
An approximate framework for flexible network flow
screening

Niall M. Adams
Department of Mathematics

Imperial College London
London, UK

Heilbronn Institute for Mathematical Research
University of Bristol

Bristol, UK
Email: n.adams@imperial.ac.uk

Daniel Lawson
Heilbronn Institute for Mathematical Research

University of Bristol, UK
Email: d.lawson@bristol.ac.uk

Abstract—Network security analysts presently lack tools for
routinely screening large collections of network traffic for struc-
tures of interest. This is particularly the case when the struc-
tures of interest are embodied as summaries of sets of related
traffic, essentially behaviour descriptions. This paper sketches
a methodology to provide such capability, in the context of flow
data. The methodology generates approximate search results, and
uses a modular construction to provide the capability to tailor
queries for multiple views of the behaviour structure of interest.
At core, the methodology involves approximate sequential search
procedures. The methodology is framed by a discussion of a large
university network.

I. INTRODUCTION

Defending corporate networks from malicious or unautho-
rised behaviour remains a pressing concern. This is particularly
challenging in the context of a large university network for
many reasons, including the size and heterogeneity of the
network and its users, and constraints on service restrictions
arising from freedom in academic research. The former point,
essentially scale, is particularly challenging since the man-
power available for network security is often small in relation
to the task.

Packet-based intrusion detection systems (e.g. [1]) are
an important part of the network security analyst’s toolkit,
for blocking known malicious behaviour, for monitoring (or
situational awareness) and for exploratory discovery. However,
there are a number of shortcomings with packet-level analysis,
including: the sheer volume of packet traffic makes routine
storage impractical, and respecting privacy concerns around
the content of packets. A potentially more critical shortcoming
is that most packet-based analysis matches against precise sig-
natures. These characteristics combine to suggest that packet-
based analysis is inadequate, in isolation, for the needs of
network security analysts.

Flow data, such as CISCO’s NETFLOW1, is another im-
portant data source in the network analysts’ toolkit. Such data
has been successfully used in large-scale network monitoring.
For example, [2] provides an example of the detection of a
sophisticated intrusion in the context of a corporate network.

1http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-
netflow/index.HTML

A different NETFLOW monitoring example is provided by
[3]. Typically, analytic use of flow data is off-router, and
hence dictates a requirement for more sophisticated storage
and processing infrastructure. This paper is concerned with
exploiting flow data for exploration and discovery, the structure
of which is discussed in Section II-A.

Discussion of packets and flow data demonstrates different
levels of abstraction and summary. A flow data record is
a higher level description of behaviour than a packet. Still
higher-levels can be reasoned about. A first example is con-
sidering all flow events emitted by a single IP address in an ar-
bitrary period. A second example is all events of a specific type,
such as ssh, in an arbitrary period associated with a specified
set of addresses. Figure 2 presents a schematic description of
levels of behaviour, and the issue is described in more detail in
Section II-B. Such collections of flow events are complicated,
and best summarised with a statistical description. The precise
statistical description should be determined according to the
particular behavioural structure of interest.

Monitoring is not the only concern of network analysts.
Having identified a compromised computer, the analyst may
wish to find computers which have similar behavioural char-
acteristics. This could be for forensics purposes – to better
understand the compromise – or for discovery purposes – to
reveal other potentially compromised machines. It is this latter
activity which is the primary focus of the proposed framework.
As noted above, there are numerous ways to characterise
behaviour, and for discovery purposes the analyst should have
flexibility to make this choice. For example, having identified
one corporate computer that is participating as a node in a
botnet, the analyst may seek to find other computers with
similar behavioural characteristics. Such computers may also
be participating in the botnet. This type of context is discussed
in more detail in Section II-B.

Finding matches for behaviour associated with a compro-
mise – screening – is the objective of the proposed framework.
However, both the characterisation of the activity, and the be-
havioural context for the screening process should be analyst-
defined and thus the framework is modular to support flexible
screening. Given the large size of a corporate flow data corpus,
routine searches at this scale are computationally impractical.

To address this, the problem is posed as an approximate and
sequential search task.

There is a natural trade-off here: should the analyst wish to
complete a single search with complete accuracy, or numerous
approximate searches? Given the complexity of the context,
and the propensity for false positives in screening scenarios,
the latter approach may be preferable – particularly for dis-
covery purposes.

This paper is concerned with sketching a computational
framework for screening in a corporate network. This frame-
work is the “cyber” instantiation and simplification of the more
general big-data analysis approach described in [4]. Related
ideas, with a focus on processing infrastructure are explored
in [5].

