
Theoretical Computer Science 346 (2005) 58–95
www.elsevier.com/locate/tcs

A semantic framework for the abstract model
checking of tccp programs�

María Alpuentea, María del Mar Gallardob, Ernesto Pimentelb,
Alicia Villanuevaa,∗

aDSIC, Technical University of Valencia Camino de Vera s/n, E-46022, Spain
bDept. LCC, University of Málaga Campus de Teatinos s/n, E-29071, Spain

Abstract

The Timed Concurrent Constraint programming language (tccp) introduces time aspects into the
Concurrent Constraint paradigm. This makes tccp especially appropriate for analyzing timing proper-
ties of concurrent systems by model checking. However, even if very compact state representations are
obtained thanks to the use of constraints in tccp, large state spaces can still be generated, which may
prevent model-checking tools from verifying tccp programs completely. Model checking tccp pro-
grams is a difficult task due to the subtleties of the underlying operational semantics, which combines
constraints, concurrency, non-determinism and time. Currently, there is no practical model-checking
tool that is applicable to tccp. In this work, we introduce an abstract methodology which is based on
over- and under-approximating tccp models and which mitigates the state explosion problem that is
common to traditional model-checking algorithms. We ascertain the conditions for the correctness of
the abstract technique and show that this preliminary abstract semantics does not correctly simulate
the suspension behavior, which is a key feature of tccp. Then, we present a refined abstract semantics
which correctly models suspension. Finally, we complete our methodology by approximating the
temporal properties that must be verified.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Timed Concurrent Constraint programming; Abstract interpretation; Model checking

� Work partially supported by MCyT under Grant TIC2001-2705-C03.
∗ Corresponding author. Tel.: +34 963877000x73 556; fax: +34 963877359.

E-mail addresses: alpuente@dsic.upv.es (M. Alpuente), gallardo@lcc.uma.es (M. del Mar Gallardo),
ernesto@lcc.uma.es (E. Pimentel), villanue@dsic.upv.es (A. Villanueva).

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.08.009

http://www.elsevier.com/locate/tcs
mailto:alpuente@dsic.upv.es
mailto:gallardo@lcc.uma.es
mailto:ernesto@lcc.uma.es
mailto:villanue@dsic.upv.es

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 59

1. Introduction

In the past few years, some extensions of the concurrent constraint paradigm [3,30]
have been defined in order to model reactive systems. All these extensions introduce a
quantitative notion of time that makes it possible to model the typical ingredients of these
systems, such as timeouts, preemptions, etc. The automatic verification of systems specified
in the timed concurrent constraint language tccp of [3] was first studied in [14]. Then,
an exhaustive method for applying the classical model-checking technique to tccp was
proposed in [15], which uses the temporal logic for reasoning about tccp programs of [4].
The main idea behind these methods is to take advantage of the constraint dimension of
tccp in order to obtain a compact representation of the system, which is then used as an
input for the model-checking algorithms. Unfortunately, both [14,15] develop exhaustive
model-checking algorithms. This causes the traditional state explosion problem and makes
them inapplicable to large size systems. In this work, we develop a suitable approximation
methodology that is based on abstract interpretation [11] in order to drastically reduce the
state space of model checking tccp, thus providing a framework where exhaustive analysis
of more complex systems can be achieved.

Abstract model checking [10,13,27] combines abstract interpretation [11] and model
checking [7] to improve the automatic verification of large systems. Applying abstract
model checking involves the abstraction of both the model to be analyzed (M) and the
properties to be checked within the model. In the classic abstract model-checking literature,
the abstract model M+ is an over-approximation of the concrete model M , meaning that
each possible concrete execution trace is mimicked in the abstract model. This approach
allows the verification of properties which concern all the possible behavior paths. Two
techniques have been successfully developed to construct M+. The predicate abstraction
approach consists of substituting some selected model expressions with boolean variables,
which leads to important simplifications (e.g., this is used in the tool SLAM [2,1]). In
contrast, the data abstraction method reduces the type of certain data by transforming its
original concrete domain into an approximate and simpler domain. This second approach
has been applied for abstracting models in the Bandera [23] and �SPIN [16] tools.

In this paper, we follow the data abstraction method to approximate tccp computations.
The common way of formalizing this technique is to introduce abstract operations that
over-approximate the original ones (see, for instance, [18] where a data-based abstraction
for the modeling language Promela is developed). However, due to the double, logical
as well as temporal dimension of tccp, inaccurate abstract models would be obtained in
our context by simple over-approximation. In order to achieve fine accuracy, we combine
over- and under-approximation in the abstraction of tccp operators. This approach is novel
and allows us to build abstract models which are satisfactorily precise. The inspiration to
combine over- and under-approximation in our context comes from [16].

Applying abstract interpretation in the presence of quantifiable information such as time,
raises other specific problems which are related to the process synchronization. In tccp,
processes are totally synchronized meaning that, at each time instant, all enabled agents
(i.e., actions) are simultaneously carried out. Unfortunately, the loss of information caused
by the abstraction affects the suspension behavior of processes: the suspension of a process
in the original model does not generally imply that the process abstractly suspends; hence

60 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

synchronization in the abstract model might be damaged. To overcome this problem, we
slightly modify the abstract semantics to preserve the suspension behavior mentioned above.
To the best of our knowledge, this is the first total correctness result for abstract model
checking of tccp programs in the literature.

In the context of model checking, a well-known and practical approach for implementing
abstraction is the automatic source-to-source transformation of the original specification into
its abstract version. Thus, any existing model checker for the original modeling language
may be used as an abstract model checker and, in addition, the abstraction approach and the
rest of optimization techniques implemented in the tool may be combined to improve the
analysis. Following these ideas, we develop a source-to-source transformation methodology
for implementing abstraction of tccp programs.

The paper is organized as follows. Section 2 recalls the main features of the tccp lan-
guage. In Section 3, we introduce our data abstraction methodology for tccp, which is
based on two entailment relations �+ and �−. The combination of the two abstract relations
allows us to contain the potential addition of non-determinism caused by the abstraction,
thus achieving very accurate approximations. However, this preliminary abstract semantics
does not take into account the suspension behavior of processes. Section 4 discusses the
correctness of this semantics and proves that the abstract semantics is correct w.r.t. the
original one, provided the suspension behavior is correctly simulated. Then, we formalize
a refined abstract semantics that correctly models process suspension. Section 5 develops
an implementation of the abstract semantics which is defined as a source-to-source trans-
formation that compiles the abstract program back into tccp code. This transformation is
non-trivial as it requires introducing delays for the synchronization of agents inside in-
stantaneous, non-deterministic choices. Section 5.4 discusses the incompleteness (lack of
optimality of this semantics) showing that the approximated model contains abstract traces
which do not correspond to any concrete computation. To improve the accuracy of the ab-
stract model, two abstraction refinements are proposed which we sketch and illustrate by
means of an example. In Section 6, we provide an abstract methodology for approximating
the satisfiability of the temporal logic properties being checked. Usually, in the classic pa-
pers about abstract model checking [10,13,27], properties are under-approximated which,
in some way, compensates the over-approximation of the model and is correct for analyzing
universal properties (those that refer to all execution paths). In our methodology, we need to
combine over- and under-approximation again in order to achieve accurate approximations.
Finally, Section 8 concludes and points out several directions for further research. Proofs
of all technical results of the paper are given in Appendix B.

2. The tccp language

In [3], the Timed Concurrent Constraint language (tccp in short) was defined as an ex-
tension of the Concurrent Constraint programming language ccp [29]. In the cc paradigm,
the notion of store as valuation is replaced by the notion of store as constraint. The com-
putational model is based on a global store where constraints are accumulated and on a
set of agents that interact with the store. The model is parametric w.r.t. a particular class
of constraint system C [30,3]. The basis of ccp languages is the ask-tell paradigm [28],

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 61

which can be understood as an extension of Constraint Logic Programming [25]: in addition
to satisfiability (tell), entailment (ask) is introduced. Synchronization is achieved through
blocking ask: the process is suspended when the store does not entail the ask constraint and
it remains suspended until the store entails it. In tccp, a new (w.r.t. ccp) conditional agent
now c then A else B is introduced which makes it possible to model situations where the
absence of information can cause the execution of a specific action. Intuitively, the execution
of a tccp program evolves by asking and telling information to the store.

Let us briefly recall the tccp syntax for agents:

A ::= stop|tell(c) |
n∑

i=0
ask(ci)→Ai | now c then A else A | A||A | ∃x A | p(x),

where c, ci are finite constraints (i.e., atomic propositions) of C. A tccp process P is an
object of the form D.A, where D is a set of procedure declarations of the form p(x):-B,
and B is an agent. 1

Intuitively, the stop agent finishes the execution of the program, tell(c) adds the con-
straint c to the store, whereas the choice agent (

∑n
i=0ask(ci) → Ai) consults the store

and non-deterministically executes the agent Ai in the following time instant, provided
the store satisfies the condition ci ; otherwise the agent suspends. The conditional agent
now c then A else B can process negative information in the sense that, if the store satis-
fies c, then the agent A is executed; otherwise (even if ¬c does not hold), B is executed. A||B
executes the two agents A and B in parallel. The ∃x A agent is used to hide the information
regarding x, i.e., it makes x local to the agent A.

The notion of time is introduced by defining a global clock that synchronizes all agents.
In the semantics, the only agents that consume time are the tell, choice and procedure call
agents. In order to simulate the values of the system variables throughout time, we use
streams that are encoded by means of lists. The head of the list represents, at each time
instant, the current value of the variable.

We show an example of a tccp program in Fig. 1. This program models a photocopier by
means of four procedure declarations which represent the two main processes (user(C,A)
and photocopier(C,A,MIdle,E,T)) and the synchronization of such processes (
system(MIdle,E,C,A,T) and initialize(MIdle)).

Agent user(C,A) can execute four different actions: turn on the photocopier (on),
turn it off (off), do a copy request (c), or do nothing. The system is assumed to be
synchronous, in the sense that the user cannot execute (through stream C) any action before
the photocopier satisfies the previous request. This behavior is modeled by instantiating
the (head of the) system variable A to free. The stream variable T is used as a counter
to verify that no request has been received after MIdle time units. When this occurs, the
photocopier is automatically turned-off.

In order to start the execution, the system is initialized by running the process
initialize (MIdle), which fixes the value of variable MIdle, and then the
photocopier and the user processes are executed in parallel by means of the

1 We assume that all programs considered in this work are well-typed.

62 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

user(C,A):- ask(A=[free|_]) → tell(C=[on|_]) +
ask(A=[free|_]) → tell(C=[off|_]) +
ask(A=[free|_]) → tell(C=[c|_]) +

ask(A=[free|_]) → tell(true).
photocopier(C,A,MIdle,E,T):- ∃ Aux,Aux’,T’ (tell(T=[Aux|T’]) ||

ask(true) → now (Aux>0) then
now (C=[on|_]) then

tell(E=[going|_] ∧ T’=[MIdle|_] ∧ A=[free|_])
else now (C=[off|_]) then

tell(E=[stop|_] ∧ T’=[MIdle|_] ∧ A=[free|_])
else now (C=[c|_]) then

tell(E=[going|_] ∧ T’=[MIdle|_] ∧ A=[free|_])
else tell(Aux’=Aux-1) || tell(T’=[Aux’|_] ∧ A=[free|_])

else tell(E=[stop|_]) || tell(A=[free|_])).
system(MIdle,E,C,A,T):- ∃ E’,C’,A’,T’(tell(E=[_|E’]) || tell(C=[_|C’]) ||

tell(A=[_|A’]) || tell(T=[_|T’]) || user(C,A) ||
ask(true)→photocopier(C,A’,MIdle,T,E’) ||
ask(A’=[free|_])→(system(MIdle,E’,C’,A’,T’))|| tell(s(E’,C’,A’,T’))).

initialize(MIdle):- ∃ E,C,A,T(tell(A=[free|_]) || tell(T=[MIdle|_]) ||
tell(E=[off|_]) || system(MIdle,E,C,A,T) ||
tell(s(E,C,A,T))).

Fig. 1. A tccp program modeling a photocopier.

synchronization process system(MIdle,E,C,A,T). The convenience of storing con-
straint s(E,C,A,T) will be clear in Section 6 when we approximate the properties to be
checked in the abstract program.

3. Abstract tccp programs

Recently, some model-checking algorithms have been developed for the concurrent con-
straint paradigm [14,15]. The common idea behind them is to exploit the constraint nature
of the language to represent a model of the system in a compact way. However, the state ex-
plosion problem of classical model-checking techniques also occurs in these algorithms. In
this section, we develop an abstract model-checking technique as a solution to this problem.

3.1. Abstracting constraint systems

Definition 1. A simple constraint system is a structure 〈C, �〉 where C is the set of atomic
constraints and relation � ⊆ ℘(C) × C satisfies

C1. u � C for all C ∈ u. C2. u � C if u � C′, ∀C′ ∈ v, and v � C.

Relation � can be extended to a relation � ⊆ ℘(C) × ℘(C) as follows:
u � v ⇐⇒ ∀C ∈ v, u � C.

During tccp computations, stores are represented by elements of ℘(C). In other words,
if u ⊆ C is the current store, the information accumulated in u is the conjunction of all
constraints C ∈ u. In addition, � is the entailment relation used to deduce information from
stores. We will denote by � the set ℘(C).

Proposition 2. Relation � has the following properties:
(1) (Reflexivity) ∀u ∈ �.u � u.
(2) (Transitivity) ∀u, v, w ∈ �.u � v, v � w implies that u � w.

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 63

Fig. 2. Lattice of abstract stores of Example 3.

An abstract interpretation (an abstraction) of the simple constraint system
〈C, � 〉 is given by an upper closure operator (uco) � : ℘(�) → ℘(�), that is, a mono-
tonic (sst1 ⊆ sst2 then �(sst1) ⊆ �(sst2)), idempotent (�(sst) = �(�(sst))) and extensive
(sst ⊆ �(sst)) operator. The intuition of this definition is that each store st ∈ � is ab-
stracted by its closure �({st}). Closure operators have many interesting properties. For
instance, when the considered domain is a complete lattice, e.g. 〈℘(�), ⊆〉, each closure
operator is uniquely determined by the set of its fixed points. In the context of abstract in-
terpretation, closure operators are important because abstract domains can be equivalently
defined by using them or by Galois insertions, as introduced in [12]. Let � : �(℘ (�)) →E

be an isomorphism. Then, given an uco � : ℘(�) → ℘(�), structure (℘ (�), �◦�, �−1, E)

is a Galois insertion, where � ◦ � and �−1 are the abstraction and concretization functions,
respectively.

