), where K(U) is as in Construc-
tion 24.

Remark 56. The map ϕ : X → Spc(Dperf(X)) of Theorem 16 sends x ∈ X
to Ker

(

Dperf(X) → Dperf(OX,x)
)

. For X = Spec(A) affine and p ∈ Spec(A),

the quotient K/ϕ(p) ∼= Dperf(Ap) is indeed the expected local category. Let us
make two further observations. First, ϕ reverses inclusions, i. e. if p ⊂ q in A
then ϕ(p) ⊃ ϕ(q) in K. This phenomenon is in line with other mildly surprising
facts, to an algebraist’s eye, like {P} =

{

Q
∣

∣Q ⊂ P
}

for every P ∈ Spc(K).
Secondly, an inverse to ϕ is given by the map ρK : Spc(K) → Spec(RK) =

Spec(A) of Theorem 42. Hence K = Dperf(A) provides an example where ρK
is not only surjective, as follows from Theorem 43, but also injective. Inter-
estingly, one can actually give a direct proof of the injectivity of ρK in this
case and obtain the Hopkins-Neeman-Thomason classification for Dperf(A) by
Theorem 14. See details in [5, Rem. 8.4].

Walking in Hopkins’s steps, Benson-Carlson-Rickard [12] and later
Friedlander-Pevtsova [22] performed the classification in modular representa-
tion theory for finite groups and finite group schemes. Combined with Theo-
rem 16, this reads:

Theorem 57 ([1, Thm. 6.3] and [5, Cor. 9.5]). Let k be a field of positive char-
acteristic and G be a finite group (scheme over k). See Section 1.4. Consider the
graded-commutative cohomology ring H•(G, k). Then, for the derived category
K = Db(kG–mod), the map ρ•

K of Theorem 42 induces an isomorphism

Spec(Db(kG–mod)) ' Spech(H•(G, k))

between the triangular spectrum of K and the homogeneous spectrum of
the cohomology. Via (5), it restricts to an isomorphism Spec(stab(kG)) '
Proj(H•(G, k)), where the latter is the so-called projective support vari-
ety VG(k).

Indeed, Friedlander and Pevtsova were able to reconstruct the structure
sheaf of VG by computing the triangular structure sheaf OK of our Construc-
tion 29.
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Recently, Krishna [32, Thm. 7.10] proved that the spectrum of the category
of perfect complexes over a (reasonable) stack is the associated moduli space.

3.2. Further computations. It is now natural to turn to other, newer
areas, where the classification of thick ⊗-ideals is not yet known, to see whether
the spectrum can be computed by some other means. Here are some first results
in motivic theory and noncommutative topology. In both cases, the spectrum
is only known in the simplest ⊗-triangulated category that one can produce.
But these should be considered as bridgeheads in two unknown (but friendly)
territories.

Let us start with motivic theory, see § 1.5-§ 1.6. Here, the simplest category
is probably that of mixed Tate motives with rational coefficients, i. e. the tri-
angulated subcategory of DM(k)Q generated by the Tate objects Q(i), for all
i ∈ Z.

Theorem 58 (Peter [42]). Let k be a number field and DMT(k)Q be the trian-
gulated category of mixed Tate motives. Then Spc(DMT(k)Q) is just a point.

At the other end of the motivic game, the computation of the spectrum

of SHA1

gm(S) as in § 1.6 is probably a difficult long-term challenge. Using Theo-
rem 43 and Morel’s computation [37] of End

SHA1 (11), we can still get:

Theorem 59 ([5, Cor. 10.1]). Let K = SHA1

gm(k) for a perfect field k of charac-
teristic different from 2 as in Section 1.6. Then the continuous map ρK of
Theorem 42 defines a surjection from the triangular spectrum Spc(K) onto
the Zariski spectrum Spec(GW(k)) of the Grothendieck-Witt ring of quadratic
forms over k.

The second area we want to discuss is noncommutative topology, see § 1.7.
In that case, the baby ⊗-triangulated category is the thick subcategory KG of
KKG generated by the unit. The ring of endomorphisms of the unit R(G) =
EndKKG(11) is the Grothendieck group of continuous complex representations
of G.

Theorem 60 (Dell’Ambrogio [21]). Let G be a finite group. Then the map
ρKG of Theorem 42 is split surjective. It is a homeomorphism for G trivial, i. e.
Spc(K) ' Spec(Z) where K ⊂ KK is the triangulated subcategory generated
by 11 = C.

Dell’Ambrogio also conjectured [21, Conj. 1.3] that ρKG is injective for every
finite group G. Again, our surjectivity Theorem 43 applies in big generality:

Theorem 61 ([5, Cor. 8.8]). Let G be a compact Lie group. Then the continuous
map ρKG : Spc(KG)→ Spec(R(G)) of Theorem 42 is surjective.