II. DATA AND CONTEXT

This section describes the context of the proposed frame-
work in more detail and provides a discussion on the structure
of NETFLOW data.

A. NETFLOW data

As discussed in the introduction, this paper is concerned
with the use of flow records. Using the example of the network
at Imperial College London, the focus will be on NETFLOW.
NETFLOW data is a summary description of a coherent flow
of packets between two network devices communicating via
a router. An (anonymised) sample of NETFLOW data is
given in Figure 1. NETFLOW records include the source and
destination IP addresses, source and destination ports, start
and end times, flow size and other information. The table
shows four NETFLOW events, from a common source to four
different addresses on two different subnets. Some of these
may be web requests and active directory requests.

Some caution is needed in handling raw NETFLOW
records, as not all fields are reliably meaningful. For example,
the direction (implied by source and destination) of DNS
requests, conducted through UDP, can be unreliable.

A large corporate network will generate huge amounts of
flow data. For example, a month of Imperial’s NETFLOW data
is typically in excess of 10 terabytes. This comprises events
on more than 40K active corporate devices, and their first hop
outside the corporate network boundary. A complication here
is the presence of multiple routers and the possible use of
virtual routing, which can lead to significant data duplication.
By construction, the size of a flow data corpus will be tiny
compared to the corresponding packet data. Still, specialist
storage and processing infrastructure is required if flow data
is to be retained for analysis. The Imperial research team uses
HADOOP [6], while the authors of [7] use a bespoke in-house
system. For the purpose of this paper the choice of storage and
processing infrastructure is not a major issue, provided that
it can deliver access to a large amount of stored data in an
efficient manner.

A simple mathematical representation of flow data is a
graph, with IP addresses as nodes and NETFLOW events as
edges. Statistical methods for modelling such representations
are reviewed in [8]. Such a crude representation may be
inadequate, since it critically ignores both event timing and

information that precisely characterises the flow data event.
For the type of monitoring and matching purposes that are
relevant here, this information is paramount. A more useful
formalisation would be to consider marked event processes on
edges, with nodes that carry extra feature information.

The abstract question of interest is, given a part of the
network (node, edge, neighbourhood, time interval, etc.), how
do we find similar structures in retained historic flow data?
The abstraction of this question is discussed further in the
next section.

Assume that a collection of historic flow data is available,
in raw form. The choice of raw form is deliberate, to allow the
analyst to pose diverse multiple questions of the data. Denote
this collection of M flow records as D, observed over a fixed
period. This data refers to events on N internal corporate
devices. We would recommend that at least one month’s data
is sufficient for the task at hand.

B. Behaviour abstraction

There are numerous types of attack style deployed against
corporate networks, ranging from opportunistic vandalism to
sophisticated state-sponsored intrusion. From the point of view
of network forensics, [9] gives a good review. Different types
of organisation may be subject to different kinds of attack,
according to the character of the organisation. Imperial College
London shares many of the cyber-security concerns of any
large organisation. Two in particular are important. The first,
very common, is preventing the spread of malware. The second
is the use of peer-to-peer networking (eg. [10]) for distributing
copyright material, such as movies.

If one device on a network is compromised it is likely that
there will be others. For example, [7] develop a methodol-
ogy which successfully finds an intrusion path, a connected
sequence of compromised machines. Given that a compromise
can be found, one way or another, the discovery challenge for
the analyst is to find other machines that may be compromised.
Since packets cannot typically be stored at scale, an appeal
to flow data and characteristics of a behavioural character is
required.

The diversity of attack techniques means that the analyst
must have flexibility in asking questions of flow data. Fig-
ure 2 provides a schematic representation of various levels
of abstraction. Time is implicit in the diagram, though at
each level the time-scale can be different. Sessions are an
abstraction which attempt to extract human behaviour from
the lower granularity flow data. For example, an SSH session
is notionally a single activity that is represented by numerous
flow data records. Detecting and exploiting session structure
is discussed at length in [11], [12].

Packets, flows and sessions refer to an edge – a connection
between two IP addresses. The word clique is used informally,
to describe a subset of node or edges (and hence sessions and
flows) of interest. These levels can interact with, and inform,
graph-based abstractions such as cliques and indeed the whole
network.