Using abstract interpretation terminology, �({st}) is the most precise abstraction of the
store st∈� and, if �({st}) ⊆ sst , then sst is also an abstraction of st .

Example 3. Given two variables x and y, let C = {x = n|n ∈ N}∪{y = n|n ∈ N}, and let
�x : ℘(�) → ℘(�) be a constraint abstraction which does not affect variable y, while the
abstract value of x = n is defined as follows. Let expression x mod a = b represent the
set of stores which contain the constraint x = n, with n mod a = b. Then, the abstraction
for x = n is given in Fig. 2. To formalize �x , we consider the following sets of abstract
stores, with m ∈ N:

• (x mod a = b, y = m)
def= {{x = b + ak, y = m}|k ∈ N},

• (x mod a = b)
def= {{x = b + ak}|k ∈ N},

• (y = m)
def= {{y = m}}.

Using the lub operator of the lattice shown in Fig. 2 (denoted below as �), we define operator
�x over these sets as follows:

• (x mod a=b, y =m) �x (x mod c=d, y =m)
def= (x mod a=b � x mod c=d, y =m),

• (x mod a1 = b1) �x (x mod a2 = b2)
def= (x mod a1 = b1) � (x mod a2 = b2),

• e1 �x e2
def= e1 ∪ e2, otherwise.

Now, �x is defined as �x(∅) = ∅; �x({st}) = e iff e is the smallest set of abstract stores
such that st ∈ e; and �x({sti |i ∈ I }) = �x{�x({sti})|i ∈ I }.

The following definition introduces two dual entailment relations for abstract constraint
systems. Roughly speaking, an abstract store is a set of concrete stores; in other words, each
element of an abstract store is a concrete store.

64 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

Definition 4. Let 〈C, � 〉 be a simple constraint system and � : ℘(�) → ℘(�) be a
constraint abstraction. Then, we define the over- and under-approximated constraint systems
〈�, �+

� 〉 and 〈�, �−
� 〉 where �+

� , �−
� ⊆ ℘(�) × ℘(�), by:

(1) sst1 �+
� sst2 ⇐⇒ ∃u ∈ �(sst1), ∃v ∈ sst2 such that u � v.

(2) sst1 �−
� sst2 ⇐⇒ ∀u ∈ �(sst1), ∃v ∈ sst2 such that u � v.

The following proposition justifies the names of the new structures given in the previous
definition.

Proposition 5. Let 〈C, � 〉 be a simple constraint system and � : ℘(�) → ℘(�) be a
constraint abstraction. Then:
(1) If u � v, then {u} �+

� {v}.
(1) If {u} �−

� {v}, then u � v.

Example 6. Consider the tccp program shown in Fig. 1, and let C be the considered set of
atomic constraints (defined in the obvious way). Define the set msg={on,off,c}. Given
X, X′ ∈ Var, construct the sets msg(X, X′) = {X = [A|X′]|A ∈ msg} and MSG =
∪X,X′∈Varmsg(X, X′). We write c � c′ iff ∃X, X′ ∈ V ar such that c, c′ ∈ msg(X, X′).
Let |u| denote the number of simple constraints in the store u. Then, we write u2 � u′

2 iff
|u2| = |u′

2| and ∀c ∈ u2.∃c′ ∈ u′
2 such that c � c′.

A constraint abstraction � : ℘(�) → ℘(�) which abstracts the messages in MSG can
be defined as follows. Divide each store u ∈ � into the subsets: u1 = u − MSG, and
u2 = u ∩ MSG, then
• �({u1 ∪ u2}) = {u1 ∪ u′

2|u2 � u′
2};• �(sst) = (∪u∈sst �({u})).

For instance,

�({{X = [on|X′]}}) = {{X = [off|X′]}, {X = [on|X′]}, {X = [c|X′]}}.

Note that an implementation of this abstraction would substitute the three concrete constants
on, off and c by a new, abstract constant (for example, msg), thus making the abstract
store simpler.

Proposition 7. Let 〈C, � 〉 be a simple constraint system and � : ℘(�) → ℘(�) be a
constraint abstraction. Then:
(1) (Reflexivity for �+

�) ∀sst ∈ ℘(�). sst �+
� sst ;

(2) (Transitivity for �−
�) ∀sst1, sst2, sst3 ∈ ℘(�). sst1 �−

� sst2 and sst2 �−
� sst3 implies

that sst1 �−
� sst3.

Intuitively, the set of formulas which follow from an abstract store by means
of �+

� is bigger than the one inferred by applying �−
� . It is worth noting that, in general,

relation �+
� is not transitive and �−

� is not reflexive, as shown in the following
example.

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 65

Example 8. Consider again Example 3 extending the constraint system with the constraint
even(x), and redefining �x conveniently. Then:
(1) �+

�x
is not transitive. {{x = 8}} �+

�x
{{even(x)}} and {{even(x)}} �+

�x
{{x = 6}}, since

{x = 6} ∈ �x({{even(x)}}) and {x = 6} � {x = 6}. However, {{x = 8}} � �+
�x

{{x = 6}}.
(2) �−

�x
is not reflexive. {{x = 2}} � �−

�x
{{x = 2}}, since {x = 6} ∈ �x({{x = 2}}) and

{x = 6} � � {x = 2}.

The following definition introduces the abstract union operator �� for abstract constraint
sets. Note that we remove the inconsistent stores (that may appear during an abstract com-
putation) by a satisfiability test u ∪ v � � f alse, where false is the empty constraint.

In order to simplify the notation, we define the operator ⊗ : ℘(�) × ℘(�) → ℘(�) as
sst1 ⊗ sst2 = {u ∪ v|u ∈ sst1, v ∈ sst2, u ∪ v � � f alse}. In addition, given a store st we
write sst ⊗ st for sst ⊗ {st}.

Definition 9. We define the operator �� : ℘(�) → ℘(�) as sst1 �� sst2 = �(sst1 ⊗sst2).

The following proposition states that operator �� correctly approximates ∪.

Proposition 10. For all u, v ∈ �, and sst1, sst2 ∈ ℘(�), if �({u}) ⊆ sst1 and �({v}) ⊆
sst2 then �({u ∪ v}) ⊆ sst1 �� sst2.

In tccp, cylindric constraint systems are used, which are defined as follows.

Definition 11. 〈C, � , Var, ∃〉 is a cylindric constraint system iff 〈C, � 〉 is a simple con-
straint system, Var is a denumerable set of variables, and for each x ∈ Var, there exists a
function ∃x :�→� such that, for each u, v∈℘(C):
(1) u � ∃xu,
(2) u � v then ∃xu � ∃xv,
(3) ∃x(u ∪ ∃xv) = ∃xu ∪ ∃xv,
(4) ∃x(∃yu) = ∃y(∃xu).

A set of diagonal elements for a cylindric constraint system is a family {�xy ∈ C|x, y ∈
var} such that:
(1) ∅ � �xx .
(2) If y �=x, z then �xz =∃x(�xy ∪ �yz).
(3) If x �=y, then �xy ∪ ∃x(v ∪ �xy) � v.

Diagonal elements allow us to hide variables, representing local variables, as well as
to implement parameter passing among predicates. Thus, quantifier ∃x and diagonal ele-
ments �xy allow us to properly deal with variables in constraint systems. Assuming that the
original constraint system 〈C, � 〉 to be abstracted is cylindric, and given a constraint abstrac-
tion � : ℘(�) → ℘(�), the over- and under-approximated constraint systems 〈�, �+

� 〉
and 〈�, �−

� 〉 are not cylindric in general. Example 8 shows that some property of the
underlying simple constraint system may be lost during the abstraction process. Moreover,
the remaining properties concerning the existential quantifier or the diagonal elements may
also be lost. An extensive study of the conditions that the abstraction � has to satisfy for the

66 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

properties of cylindric systems to be preserved can be found in [19], where a generalized
semantics for concurrent logic languages is introduced. In short, some consistency proper-
ties are imposed to � to ensure that the existential quantification has the expected semantics
after abstraction. We extend function ∃x to sets of stores by ∃x : ℘(�) → ℘(�) where
∃xsst = {∃xu|u ∈ sst}.

3.2. Abstract semantics

As it is shown in [32], the ask-tell paradigm introduces some problems when we deal
with abstraction. There, the abstract synchronization problem is addressed by means of two
suitable program transformations that ignore or condense synchronization, respectively.
When dealing with tccp, these kinds of transformations are even more difficult to apply
due to the temporal dimension and the maximal parallelism of tccp, as opposed to the
interleaving semantics of ccp.

In the following, we formalize a preliminary abstract operational semantics of tccp
programs in terms of a transition relation that is similar to the operational semantics of the
original tccp language. We will refer to this new transition system as abstract operational
semantics or tccp�-calculus. Consistent with the original semantics, each transition involves
the passage of time. In general, the abstracted agents are over-approximations of their
concrete versions. However, the abstraction of the conditional agent has to be done with
special care. The reason for this is that the non-determinism introduced when abstracting
this agent cannot be handled in tccp instantaneously, since the execution of ask involves
the consumption of one time unit. To solve this problem, we have defined a new agent
ask! which allows us to introduce non-determinism without consuming time. This aspect
distinguishes tccp from other unsophisticated modeling languages which do not have either
non-determinism or time aspects.

In the following, we assume that an abstraction operator � : ℘(�) → ℘(�) has been
provided and it has the consistency properties discussed in Section 3.1. We let � −

� (� +
�)

represent a suitable under- (over-) approximation of the entailment relation � of the con-
straint system. By abuse of notation, we drop the subindex � from � +

� , � −
� and �� in order

to simplify the presentation. For the same reason, in the sequel, we write sst � +c, sst � −c

and sst � c for sst � +{{c}}, sst � −{{c}} and sst � {{c}}, respectively.
We show the abstract transition rules for each agent in Fig. 3. 2 A configuration of the

form 〈�, sst〉 represents a computation state, where � is an agent and sst ∈ ℘(�) is an
abstract store. We are assuming that the tccp system is closed under the usual structural
equivalence relation where the parallelism operator is commutative and agents A||stop and
A are equivalent.

Let us explain the main differences w.r.t. the concrete tccp semantics defined in [3]. The
main points of the abstract semantics are the new ask! agent and the use of the two abstract
entailment relations � + and � −. For the conditional agent we use under-approximation,
whereas over-approximation is more convenient for choice primitives. The abstract version
of agent A is denoted by A�, except for the parallel and hide operators because their abstract

2 In rule R12, the superscript in ∃dB represents the information d accumulated during the execution of the
agent B. See [3] for details.

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 67

Fig. 3. Abstract operational semantics.

and concrete semantics coincide. There are two completely new rules (R3a and R3b),
which define the semantics for the instantaneous choice agent (ask!). These rules state that,
provided agent Aj can evolve to agent A′

j , the instantaneous choice can evolve to A′
j . It

is important to remark the timing difference between rule R2 and rule R3a. Both of them
introduce non-determinism but a time unit is consumed in the first one before executing
the agent in the body of the ask� agent, whereas in the second rule, non-determinism is
introduced instantaneously.

3.3. Program abstraction

In this section, we give a first step towards a source-to-source transformation of tccp
programs into abstract programs which represent an approximate model of the system. For
each tccp agent A, we inductively construct a corresponding abstract tccp� agent �(A) as
is shown in Fig. 4. An example of program abstraction is shown in Fig. 5. Note that the
transformed program which results from the abstraction process contains abstract agents,
which are not pure tccp primitives.

68 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

Fig. 4. �-transformation for tccp programs.

The intuitive idea of the transformation of the conditional agent now c then A

else B is as follows. In order to mimic the possible conditional execution in the concrete
model by an execution in the corresponding abstract model, we consider the following four
possible cases, where st ∈ � and sst ∈ ℘(�) are, respectively, the concrete store and the
abstract one, and �({st}) ⊆ sst .
• If st � c and sst � −c, then A is executed in both the concrete and the abstract models.
• If st � c and sst � � −c, then agent A is executed in the concrete model, whereas any of the

agents A or B could be executed in the abstract one.
• If st � � c but sst � +c, then agent B is executed in the concrete model, whereas any of the

agents A or B could be executed in the abstract one.
• If st � � c and sst � � +c, then both the abstract and the concrete models execute

agent B.
Note that the availability of the two abstract entailment relations allows us to very accu-

rately approximate the behavior of the conditional agent in the first and fourth cases above,
whereas we are not able to achieve this accuracy in the other two cases. By using only � +,
we would not have been able to achieve this precision in any case.The remaining agents are
translated into the corresponding abstract versions in the natural way.

