
A Floating-point Accumulator for FPGA-based

High Performance Computing Applications

Song Sun Joseph Zambreno

Department of Electrical and Computer Engineering,

Iowa State University

Ames, Iowa, USA
{sunsong,zambreno}@iastate.edu

Abstract—A floating-point accumulator for FPGA-based high
performance computing applications is proposed and evaluated.
Compared to previous work, our accumulator uses a fixed size
circuit, and can reduce an arbitrary number of input sets of
varying sizes without requiring prior knowledge of the bounds of
summands. In this paper, we describe how the adder accumulator
operator can be heavily pipelined to achieve a high clock speed
when mapped to FPGA technology, while still maintaining the
original input ordering. Our experimental results show that our
accumulator design is very competitive with previous efforts in
terms of FPGA resource usage and clock frequency, making it an
ideal building block for large-scale sparse matrix computations
as implemented in FPGA-based high performance computing
systems.

I. INTRODUCTION

Floating-point accumulators (and vector reduction operators

in general) form the basis of many scientific computing

applications, and can be found in such diverse fields as

weather forecasting, nuclear physics simulations, and image

processing [1]. Given an input vector S, an accumulator

performs a simple summation of the individual elements:

S =
∑

si (1)

While this is a trivial computation to describe mathemat-

ically, the need for fast floating-point accumulators (along

with other operators) led in part to the emergence of vector

processing in the 1980s. Accumulation is so commonplace

in high performance computing applications that it has been

described by some as the “fifth floating-point operation” [2].

One common computing scenario that requires a high

performance accumulator is in Sparse Matrix-Vector Mul-

tiplication (SMVM) [3]. For example, Google’s PageRank

eigenvector problem is arguably the world’s largest matrix

computation (there were approximately 25 billion pages on the

Internet in 2008) [4]. The PageRank algorithm is dominated

by SMVM computations given that the Google matrix is very

large (billions of rows and columns) and very sparse. Clearly,

the performance of SMVM and by extension, floating-point

accumulation has real-world impact.

Special care must be taken when designing FPGA-based

accelerators for applications that make use of floating-point

accumulators. The aforementioned SMVM operation calcu-

lates Y = AX , where yi =
∑n

j=1 aijxj must be computed

��
����
M M ���1sy

−

,

1

m

s j

j

y
=

∑
L

2sy
−

, 1i j
a

+

1j
x

+

, 2i j
a

+

2j
x

+

, 1i j m
a

+ −

1j m
x

+ −

,i j m
a

+

j m
x

+

, 1i j m
a

+ +

1j m
x

+ +

, 2i j m
a

+ +

2j m
x

+ +

, 2 1i j m
a

+ −

2 1j m
x

+ −

, 2i j m
a

+

2j m
x

+

����

Fig. 1. Matrix-vector Multiplication Example

efficiently. A simple circuit to compute yi is shown in Figure 1.

In the case of a very large n (as is the case for Google

PageRank), the elements in one row have to be partitioned

into ⌈ n
m⌉ blocks. One block is sent to the circuit in each

clock cycle. The partial sum yr
i =

∑j=rm
j=(r−1)m+1 yij produced

in each clock cycle is accumulated near the output of the

circuit where yi =
∑⌈n/m⌉

r=1 yr
i . The circuit module performing

equation (1) is called the Adder Accumulator (AAC) or

alternatively reduction circuit in [5], [6], [7]. The specific

design we propose in this paper is referred to as a Floating-

point Adder Accumulator (FAAC), to distinguish it from other

AAC circuits that use fixed-point arithmetic.

The performance of any FPGA design is highly dependent

on the clock frequency at which the circuit can run without

timing constraint violations after placement and routing. The

clock frequency in turn is determined by the delay of the

critical path in the circuit. Adding two values in one clock

cycle, as shown in Figure 2(a), will increase the critical path

delay thus leading to a lower clock frequency. Such a single-

cycle FAAC design would severely reduce the performance of

the whole FPGA system. Consequently, any high performance

FPGA-based accumulator must partition the floating-point

addition across multiple clock cycles in order to improve the

resulting clock frequency.

