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Abstract— A still growing number of software concepts and
framworks have been proposed to meet the challenges in the
development of more and more complex robotic systems, like
humanoids or networked robotics. The issue of hard realtime,
however, has not been the main focus of such concepts, but is
essential for building and controlling mechatronic systems. Here
we discuss the specific demands of complex mechatronic systems
and present a software concept, the ”agile Robot Development”
(aRD) concept, we developed at our institute. We show that the
performance of current computing and communication hardware
allows for a flexible component based concept with distributed
execution even in hard realtime with rates in the kHz range.

I. INTRODUCTION

Over the last years robotic systems reached a new level
of complexity. Unlike systems with a six degrees of freedom
(DOF) arm with a gripper or simple mobile robots, we see now
torque controlled redundant arms, articulated hands, humanoid
walking robots, cooperating swarms of mobile robots or ser-
vice robots communicating with sensor networks installed in
their environments. To address the challenges of developing
software for such systems a number of software concepts and
frameworks have been proposed. This number is still growing
as until now no general abstraction has been found that fits
well with all the specific demands of the diverse robotic
applications and hardware.

Prominent representatives are ORCA [1], MARIE [2],
MIRO [3], Player [4], OROCOS [5] MCA [6], OpenHRP
[7], YARP [8] and Microsoft Robotics Studio [9]. They are
all based on the idea, that a complex robotic system should
be composed from interacting modules or components in the
sense of the component based software engineering approach
[10] with all its benefits as flexibility, code reuse or decoupling
of the development flow in a team. To allow the components
to be distributed on a network of heterogeneous computers all
approaches also provide tools for simplifying and standardiz-
ing communication.

A. Demands of Mechatronical Systems

In our institute the specific demands for a software concept
arise from building and controlling highly complex mecha-
tronic systems, e.g. the DLR Light-Weight-Robot arms (LBR),
DLR Hands [12] or the recently built upper humanoid body
”Justin” with 41 DOF [11](see Fig. 1). The two main demands
are: first, to provide scalable computing resources in hard

Fig. 1. An example for a complex mechatronic system: the DLR upper
humanoid body Justin [11] with 41 DOF. This system is built from two DLR-
LBR-III arms with 7 DOF each, two DLR-Hand-II with 12 DOF each [12]
and a torso with 3 DOF.

realtime to allow for computationally demanding control loops
in the kHz range (up to 10kHz in the near future) running
over all DOF and second, to support an ”agile development
flow” of a small, tightly interacting team of experts in the
spirit of the ’Agile Software Development’ methodology [13],
[14]. Such a flexible, iterative and rapid development flow
is essential for building complex systems, especially when
working on research protoypes. It should be easy to connect
new hardware components like sensors and actuators, to
scale computing resources by simply adding more CPUs, to
integrate software components from different developers and
to flexibly reconfigure the physical as well as the functional
communication structure of the system, which is essential for
iterative rapid prototyping. Special to mechatronical systems
is the high complexity of the part running in hard realtime,
consisting of e.g. device drivers, sensor processing, controllers,
inverse kinematics, collision avoidance, state machines, ... .

To summarize: for complex mechatronic systmes an easy to
use and flexible component based software concept allowing
for distributed execution while guaranteing hard realtime is
desirable.

On the other hand, the performance of standard hardware
has reached a level, where such a component based, more
abstract view on the system is possible. Most important for



that are the fast digital buses of up to 1GBit/s inside and
to the robot components and the high computing power of
commodity systems in combination with flexible communica-
tion infrastructure built from cheap components like Gigabit-
Ethernet.

B. Robotic Software Concepts

The software concepts mentioned before have been success-
fully used in different fields of robotic applications. In what
follows we briefly discuss to what extent they meet the desired
requirements for mechatronical systems.

ORCA, MARIE, MIRO and Player are used in mobile
robotics, where the realtime constraints are rather soft with
rates in the 100 Hz range. Also Microsoft Robotics Studio is
targeted on soft realtime applications so far, as the underlying
operating system (OS) is Windows XP.

OROCOS provides hard realtime and has been successfully
used in control applications with up to two robot arms running
at more than 500 Hz. How the performance scales when
going to the complexity of humanoid robots and distributed
computation is needed has to our knowledge not been reported
yet.