4. Correctness

In abstract model checking, correctness means that whenever a property is true in the
abstract model, it will also be true in the concrete one. In this section, we demonstrate
that some additional conditions concerning the suspension behavior of the program are
needed for the abstract semantics of tccp programs correctly approximate the standard one.
Namely, we require that local suspension be preserved by the constraint approximation

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 69

u
s
e
r
(
C
,
A
)
:
-

as
k�
(
A
=
[
f
r
e
e
|_]

)
→

te
ll�
(
C
=
[
o
n
|_]

)
+

as
k�
(
A
=
[
f
r
e
e
|_]

)
→

te
ll�
(
C
=
[
o
f
f
|_]

)
+

as
k�
(
A
=
[
f
r
e
e
|_]

)
→

te
ll�
(
C
=
[
c
|_]

)
+

as
k�
(
A
=
[
f
r
e
e
|_]

)
→

te
ll�
(

tr
u
e
)
.

p
h
o
t
o
c
o
p
i
e
r
(
C
,
A
,
M
I
d
l
e
,
E
,
T
)
:
-

∃
A
u
x
,

A
u
x
’
,
T
’
(

te
ll�
(
T
=
[
A
u
x
|T’

]
)

||
as

k�
(t

r
u
e
)
→

no
w
�
(
A
u
x
>
0
)

th
en

no
w
�

(
C
=
[
o
n
|_]

)
th

en
te

ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
el

se
as

k !(
C
=
[
o
n
|_]

)
→

te
ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
+

as
k !(

tr
u
e
)

→
no

w
(
C
=
[
o
f
f
|_]

)
th

en
te

ll�
(
E
=
[
s
t
o
p
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
el

se
as

k !(
C
=
[
o
f
f
|_]

)
→

te
ll�
(
E
=
[
s
t
o
p
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
+

as
k !(

tr
u
e
)

→
no

w
(
C
=
[
c
|_]

)
th

en
te

ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
el

se
as

k !(
C
=
[
c
|_]

)
→

te
ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
+

as
k !(

tr
u
e
)

→
te

ll�
(
A
u
x
’
=
A
u
x
-
1
)

||
te

ll�
(
T
=
[
A
u
x
’
|_]

∧
A
=
[
f
r
e
e
|_]

)
el

se
as

k !(
A
u
x
>
0
)

→
no

w
�
(
C
=
[
o
n
|_]

)
th

en
te

ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
el

se
as

k !(
C
=
[
o
n
|_]

)
→

te
ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
+

as
k !(

tr
u
e
)

→
no

w
�
(
C
=
[
o
f
f
|_]

)
th

en
te

ll�
(
E
=
[
s
t
o
p
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
el

se
as

k !(
C
=
[
o
f
f
|_]

)
→

te
ll�
(
E
=
[
s
t
o
p
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
+

as
k !(

tr
u
e
)

→
no

w
�
(
C
=
[
c
|_]

)
th

en
te

ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
el

se
as

k !(
C
=
[
c
|_]

)
→

te
ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
+

as
k !(

tr
u
e
)

→
te

ll�
(
A
u
x
=
T
1
-
1
)

||
te

ll�
(
T
=
[
A
u
x
|_]

∧
A
=
[
f
r
e
e
|_]

)
+

as
k !(

tr
u
e
)

→
te

ll�
(
E
=
[
s
t
o
p
|_]

)
||

te
ll�
(
A
=
[
f
r
e
e
|_]

)
)
.

s
y
s
t
e
m
(
M
I
d
l
e
,
E
,
C
,
A
,
T
)
:
-

∃
E
’
,
C
’
,
A
’
,
T
’
(

te
ll�
(
E
=
[
_
|E’

]
)

||
te

ll�
(
C
=
[
_
|C’

]
)

||
te

ll�
(
A
=
[
_
|A’

]
)

||
te

ll�
(
T
=
[
_
|T’

]
)

||
u
s
e
r
(
C
,
A
)

||
as

k�
(

tr
u
e
)
→
p
h
o
t
o
c
o
p
i
e
r
(
C
,
A
’
,
M
I
d
l
e
,
T
’
,
E
’
)

||
as

k�
(
A
’
=
[
f
r
e
e
|_]

)
→
s
y
s
t
e
m
(
M
I
d
l
e
,
E
’
,
C
’
,
A
’
,
T
’
)

||
te

ll�
(s

(E
’,

C
’,

A
’,

T
’)

))
.

i
n
i
t
i
a
l
i
z
e
(
M
I
d
l
e
)
:
-

∃
E
,
C
,
A
,
T
(

te
ll�
(
A
=
[
f
r
e
e
|_]

)
||

te
ll�
(
T
=
[
M
I
d
l
e
|_]

)
||

te
ll�
(
E
=
[
o
f
f
|
_
]
)

||
s
y
s
t
e
m
(
M
I
d
l
e
,
E
,
C
,
A
,
T
)

te
ll�
(
s
(
E
,
C
,
A
,
T
)
)
)
.

Fi
g.

5.
Ph

ot
oc

op
ie

r
pr

og
ra

m
af

te
r
�-

tr
an

sf
or

m
at

io
n.

70 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

function �. Then, we show how the abstract semantics can be refined in order to correctly
simulate suspension.

4.1. Correctness conditions

Given a tccp program (a process) P of the form D.�0 and an initial configuration
〈�0, st0〉, a trace t of P starting at 〈�0, st0〉 is a sequence of configurations t = 〈�0, st0〉
−→ · · · which is built by applying the transition relation rules −→ defined in [3]. Let
O(P)(〈�0, st0〉) denote the corresponding standard operational semantics. We say that a
concrete trace t = 〈�0, st0〉 −→ · · ·∈ O(P)(〈�0, st0〉) is erroneous iff ∃i � 0.sti is not
consistent.

Similarly, given an abstraction �, let A�(P �)(〈�0, sst0〉) denote the set of abstract traces
generated by the abstract program P � by using the abstract operational semantics given in
Fig. 3. Note that abstract program P � may include the new agent ask!

Given a trace t =〈�0, st0〉−→〈�1, st1〉−→· · ·∈O(P)(〈�0, st0〉), we denote with �(t)

the abstract trace obtained by pointwise applying the transformation � presented previously
(Fig. 4) to the agents in the configurations of t , and abstracting the corresponding stores using
�; that is, �(t)=〈�(�0), �({st0})〉−→� 〈�(�1), �({st1})〉−→� · · ·. Given two abstract traces
of the form t�1 =〈��

0, sst01〉−→� 〈��
1, sst11〉−→� · · · and t�2 = 〈��

0, sst02〉 −→� 〈��
1, sst12〉

−→� · · ·, we write t�1 � t�2 whenever ssti1 ⊆ssti2, for all i�0.
Correctness conditions (CC): The constraint abstraction function � satisfies the correct-

ness conditions if it preserves the local suspension of the concrete configurations, that is,
for all configuration � and each store st , if 〈�, st〉 �−→ and �({st}) ⊆ sst , then 〈�(�), sst〉
�−→�.

Lemma 12. Consider a tccp program P and a constraint abstraction � satisfying CC.
Let 〈�, st〉 and 〈�′, st ′〉 be two standard configurations such that 〈�, st〉 −→ 〈�′, st ′〉.
Then, for all sst ∈ ℘(�) with �({st}) ⊆ sst there exists sst ′ ∈ ℘(�) verifying that
〈�(�), sst〉 −→� 〈�(�′), sst ′〉 and �({st ′}) ⊆ sst ′.

Theorem 13. Consider a tccp program P , an initial configuration 〈�0, st0〉 and a con-
straint abstraction function � satisfying CC. Then, for each non-erroneous trace t ∈
O(P)(〈�0, st0〉), there exists an abstract trace of the form t� ∈ A�(�(P))(〈�(�0), �({st0})〉)
such that �(t) � t�.

Example 14. The abstraction provided in Example 6 for the tccp program illustrated in
Fig. 1 satisfies CC: if stream C contains a message, then the concrete model never suspends
nor does the abstract model. Moreover, if C has no message, then both the concrete and
the abstract model suspend. Therefore, Theorem 13 can be applied to this example. This
abstraction is useful for checking liveness properties like “the photocopier is switched off
when it is inactive during MIdle time units” as shown in Example 27.

Obviously, if CC does not hold, the abstraction may modify some time aspects, in such
a way that abstract agents are not correctly synchronized, as illustrated by the following
example.

Example 15. Consider the abstraction � given in Fig. 2 which considers the divisibility of
variable X by 4. Let us demonstrate that � does not satisfy CC. It suffices to find a concrete

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 71

Fig. 6. An incorrect abstract model.

suspension computation which does not suspend in the abstract model. This is illustrated in
Fig. 6 where the new agents A′ and B′ represent the possible evolution of processes A and
B by the eventual application of rules R4 or R6.

Then, the abstract trace shown above does not model the real suspension behavior of the
program.

Since CC is a quite demanding condition not easy to be checked, in the following section,
a different approach to solve the above problem is obtained by instrumenting the abstract
semantics to avoid the problem of correctly simulating suspension. Roughly speaking,
we achieve this by introducing two new rules for correct abstract semantics of tccp. We
redress the abstract semantics following the general approach of confusing quiescence and
nontermination, which is a general theme in ccp semantics (e.g., that of determinate ccp
in [31]). In our context, this is achieved by converting suspensions into infinite loops.

4.2. A correct abstract semantics

Namely, in order to simulate suspension in the abstract semantics, when a configuration
containing an ask agent suspends in the concrete semantics, the corresponding abstract
configuration is replicated in the new abstract semantics. Consider the transition system
obtained by modifying the abstract semantics given in Fig. 3 with the new rules given in
Fig. 7 as follows: rule R0 and rule R2′ are added, and rules R3b, R5, R7 and R9 are
dropped.

72 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

R0 〈stop�, sst〉 −→� 〈stop�, sst〉
R2′

〈
n∑

i=0
ask�(ci) → Ai , sst

〉
−→�

〈
n∑

i=0
ask�(ci) → Ai , sst

〉
if sst � � −{{c0}, · · · , {cn}}

Fig. 7. New rules for a correct abstract semantics of tccp.

Fig. 8. A correct abstract model.

Roughly speaking, the refined abstract semantics given in Fig. 7 solves this problem by
identifying inactivity and nontermination. Thus, the usual behavior of the agent choice is
slightly modified by non-deterministically allowing its repetition in the next time instant,
when the concrete version of the agent may suspend.

The new semantics (A′
�) gives us the desired correctness result.

Lemma 16. Consider a tccp program P and a constraint abstraction �. Let 〈�, st〉 and
〈�′, st ′〉 be two standard configurations and sst ∈ ℘(�) such that �({st}) ⊆ sst . Then:
(1) If 〈�, st〉 �−→, then there exists sst ′ ∈ ℘(�) such that 〈�(�), sst〉 −→� 〈�(�), sst ′〉

and sst ⊆ sst ′.
(2) If 〈�, st〉 −→ 〈�′, st ′〉, then there exists sst ′ ∈ ℘(�) such that 〈�(�), sst〉 −→�

〈�(�′), sst ′〉 and �({st ′}) ⊆ sst ′.

Theorem 17. Consider a tccp program P of the form D.�0, an initial configuration
〈�0, st0〉 and a constraint abstraction �. For each non-erroneous trace t ∈ O(P)(〈�0, st0〉),
there exists an abstract trace t� ∈ A′

�(�(P))(〈�(�0), �({st0}〉) such that �(t) � t�.

Example 18. Consider the example in Fig. 6 again. The new abstract semantics now pro-
duces the correct approximation shown in Fig. 8.

In the following section, we develop an abstraction-by-transformation technique which
we propose as a natural implementation of our methodology.

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 73

5. Implementation of the abstract semantics

The source-to-source transformation from the original program into the abstract one
(which is then translated back into the source language) is a well-known technique for
integrating abstraction and model checking [16,23]. This permits the reuse of the existing
model checkers of the original language. In this section, we study the difficulties of applying
this method to tccp programs.

In Section 4, we showed how it is possible to correctly abstract tccp programs. Both
an abstract semantics for the abstract model and a program transformation delivering the
abstract program were formulated. Since we aim to complete a source-to-source transfor-
mation delivering an encoding of the abstract program in pure tccp syntax, in this section we
develop an implementation of the abstract semantics in terms of the concrete one. In tccp, a
pair (�, �) consisting of a set of constraints together with an entailment relation determines
a timed concurrent constraint system tccp(�, �). Thus, a tccp source-to-source transfor-
mation consists of translating a concrete tccp(�, �) program into a difference instance
tccp(�′, � ′) of tccp. The abstraction process developed in the previous section defines a
transformation � : tccp(�, �) → tccp�. This section is devoted to show how programs in
tccp� can be implemented in tccp(℘ (�), � +) and, eventually, back again in tccp(�, �),
as discussed at the end of the section.

5.1. Implementation of the abstract primitives

The implementation of the parallel and hiding operators is straightforward since their
semantics in tccp� coincides with that of tccp(℘ (�), � +). Similarly, the tell� primitive is
directly implemented by the concrete tell agent.

Following rule R0, the implementation of stop� is given the following agent: �stop():-
�stop().

In order to express agent now� with the entailment relation � +, we define when an
abstract store sst over-approximates a negative constraint ¬c as follows: sst � +¬c ⇔
sst � � −c. Considering this definition the implementation of the conditional abstract agent
now�c then A else B will be now ¬c then B else A.

The implementation of the semantics of the abstract choice agent, as defined by rules R2
and R2′, is given by the procedure �choice(c0; · · · ; cn, A0; · · · ; An) where

�choice(c0; · · · ; cn, A0; · · · ;An):-
now� c0; · · · ; cn then �n

i=0ask (ci) → (Ai)

else �choice(c0; · · · ; cn, A0; · · · ;An)||
(�n

i=0ask(ci) → (Ai) + ask(¬c0 ∧ · · · ∧ ¬cn) → stop)

Roughly speaking, we consider the two cases specified by rules R2 and R2′. Namely,
if we are sure that no concrete suspension can occur, then the choice agent is executed.
Otherwise, the else branch models both the possible suspension of the agent, by means of
the call to �choice, and, simultaneously, the possible evolution of the choice agent. Note
that the last case of the definition avoids the agent suspension.

The transformation above intends to consider all possibilities of suspensions and no-
suspension of choice agents. However, we can optimize the process by identifying a special

74 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

Fig. 9. The problem of the elimination of the ask! agent.

case: we know that a choice agent containing one branch of the form ask(true)→ A will
never suspend, thus we can simplify the transformation for this kind of agents by simply
substituting the abstract version by the concrete one. In Section 5.3, we clarify the usefulness
of this optimization.

5.2. Implementation of the instantaneous choice

Due to the introduction of the new ask! agent, which models instantaneous non-deter-
minism, we need to define some elaborate mechanisms to achieve the pursued source-to-
source transformation.

Now we need to eliminate the ask! agent. Let us first recall the transformation of the
conditional agent proposed in Section 3.3 and explain its main drawback:
�(now c then A else B) = now� c then �(A) else (ask!(c) → �(A) + ask!(true) →

�(B))

If we substitute the ask! agent by the original ask, then the body agent (A or B) is
executed in the concrete model in the current time instant, whereas, in the abstract model,
a delay of one time unit is introduced, which enables other agents that could be eventually
executed concurrently to modify the store prior to the body execution. This might cause a
totally incorrect behavior of the implementation w.r.t. the abstract semantics. In Fig. 9, we
illustrate this undesired situation for the abstraction of now (X = 4) then A else now (Y =
2) then B else C. In the first trace, we show the behavior according to the abstract semantics
proposed in the previous section, whereas the second trace illustrates the behavior by using
the abstract ask� agent.