Also, as highlighted by [8], FPGA I/O capacity can often

(a) One Clock Cycle

	

����
��
�	�
(b) K Clock Cycles (c) Adder Tree

Fig. 2. Impractical FAAC Architectures

limit the performance of the system. Designing a scalable

and pipelined stall-free accumulator to fully utilize the I/O

bandwidth and computing resources is critical to achieve a

high performance goal. Designing a floating-point accumulator

with pipeline stalls is trivial. One straightforward way is

to use a standard k-stage floating-point adder as shown in

Figure 2(b). There are k clock cycles stalls between two

additions. In other words, the sum of the first addition to be

added with a third value will not come out of the adder until

k clock cycles after the first two values entering the pipelines.

Removing these pipeline stalls is a challenging task since

the pipeline input fed by the later pipeline output introduces

feedback. That is, a new input data cannot be processed until

the previous sum comes out from the end of the pipeline. An

intuitive approach in designing a deeply pipelined and stall-

free floating-point accumulator is the adder tree as shown

in Figure 2(c). An adder tree with n − 1 adders can be

used to accumulate n floating-point values. The first row in

the tree has ⌈n
2 ⌉ adders; the ith row has ⌈ n

2i ⌉ adders; the

last row in the tree has only one adder whose output is the

accumulated result. However, this approach is infeasible when

n is large or the n input values cannot arrive in the same

clock cycle. The resource utilization on a single FPGA device

will be prohibitively high when n is large. Also, the number

of pipeline stages to compute a sum will be intolerably large

since the depth of the adder tree is ⌈logn
2 ⌉×k, where k is the

number of pipeline stages in an adder.

Our FAAC design as described in this paper accumulates

positive and negative numbers separately so that the accumu-

lation adder does only additions of numbers of the same sign.

Saving leading zero count and cancellation shift reduces the

latency of the adder. A subtractor which computes the differ-

ence of the two partial sub-sums is not in the accumulator loop.

By using the log-sum technique, two standard adders reduce

intermediate sub-sums. The summation order is different from

the order of the inputs, the impact of this feature on result

accuracy is discussed in Section VI. Preliminary results show

that our heavily pipelined (48 stages) FAAC design can obtain

high clock frequencies (and subsequently high performance)

while using a relatively small amount of FPGA resources.

II. PROBLEM FORMULATION

The input of the FAAC is a sequence of floating point

numbers which may be positive or negative. The numbers

belong to different groups. The numbers in the same group are

fed into the FAAC consecutively. At each clock cycle, only one

number enters the pipelines. More formally, suppose the input

data stream is {a1,1, a1,2, ..., a1,n1
}, {a2,1, a2,2, ..., a2,n2

}, ...,
{ai,1, ai,2, ..., ai,ni

},..., where ai,j is the jth data in the ith

group. The numbers in the bracket belong to the same group.

If as,j arrives earlier than at,j , all the data in the sth group

must arrive earlier than the data in the tth group. The problem

is to sum up all the data in a group into a single value such

that ai =
∑ni

j=1 ai,j , i = 1, 2, In the extreme case, each

group has only one data value and the accumulator behaves

as a queue.

III. PREVIOUS WORK

The design of floating-point accumulators can be traced

back to the 1980s with the emergence of pipelined vector

machines [9], [1]. An adder accumulator adopting the ar-

chitecture in [1] is well-suited for accumulating one input

group. However, the buffer will overflow for multiple input

groups. In [6], the reduction circuit uses only one adder with

Θ(log(n)) space and Θ(log(n)) latency. However, the design

can not handle the accumulation correctly when the number

of inputs in a group is not a power of 2. The reduction

circuit in [5] uses only one floating-point adder but needs

two buffers of size k2 where k is the number of pipeline

stages of the adder. However, the latency of reducing one

input group depends on the sizes of subsequent groups and

the latency of reducing may be unacceptably large if the size

of the subsequent groups is very large. Also, the output order

of the sums may not be the same as the input order of the input

groups. The design trade-offs and different approaches for

accumulators are studied in [7]. The accumulators presented

in both [10] and [11] require the user to specify bounds on

the values to be accumulated beforehand.