Remark 62. A famous result of Quillen in modular representation theory of
a finite group G asserts that VG is covered by the images of the VE under the
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maps Spc(resGE) : VE → VG, where E < G runs through the elementary abelian
p-subgroups. Dell’Ambrogio explains in [21] how the celebrated Baum-Connes
conjecture with coefficients would follow from an analogous property in KK-
theory, namely that the spectrum of KKG (G as in §1.7) be covered by the
images of the various spectra of KKH , where H < G runs through compact
subgroups.

3.3. Applications to algebraic geometry. The following result is
an immediate corollary of Theorem 54:

Corollary 63. Let X and Y be two quasi-separated (e. g. noetherian) schemes.
If their derived categories of perfect complexes are equivalent Dperf(X) '
Dperf(Y ) as tensor triangulated categories then the schemes X ' Y are iso-
morphic.

Remark 64. A ⊗-triangular equivalence DQcoh(X)(X) ' DQcoh(Y )(Y ) restricts

to a⊗-triangular equivalence on the compact parts, Dperf(X) ' Dperf(Y ), hence
implies X ' Y as well. This reconstruction result is known to fail without
the tensor: There exist non-isomorphic schemes, even abelian varieties, with
triangular equivalent derived categories. See Mukai [38].

Remark 65. In homological mirror symmetry, or more generally each time
that one expects a given triangulated category K to be equivalent to Dperf(X)
for some (maybe conjectural) scheme X, it becomes interesting to construct the
tensor product on K which should correspond to that of Dperf(X). See [47]. In
this situation, the scheme X must be Spec(K) by Theorem 54. This does not
guarantee that K = Dperf(X) but it tells us what X must be.

The abstract results of ⊗-triangular geometry apply in particular to K =
Dperf(X). For instance, the filtration by (co)dimension of support in Theo-
rem 32 yields a spectral sequence in any cohomology theory “defined” on de-
rived categories, likeK-theory or Witt theory, for instance. In particular, we get
the following generalization of Quillen’s famous spectral sequence for regular
schemes [44]:

Theorem 66 ([4, Thm. 1]). Let X be a (topologically) noetherian scheme of
finite Krull dimension. Then there is a cohomologically indexed and converging
spectral sequence in Thomason non-connective K-theory [49], of local-global
nature:

Ep,q
1 =

⊕

x∈X(p)

K−p−q(OX,x on {x}) p+q=n

p,q,n∈Z

+3 K−n(X) .

Remark 67. This theorem is a first strict application of⊗-triangular geometry,
since the statement does not involve ⊗-triangulated categories. Yet, the deeper
result is Theorem 32 which says that the quotient Dperf(X)(d)/D

perf(X)(d−1)
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decomposes, up to idempotent completion, as the coproduct of the categories
FL(Dperf(OX,x)) =

{

a ∈ Dperf(OX,x)
∣

∣ supp(a) ⊂ {x}
}

over all x ∈ X(d).

This illustrates the “boomerang effect” of abstraction: Inspired by
Quillen [44], we started from the well-known fact that for a regular scheme,
the above quotient is exactly equivalent to

∐

x∈X(d)
FL(Dperf(OX,x)), without

idempotent completion, and we tried to extend it to ⊗-triangular geometry.
This simply fails ! But it works if one adds the idempotent completion to the
picture. Then, Theorem 32 holds in all areas of ⊗-triangular geometry. Now,
this yields a gain even in algebraic geometry where we started, for we under-
stand that the regularity assumption was not that important after all. In K-
theory, the idempotent completion explains the presence of negative K-theory
in Theorem 66. Of course, all this has its origin in Thomason’s description
of Dperf(U) (Remark 55) and it is fair to say that he had everything in [49] to
prove Theorem 66. It is nonetheless remarkable that these ideas extend so far
beyond algebraic geometry.

3.4. Applications to modular representation theory. In mod-
ular representation theory, see § 1.4, the filtration Theorem 32 applied to
K = stab(kG) recovers, and slightly improves, a result of Carlson-Donovan-
Wheeler [20, Thm. 3.5]. Let us rather comment on the Picard group,
Pic(stab(kG)), which is a classical invariant, known as the group T (G) = Tk(G)
of endotrivial kG-modules up to isomorphism. A kG-module M is endotrivial
if Endk(M) ' k ⊕ (proj) which simply means that M∗ ⊗M ' 11 in stab(kG).
We proved:

Theorem 68 (B.-Benson-Carlson [7]). The endotrivial modules obtained by the
gluing technique of Theorem 37 generate a finite-index subgroup of T (G).