We propose a solution to this problem which consists of performing a preprocessing
which is then used to transform the original abstract program (with the ask! agent) into
another one where the ask! agent does not occur. The idea is to “expand the time” in the
transformed program in order to synchronize all actions.

In order to formalize our transformation, we first analyze the �-program and annotate
each timing agent (a tell�, ask� or procedure call agent) with an integer number k that

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 75

represents the relative depth of the agent within the program. The annotated version of
agent A is denoted by Ak . We also need to store the maximum depth (K) of the agent in
the whole specification (and not only in the corresponding clause definition). This allows
us to determine how many delays (K − k) must be introduced for each agent, each delay
being associated to a simple ask agent.

In the original semantics of tccp(�, �), when the store does not entail any condition
in the guards of the choice agent, then the agent suspends and it is tried again in the
subsequent time instant. In the abstract semantics, if the choice agent suspends, then we
have to introduce the appropriate number of delays in order to ensure that the choice agent
is retried in the correct time instant. During the annotation process, for the transformation
of a choice

∑n
i=0 ask�(ci) → Ai , we introduce an integer string label l on the arrow

(
∑n

i=0 ask�(ci)
l→ Ai), which univocally distinguishes each occurrence of the choice

agent in the program. We also need to record the depth k to which this agent occurs within
the program. We define the annotation of a program as follows:

Definition 19 (Annotation function). Given a tccp program P of the form D.A, the
annotated program Pk is obtained by recursively applying the following labeling
function �:

�(P) = f (0, 0, D).f (0, 0, A)

f (k, l, P) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (k, l, D), f (k, l, D) P = D, D

p(x): −f (k, l, A) P = p(x): −A

stop�
k P = stop�

tell�(c)k P = tell�(c)∑n
i=0 ask�(ci)k

l→f (k, l′.(j+1), Ai) P =∑n
i=0 ask�(ci)→Ai and

l= l′.j
now� c then f (k, l, A) else P = now� c then A else

ask(c) → f (k + 1, l, A) + ask(c) → A +
ask(true) → f (k + 1, l, B) ask(true) → B

f (k, 1.l, A)||f (k, 2.l, B) P = A||B
∃ X f (k, l, A) P = ∃X A

p(x)k P = p(x)

Note that the annotation function only affects the tell, choice and procedure call agents
since only in these cases a delay must be introduced. The remainder agents run instan-
taneously, both in the original and in the transformed program. Fig. A.1 (in Appendix
A) shows the annotated program resulting from applying the � function to the �-program
in Fig. 5.

5.3. The source-to-source implementation of the abstract semantics

In the following, we complete the source-to-source transformation by compiling the
abstract agents into tccp(℘ (�), � +). This is achieved by introducing the necessary delays
in the abstract program following the labeling described in Section 5.2 and transforming
the abstract agents as shown in Section 5.1. Notation askK−k → indicates the replication
K − k times of the agent structure ask(true) →. We provide the transformation for each

76 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

Fig. 10. Implementation of tccp�.

abstract agent in Fig. 10. Even if agent now� can be implemented by means of tccp agent
now, as shown in Section 5.1, for the sake of simplicity we prefer not to remove it from the
transformation shown in Fig. 10. 3

Given program P of the form D.A, where D is a set of procedure declarations
⋃n

i=1{pi},

T (P) = D′.T (A) where D′ =
n⋃

i=1

{T (pi)}

and the transformation for each procedure pi of the form p(x):-B is

T (p(x):-B) = {p(x):-T (B)} ∪ Daux,

where Daux is the set of auxiliary procedures which are introduced by the transformation
of agent B.

The transformed program obtained for our leading example can be seen in Fig. A.2
(in Appendix A). Note the transformation of choices of the form ask(true) does not need
procedure �choice, as explained in Section 5.1.

Now we are ready to demonstrate the correctness of this program transformation for the
standard observable of derived constraints in non-erroneous computations: we prove the
equivalence of the observable before and after the program transformation.

Given a program P and an initial configuration 〈�0, st0〉, the observable set Ob of P w.r.t.
semantics O is the set {st0 · st1 · · · | t = 〈�0, st0〉 −→ 〈�1, st1〉 −→ ∈ O(P)(〈�0, st0〉)
and t is non-erroneous} of all sequences of stores that can be extracted from the non-
erroneous traces of P . The abstract observable set Ob� is defined in the obvious way

3 In Fig. 10, constraint c0; · · · ; cn in agent now� denotes the abstract store {{c1}, . . . , {cn}} which may be
different from c1 ∨ · · · ∨ cn. See [32].

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 77

Fig. 11. Source-to-source transformation.

w.r.t. semantics A′. Similarly, the set of observable of the transformed program T (�(P))

is defined as Ob	 = {sst0∗(K+1) · sst1∗(K+1) · sst2∗(K+1) · · · | 〈�0, sst0〉 −→� 〈�1, sst1〉
−→� 〈�2, sst2〉 −→� · · · ∈ O(T (�(P))(〈�(�0), �(st0)〉))}.

Theorem 20. Consider a tccp program P and an initial configuration 〈�0, st0〉. Let �(P)

be the program resulting from applying the �-transformation to P , and T (�(P)) the resulting
program from applying the T transformation to �(P). Then Ob�(�(P))(〈�(�0), �(st0)〉) =
Ob	(T (�(P)))(〈�(�0), �(st0)〉).

As shown in Fig. 11, the transformation process is given in two steps: the abstraction
� followed by implementation T ◦ � where � is the annotation function of Definition 19
and T is the transformation given in Fig. 10. Now, assume that an injective mapping � :
�(℘ (�)) → � exists such that ∀sst ∈ �(℘ (�)), if st ∈ sst, c ∈ C and st � c then
�(sst) � c. That is, abstract stores can be represented in terms of the concrete constraint
system and, in addition, � + may be expressed by using � . Then, the abstraction process
given by � ◦ T ◦ � ◦ � is a full source-to-source transformation.

5.4. Precision of the abstraction

In abstract model checking, the main interest is in the construction of reduced models, to
partially solve the state-explosion problem. However, excessively abstracting the original
model may lead to generating very imprecise abstract models containing traces which do
not correspond to any real behavior, also called spurious traces.

As shown in the previous section, our strategy to achieve a correct abstract semantics
has, at the same time, a payoff related to the precision of the abstract model, as witnessed
by the following example where we show that spurious traces are contained in the abstract
model.

Example 21. Let � = {{{X = 2n}|n�0}, {{X = 2n + 1}|n�0}} be the usual even–odd
abstraction function for natural variable X. Consider the agents A = ask(X = 2) → stop
and B = ask(true) → tell(Y = 2). Fig. 12 shows the abstract tree of all possible abstract
executions (obtained using the abstract semantics given in Section 4.2) of 〈�(A)||�(B), sst〉
where sst = {{X = 2n}|n�0} and sst ′ = sst � {Y = 2}.

Note that agent ask�(X=2) may evolve using rules R2 and R2′, where the second one
simulates the possible agent suspension. On the other hand, in the concrete model, there are
only two possible execution paths showed below, which correspond to the concretizations

78 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

Fig. 12. Abstract execution of 〈�(A)||�(B), sst〉.

R2∗ 〈
n∑

i=0

ask�(ci) → Ai , sst〉 −→� 〈
n∑

i=0

ask∗(ci) → Ai , sst〉 if sst � � −{{c1}, · · · , {cn}}

R8′ 〈B, sst〉 −→� 〈B′, sst ′〉

〈
n∑

i=0

ask∗(ci) → Ai)||B, sst〉 −→� 〈
n∑

i=0

ask�(ci) → Ai ||B′, sst ′〉
if sst �= sst ′

Fig. 13. An improved abstract operational semantics of tccp.

of sst given by {X=2} and {X=2n} with n �=1:

〈ask(X=2) → stop||ask(true) → tell(Y=2), {X=2}〉−→
〈tell(Y=2), {X=2}〉−→〈stop, {X=2, Y=2}〉

〈ask(X=2) → stop||ask(true) → tell(Y=2), {X=2n}〉−→
〈ask(X=2) → stop||tell(Y=2), {X=2n}〉−→〈ask(X=2) → stop, {X=2n, Y=2}〉

Thus, we can observe that the abstract tree of Fig. 12 contains many spurious traces
(those that end with a dotted double arrow), i.e., traces that do not correspond to any
concrete execution. For instance,

〈ask�(X = 2) → stop�||ask�(true) → tell�(Y = 2), sst〉 −→�

〈ask�(X = 2) → stop�||tell�(Y = 2), sst〉 −→� 〈stop�, sst � Y = 2〉
is a spurious trace. Also note that the suspension of agent �(A) in the first step of the
erroneous trace is inconsistent with the non-suspension of �(A) in the second step.

In order to avoid these spurious traces, we intend to restrict the application of rules R2
and R2′ in some specific situations. Roughly speaking, we do not want to re-consider rule
R2 to be applied to the new configuration until a parallel agent has introduced in the store
information which might affect the satisfiability of the guards of the choice agent.

We formalize this improvement as follows. Rule R2′ is replaced with R2∗ given in
Fig. 13, which substitutes the agent ask� by ask∗ so that R2 cannot be applied until the
execution of another agent unblocks it. We instrument this by the new rule R8′, which sub-
stitutes the auxiliary agent ask∗ back to the original ask. Note that rule R8 does not apply to
agent ask∗.

Example 22 (Example 21 continued). With the new abstract semantics we get rid of the
rightmost spurious trace of Fig. 12 as shown in Fig. 14.

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 79

〈ask�
(X=2)−>stop�||ask�

(true)−>tell�(Y=2),sst〉

������������������

��
〈tell�(Y=2),sst〉

��

〈ask∗
(X=2)−>stop�||tell�(Y=2),sst〉

��
〈ask�

(X=2)−>stop�
,sst ′〉

��
��������������

〈stop�
,sst ′〉 〈stop�

,sst ′〉 〈ask∗
(X=2)−>stop�

,sst ′〉

Fig. 14. A refinement of the abstract execution of 〈�(A)||�(B), sst〉.

Fig. 15. The SplitPATH algorithm.

It is immediate that this is a correct improvement of the abstract semantics of Section 4.2.
Unfortunately, the improvement is not complete as witnessed by the spurious trace left
in Fig. 14.

The imprecision in abstract model checking is strongly related to the problem of incom-
pleteness in abstract interpretation [21,20] and its solution, i.e., the elimination of spurious
traces in the abstract model may be achieved by refining the abstract domain. One of the
most interesting and practical applications of these ideas is the counterexample-guided
abstraction refinement method [8,9]. A different approach for refining abstract models is
[17], which uses under- as well as over-approximation of formulas in order to automatically
discard some fictitious traces added by the abstraction.

These refinement techniques are orthogonal to ours and may even be combined in order
to achieve better performances. In the sequel, we focus on Clarke et al.’s methodology
and sketch this combination by means of the leading example. Even if [8,9] follow the
predicate abstraction approach, it is not difficult to adapt the method to our setting.

Given two agents A and A′ and a set of concrete stores S, we define the set post[�(A),

�(A′)](S) = {st ′|∃st ∈ S.〈A, st〉 −→ 〈A′, st ′〉}. Let us assume that 〈A�
1, sst1〉 −→� · · ·

−→� 〈A�
n, sstn〉 is a trace in the abstract model. Then we can slightly modify the SplitPATH

algorithm of [8,9] to detect whether this abstract trace is spurious, as sketched in Fig. 15.
Then, if the algorithm reports that the abstract trace is erroneous, it is possible to sketch a

refinement of the abstraction, by partitioning the set sstj−1 into the three sets [8]: (1) dead-
end states SD = Sprev, (2) bad states SB = {st ∈ sstj−1|∃st ′.〈Aj−1, st〉 −→ 〈Aj , st

′〉}, and
(3) irrelevant states SI = sstj−1 − (SD ∪ SB). The key idea of the refinement is to refine

80 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

Fig. 16. Abstract executions with �̃.

the abstraction so that the dead-end states and the bad states do not correspond to the same
abstract state. Then the spurious trace would be eliminated.

Now, we illustrate how this method can be used to eliminate the spurious trace of
Example 22.

Example 23. By applying the SplitPATH algorithm to the abstract (spurious) trace of
Fig. 14, we successively assign the sets sst , {{X = 2n}|n �= 1}, {{X = 2n, Y = 2}|n �= 1}
and ∅ to variable S. This means that the analyzed trace is spurious. In order to refine the
abstraction, we split sst ′ into the sets SD = {{X = 2n, Y = 2}|n �= 1}, SB = {{X =
2, Y = 2}} and SI = ∅. Thus, to avoid this trace, a refinement �̃ of the abstraction function
� should separate {X = 2} from the rest of concrete stores. The most abstract definition
for �̃ is {{{X = 2}}, {{X = 2n}|n �= 1}, {{X = 2n + 1}|n�0}}. With this refinement, the
abstract tree of Fig. 14 is split into the two abstract trees of Fig. 16 where the spurious
trace has been removed. In this figure, sst1 and sst2 are the abstract stores {{X = 2}} and
{{X = 2n}|n �= 1}, respectively.

6. Abstracting properties

In order to check temporal properties in the abstract model, we need to provide a suitable
approximation for them. In this section, we first recall the temporal linear logic introduced
in [4] to analyze properties of tccp programs. Then, the standard satisfaction relation �
which gives meaning to these temporal formulas is properly abstracted to meet the abstract
models constructed to this point. Namely, we formalize two abstract relations �+ and �−
which over- and under-approximate �, respectively.

6.1. Temporal logic

Let 〈C, � 〉 be a constraint system, and c, d ∈ C. The original temporal logic of [4]
introduces two modalities K(c) (knows) and B(c) (believes). B(c) is satisfied when the
process assumes constraint c, and K(c) holds if c is known by the process. These modalities
are interpreted on execution traces given as infinite sequences 〈c0, d0〉 · · · 〈cn, dn〉 · · ·, where
constraint ci is the input from the external environment and di represents what is produced by
the process itself. This permits to distinguish, at each time instant, the internal information

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 81

produced by the program from the external information introduced by the environment.
Modalities K and B are conceived to properly deal with these two data flows.