IV. DESIGN PRINCIPLE

To accumulate n numbers, one straightforward observation

is that the number of partial sums is at most equal to the

number of stages of the adder. At most k adders will be used

where k is the number of pipeline stages; one is to produce

the partial sum, the other k − 1 adders form an adder tree to

sum up the k−1 partial sums. Designing an accumulator using

this approach is prohibitive in a single FPGA device when k
is large. Since the data is sent to the accumulator in a serial

fashion, we use the log-sum technique [9] to reduce the partial

sums. To reduce k partial sums produced by the first adder,

the pipeline needs only another ⌈logk
2⌉ adders and is totally

independent of the intrinsic number of stages in those adders.

Therefore, the number of stages in the first adder is critical

and determines the number of adders to be used and the delay

of the whole accumulator. Figure 3 shows the two cases for

k = 4 and k = 8. Notice that the number of adders is not

determined by the value of p.

The relationship between clock frequency and

pipeline stages can be formulated as Frequency ∝
(Pipeline Stages/Total Delay). To maintain a high clock

p-stage
adder

1

p-stage
adder

2

(a) sum 4 values(k=4) (b) sum 8 values(k=8)

Tp-stage
adder

1

p-stage
adder

2

p-stage
adder

4

T stages of
delay

Fig. 3. Log-sum Technique

frequency while using fewer pipeline stages, we have to

reduce the total delay of the adder. We observe that the

floating point adder which only performs addition has a much

lower delay than the adder which performs both addition

and subtraction. For example, the former does not perform

the mantissa comparison, the leading-zero counting and has

fewer exception signalings and barrel shifters. Hence in this

paper, we reduce the total delay by requiring that the first

adder only performs addition.

The overview of our architecture is shown in Figure 4. The

first adder performs addition on values of the same sign only.

If the sign of the input is different from the sign of the output

partial sum, the partial sum is pushed onto the stack with

the same sign; otherwise, the partial sum acts as one of the

inputs. The 4-stage adder accumulates any number of sequence

values into at most 4 pairs of partial sums. The subtractor

performing only subtraction produces at most 4 partial sums

for an arbitrary number of values. Using the log-sum technique

shown in Figure 3, another two standard adders are used to

reduce the 4 intermediate partial sums. As shown in Figure 4,

the first adder which only performs addition has k = 4 pipeline

stages to produce the partial sums. In this paper we refer

to these pipeline stages as bands. The increased number of

pipeline stages will lead to a higher clock frequency. For

example, an 8-band accumulator will typically have a higher

frequency than a 4-band accumulator.

V. ARCHITECTURE

Details of our proposed FAAC architecture are shown

in Figure 5. It is mainly composed of three modules: the

distributor, the subtractor and the full adder. The input data

is sent to the distributor whose outputs are connected to the

inputs of the subtractor. The outputs of the subtractor are in

turn tied to the inputs of the full adder. The outputs of the

accumulator are hard-wired to the outputs of the last full adder.

A. Distributor

The distributor is composed of a 4-stage adder, two stacks,

and some control logic. One stack stores the positive data

while the other stores the negative data. In each clock cycle,

the incoming data is added with zero, output of the adder or

the data on the top of the stack with the same sign. Since

4-stage

adder

NegativePositive

Partial

p1-stage

subtractor

:

1

p2-stage

adder

:

2

p2-stage

adder

:

sum

Addition only

input

Sum

Stack

Partial

Sum

Stack

Distributor Subtractor

Full Adder

Fig. 4. Architecture Overview

the number of intermediate results for the adder is at most

k, the depth of the stack is equal to k. Each input data has

two auxiliary bits called the Input Control Codes (ICCs). The

ICCF bit is equal to 1 if the input data is the first incoming

number in a new group; otherwise, it is equal to 0. The ICCL

bit is equal to 1 if the incoming data is the last number in a

group; otherwise, it is equal to 0. If a group has only one data

value, the two bits are both equal to 1. Two queues with the

same depth as the 4-stage adder serve as FIFO buffers for the

ICCs. Another queue sign is for the sign bit of the input data

since the signs of the two inputs are the same. The control

logic is used to schedule the inputs of the 4-stage adder and

the outputs of the distributor.