OpenHRP is designed for the development of humanoid
robotics applications. It is based on RT-Middleware [15] for
inter-component communication which uses CORBA and so
allows for distributed execution. In all applications reported
so far, however, the hard realtime parts running the low level
controllers with rates in the kHz range have been implemented
in monolithic modules using proprietary communication to
reach the desired performance.

MCA is used for complex robotic systems like the humanoid
robot ARMAR [16]. It allows for a hierarchical composition
of e.g. controller components while providing hard realtime.
But as it uses TCP/IP for network communication, the con-
cept does not natively provide hard realtime for distributed
execution.

YARP is another concept used in a number of complex
robots like Domo [17]. It is lightweight, allows for the
configuration of the quality of service (QoS) of the inter-
component communication and is portable by using ACE [18].
In all the reported robotic applications the low level high rate
controllers run on dedicated DSP boards. But as YARP also
supports the realtime OS QNX [25], it would be interesting
to see how it performs in a complex mechatronic system like
Justin with high control rates and distributed computing on
networked PCs.

In the rest of the paper we first discuss in more detail
the demands in developing software for complex mechatronic
systems by taking a closer look on our humanoid upper body
system Justin. Then we introduce a simple software concept,
the ”agile Robot Development” (aRD) concept, we developed
at our institute to pragmatically address this demands. The key
points of the aRD concept are first to add only a thin layer
above the realtime operating system to get the full hardware
performance and second to have control over the quality of
service (QoS) of the connection between components to meet

the different hard, soft and non realtime constraints. Finally
we present some performance examples and give an brief
overview of other robotics applications we have realized with
the aRD concept.

II. ANALYSIS OF A COMPLEX MECHATRONIC SYSTEM

As a concrete example for a complex mechatronic system
we analyze here the humanoid upper body system Justin we
developed at DLR for performing experiments in the control
of two handed manipulation.

A. System Overview

A system oveview is given in (Fig. 2). Justin is built from
five robot components: two LBR-III arms (7 DOF each), a
torso (3 actuated DOF) and two DLR-Hand-II (12 DOF). Each
joint is equipped with position and torque sensors. The single
components are connected to the computing resources by fast
digital buses with a bandwith of > 8MBit/s and a clock rate
of 1kHz. The system allows to run a single control loop over
all 41 DOF at a rate of 1kHz. Typical examples for com-
putationally demanding controllers are gravity compensation,
impedance control [19], where e.g. touching the finger tip can
sensitively move the whole upper body, or object impedance,
where a virtual imepdance can be assigned to an object, which
is grasped with both hands by cooperatively controlling all
finger, arm and torso joints [20].

B. Functional View

Taking a coarse view on the system, it consists of the robot
hardware connected to realtime targets and in addition of non
realtime computers running applications for user interaction,
perception and planning. Additional hosts run tools for devel-
opment and tools that allow for monitoring and profiling of
the different parts of the system during runtime.

All of the functionality of the system is represented by
blocks running in realtime or non-realtime. They perform
calculations and communicate with each other. Typically the
granularity of the realtime part is finer, as each block usually
performs only a small amount of deterministic calculation. On
the other hand, blocks in the non-realtime part represent more
monolithic applications and can perform elaborate algorithms
on complex internal representations. Here we focus mainly on
the realtime part and its connections to the non realtime part.

From this it is straightforward to see a robot system as a
decentral net of calculation blocks and communication links,
in this way defining a functional view on the system. This
abstraction not only helps in designing the architecture of a
robot system, but also paves the way for a component-based
software concept.

C. Essential Requirements

In the following we analyse in more detail the requirements
for realizing such a net of blocks.



2. System overview of the complex robot
system ”Justin” resembling a net of calcula-
tion blocks and communication links. There
is a realtime and a non-realtime part. In the
former the granularity of the blocks is usu-
ally finer and the blocks represent a hierarchy
of different controllers for each robot com-
ponent (JC=joint control, AC=arm control,
TC=torso control, FC=finger control) which
are connected via device-driver blocks (dev)
to the hardware and run with different rates
(0.3ms up to 3ms). In addition there are
blocks for computing the inverse kinematics
(invkin) or interpolation (ipol) or blocks that
control the sequence of execution (state ma-
chine) getting commands from higher-level
blocks. In the non-realtime part the blocks
are typically more monolithic applications
like a 3D-viewer or GUI for user interac-
tion or a vision system and path planner in
combination with an execution control block
(EC) for higher-level intelligence. As main
operating systems QNX [25] is used in the
realtime and Linux in the non realtime part
and for the developments hosts.