However, when analyzing programs by model checking, it is usual to assume that models
are completely specified, i.e., the environment is considered a part of the model to be
analyzed. Under this assumption, the external information does not exist independently, and
the second component of each pair, in an execution trace, coincides with the first component
of the following one, thus modalities K and B coincide. In the rest of this section, we simply
consider sequences of constraints s = c0 · c1 · · · cn · · · (that is, we disregard the component
� of configurations 〈�, c〉 in the tccp execution traces). Note that, for the sequence s of
constraints produced by a tccp execution, ci ⊆ ci+1 or equivalently ci+1 � ci .

The syntax of the temporal logic of [4] is

 ::= c | ¬
 |
 ∧
 | ∃x
 | ©
 |
 U
.

The rest of standard propositional connectives and linear temporal operators are defined in
terms of the above operators in the usual way:
1∨
2 = ¬(¬
1∧¬
2),
 → � = ¬
∨�,
♦
 = true U
 and �
 = ¬♦¬
.

The truth value of temporal formulas is defined with respect to a sequence of constraints
s and the constraint system 〈C, � 〉. Each element in the sequence represents the store at a
time instant. Given a sequence s = c0 ·c1 · · · cn · · ·, for all i�0, we define si = ci ·ci+1 · · ·.
Following [4,5], given temporal formulas
,
1 and
2, the satisfaction relation � is defined
as follows:
(1) s � c iff c0 � c,
(2) s � ¬
 iff s � �
,

(3) s �
1 ∧
2 iff s �
1 and s �
2,

(4) s � ∃x
 iff s′ �
, for some s′ such that ∃xs = ∃xs
′,

(5) s � ©
 iff s1 �
,
(6) s �
1U
2 iff for some i�0 . si �
2 and for all 0�j < i . sj �
1,
where notation ∃xs means ∃xc0 · ∃xc1 · · · ∃xcn · · ·.

6.2. Abstracting the satisfaction relation

The temporal logic defined above is parameterized w.r.t. the underlying constraint system
〈C, � 〉. Given a constraint abstraction �, in Section 3.1 we have formalized two dual abstract
constraint systems 〈℘(C), �−

� 〉 and 〈℘(C), �+
� 〉. Following the same idea, in this section we

introduce two satisfaction relations, called �+ and �−, which allow us to check properties in
the abstract model. Namely, relation �+ is useful to refute properties of the concrete model,
whereas �− allows us to ensure that the concrete model does satisfy a certain property.

Given c ∈ C, an abstract formula is

� ::= {c} | ¬
� |
� ∧
� | ∃x
� | ©
� |
� U
�.

Since the transformations of a temporal formula
 into its abstract version
�, and vice
versa, are straightforward, in the rest of the section we use
 to denote both formulas.

The main difficulty in abstracting the satisfiability relation � is in dealing with the sat-
isfiability of negated formulas (case (2) above). Note that, in the tccp context, negation
of a constraint (or a formula) means that the store cannot deduce such a formula, but this

82 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

does not necessarily mean that the contrary of the constraint is satisfied by the store. For
example, if ¬(x = 2) holds, x �= 2 might not be held. In order to handle this, we define the
abstract satisfiability of a negated formula �+¬
 in terms of �−
, and vice versa.

Formally, given a sequence s� of abstract stores of the form s� = sst0 · sst1 · · · and a
temporal formula
, the abstract relations �−

� and �+
� are defined from �−

� and �+
� in the

obvious way (as � was defined from � in Section 6.1), except for case (2) which cannot be
approximated in that way but by introducing two “inter-crossing” rules instead:

s� �+
� ¬
 iff s� � �−

�
,

s� �−
� ¬
 iff s� � �+

�
.

Relation �+
� is an over-approximation of �, which means that it is very generous when

analyzing temporal properties because it is sufficient that s �
 holds for a single con-
cretization s of an abstract sequence of stores s�, in order to have that s� �+

�
. Dually,

relation �−
� is an under-approximation of �, which means that it is necessary for s �
 to

hold for all concretizations s of s�, in order for s� �−
�
. However, the logical negation of

these relations does not match the expected meaning of negation in the tccp context, since
combining the standard negation with �+

� results in a relation � �+
� that is too demanding

to mean over-approximation, and dually combining the standard negation with �−
� results

in a relation � �−
� that is too coarse to mean under-approximation. By interchanging the cor-

responding abstract satisfaction relations, we have countervailed this effect, as formalized
in Proposition 25.

The following definition is auxiliary. The concretization of a sequence of abstract stores
is defined as follows.

Definition 24. Given an abstract sequence of stores s� = sst0 · sst1 · · · where ssti ∈
℘(℘(C)) for i�0, we define the concretization of s� as the set �(s�) = {c0 · c1 · · · | ci ∈
ssti for all i�0}.

Proposition 25. Given an abstract sequence of stores s� = sst0 · sst1 · · ·, a sequence of
concrete stores s =c0 · c1 · · ·∈�(s�) and a temporal formula
, then

(a) s �
 ⇒ s� �+
�
,

(b) s� �−
�
 ⇒ s �
.

Now we can prove the correctness of our abstract model-checking methodology. That is,
in the framework presented here, there are not false positives and, moreover, if we refute
the property, then the refuting behavior of the concrete program is immediately guaranteed.
By abusing notation, we write P �
 if s �
 for all s ∈ Ob(P). Dually we write P � �
 if
s � �
 for all s ∈ Ob(P). We define �(P) � +
 and �(P) � −
 analogously.

Theorem 26. Given a tccp program P of the form D.�0, an initial configuration 〈�0, st0〉,
and a constraint abstraction�. Then, given a temporal formula
:
(1) If �(P) �−

�
 then P �
.

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 83

(2) If �(P) � �+
�
 then P � ¬
.

Example 27. Consider the following critical property for the photocopier program illus-
trated in Fig. 1: “Photocopier is always turned-off when no message is sent by user during
MIdle time units”.

We have divided this property into two parts which can be independently specified and
proved:
• Property 1: “Time to deadline is decreased by one each time that no message is sent by

the user”.

Using the temporal logic presented in this section, this property is

1 = � ∃V (fixedstate ∧(nomsg U newtime → decreasedbyone))
where
(1) ∃V is ∃ C,T,A,E,T1,T2,T’,T′′ and represents the selected (existentially quan-

tified) program variables in a fixed point during the execution;
(2) fixedstate is s(C,T,A,E)∧T = [T1|T′], meaning that the previous variables

correspond to the same program iteration, T1 being the lasting time to deadline;
(3) nomsg is ¬C = [on|_] ∧ ¬C = [off|_] ∧ ¬C = [c|_], meaning that no message

has been sent through C;
(4) newtime is T′ = [T2|T′′], which means that time has been updated, and
(5) decreasedbyone is T2 = T1− 1.

• Property 2: “Photocopier is always turned-off when deadline has expired”.

A possible specification of this property is:

2 = � (∃V (fixedstate ∧(deadline → ♦ turned-off)), where
(1) ∃V is ∃C,T,A,E,T’,E’ and represents the selected (existentially quantified) pro-

gram variables;
(2) fixedstate is s(C,T,A,E) ∧ E = [_|E′] meaning that the previous variables

correspond to the same program iteration;
(3) deadline is T = [0|T′], meaning that time has expired; and
(4) turned-off is E’ = [stop|−], which means that photocopier has turned-off.
These two properties can be independently checked in the abstract photocopier program

by using, e.g., the constraint abstraction � given in Example 6. This is because, in Property
1, we are only interested to know whether there is a message in stream C, whereas Property
2 does not refer to C. Therefore, if we can prove that �(P) �−

�
1 ∧
2 then, by Theorem 26,
we obtain P �
1 ∧
2 as desired.

Observe that constraints s(E,C,A,T) in the photocopier program are used to bind
together the values of system variables which correspond to the same program iteration,
this being the (sequence of) actions given by the user request (through stream C) as well as
the response of the photocopier when carrying out the corresponding task.

Finally, if we fail in the attempt to prove or to refute a property by applying Theorem 26(1)
or (2), respectively, the abstract trace which causes the failure of the corresponding criterium

84 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

can be delivered as a counterexample to the considered property. As we have shown in
Section 5.4, if this abstract trace is spurious, it can be used to refine the abstraction and
improve the accuracy of our model checking methodology. We can iterate this process if
necessary so that the criteria of Theorem 26 can be hopefully applied.

7. Related work

The idea of using over- and under-approximations in specifications is due to Larsen and
Thomsen in Modal Transition systems [26]. The main idea in this work is to construct a
double labeled transition system, for modeling over- and under-approximations, respec-
tively. A notion of refinement was proposed for abstracting models and then a combination
of symbolic representation and theorem proving was instrumented to verify the proper-
ties. However, the authors did not consider how to obtain the initial abstract model of the
system. The relationship between our construction and the underlying concrete constraint
system can in fact be seen as an initial MTS refinement. In a similar sense, Section 6
can be also thought of as an independent rediscovery of using MTSs in the semantics of
temporal logic, which was first presented in [6,22,24]. The use of MTSs as abstractions
was also explored in [22,13]. In contrast to these approaches, where two abstract models,
an over- and an under-approximation of the system, are constructed, we build just one
over-approximated model though using both over- and under-approximation to improve the
accuracy of the abstract model. This allows us to verify universal properties as well as refute
existential ones.

As we have shown, approximating tccp semantics is not routine work, as abstraction
may modify some time aspects. This boils down to correctly simulating the suspension
behavior, which makes the whole construction non-straight-forward. In fact, approximating
suspension is also a major problem in ccp-like languages, as discussed in [32]. In Section 4.2,
we instrument the semantics to avoid the problems of correctly simulating suspension by
introducing new rules for correct abstract semantics of tccp. This allows us to overcome
the lack of correctness of the abstract semantics w.r.t. the concrete one and to provide what
we consider the best possible correct approximation of the concrete semantics which can
be implemented in pure tccp.

8. Conclusions and future work

As it was highlighted in [32], in the context of concurrent constraint programming, the
semantics of choice agent makes the construction of accurate abstract models more complex
than in other paradigms. The mechanism for synchronization through blocking ask is, in
some way, in contradiction to the conditions for the correctness of program abstraction
needed to realize the abstraction. On the one hand, in order to simulate synchronization,
we have to handle stronger constraints which guarantee that suspension in the abstract
model implies suspension in the original one. On the other hand, as it is typical in abstract
interpretation, weaker constraints must be added in order to correctly abstract the behavior
of the tell agent. In tccp, the problem of abstracting synchronization is even more involved
because all agents in execution are completely synchronized by the time notion of tccp.

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 85

This work provides a first foundation for effective model checking of tccp programs by
means of correct abstract analysis and program transformation. We summarize the main
contributions of the work as follows: (1) We have proposed an abstract model-checking
methodology that mitigates the state explosion problem in tccp model checking. Due to
the double, logical as well as temporal dimension of tccp, the abstraction of the condi-
tional agent introduces some specific difficulties which have been solved by combining
over- and under-approximation in the abstract semantics. This idea is novel since only
over-approximations are typically used when approximating models in the data abstraction
approach: (2) We present the first formal proof for the total correctness of a refined abstract
semantics which models the suspension behavior of processes: (3) We develop a source-to-
source transformation for tccp programs that is the basis for a natural implementation of
our method: (4) We have sketched two automatic improvements of the abstract semantics
which allow us to get more accurate approximations. We have shown that both improve-
ments do not interfere with the instrumented semantics; on the contrary the source-to-source
implementation is shown to be independent of the considered abstraction: (5) Finally, we
have developed an approximation technique for checking the satisfiability of the temporal
properties that must be verified, which completes our methodology.

There are several directions for future work. As this paper is mainly concerned with
foundations, an implementation of the framework is desirable in order to support appropriate
experimentation. Work on such an implementation has already started, and we expect some
feedback that will enable further improvements in our method.

Acknowledgements

We thank the anonymous referees for the useful remarks and suggestions which helped
to improve the paper.

Appendix A. Source-to-source transformation. An example

Fig. A.1 shows the annotated version of the �-program of Fig. 5; note that the maximum
depth of an agent in the original program is K = 4. The final, transformed program is given
in Fig. A.2.

Appendix B. Proofs

This appendix contains the proofs of all results of the paper.

Proposition 2. Relation � has the following properties:
(1) (Reflexivity) ∀u ∈ �.u � u.
(2) (Transitivity) ∀u, v, w ∈ �.u � v, v � w implies that u � w.

Proof. (1) (Reflexivity) It follows trivially from C1.