Should the analyst know precisely which abstract fea-
tures are of interest, conventional approaches are satisfactory.
However, for the purpose of discovery focused-querying, the

Date flow start DurationProto Src IP Addr Dst IP Addr Src Pt Dst Pt Packets Bytes
2013-02-26 17:11:57.289 33.997 TCP 126.253.7.174 100.253.192.9 50314 445 2000 237400
2013-02-26 17:11:57.289 42.997 TCP 126.253.7.174 100.253.192.93 50314 445 1700 364500
2013-02-26 17:12:01.288 0.000 TCP 126.253.7.174 211.202.89.207 51106 80 100 4600
2013-02-26 17:11:58.290 0.000 TCP 126.253.7.173 100.253.192.170 49458 50110 100 7600

Fig. 1: Example NETFLOW data (anonymised)

Graph	

Clique	

Edge:	
 Session	

Edge:	
 NETFLOW	

Edge:	
 Packet	

Fig. 2: Schematic representation of some abstraction levels for
network traffic data.

proposed framework retains historic flow data, and constructs
appropriate abstractions as required.

III. METHODOLOGY

Given the discussion above, the concern of the methodol-
ogy is to find behaviours similar to a target. This behaviour
could refer to a computer, an edge, a clique, etc. To keep
things concrete, the discussion will be focused on finding
computers that exhibit similar behaviour to a target computer.
The methodology is not concerned with simple matching such
as finding a flow event matched on ports and source IP. This
latter objective is best managed, if resources are available, by
storing the historic data in a relational database.

Suppose the target machine is of interest to a network
analyst because of a particular profile of website requests.
Examining the historic flow data associated with this facilitates
construction of the empirical distribution of website visits. If
the target machine is of interest, a machine with a similar
empirical distribution may also be of interest. Note that this
requires two things: evaluation of a summary, f , of the target
machine’s flow data, and the construction of a suitable simi-
larly measure. Of course, in applying the similarity measure
the summary, f , must be computed for other machines.

Denote the target computer as A. The usual statistical
approach would be to score the similarity of A with some
other computer B, using a similarity function S(A,B). Con-
tinuing with the website visit example, this function could
be, for example, the cross-entropy between the two empirical
distributions.

Each computer’s NETFLOW data first needs some pro-
cessing to extract the empirical distribution. A more precise

Analyst	

Query	

f1	

	

f2	

	

…	

	

fp	

Selec4on	

S11	

S12	

…	

	

S21	

S22	

…	

	

Sp1	

Sp2	

…	

NF	
 Data	

Stopping	

rules	

Fig. 3: Schematic representation of the NETFLOW screening
framework.

description is to first define ANF as the NETFLOW data asso-
ciated with computer A. Then the similarity function between
A and B is more precisely described as S(f(ANF), f(BNF)).
Figure 3 give a schematic representation of the framework,
stressing the central role of the analyst.

The proposed framework is intended to be able to quickly
(though approximately) find the most similar objects, rather
than brute force evaluation of all such similarities. At the scale
of a corporate network, such routine computation is infeasible.
For the data set D, this would require the evaluation of at least
(M − 1)× (M − 1) similarities, and at best N evaluations of
f . The scale of corporate flow data makes this impractical,
especially if the objective is to provide the analyst discovery
capabilities by providing the means to do multiple queries
involving multiple f and S.

Moving to an abstract scenario, consider the notional
distance matrix

D =


0 d1,2 . . . d1,N

d2,1 0 . . . d2,N
...

...
.

dN,1 . . . dN,N−1 0

 ,

where di,j = S(f(iNF), f(jNF)), and the similarity function
is restricted to a distance metric. This data structure provides
all the information that is needed, given f . Since computing
this routinely is intractable, the framework uses sequential
methods to determine which distances to evaluate. Naturally,
this will provide an approximate answer, but it expands the
discovery capability of the analyst. This is always a trade-off.

Sequential search procedures have two components, a
selection procedure and a stopping rule. As with other parts of
the framework, specifically S and f , choice of these is modular

iterations to (known) minimum

iteration

D
en

si
ty

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

(a) Unstructured data

iterations to (known) minimum

iteration

D
en

si
ty

0 100 200 300 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

(b) Structured data

Fig. 4: Distribution of times to secure a minimum

and different choices can be plugged in. Making these modular
provides the framework maximum flexibility.

First, consider the selection procedure. To find the near-
est object to a target by random selection would require
(N − 1)/2 evaluations, on average, to find the minimum.
This is inadequate if numerous queries involving different
f and S are required. It is convenient to distinguish two
fundamental operations in the context of selection. Evaluating
a full row of the notional distance matrix, and evaluating
a single distance. The former yields more information, but
increases the computation accordingly.

To demonstrate the utility of a simple selection procedure,
consider the following toy example. Given a 500×500 distance
matrix (a simple realisation of a bivariate Gaussian), consider
the average time required to locate the nearest neighbour of a
target object.