1) Concurrent Execution: Each block is an execution entity,
e.g. a process or thread, and can have its own priority. This
allows to schedule the available processing time between the
blocks and implicitly defines the execution order. In practice
it is often more efficient and simpler to aggregate blocks into
groups, where each group is an execution entity and iterates
through its blocks.

2) Standardized Communication: All blocks are equal in
the sense, that they all can be sources and sinks for data. Also
the connection scheme is arbitrary. A block’s output port can
be connected to any other block’s input ports, as long as the
data formats match.

The data format of each port of each block can be different,
but is static during runtime. This simplifies the implementation
of a block, but also means, that a block is less than an
object or a component, where different methods with different
parameters and return values can be called. Nevertheless, this
restriction is convenient for robotic system as the static robot
hardware (e.g. always the same number of sensor values)
implies the static data format for most of the blocks.

Also the block’s connection scheme is static at runtime. This
design decision dramatically simplifies the implementation,
not only of the single block but of the mechanisms for config-
uring the overall system. Instead of allowing to dynamically
change the connection scheme it is possible to disable and
enable blocks through input ports, where a disabled block does
not consume computation time.

3) Data Flow and Model of Computation: A block sends
data by pushing it through its output port to the input ports
it is connected to. To keep the design simple, there are no
pull or send-with-reply operations, which can nevertheless be
easily built on top of the push operation.

For blocks like controllers having robot hardware connected
to them the ”synchronous data flow” model of computation
(MoC) [22] has to be provided. In this MoC the execution
order in a group of synchronized blocks is deterministic, but
the blocks in such a synchronization group still can run at
different rates (multirate). In addition it is important to allow
more than one synchronization groups, where between those
groups a asynchronous transition must be possible. A typical
example is a robot system consisting of more than one robot
component, each having its own hardware clock and each of
the low level controllers is synchronized with ’its’ component,
whereas at higher levels the controllers run over the full robot.

Both models of computation can be realized by providing
non blocking write and blocking and non blocking read
operations in combination with FIFO buffers at the block’s
input ports [21], [22].

4) System Handling: The description of the configuration
of a system consists of two parts. First, the structure of the net
of blocks has to be described. To be able to handle big systems
the description must allow for a hierarchical aggregation of
blocks to meta-blocks and so on. Second, the mapping of the
net to the actual computing hardware has to be specified, to
describe which block runs on which computer and communi-
cates over which network links. This explicit specification of
the hardware used for the communication between two blocks
is essential for guarantying the quality of service (QoS) with
regard to bandwith, latency and determinism. Only this way
the developer has control over the realtime behaviour of the
overall system.

At runtime the system is a decentral net of communicating
blocks distributed over a network of computers. The software
concept has to provide mechanisms to allow for a central



startup from one console and a coordinated shutdown.
5) Openness and Ease-Of-Use: The functionality of the

system is implemented in the blocks. Therefore it is very
important that the interface for writing a block and integrating
it in the net’s communication structure should be open to
arbitrary programming languages. This is especially important
as in robotics the blocks are contributed by a team of expert
from different fields each requiring its specific tools and
languages.

The interface for writing a block should also be simple,
as researchers are experts in their field but not necessarily
software experts and are not willing to invest much time to
understand sophisticated software frameworks.

III. IMPLEMENTATION

In this section we give an overview of the software concept,
the ”agile Robot Development” (aRD) concept, we developed
at our institute to realize the above described decentral net of
calculation blocks and communication links. The two main
guidelines for the implementation were to meet the hard
realtime constraints in the kHz range and to keep it easy to
use.

The current implementation of the aRD concept consists
of aRDnet, a simple software suite developed at our institute.
In addition we provide a seamless integration of a toolchain
based on Matlab/Simulink/RTW [23] and RTLab [24], as
Matlab/Simulink is the quasi-standard tool for simulation of
robot dynamics and controller design. As main operating
systems we use QNX Neutrino [25], a POSIX-compliant
microkernel realtime OS, for the realtime target and Linux
for the non realtime computers. Reduced support is also given
for VxWorks and Windows XP.

A. aRDnet

In the aRD concept each block is an individual process
running an arbitrary executable which, as part of the net, sends
and receives data packets.