86 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

u
s
e
r
(
C
,
A
)
:
-

as
k�
(
A
=
[
f
r
e
e
|_]

)
0

0 →
te

ll�
(
C
=
[
o
n
|_]

)
0
+

as
k�
(
A
=
[
f
r
e
e
|_]

)
0

0 →
te

ll�
(
C
=
[
o
f
f
|_]

)
0
+

as
k�
(
A
=
[
f
r
e
e
|_]

)
0

0 →
te

ll�
(
C
=
[
c
|_]

)
0
+

as
k�
(
A
=
[
f
r
e
e
|_]

)
0

0 →
te

ll�
(

tr
u
e
)
.

p
h
o
t
o
c
o
p
i
e
r
(
C
,
A
,
M
I
d
l
e
,
E
,
T
)
:
-

∃
A
u
x
,
A
u
x
’
,
T
’
(

te
ll�
(
T
=
[
A
u
x
|T’

]
)

0
||

as
k�
(

tr
u
e
)

1 →
(

no
w
�
(
T
=
[
A
u
x
|_]

∧
A
u
x
>
0
)

th
en

no
w
�
(
C
=
[
o
n
|_]

)
th

en
te

ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
0

el
se

as
k !(

C
=
[
o
n
|_]

)
→

te
ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
1
+

as
k !(

tr
u
e
)

→
no

w
(
C
=
[
o
f
f
|_]

)
th

en
te

ll�
(
E
=
[
s
t
o
p
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
1

el
se

as
k !(

C
=
[
o
f
f
|_]

)
→

te
ll�
(
E
=
[
s
t
o
p
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
2
+

as
k !(

tr
u
e
)

→
no

w
(
C
=
[
n
c
|_]

)
th

en
te

ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
2

el
se

as
k !(

C
=
[
c
|_]

)
→

te
ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
3
+

as
k !(

tr
u
e
)

→
te

ll�
(
A
u
x
’
=
A
u
x
-
1
)

3
||

te
ll�
(
T
=
[
A
u
x
’
|_]

∧
A
=
[
f
r
e
e
|_]

)
3

el
se

as
k !(

A
u
x
>
0
)

→
no

w
�

(
C
=
[
o
n
|_]

)
th

en
te

ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
1

el
se

as
k !(

C
=
[
o
n
|_]

)
→

te
ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
2
+

as
k !(

tr
u
e
)

→
no

w
�
(
C
=
[
o
f
f
|_]

)
th

en
te

ll�
(
E
=
[
s
t
o
p
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
2

el
se

as
k !(

C
=
[
o
f
f
|_]

)
→

te
ll�
(
E
=
[
s
t
o
p
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
3
+

as
k !(

tr
u
e
)

→
no

w
�

(
C
=
[
n
c
|_]

)
th

en
te

ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
3

el
se

as
k !(

C
=
[
c
|_]

)
→

te
ll�
(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
4
+

as
k !(

tr
u
e
)

→
te

ll�
(
A
u
x
’
=
A
u
x
-
1
)

4
||

te
ll�
(
T
=
[
A
u
x
’
|_]

∧
A
=
[
f
r
e
e
|_]

)
4
+

as
k !(

tr
u
e
)

→
te

ll�
(
E
=
[
s
t
o
p
|_]

)
1

||
te

ll�
(
A
=
[
f
r
e
e
|_]

)
1
)
)
.

s
y
s
t
e
m
(
M
I
d
l
e
,
E
,
C
,
A
,
T
)
:
-

∃
E
’
,
C
’
,
A
’
,
T
’
(

te
ll�
(
E
=
[
_
|E’

]
)

0
||

te
ll�
(
C
=
[
_
|C’

]
)

0
||

te
ll�
(
A
=
[
_
|A’

]
)

0
||

te
ll�
(
T
=
[
_
|T’

]
)

0
||
u
s
e
r
(
C
,
A
)

0
||

as
k�
(

tr
u
e
)

0
2 →
p
h
o
t
o
c
o
p
i
e
r
(
C
,
A
’
,
M
I
d
l
e
,
T
’
,
E
’
)

0
||

as
k�
(
A
’
=
[
f
r
e
e
|_]

)
0

3 →
s
y
s
t
e
m
(
M
I
d
l
e
,
E
’
,
C
’
,
A
’
,
T
’
)

0
)

||
te

ll�
(
s
(
E
’
,
C
’
,
A
’
,
T
’
)
)
.

i
n
i
t
i
a
l
i
z
e
(
M
I
d
l
e
)
:
-

∃
E
,
C
,
A
,
T
(

te
ll�
(
A
=
[
f
r
e
e
|_]

)
0

||
te

ll�
(
T
=
[
M
I
d
l
e
|_]

)
0

||
te

ll�
(
E
=
[
o
f
f
|
_
]
)

0
||
s
y
s
t
e
m
(
M
I
d
l
e
,
E
,
C
,
A
,
T
)

0
)

||
te

ll�
(
s
(
E
’
,
C
’
,
A
’
,
T
’
)
)
.

Fi
g.

A
.1

.A
nn

ot
at

io
n

of
th

e
ph

ot
oc

op
ie

r
�-

pr
og

ra
m

.

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 87

u
s
e
r
(
C
,
A
)
:
-

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

�c
h
o
i
c
e
0
(
A
=
[
f
r
e
e
|_]

;
A
=
[
f
r
e
e
|_]

;
A
=
[
f
r
e
e
|_]

;
A
=
[
f
r
e
e
|_]

,
te

ll(
C
=
[
o
n
|_]

)
;

te
ll(
C
=
[
o
f
f
|_]

)
;

te
ll(
C
=
[
c
|_]

)
;

te
ll(

tr
u
e
)
)
.

�c
h
o
i
c
e
0
(
A
=
[
f
r
e
e
|_]

,
A
=
[
f
r
e
e
|_]

,
A
=
[
f
r
e
e
|_]

,
A
=
[
f
r
e
e
|_]

,
te

ll(
C
=
[
o
n
|_]

)
,

te
ll(
C
=
[
o
f
f
|_]

)
,

te
ll(
C
=
[
c
|_]

)
,

te
ll(

tr
u
e
)
)
:
-

no
w
�
(
A
=
[
f
r
e
e
|_]

∨
A
=
[
f
r
e
e
|_]

∨
A
=
[
f
r
e
e
|_]

∨
A
=
[
f
r
e
e
|_]

)
th

en
(a

sk
(
A
=
[
f
r
e
e
|_]

)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
C
=
[
o
n
|_]

)
+

as
k(
A
=
[
f
r
e
e
|_]

)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
C
=
[
o
f
f
|_]

)
+

as
k(
A
=
[
f
r
e
e
|_]

)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
C
=
[
c
|_]

)
+

as
k(
A
=
[
f
r
e
e
|_]

)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(

tr
u
e
)
)

el
se

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

�c
h
o
i
c
e
0
(
A
=
[
f
r
e
e
|_]

,
A
=
[
f
r
e
e
|_]

,
A
=
[
f
r
e
e
|_]

,
A
=
[
f
r
e
e
|_]

,
te

ll(
C
=
[
o
n
|_]

)
,

te
ll(
C
=
[
o
f
f
|_]

)
,

te
ll(
C
=
[
c
|_]

)
,

te
ll(

tr
u
e
)
)

||
((

as
k(
A
=
[
f
r
e
e
|_]

)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
C
=
[
o
n
|_]

)
+

as
k(
A
=
[
f
r
e
e
|_]

)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
C
=
[
o
f
f
|_]

)
+

as
k(
A
=
[
f
r
e
e
|_]

)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
C
=
[
c
|_]

)
+

as
k(
A
=
[
f
r
e
e
|_]

)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(

tr
u
e
)
)
+

as
k(

¬A
=
[
f
r
e
e
|_]

∧¬
A
=
[
f
r
e
e
|_]

∧¬
A
=
[
f
r
e
e
|_]

∧¬
A
=
[
f
r
e
e
|_]

)
→

st
op
)

p
h
o
t
o
c
o
p
i
e
r
(
C
,
A
,
M
I
d
l
e
,
E
,
T
)
:
-

∃
A
u
x
,
A
u
x
’
,
T
’
(

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
T
=
[
A
u
x
|T’

]
)

||
as

k(
tr

u
e
)
→

as
k(

tr
u
e

)→
as

k(
tr

u
e

)→
as

k(
tr

u
e

)→
as

k(
tr

u
e

)→
no

w
�
(
A
u
x
>
0
)

th
en

no
w
�
(
C
=
[
o
n
|_]

)
th

en
as

k(
tr

u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
el

se
as

k(
C
=
[
o
n
|_]

)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
+

as
k(

tr
u
e
)
→

no
w
�
(
C
=
[
o
f
f
|_]

)
th

en
as

k(
tr

u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
E
=
[
s
t
o
p
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
el

se
as

k(
C
=
[
o
f
f
|_]

)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
E
=
[
s
t
o
p
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
+

as
k(

tr
u
e
)
→

no
w
�
(
C
=
[
c
|_]

)
th

en
as

k(
tr

u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
el

se
as

k(
C
=
[
c
|_]

)
→

as
k(

tr
u
e
)
→

te
ll(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
+

as
k(

tr
u
e
)

→
as

k(
tr

u
e
)
→

te
ll(
A
u
x
’
=
A
u
x
-
1
)

||
te

ll(
T
=
[
A
u
x
’
|_]

∧
A
=
[
f
r
e
e
|_]

)

el
se

as
k(
A
u
x
>
0
)

→
no

w
�
(
C
=
[
o
n
|_]

)
th

en
as

k(
tr

u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
el

se
as

k(
C
=
[
o
n
|_]

)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
+

as
k(

tr
u
e
)

→
no

w
�
(
C
=
[
o
f
f
|_]

)
th

en
as

k(
tr

u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
E
=
[
s
t
o
p
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
el

se
as

k(
C
=
[
o
f
f
|_]

)
→

as
k(

tr
u
e
)
→

te
ll(
E
=
[
s
t
o
p
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
+

as
k(

tr
u
e
)

→
no

w
�
(
C
=
[
c
|_]

)
th

en
as

k(
tr

u
e
)
→

te
ll(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
el

se
as

k(
C
=
[
c
|_]

)
→

te
ll(
E
=
[
g
o
i
n
g
|_]

∧
T
=
[
M
I
d
l
e
|_]

∧
A
=
[
f
r
e
e
|_]

)
+

as
k(

tr
u
e
)

→
te

ll(
A
u
x
’
=
A
u
x
-
1
)

||
te

ll(
T
=
[
A
u
x
’
|_]

∧
A
=
[
f
r
e
e
|_]

)
+

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
E
=
[
s
t
o
p
|_]

)
||

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
A
=
[
f
r
e
e
|_]

)
)

s
y
s
t
e
m
(
M
I
d
l
e
,
E
,
C
,
A
,
T
)
:
-

∃
E
’
,
C
’
,
A
’
,
T
’
(

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
E
=
[
_
|E’

]
)

||
as

k(
tr

u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
C
=
[
_
|C’

]
)

||
as

k(
tr

u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
A
=
[
_
|A’

]
)

||
as

k(
tr

u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
T
=
[
_
|T’

]
)

||
as

k(
tr

u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

u
s
e
r
(
C
,
A
)

||
as

k(
tr

u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

p
h
o
t
o
c
o
p
i
e
r
(
C
,
A
’
,
M
I
d
l
e
,
T
’
,
E
’
)

||
as

k(
tr

u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

�c
h
o
i
c
e
3
(
A
’
=
[
f
r
e
e
|_]

,
s
y
s
t
e
m
(
M
I
d
l
e
,
E
’
,
C
’
,
A
’
,
T
’
)
)

||
as

k(
tr

u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
s
(
E
’
,
C
’
,
A
’
,
T
’
)
)
.

�c
h
o
i
c
e
3
(
A
’
=
[
f
r
e
e
|_]

,
s
y
s
t
e
m
(
M
I
d
l
e
,
E
’
,
C
’
,
A
’
,
T
’
)
)
:
-

no
w
�
(
A
’
=
[
f
r
e
e
|_]

)
th

en
as

k(
A
’
=
[
f
r
e
e
|_]

)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

s
y
s
t
e
m
(
M
I
d
l
e
,
E
’
,
C
’
,
A
’
,
T
’
)

el
se

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

�c
h
o
i
c
e
3
(
A
’
=
[
f
r
e
e
|_]

,
s
y
s
t
e
m
(
M
I
d
l
e
,
E
’
,
C
’
,
A
’
,
T
’
)
)

||
(

as
k(
A
’
=
[
f
r
e
e
|_]

)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

s
y
s
t
e
m
(
M
I
d
l
e
,
E
’
,
C
’
,
A
’
,
T
’
)
+

as
k(

¬A
’
=
[
f
r
e
e
|_]

)
→

st
op
)
.

i
n
i
t
i
a
l
i
z
e
(
M
I
d
l
e
)
:
-

∃
E
,
C
,
A
,
T
(

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
A
=
[
f
r
e
e
|_]

)
||

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
T
=
[
M
I
d
l
e
|_]

)
||

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
E
=
[
o
f
f
|
_
]
)

||
as

k(
tr

u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

s
y
s
t
e
m
(
M
I
d
l
e
,
E
,
C
,
A
,
T
)
)

||
as

k(
tr

u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

as
k(

tr
u
e
)
→

te
ll(
s
(
E
,
C
,
A
,
T
)
)
.

Fi
g.

A
.2

.T
ra

ns
fo

rm
at

io
n

of
th

e
ph

ot
oc

op
ie

r
�-

pr
og

ra
m

.

88 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

(2) (Transitivity) Consider Cw ∈ w. By hypothesis, since v � w we have that v � Cw.
Analogously, u � v implies that for all Cv ∈ v. u � Cv , and since v � Cw, by C2, we obtain
u � Cw. Therefore, for all Cw ∈ w. u � Cw, that is, u � w. �

Proposition 5. Let 〈C, � 〉 be a simple constraint system and � : ℘(�) → ℘(�) be a
constraint abstraction. Then:
• If u � v, then {u} �+

� {v}.
• If {u} �−

� {v}, then u � v.

Proof. By definition, since � is extensive. �

Proposition 7. Let 〈C, � 〉 be a simple constraint system and � : ℘(�) → ℘(�) be a
constraint abstraction. Then:
(1) (Reflexivity for �+

�) ∀sst ∈ ℘(�). sst �+
� sst .

(2) (Transitivity for �−
�) ∀sst1, sst2, sst3 ∈ ℘(�). sst1 �−

� sst2 and sst2 �−
� sst3 implies

that sst1 �−
� sst3.

Proof. (1) Since � is extensive and � reflexive (Proposition 2), we have that u ∈ �(sst)

and u � u. Therefore, sst �+
� sst .

(2) Consider u1 ∈ �(sst1). By hypothesis, sst1 �−
� sst2 and sst2 �−

� sst3, hence, we have
that there exists u2 ∈ sst2 such that u1 � u2. Using the definition of �−

� again, and since �
is extensive, we have that there exists u3 ∈ sst3 such that u2 � u3. Finally, by the transitivity
of � (Proposition 2), we infer u1 � u3, which implies that sst1 �−

� sst3. �

Proposition 10. For all u, v ∈ �, and sst1, sst2 ∈ ℘(�), if �({u}) ⊆ sst1 and �({v}) ⊆
sst2 then �({u ∪ v}) ⊆ sst1 �� sst2.

Proof. Immediate. �

Lemma 12. Consider a tccp program P and a constraint abstraction � satisfying CC.
Let 〈�, st〉 and 〈�′, st ′〉 be two standard configurations such that 〈�, st〉 −→ 〈�′, st ′〉.
Then, for all sst ∈ ℘(�) with �({st}) ⊆ sst there exists sst ′ ∈ ℘(�) verifying that
〈�(�), sst〉 −→� 〈�(�′), sst ′〉 and �({st ′}) ⊆ sst ′.