To begin, evaluate two rows of the matrix (which is about
1% of the total) - requiring 2N evaluations of S and N evalu-
ations of f . Now using a simple, once-only scoring algorithm
based on triangulation requires O(N) computations plus sort.
Embedding this in a Monte Carlo procedure provides a way
to estimate the average number of evaluations for this simple
algorithm to secure the (known) nearest neighbour. Figure 4
(a) shows the histogram of these Monte Carlo replicates, while
(b) shows corresponding results for an example involving data
with more cluster structure. The estimate of average number of
evaluations, in both cases, is less than 35, though a significant
improvement over the random selection average of 249. Of
course, the method exhibits high variance. Refined selection
algorithms are part of our on-going research agenda.

In these experiments, the closest object is known. In a
real situation, there would be a need to stop the algorithm at
some point. There are at least two ways to reason about this.
First, The number of evaluations may be fixed in advance,
perhaps by computational constraints. Second, an estimate of
the probability that the selection algorithm has acquired the
closest object can be determined. This estimate, compared to a
threshold, can provide a stopping rule. This latter, more flexible
approach, is the focus of our current research.

IV. CONCLUSION

Exploring large amounts of flow data is challenging. For
discovery purposes, network analysts may often want to make

numerous different type of query to find similar behaviours.
The scale of such data challenges this approach. We have
proposed an approximate framework that provides the capa-
bility for analysts to conduct extensive querying. In addition
to enhancing the toolkit, the framework also makes more use of
an under-used data source. The framework is not restricted to
finding nearest neighbours, and extends readily to distributed
storage and processing infrastructure.

The approach is naturally enhanced with pre-screening
procedures. This would reduce the size of the search from
the whole population of corporate devices to a smaller set.

There are numerous perspectives an analyst can adopt
in reasoning about the character of a compromise. This can
include devices, edges, port information, local graph structure.
Given the changing nature of the attack tactics, it is important
that the analyst is able to make imaginative use of flow data.
This freedom is embodied in the choice of functions f and S.

At present, we are implementing a version of this frame-
work. There are two statistical research agendas: refined se-
lection algorithms and effective stopping rules.

ACKNOWLEDGMENT

Andy Thomas, research computing manager of Imperial’s
Mathematics department provided many useful insights. We
are grateful to Dr William Oxbury for extensive input.

REFERENCES

[1] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast portscan
detection using sequential hypothesis testing,” in Proc. of 2004 IEEE
Symposium on Security and Privacy, 2004, pp. 211–225.

[2] J. Neil, C. Storlie, C. Hash, and A. Brugh, “Statistical detection of
intruders within computer networks using scan statistics,” in Data
Analysis for Network Cyber-Security, Adams & Heard, 2014, 2014.

[3] D. Bodenham and N. Adams, “Continuous monitoring of a computer
network using multivariate adaptive estimation,” in Data Mining Work-
shops (ICDMW), 2013 IEEE 13th International Conference on, Dec
2013, pp. 311–318.

[4] D. J. Lawson and N. M. Adams, “A general decision framework
for structuring computation using data directional scaling to process
massive similarity matrices,” arXiv preprint arXiv:1403.4054, 2014.

[5] Y. Wang, A. Metwally, and S. Parthasarathy, “Scalable all-pairs
similarity search in metric spaces,” in Proceedings of the 19th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’13. New York, NY, USA: ACM, 2013, pp. 829–837.
[Online]. Available: http://doi.acm.org/10.1145/2487575.2487625

[6] T. White, Hadoop: The Definitive Guide, 3rd ed. Yahoo Press, 2012.
[7] J. Neil, C. Hash, A. Brugh, M. Fisk, and C. B. Storlie, “Scan statistics

for the online detection of locally anomalous subgraphs,” Technomet-
rics, vol. 55, no. 4, pp. 403–414, 2013.

[8] B. Olding and P. Wolfe, “Inference for graphs and networks,” in Data
Analysis for Network Cyber-Security, Adams & Heard, 2014, 2014.

[9] S. Davidoff and J. Ham, Network Forensics: Tracking Hackers Through
Cyberspace. Prentice Hall, 2012.

[10] Y.-K. Kwok, Peer-to-Peer Computing: Applications, Architecture, Pro-
tocols, and Challenges. Chapman Hall, 2011.

[11] P. Rubin-Delanchy, D. Lawson, M. Turcotte, N. Heard, and N. Adams,
“Three statistical approaches to sessioninzing Netflow,” Department of
Mathematics, Univeristy of Bristol, Tech. Rep., 2014.

[12] D. Lawson, P.Rubin-Delanchy, N. Heard, and N. Adams, “Statistical
frameworks for detecting tunnelling in cyber defence using big data,”
Department of Mathematics, Univeristy of Bristol, Tech. Rep., 2014.