Remark 69. Recall the ⊗-triangulated category K(U) of Construction 24 for
every quasi-compact open U ⊂ Spc(K). In algebraic geometry, for X a scheme
and K = Dperf(X), Thomason proved K(U) ' Dperf(U), see Remark 55. In
other words, the construction (K, U) 7−→ K(U) “stays inside algebraic geome-
try”.

On the other hand, for K = stab(kG) and U ⊂ VG(k) non-trivial, K(U) is
never equivalent to a stable category stab(kH), no matter what finite group H
one tries. See [6, Prop. 4.2]. Hence, although Thomason’s result does work ab-
stractly and transposes to modular representation theory via the ⊗-triangular
construction K(U), the resulting construction takes us out of basic modular
representation theory. Here is a nice strict application of Theorem 38 (without
⊗-triangulated categories in the statement):

Theorem 70 ([6, Thm. 4.7]). Let G be a finite group and VG = Proj(H•(G, k))
its projective support variety over a field k of characteristic dividing the order
of G. Then gluing induces an injection β : Pic(VG)⊗

Z
Z[1/p] ↪→ T (G)⊗

Z
Z[1/p].
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Combining with Theorem 68, we obtain a rational isomorphism

Pic(VG)⊗
Z
Q ' T (G)⊗

Z
Q .

Remark 71. The above result fails integrally. For instance, for G = Q8 the
quaternion group and k containing a cubic root of unity, the group of endotriv-
ials is T (Q8) = Z/4 ⊕ Z/2 although Spc(stab(kQ8)) = VQ8

(k) = ∗ is just a
point, hence Pic(VQ8

) = 0. Note also that stab(kQ8) is a local ⊗-triangulated
category.

3.5. Intra-utero applications. While ⊗-triangular geometry was still
in the making, ⊗-triangulated categories showed useful in the theory of Witt
groups of quadratic forms over schemes. This abstract theory, of so-called tri-
angular Witt groups, has been quite useful. It led to the proof of the Gersten
conjecture for Witt groups, among many other (strict) applications, including
the computation of several classical Witt groups. For a survey, the interested
reader is referred to [2]. In retrospect, many of these triangular Witt groups
results fit very well in the language of ⊗-triangular geometry.

4. Problems

We have already mentioned a few open questions in the above text. In con-
clusion, we briefly suggest some additional directions of possible interest. We
refrain from insisting on the wildest dreams (as in Remarks 62 and 65 for in-
stance) and favor of a few problems reasonably close to the current stage of the
theory.

4.1. Computing the spectrum in more examples. As discussed
in § 2.5, the most basic question is to compute Spc(K) for more ⊗-triangulated
categories K, preferably without using the classification of thick ⊗-ideals, in
order to deduce the latter via Theorem 14 and show off a little. Theorem 47
offers an angle of attack. Still, we need more results telling us how to compare
Spc(K) to other spaces. Such a comparison is provided by the maps ρK and ρ•

K

of Theorem 42. We have seen that these maps are often surjective (Thm. 43). It
then becomes interesting to decide when they are injective and more generally
to study their fibers.

In algebraic examples like K = Dperf(A) or K = Db(kG–mod), the map ρ•

K

is injective (see § 3.1) but we have seen in the very first example (Thm. 51) that
injectivity fails completely outside algebra. The tempting guess would be:

Conjecture 72. The map ρ•

K is (locally) injective when K is “algebraic
enough”.

Here “algebraic enough” could mean those triangulated categories K which
arise as stable categories of Frobenius exact categories, or, alternatively, those
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K which are the derived category of some dg-category, see Keller [29]. It might
also be necessary to add some hypothesis like K being locally generated by 11.

Remark 73. By Hochster [24], any spectral space, like our Spc(K), is the
spectrum of some commutative ring. It would be pleasant to construct such a
ring explicitly in terms of K. The above use of RK and R•

K was a first attempt
to do this.

4.2. Image of algebraic geometry in ⊗-triangular geome-
try. We have seen in Theorem 54 that a scheme X can be reconstructed
from the ⊗-triangulated category Dperf(X). An important question is to decide
which ⊗-triangulated categories K are ⊗-equivalent to Dperf(Spec(K)). Actu-
ally, it would also be interesting to know when the locally ringed space Spec(K)
is a scheme. As already mentioned in Remark 65, this could have consequences
beyond algebraic geometry, as for instance in homological mirror symmetry.

Also interesting would probably be the tensor-triangular characterization of
some properties of morphisms of schemes, like being smooth or étale.

4.3. Residue fields. In examples, triangular primes P ⊂ K are often the
kernel of a tensor functor K→ F with F = VBk being the category of k-vector
spaces over a field k (in algebraic geometry), or F being the category of graded
modules over a graded field k[t, t−1] (in homotopy theory), or F = stab(kCp)
being the stable category of kCp-modules, for Cp the cyclic group of order p =
char(k) (in modular representation theory, although this case is still unclear).
This observation calls for two things:

(a) The definition of ⊗-triangular fields F, which would imply in particular
that Spc(F) = {∗} is reduced to a point.