The input scheduling algorithm is shown in Figure 6.

input(in) is the incoming data; input(reg) is the other input

of the 4-stage adder. last is the logic OR result of the

ICCL queue elements. sum is the output of the 4-stage adder.

last = 0 happens only when the current group has more than

four numbers; last = 1 happens only when the last number

of the current group is in the pipelines. In the latter case, the

new incoming data should be added with zero and the output

of the adder should not be added with the new incoming data,

but be sent out as output as shown in Figure 7. This is because

the incoming data and the output of the 4-stage adder belong

to different groups. In the former case, the newly generated

partial sum is added with the incoming data if they have the

same sign; otherwise, it is pushed onto the stack and the new

incoming data is added with a number popped off of the stack

with the same sign. In the case that the stacks are empty or

the incoming data is one of the first four numbers in a group,

zero is added with the incoming data.

The distributor has two data outputs in each clock cycle;

one is positive pos, the other is negative neg. One of the

outputs must come from the partial sum, the other is popped

by the stack with the opposite sign or zero when that stack

������������
���������������� !"�������������� ��#$%

���� ���&'(()'((*

�$+�����"�
'(() '((*��,��

�����
- ./ 0 .����#1�23 0 / 0 /.0 / !"��#1�230 /

.45

������- ��,��

����

67.
'(()'((* 76.

76. ������8��,��9
67.

:;<=>;?@=A>

B@?=>CD=A> E@FF GHHI>

9

��,�� �$#

. -. -. -

Fig. 5. Architectural Details of a 4-band FAAC

is empty. One of the outputs must be zero when the group

being accumulated has less than five numbers. As shown in

Figure 5, we use multiplexers to express the if statements in

the algorithms.

The other three outputs of the distributor are valid, ICCF

and ICCL. The valid signal is set when the data output should

be treated as valid outputs. The ICCL/ICCF signal is set if the

output is the last/first data pair of a group. In Figure 5, the

valid signal is directly connected to last. The reason is that

the output scheduling algorithm is triggered whenever last is

set. The ICCL signal is directly connected to the output of the

ICCL queue since the last data of a group must be in the last

output pairs.

The output ICCF signal should not be set until the valid

outputs are available. Moreover, it should be set only when the

current output pair is the first one of a group. There are two

situations in the latter case. In the first situation, the number

of data in the group is no more than four. The first partial

sum is in the first output pair. Therefore, the output of the

ICCF queue can be used as the output ICCF directly. That is,

ICCF ti

out = validti

⋂
ICCF ti

queue = lastti

⋂
ICCF ti

queue,

where
⋂

and
⋃

are logical AND and OR operations,

respectively. In the second situation, the number of data in

the group is larger than four. The first partial sum is not in

the first output pair. However the circuit must remember that

the first partial sum has been generated. A D flip-flop is used

to serve as the memory cell. It is set once the first partial

sum comes out of the pipeline and cleared once a new group

comes out. That is, ICCF ti

out = lastti

⋂
(
⋃t=ti

t=ts
ICCF t

queue),
where ts is the clock cycle at which the first partial sum

comes out of the adder pipeline; Obviously, ICCF ts

queue = 1.

Combining the two cases together, we have ICCF ti

out =
lastti

⋂
(
⋃t=ti−1

t=ts
ICCF t

queue

⋃
ICCF ti

queue).

B. Subtractor and Full Adder

The input of the subtractor in each clock cycle is a pair of

positive and negative data values. It only performs floating-

point subtraction. The full adder component has two floating-

point full adders (also called Sadders) which can perform

addition and subtraction. The input of the full adders can be

positive or negative.

One input of Sadder1 is hard-wired to the output of sub-

Algorithm: Input Scheduling Algorithm

if last = 0 then

if sign(3) = sign(in) else

input(reg) := sum;
else

push sum into stack(sign(3));
if stack(sign(in)) is empty then

input(reg) := 0;
else

input(reg) := pop stack(sign(in));
end if ;

end if ;
else

input(reg) := 0;
end if ;

Fig. 6. Input Scheduling Algorithm of Distributor

TABLE I
VALID INPUT PATTERNS OF SADDER1 (k = 4)

Left Input First,Last Last Second Last Last

Right Input 0 First First 0 Third

Input Number 1 2 3,4 3 4

tractor directly. The other input has one extra flip-flop used

strictly as a single clock cycle delay. The number of outputs

from the subtractor for each group is at most k. The Sadder1

will sum up at most two outputs at each clock cycle. The valid

input patterns of the Sadder1 in the case of k = 4 are shown

in Table I. The left and right inputs correspond to the inputs

of the Sadder1 in Figure 5. In the first column of Table I,

there is only one number which is both the last and first one

of a group. The input pattern in the third column happens

when the number of outputs from the subtractor is 3 or 4.