Proof. We reason by induction on the standard agents � which do not suspend accordingly
to the original tccp semantics.
• If 〈tell(c), st〉 −→ 〈∅, st ∪{c}〉. Define sst ′ = sst �c. Using R1, we obtain 〈tell�(c), sst〉

−→� 〈∅, sst ′〉. Now, it is easy to prove that �({st ∪ {c}}) ⊆ sst � c.
• Applying the standard semantics of tccp, if 〈∑n

i=0 ask(ci) → Ai, st〉 −→ 〈Aj , st〉 then
st � cj . Thus, using R2 (with sst � +cj) we have that 〈∑n

i=0 ask�(ci) → �(Ai), sst〉 −
→� 〈�(Aj), sst〉.

• If 〈now c then A else B, st〉 −→ 〈A′, st ′〉 and st � c, then using the standard semantics
of tccp, one of the following cases occurs:
◦ 〈A, st〉 −→ 〈A′, st ′〉. By induction, we have that 〈�(A), sst〉 −→ 〈�(A′), sst ′〉 and

�({st ′}) ⊆ sst ′. Now, if sst � −c, then applying R4 we have that 〈now� c then �(A)

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 89

else (ask!(c) → �(A)+ask!(true) → �(B)), sst〉 −→� 〈�(A′), sst ′〉.
Otherwise, if sst � � −c and st � c, then sst � +c. Now, applying R3a (with sst � +c)
and R6, we obtain the same final configuration (〈�(A′), sst ′〉).

◦ If 〈A, st〉 �−→, then from CC we know that 〈�(A), sst〉 �−→�. Now, using the same
arguments as in the previous case, if sst � −c, by R5 we obtain 〈now� c then �(A)

else(ask!(c) → �(A) + ask!(true) → �(B)), sst〉 −→� 〈�(A), sst〉. Otherwise, if
sst � � −c then, following a similar reasoning as in the previous case, by applying R3b
(with sst � +c) and R6, we obtain the same result.

• If 〈now c then A else B, st〉 −→ 〈B ′, st ′〉 and st � � c, using the standard semantics of
tccp, then one of the following cases occurs:
◦ 〈B, st〉 −→ 〈B ′, st ′〉. By induction, we have that 〈�(B), sst〉 −→ 〈�(B ′), sst ′〉 and

�({st ′}) ⊆ sst ′. By definition, if st � � c then sst � � −c. Therefore, applying R6 and R3
(sst � +true) we have that 〈now� c then �(A) else (ask!(c) → �(A) +ask!(true) →
�(B)), sst〉 −→� 〈�(B ′), sst ′〉.

◦ If 〈B, st〉 �−→, then using CC we have that 〈�(B), sst〉 �−→�. Now, using similar
arguments as in the previous case, if sst � � −c, by R7 and R3a (sst � +true) we ob-
tain 〈now� c then �(A) else (ask!(c) → �(A) + ask!(true) → �(B)), sst〉 −→�
〈�(B), sst〉.

• If 〈A||B, st〉 −→ 〈A′||B ′, st ′〉 using the standard semantics of tccp, then one of the
following cases occurs:
◦ 〈A, st〉 −→ 〈A′, st ′1〉 and 〈B, st〉 −→ 〈B ′, st ′2〉, and st ′ = st ′1 ∪ st ′2. By induction,

we have that 〈�(A), sst〉 −→� 〈�(A′), sst ′1〉 and �({st ′1}) ⊆ sst ′1 and 〈�(B), sst〉 −→�
〈�(B ′), sst ′2〉 and �({st ′2}) ⊆ sst ′2. Therefore, applying R8 we have that 〈�(A)||�(B),

sst〉 −→� 〈�(A′)||�(B), sst ′1 � sst ′2〉. Finally, using Proposition 10, we obtain that
�({st ′1 ∪ st ′2}) ⊆ sst ′1 � sst ′2.

◦ Cases 〈A, st〉 −→ 〈A′, st ′1〉 and 〈B, st〉 �−→, and st ′ = st ′1 and 〈A, st〉 �−→ and
〈B, st〉 −→ 〈B ′, st ′2〉, and st ′ = st ′2 are proved using induction, CC and rule R9.

• If 〈∃st1x A, st2〉 −→ 〈∃st ′x A′, st2 ∪∃x st ′〉, and �({st2}) ⊆ sst2, then using the standard
semantics of tccp, we have that 〈A, st1 ∪ ∃x st2〉 −→ 〈A′, st ′〉. Let sst = st1 � ∃x sst2.
By construction, �({st1 ∪ ∃x st2}) ⊆ sst . Now, applying induction, there exists sst ′ ∈
℘(℘(C)), such that 〈�(A), ∃x sst2 � st1〉 −→ 〈�(A′), sst ′〉, and �({st ′}) ⊆ sst ′. Using
R10, we obtain that 〈∃{st1}�(A), sst2〉 −→� 〈∃sst ′x �(A′), sst2 � ∃x sst ′〉. Finally, by
Proposition 10, we have that �({st2 ∪ ∃x st ′}) ⊆ sst2 � ∃x sst ′.

• Case 〈p(x), st〉 −→ 〈A, st〉 is immediate due to the fact that the store is not modified
during the execution of this agent. �

Theorem 13. Consider a tccp program P , an initial configuration 〈�0, st0〉 and a con-
straint abstraction� satisfying CC.Then, for each non-erroneous trace t ∈ O(P)(〈�0, st0〉),
there exists an abstract trace t� ∈ A�(�(P))(〈�(�0), �({st0})〉) such that �(t) � t�.

Proof. Consider t = 〈�0, st0〉 −→ 〈�1, st1〉 −→ · · ·. The abstract trace t� = t�0 −→�
t�1 −→� · · · is inductively constructed as follows:
• We define t�0 = 〈�0, �({st0})〉.
• Assume that 〈�i , sti〉 −→ 〈�i+1, sti+1〉, and �({sti}) ⊆ ssti . By Lemma 12,

there exists an abstract store ssti+1 such that 〈�(�i), ssti〉 −→� 〈�(�i+1),

90 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

ssti+1〉 and �({sti+1})⊆ssti+1. Therefore, we define t�i+1=〈�(�i+1), ssti+1〉 and the re-
sult follows.

• Assume that 〈�i , sti〉 �−→, and that �({sti}) ⊆ ssti ; then, by CC, 〈�(�i), ssti〉
�−→�. �

Lemma 16. Consider a tccp program P and a constraint abstraction �. Let 〈�, st〉 and
〈�′, st ′〉 be two standard configurations and sst ∈ ℘(�) such that �({st}) ⊆ sst . Then:
(1) If 〈�, st〉 �−→, then there exists sst ′ ∈ ℘(�) such that 〈�(�), sst〉 −→� 〈�(�), sst ′〉

and sst ⊆ sst ′.
(2) If 〈�, st〉 −→ 〈�′, st ′〉, then there exists sst ′ ∈ ℘(�) such that 〈�(�), sst〉 −→�

〈�(�′), sst ′〉 and �({st ′}) ⊆ sst ′.

Proof. (1) We reason by induction on the agents which may suspend:
• Case � = stop is proved by R0, taking sst = �({st}).
• Consider sst = �({st}). If 〈∑n

i=0ask(ci) → Ai, st〉 �−→, using the standard semantics
of tccp, we have that for all j. st � � cj which implies that sst � � −{{c1}, . . . , {cn}}. There-
fore, using R2′, we have that 〈∑n

i=0 ask�(ci) → �(Ai), sst〉 −→� 〈∑n
i=0 ask�(ci) →

�(Ai), sst〉.
• Finally, if 〈A||B, st〉 �−→, then we have that 〈A, st〉 �−→ and 〈B, st〉 �−→. Applying

the previous results inductively this means that there exists sst1, sst2 ∈ ℘(�) such that
〈�(A), sst〉−→�〈�(A), sst1〉, 〈�(B), sst〉−→� 〈�(B), sst2〉, sst ⊆ sst1 and sst ⊆ sst1.
That is, sst ⊆ sst1 ∩ sst2 which implies that sst ⊆ sst1 � sst2. In addition, using R7,
we obtain 〈�(A)||�(B), sst〉 −→� 〈�(A)||�(B), sst1 � sst2〉.
(2) Similar to Lemma 12, except for the following cases:

• If 〈now c then A else B, st〉 −→ 〈A, st〉, then, by the standard semantics of tccp, we
have that st � c and 〈A, st〉 �−→. Then, using (1), there exists sst ′ ∈ ℘(�) such that
sst ⊆ sst ′ and 〈�(A), sst〉 −→� 〈�(A), sst ′〉.

◦ If sst � −c then by rule R4 we have that 〈now� c then �(A) else (ask!(c) → �(A) +
ask!(true) → �(B)), sst〉 −→� 〈�(A), sst ′〉.

◦ If sst � � −c then applying R3 (sst � +c) and R6, we obtain the same result.
• If 〈now c then A else B, st〉 −→ 〈B, st〉, by the standard semantics of tccp, we have that

st � � c and 〈B, st〉 �−→. Then, using (1), there exists sst ′ ∈ ℘(�) such that sst ⊆ sst ′
and 〈�(B), sst〉 −→� 〈�(B), sst ′〉. Since st � � c then sst � � −c, then, by rules R6 and R3
(sst � +true), we have that 〈now� c then �(A) else(ask!(c) → �(A) + ask!(true) →
�(B)), sst〉 −→� 〈�(B), sst ′〉.

• If 〈A||B, st〉 −→ 〈A||B ′, st ′〉, by the standard semantics of tccp, we have that 〈A, st〉
�−→ and that 〈B, st〉 −→ 〈B ′, st ′〉. Now, on the one hand, by (1), there exists sst ′1 ∈
℘(℘(C)) such that sst ⊆ sst ′1 and 〈�(A), sst〉 −→� 〈�(A), sst ′1〉. On the other hand,
by induction there exists sst ′2 ∈ ℘(℘(C)) such that 〈�(B), sst〉 −→� 〈�(B ′), sst ′2〉 and
�({st ′}) ∈ sst ′2. Finally, applying rule R8 we obtain 〈�(A)||�(B), sst〉 −→� 〈�(A)||�(B ′),
sst ′1 � sst ′2〉. To finish the proof, it is sufficient to note that st ∈ sst ⊆ sst ′1, st ′ ∈ sst ′2
and, since stores in tccp are monotonic, st ⊆ st ′. Hence st ′ ∈ sst ′1 � sst ′2.

• Case 〈A||B, st〉 −→ 〈A′||B, st ′〉 is similar to the previous one. �

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 91

Theorem 17. Consider a tccp program P of the form D.�0, an initial
configuration 〈�0, st0〉 and a constraint abstraction �. For each non-erroneous trace t ∈ O
(P)(〈�0, st0〉), there exists an abstract trace t� ∈ A′

�(�(P))(〈�(�0), �({st0}〉) such
that �(t) � t�.

Proof. We assume that each non-erroneous execution trace t = t0 −→ · · · ∈ O(P)(〈�0,

st0〉) is infinite (we infinitely repeat the last configuration if necessary). Consider t =
〈�0, st0〉 −→ 〈�1, st1〉 −→ · · ·. Let t� = t�0 −→� t�1 −→� · · · be inductively constructed
as follows:
• Let us define t�0 = 〈�0, �({st0})〉.
• Assume that 〈�i , sti〉 −→ 〈�i+1, sti+1〉, and that �({sti}) ⊆ ssti . By Lemma 16,

there exists an abstract store ssti+1 such that 〈�(�i), ssti〉 −→ 〈�(�i+1), ssti+1〉 and
�({sti+1})⊆ssti+1. Therefore, we can define t�i+1=〈�(�i+1), ssti+1〉, and the result
follows. �

Theorem 20. Consider a tccp program P and an initial configuration 〈�0, st0〉. Let �(P)

be the program resulting from applying the �-transformation to P , and T (�(P)) the resulting
program from applying the T transformation to �(P). Then Ob�(�(P))(〈�(�0), �(st0)〉) =
Ob	(T (�(P)))(〈�(�0), �(st0)〉).
Proof. We say that two configurations � and
 are equivalent if they are syntactically equal.
Let K be the maximum depth of an agent in the program. We need to prove that, at each
execution point n ∗ (K + 1), the nth configuration of a derivation in the �-semantics is
equivalent to the n∗ (K +1)th configuration of the corresponding trace using the semantics
of the transformed program. Let k be the annotated depth of agent A. Then, the annotated
agent corresponding to A is denoted by Ak and d denotes the number of delays introduced
during the transformation (K − k). We proceed by structural induction on the agents of the
�-program.
• If � = stop�

k , then the transformed agent is
 = askd → stop where d is the number
of delays. Following the correct semantics defined above, 〈�, sst〉 −→� 〈�, sst〉. On
the other hand, 〈
, sst〉 −→� 〈askd−1 → stop, sst〉 −→k

� · · · 〈stop, sst〉. Thus, the
configuration at position k + 1 coincides with the abstract configuration obtained in the
�-program execution.

• If � = tellk(c), then the transformed agent is
 = askd → tell(c). Following the
semantics, 〈�, sst〉 −→� 〈∅, sst � c〉, whereas 〈
, sst〉 −→� 〈askd−1 → tell(c), sst〉
−→d−1

� · · · 〈tell(c), sst〉 −→� 〈stop, sst � c〉, and the result follows.
• If � = ∑n

i=0 ask�(ci)k → Ai , then the transformed agent is
 = askd−1 → �choicek,l

(c0; . . . ; cn, A0; . . . ; An)where�choicek,l(c0; . . . ; cn, A0; . . . ; An) :- now� (c0; . . . ; cn)

then (
∑n

i=0 ask(ci) → T (Ai) else
′, and
′ = askd →�choicek,l(c0; . . . ; cn, A0; . . .