Typical examples for such blocks running in the realtime
part are I/O-blocks that implement the device drivers for
communication with the connected robots or other hardware.
Another example are non-deterministic calculation blocks
which are asynchronously coupled, for instance an inverse
kinematics wich uses some kind of iterative minimization
algorithm.

Each block can have multiple input and output ports, but
each output port is connected to exactly one input port of an
arbitrary block with matching data formats.

aRDnet is laid out as a simple software suite that supports
and standardizes the communication between blocks. The suite
consists of four parts: First, a library for easy implementation
of a block’s input and output ports. Second, the ardnet
executable realizing communication between blocks running
on different computers. Third, a template for writing Simulink
stub blocks, which allows for easy communication between
aRDnet blocks and Simulink models. Finally, tools for a
coordinated startup and shutdown of the system.

1) aRDnet Library: The aRDnet library provides a native
C/C++-interface. Based on this interfaces to other program-
ming languages, like Python or Matlab, can also be easily
built. The simple interface consists of only five functions:

• create and init for creating and initializing the input
and output ports of a block. The properties of a port
can be configured by special command line arguments
provided at startup to the block’s process.

• send for non-blocking sending of a data packet through
an output port.

• rec and tryrec for blocking and non-blocking receiv-
ing of data from an input port.

The size and format of a data packet can be different for
each port of each block, but is static and defined at compile-
time.

The connection scheme of the block’s ports is determined
by providing command line options at startup of each block’s
executable. For each port of a block a separate name is
specified. Connections are simply determined by matching port
names for input and output.

The current implementation of the aRDnet library achieves
all of the above by only a thin layer of abstraction over the
functionality of the underlying operating systems. Basically,
only the POSIX ”named shared memory”, semaphores and
mutexes are used.

2) ardnet executable: The ardnet executable serves
two important purposes with regard to the communication
abilities in the net of blocks. Being also based on the aRDnet
library it can be seen as a block, however, with special features.

First, ardnet realizes the communication between two
blocks on different computers by running a corresponding
pair of ardnet processes as a network bridge. For this
purpose ardnet has built-in functionality for transmission of
data over the network providing a ”virtual wire” between the
two communicating blocks.

In the current implementation ardnet uses bare UDP
sockets but it can easily and transparently be extended to any
other transportation protocol, e.g. EtherCAT or Qnet, or even
media, e.g. Firewire or InfiniBand.

To address the problem of blocks running distributed even
on heterogenous computers (with differing CPU families,
operating systems and compiler versions) the aRDnet suite
defines compatible basic data types. In this way, the aRDnet
library assures the right representation on both sides when the
data packets are composed from these basic types.

Furthermore, a detailed control of quality of service (QoS) is
possible by choosing different network connections, e.g. poin-
to-point or switched ethernet, using separate network stacks
(a particular feature of the QNX microkernel architecture) and
finally by adjusting process priorities. This way we have been
able to achieve realtime communication over four ports with
a rate of 1kHz on each line (for details see section IV).

The second purpose ardnet serves is to provide a port
multiplier block. Therefore ardnet can be configured to have
one input but multiple output ports. Each data packet arriving
at the input is distributed onto all output ports.



3. Final realization of the complex robot
application of Fig. 2 with the aRDnet con-
cept. The controllers of the realtime part are
generated from Simulink models (indicated
by the screenshot) running distributed on two
QNX PCs. To connect aRDnet standalone
blocks, like the device-driver blocks, and
blocks in the Simulink model the aRDnet
suite provides Simulink stub blocks (blocks
inside the grey area in the Simulink screen-
shot correspond to the controller structure
from Fig. 2, whereas the blocks outside this
area are the additional stub blocks).
Communication between two blocks running
on different computers is realized by an
ardnet-bridge consisting of an ardnet
block (circles with ”an”) on each side.
During the final integration phase of all the
parts of the robot application the originally
planned computer setup (see Fig. 2) had to be
massively changed because of problems with
the availability of drivers and libraries. The
flexibility of the aRDnet concept, however,
allowed for this changes to take place with
only little adaption in the functional blocks.

3) Simulink stub: To connect aRDnet blocks to blocks
implemented in a Simulink model the aRDnet suite provides
a template S-function code. This easily allows to generate a
stub block for Simulink representing the actual block. The
developer has only to implement three functions. One specifies
the stub block’s layout (number and dimensions of in- and
outports). The other two functions translate the data packets
being sent by the aRDnet block through its output ports to
the outport lines of the stub block and, in the other direction,
translate the data at the stub’s inport lines to the data packets
received at the aRDnet block’s input ports.