(b) The construction, for every local category K (Thm. 25), of a conservative
⊗-exact functor π : K → F into some ⊗-triangular field, that would be a
“residue field”. Conservative means that Ker(π) = 0, i. e. that the image
of Spc(π) : {∗} = Spc(F)−→ Spc(K) would be the unique closed point
of Spc(K).

Note that there might be several such residue field functors, as seems to be
the case in modular representation theory. It is not at all clear whether such
functors can be constructed from the ⊗-triangular structure alone but they
should certainly be looked for in examples where one tries to determine Spc(K).

Regarding the definition of ⊗-triangular fields, the naive idea of request-
ing the category F to be semi-simple does not cover stab(kCp) for instance.
Indeed, Spc(stab(kCp)) is a point but there is no non-zero ⊗-exact functor
from stab(kCp) into a semi-simple ⊗-category as soon as p ≥ 3. (For p = 2,
stab(kC2) ∼= VBk.) Currently, my favorite guess is to define F to be a triangular
field if every non-zero object x ∈ F is faithful (i. e. x ⊗ f = 0 forces x = 0 or
f = 0). This covers all three examples above and still forces Spc(F) = {∗} but
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there is no solid conceptual motivation for this definition at this stage, beyond
unification of examples.

4.4. Nilpotence. A clear understanding of nilpotence phenomena in tri-
angulated categories still eludes us, even in the presence of a tensor. First, we
do not know how to define reduced ⊗-triangulated categories. Nor do we know
how to construct Dperf(Xred) out of the ⊗-triangulated category K = Dperf(X),
except via the odious cheat: Dperf

(

(Spec(K))red
)

. For instance, even when
Spc(K) = {∗} is a point, that is, when K is something like an “artinian lo-
cal” ⊗-triangulated category, it is not clear how to obtain a residue field (§ 4.3)
by reduction modulo nilpotents.

Also, there seems to be no obvious way to construct a ⊗-triangulated cat-
egory “K over Z”, for a closed subset Z ⊂ Spc(K) of the spectrum, say, with
what should be the “reduced structure”. Neither do I know which closed sub-
sets Z ⊂ Spc(K) are the support of an object u ∈ K as in Theorem 18 (c).
Again, this relates to the residue field of § 4.3 when K is local and Z = {∗} is
the closed point.

4.5. Torsion in the Picard group. This is a follow-up on Remarks 39
and 71. First, let us note that the isomorphism Pic(VG) ⊗ Q ' T (G) ⊗ Q of
Theorem 70 is still unknown for G a finite group scheme, because we do not
know whether the Picard group is locally torsion in that case. We have seen
in Proposition 40 that the Picard group can be locally wild. Yet, the example
∐

G K can be ruled out if we further require K to be generated by 11, as a thick
triangulated subcategory. Hence the following hope survives:

Conjecture 74. Let K be a ⊗-triangulated category as in Hypothesis 21.
Assume that K is local (Thm. 25) and that K is generated by 11. Let u ∈ K be
⊗-invertible. Then there exists m > 0 such that u⊗m is trivial in the sense that
u⊗m ' Σn11 for some n ∈ Z. That is, Pic(K) is rationally trivial: Pic(K)⊗ZQ =
Q · [Σ11].
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sections et théorème de Riemann-Roch. Springer LNM 225. 1971.

[15] A. Bondal and M. van den Bergh. Generators and representability of functors
in commutative and noncommutative geometry. Mosc. Math. J., 3(1):1–36, 258,
2003.

[16] A. B. Buan, H. Krause, and Ø. Solberg. Support varieties: an ideal approach.
Homology, Homotopy Appl., 9(1):45–74, 2007.

[17] T. Bühler. On the algebraic foundations of bounded cohomology. ETH Thesis
2008. To appear in Mem. Amer. Math. Soc.

[18] J. F. Carlson. The variety of an indecomposable module is connected. Invent.
Math., 77(2):291–299, 1984.

[19] J. F. Carlson. Modules and group algebras. Lectures in Mathematics ETH Zürich.
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1996.

[51] V. Voevodsky. A1-homotopy theory. In Proceedings of the International Congress
of Mathematicians, Vol. I (Berlin, 1998), pages 579–604, 1998.

[52] V. Voevodsky, A. Suslin, and E. M. Friedlander. Cycles, transfers, and motivic
homology theories, volume 143 of Annals of Mathematics Studies. Princeton
University Press, Princeton, NJ, 2000.

[53] R. Vogt. Boardman’s stable homotopy category. Lecture Notes Series, No. 21.
Matematisk Institut, Aarhus Universitet, Aarhus, 1970.