; An)|| ∑n
i=0 ask(ci) → Ai + ask(¬c0 ∧ · · · ∧ ¬cn) → stop. Following the semantics

we consider two cases:
◦ If sst � −cj with 0�j �n, then 〈�, sst〉 −→� 〈Aj , sst〉. On the other hand, we have

that 〈
, sst〉 −→� 〈askd−2 → �choicek,l(c0; . . . ; cn, A0; . . . ; An), sst〉 −→d−2
�

〈�choicek,l(c0; . . . ; cn, A0; . . . ; An), sst〉 −→� 〈T (Aj), sst〉. By hypothesis, we as-
sume that Aj is equivalent to T (Aj), thus we obtain the expected result.

92 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

◦ If sst � � +cj for all 0�j �n, then 〈�, sst〉 −→� 〈�, sst〉 and we have that 〈
, sst〉 −
→� 〈askd−2 → �choicek,l(c0; . . . ; cn, A0; . . . ; An), sst〉 −→d−2

� 〈
′, sst〉 −→�

〈askd−1 → �choicek,l(c0, . . . , cn, A0, . . . , An), sst〉, and the result is proved by in-
duction.

◦ If sst � � −{{c0}, . . . , {cn}} but sst � +cj for some 0�j �n then 〈�, sst〉 −→� 〈�, sst〉,
and also 〈�, sst〉 −→� 〈Aj , sst〉, which correspond to the previous two cases.

• If � = now� c then Akelse(ask!(c) → Ak+1 + ask!(true) → Bk+1), then
 =
now� c then askd → T (Ak) else (ask(c) → askd−1 → T (Ak+1) + ask(true) →
askd−1 → T (Bk+1)). We distinguish three cases:
◦ If sst � −c, then 〈�, sst〉 −→� 〈A′, sst〉. By hypothesis we assume that A′ is equivalent

to the corresponding transformed agentT (A′). We have that 〈
, sst〉 −→� 〈askd−1 →
A, sst〉 −→d−1

� 〈T (Ak), sst〉 −→� 〈T (A′), sst〉. Thus, the (k + 1)th configuration is
equivalent to 〈A′, sst〉.

◦ If sst � � −c and sst � � +c, then 〈�, sst〉 −→� 〈B ′, sst〉 and 〈
, sst〉 −→� 〈askd−1 →
T (Bk+1), sst〉 −→d−1

� 〈T (Bk+1), sst〉 −→� 〈T (B ′), sst〉, and the result holds.
◦ If sst � � −c and sst � +c and reasoning in the same way, we obtain the expected

result.
• If � = A||B, then the transformed agent
 is T (A)||T (B). By hypothesis, we assume

that A is equivalent to T (A) and that B and T (B) are also equivalent. Moreover, we
know that annotation does not affect this agent, hence both agents (A and B) have the
same depth. Therefore the result follows directly.

• If � = ∃A or � = p(x), we proceed similarly to the previous case. �

Proposition 25. Given an abstract sequence of stores s� = sst0 · sst1 · · ·, a sequence of
concrete stores s = c0 · c1 · · · ∈ �(s�) and a temporal formula
, then

(a) s �
 ⇒ s� �+
�
,

(b) s� �−
�
 ⇒ s �
.

Proof. By induction on the structure of
.
(1) Case
 = c ∈ C.

(a) By definition, s � c ⇒ c0 � c, and since c0 ∈ sst0 using the definition of �+
� , we

have that sst0 �+
� c, that is, s� �+

� c.

(b) By definition, s� �−
� c ⇒ sst0 �−

� c, which means that, for all st ∈ sst0, st � c.
Since c0 ∈ sst0, we have that c0 � c, or equivalently, that s � c.

(2) Case ¬
.

(a) By definition of � , s � ¬
 ⇒ s � �
. By induction hypothesis, s � �
 ⇒
s� � �−

�
 which is equivalent to s� �+
� ¬
.

(b) By definition, s� �−
� ¬
 ⇒ s� � �+

� . Now applying the induction hypothesis, we
obtain that s � �
 or equivalently, that s � ¬
.

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 93

(3) Case
1 ∧
2.

(a) If s �
1 ∧
2 then, by definition, we have that s �
1 and s �
2. Applying the
induction hypothesis, we obtain s� �+

�
1 and s� �+
�
2 and, by the definition of �+

� ,

this leads to s� �+
�
1 ∧
2.

(b) Similarly, using rule (3) of the definitions for � and �−
� and applying the induc-

tion hypothesis.
(4) Case ∃x
.

(a) If s � ∃x
 then, by definition, there exists a concrete sequence r such that ∃xr =
∃xs and r �
. Assume that r = r0 · r1 · · ·, and construct the sequence s� ∪ r as the
sequence of abstract stores sst0 ∪ {r0} · sst1 ∪ {r1} · · ·. By construction, r ∈ �(s� ∪ r)

and since r �
, by induction hypothesis, we obtain that s� ∪ r �+
�
. On the other hand,

it is easy to prove that ∃x(s
� ∪ r) = ∃xs

�: clearly, ∃xs
� � ∃x(s

� ∪ r) and, inversely,
since s ∈ �(s�) and ∃xs = ∃xr , we have that, for all i�0.∃xri ∈ ∃xssti , which implies
that ∃x(s

� ∪ r) � ∃xs
�.

Thus, we have found an abstract sequence of stores s� ∪ r such that ∃x(s
� ∪ r) = ∃xs

�

and s� ∪ r �+
�
 which by definition of �+

� , implies that s� �+
� ∃x
.

(b) Assume now that s� �−
� ∃x
. Then, by definition of �−

� , there exists an abstract

sequence r� = r�
0 · r�

1 · · · such that ∃xr
� = ∃xs

� and r� �−
�
. Since ∃xr

� = ∃xs
� and,

by hypothesis, s = c0 · c1 · · · ∈ �(s�), we can select for each i�0 a constraint ri ∈ r�
i

such that ∃xri = ∃xci . Let r = r0 · r1 · · · be a sequence of stores. By construction,
r ∈ �(r�) and by induction hypothesis, since r� �−

�
, we obtain that r �
. Thus, we
have found a concrete sequence r such that ∃xr = ∃xs and r �
 which by definition
of � implies that s � ∃x
.

(5) Case ©
. Trivial considering that if s ∈ �(s�) then s1 ∈ �(s�1).
(6) Case
1U
2. Similar to case (5) considering now that if s ∈ �(s�) then ∀j �0.sj ∈

�(s�j). �

Theorem 26. Consider a tccp program P of the form D.�0, an initial configuration
〈�0, st0〉, and a constraint abstraction �. Then, given a temporal formula
:
(1) If �(P) �−

�
 then P �
.

(2) If �(P) � �+
�
 then P � �
.

Proof. By definition, given s ∈ Ob(P), there exists a concrete trace t = 〈�0, st0〉c〈�1, st1〉
−→ · · · ∈ O(P)(〈�0, st0〉) such that s = st0 · st1 · · ·. By Theorem 17, there exists t� =
〈�(�0), �({st0})〉 −→� 〈�(�1), sst1〉 −→� · · · ∈ A′(�(P)(〈�(�0), �({st0})〉) such that
�(t) � t�. Let s� = �({st0}) · sst1 · · ·. Then, s0 ∈ �({s0}), and since �(t) � t� we have
sti ∈ ssti for all i > 0. Therefore, s ∈ �(s�). Now, by applying Proposition 25, we obtain
the two assertions:
• if s� �−

�
 then s �
.

• if s� � �+
�
 then s � �
. �

94 M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95

References

[1] T. Ball, A. Podelski, S.K. Rajamani, Relative completeness of abstraction refinement for software model
checking, in: Proc. 2002 Internat. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2002), Lecture Notes in Computer Science, Vol. 2280, Springer, Berlin, 2002, pp. 158–172.

[2] T. Ball, S.K. Rajamani, The slam project: debugging system software via static analysis, in: Proc. ACM
Internat. Symp. on POPL 2002, ACM Press, New York, 2002, pp. 1–3.

[3] F.S. de Boer, M. Gabbrielli, M.C. Meo, A timed concurrent constraint language, Inform. and Comput. 161
(2000) 45–83.

[4] F.S. de Boer, M. Gabbrielli, M.C. Meo, A temporal logic for reasoning about timed concurrent constraint
programs, in: G. Smolka (Ed.), Proc. eigth Internat. Symp. on Temporal Representation and Reasoning, IEEE
Computer Society Press, Silver Spring, MD, 2001, pp. 227–233.

[5] F.S. de Boer, M. Gabbrielli, M.C. Meo, Proving correctness of timed concurrent constraint programs, ACM
Trans. Comput. Logic 5 (4) (2004) 706–731.

[6] G. Bruns, P. Godefroid, Generalized model checking: reasoning about partial state spaces, in: C. Palamidessi
(Ed.), 11th Internat. Conf. on Concurrency Theory CONCUR 2000, Lecture Notes in Computer Science,
Vol. 1877, Springer, Berlin, 2001, pp. 168–182.

[7] E.M. Clarke, E.A. Emerson, A.P. Sistla, Automatic verification of finite-state concurrent systems using
temporal logic specifications, ACM Trans. Programming Languages and Systems 8 (1986) 244–263.

[8] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement, in: CAV,
Lecture Notes in Computer Science, Vol. 1855, Springer, Berlin, 2000, pp. 154–169.

[9] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-guided abstraction refinement for
symbolic model checking, J. Assoc. Comput. Mech. 50 (2003) 752–794.

[10] E.M. Clarke, O. Grumberg, D.E. Long, Model checking and abstraction, ACM Trans. Programming
Languages and Systems 16 (1994) 1512–1542.

[11] P. Cousot, R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints, in: Proc. fourth ACM Internat. Symp. on POPL, ACM Press,
New York, 1977, pp. 238–252.

[12] P. Cousot, R. Cousot, Systematic design of program analysis frameworks, in: Proc. sixth ACM Symp. on
POPL, ACM Press, New York, 1979, pp. 269–282.

[13] D. Dams, R. Gerth, O. Grumberg, Abstract interpretation of reactive systems, ACM Trans. Programming
Languages and Systems 19 (2) (1997) 253–291.

[14] M. Falaschi, A. Policriti, A. Villanueva, Modeling timed concurrent systems in a temporal concurrent
constraint language—I, in: A. Dovier, M.C. Meo, A. Omicini (Eds.), Selected Papers from 2000 Joint
Conference on Declarative Programming, Electronic Notes in Theoretical Computer Science, Vol. 48,
Elsevier, Amsterdam, 2000.

[15] M. Falaschi, A. Villanueva, Automatic verification of timed concurrent constraint programs, Theory and
Practice of Logic Programming (2006), to appear.

[16] M.M. Gallardo, J. Martínez, P. Merino, E. Pimentel, �SPIN: a tool for abstract model checking, Software
Tools for Technology Transfer 5 (2003) 165–184.

[17] M.M. Gallardo, P. Merino, E. Pimentel, Refinement of LTL formulas for abstract model checking, in: Proc.
of Static Analysis Symp. (SAS 2002), Lecture Notes in Computer Science, Vol. 2477, Springer, Berlin, 2002,
pp. 395–410.

[18] M.M. Gallardo, P. Merino, E. Pimentel, A generalized semantics of promela for abstract model checking,
Formal Aspects of Comput. 16 (2004) 166–193.

[19] R. Giacobazzi, S.K. Debray, G. Levi, Generalized semantics and abstract interpretation for constraint logic
programs, J. Logic Programming 25 (3) (1995) 191–247.

[20] R. Giacobazzi, E. Quintarelli, Incompleteness, counterexamples, and refinements in abstract model checking,
in: Proc. of Static Analysis Symp. (SAS 2001), Lecture Notes in Computer Science, Vol. 2126, Springer,
Berlin, 2001, pp. 356–376.

[21] R. Giacobazzi, F. Ranzato, F. Scozzari, Making abstract interpretations complete, J. Assoc. Comput. Mach.
47 (2) (2000) 361–416.

M. Alpuente et al. / Theoretical Computer Science 346 (2005) 58–95 95

[22] P. Godefroid, M. Huth, R. Jagadeesan, Abstraction-based model checking using modal transition systems,
in: 12th Internat. Conf. on Concurrency Theory CONCUR 2001, Lecture Notes in Computer Science, Vol.
2154, Springer, Berlin, 2001, pp. 426–440.

[23] J. Hatcliff, M. Dwyer, C. Pasareanu, Robby, Foundations of the Bandera abstraction tools, in: The Essence
of Computation, Lecture Notes in Computer Science, Vol. 2566, 2002, pp. 172–203.

[24] M. Huth, R. Jagadeesan, D.A. Schmidt, Modal transition systems: a foundation for three-valued program
analysis, in: David Sands (Ed.), 10th European Symp. on Programming ESOP 2001, Lecture Notes in
Computer Science, Vol. 2028, Springer, Berlin, 2001, pp. 155–169.

[25] J. Jaffar, J.-L. Lassez, Constraint logic programming, in: Proc. 14th Annu. ACM Symp. on POPL, 1987,
pp. 111–119.

[26] K.G. Larsen, B. Thomsen, A modal process logic, in: third Annu. Symp. on Logic in Computer Science,
LICS ’88, IEEE Computer Society Press, 1988, pp. 203–210.

[27] C. Loiseaux, S. Graf, J. Sifakis, A. Boujjani, S. Bensalem, Property preserving abstractions for the verification
of concurrent systems, Formal Methods in System Design 6 (1995) 1–35.

[28] M. Maher, Logic semantics for a class of committed-choice programs, in: Proc. fourth Internat. Conf. on
Logic Programming, 1987, pp. 858–876.

[29] V.A. Saraswat, Concurrent Constraint Programming Languages, The MIT Press, Cambridge, MA, 1993.
[30] V.A. Saraswat, R. Jagadeesan, V. Gupta, Foundations of timed concurrent constraint programming, in: Proc.

ninth Annu. IEEE Symp. on Logic in Computer Science, IEEE, New York, 1994, pp. 71–80.
[31] V.A. Saraswat, M.C. Rinard, P. Panangaden, Semantic foundations of concurrent constraint programming,

in: Proc. 18th Annu. ACM Symp. on Principles of Programming Languages POPL’91, ACM Press,
New York, 1991, pp. 333–352.

[32] E. Zaffanella, R. Giacobazzi, G. Levi, Abstracting synchronization in concurrent constraint programming,
J. Funct. Logic Programming 1997 (6) 1997.