The connection between the aRDnet block and its stub is
implemented with the help of the standard aRDnet library
mechanisms. This allows for a seamless integration of a
Simulink models in the net.

4) Startup and Shutdown: Starting the decentral net of
blocks distributed over a network of computers is done by
using a hierarchy of shell scripts very similar to the way a
Unix system starts up. A master script calls subscripts for
setting up particular system parts (e.g. the driver blocks for
the robot hardware).

To allow for the startup of a distributed system from a
single central command station the aRDnet suite provides the
ardstart command for starting up programs and scripts on
a remote computer. In addition ardstart does bookkeeping
of what has been started where. This information is needed for
a coordinated shutdown of the whole system or only specific
subsystems and is exploited by the ardkill command of the
aRDnet suite.

IV. PERFORMANCE AND APPLICATIONS

In this section we present some performance measurements
based on the above implementation of the aRD concept. If not
otherwise mentioned all measurements were performed on PCs
with Pentium 4, 3GHz.

• aRDnet Performance: The worst case minimal round-
trip time for a data packet of 1kByte size between two
blocks running on QNX realtime targets is measured.
’Minimal’ means here, that the second block sends the
packet immediately back after receiving it. For two blocks
on the same computer the round-trip time is 20µs. For two
blocks on different computers connected by an ardnet
bridge over a 1Gbit ethernet point-to-point connection the
time is 200µs (and 160µs on average).

• High Rate: In a HIL setup a simple Simulink model reads
analog values from an I/O-card and records them to the
harddisk. At a rate of 30kHz the system introduces only
little overhead (e.g. due to scheduling) of less then 10%
of cpu-time.

• Multirate: A robot arm is connected to a VxWorks
computer, which sends the sensor and actuator data at
a rate of 1kHz via an ardnet bridge to a QNX realtime
target running a Simulink model with a controller also at
a rate of 1kHz. The very same Simulink model contains
a subsystem running at a rate of 10kHz for reading in
analog values from a sensor via an I/O-card.

• Deterministic Execution and Jitter: In the very same
system as above, we could increase the average cpu load
of the Simulink model up to a level of 90% before loosing
simulation steps, even while running debug and profiling
tools over a second network connection. This implies



that system jitter, even in case of the 1kHz network
communication rate via ardnet, is smaller than 100µs.

• Justin, a complex application (see Fig. 1): The five robot
components are heterogenously connected as depicted in
Fig. 3 to two VxWorks and two QNX computers running
the realtime part of the application. All communication
between the realtime computers runs at a rate of 1kHz
via point-to-point ardnet bridges. All 41 DOF can be
controlled at a rate of 1kHz in a common control loop
distributed on the two QNX PCs. In addition a number of
non realimte computers running Linux are connected via
the institutes LAN for running blocks for user interaction,
perception and planning.

In our institute a wide range of other projects are now
based on the aRD concept. These projects with about 15
development seats range from teststands of new robot joints
over medical robotics, telepresence, haptic devices or brain
computer interfaces.

V. CONCLUSION

The successful application of the aRD concept in building
complex mechatronic systems is because it meets the two main
demands of such systems.

First, it provides scalable computing resources in hard
realtime by

• introducing only a thin layer of abstraction above the re-
altime OS, e.g. the blocks communicate directly without
an additional server between them and

• keeping full control of the QoS of the communication in
the developers hand, e.g. not hiding the details of different
link types (like media or protocols).

Second, by its ease of use and flexibility the software
concept supports a development flow in the spirit of the ’Agile
Software Development Methodology’ that is especially suited
to small teams of experts. This is achieved by

• not needing a runtime environment, but each block being
an standalone executable with a small C++ library linked
to it,

• having simple and open interfaces with only five C++
functions and

• providing a clear separation of

– functionality, which is implemented in the blocks,
– composition, by specifying the connection scheme in

a hierarchy of startup scripts by means of the block’s
command line options and

– quality of service, which is also configured in the
startup scripts by adding ardnet bridges between
block’s ports using different communication proto-
cols and media.

As also in the future advances in robotics will be signifi-
cantly based on the rising complexity of mechatronic systems
it is important that software concepts specifically designed for
the field of robotics address this demands.
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