Observing Table I carefully, the input pattern is valid when

the last data is the left input or the first data is the right input

and the second data is the left input. Hence the valid input

signal for the sadder in clock cycle t can be expressed as

validt
in = validt

out

⋂
(ICCLt

out

⋃
(ICCF t−1

out

⋂
ICCF t

out))
where validin is the input signal of Sadder1; validout

ICCLout ICCFout are the output signals of the subtractor.

The right input must be cleared once a pair of valid inputs is

sent to Sadder1. The corresponding circuit is shown in the

bottom-left of Figure 5. For k > 4 where k is power of

2, we need to deal with two input numbers which contain

neither the first nor the last data. For example, the input

pattern which has the 5th and 6th inputs from the subtractor

is valid while the input pattern with the 4th and 5th inputs

is not valid. A single memory bit ov can be used to indicate

whether the output of the subtractor has the even sequence

order. It is also reset after a valid pair of data is sent to

the Sadder; otherwise, it is flipped every clock cycle. The

valid signal in this case can be expressed as validt
in =

validt
out

⋂
(ovt

⋃
ICCLt

out

⋃
(ICCF t−1

out

⋂
ICCF t

out))

Algorithm: Output Scheduling Algorithm

if last = 1 then

if sign(3) = + then

pos := sum;
neg := pop stack(−);

else

neg := sum;
pos := pop stack(+);

end if ;
end if ;

Fig. 7. Output Scheduling Algorithm of Distributor

The ICCL input of Sadder1 is connected to the ICCL output

signal of the subtractor only when the input pattern is valid;

otherwise, it is cleared. The ICCF input of Sadder1 is set if

the ICCF output is set in the previous or current clock cycle

and the input pattern is valid. For k > 4, the circuit for ICCL

and ICCF inputs of Sadder1 is also correct.

The connection between Sadder1 and Sadder2 is similar to

that of Sadder1 and the subtractor. In the k = 4 case, each

group has at most two inputs for Sadder2. The input pattern is

valid only if the ICCL input is set. The right input is cleared

after a pair of valid inputs is sent to Sadder2.

VI. DATA ACCURACY

The accumulator performs the summation in a different

order than the order of inputs. Since floating point addition

is not truly associative, the accumulated result may not be

compliant with the result of sequential floating point additions.

In floating point addition, adding a large number with a tiny

number will lose precision. For example, the sum of E80 and

2 is still E80 where 2 is shifted out of range to be 0. For a

sequence of input (E80,-E80,2,-1), our design returns 0 while

an in-order accumulator would return the exact result 1; for

a sequence of input (E80,2,-E80,-2), an in-order accumulator

returns -2 while our design returns the exact result 0. The

value of the positive or negative sub-sum in our design will

never decrease. Thus a sequence which would not overflow

if summed sequentially may overflow in our design. This

problem could be lessened by adding extra bits to the exponent

and mantissa. Consider a long sequence of data whose sum

converges to 0. The numbers arriving later become smaller

and smaller. Since the positive and negative sub-sums in our

accumulator will never decrease, the small number will be

shifted out as 0. If the sum of the sequence converges to 0,

our accumulated result will not be as close to 0 as the result

of a sequential accumulator.

VII. AREA AND PERFORMANCE EVALUATION

A. General Analysis

In this section, the characteristics of the FAAC are compared

with those designs proposed in [7]. Table II summarizes the

different characteristics of our design and those in the previous

TABLE II
COMPARISON WITH PREVIOUS WORK

Design No. of Adders Buffer Size Clk Frequency Total Latency Latency per Group Out-of-order

PCBT [7] ⌈logn

2 ⌉ 2⌈logn

2 ⌉ Decrease with n n + α⌈logn

2 ⌉ Predictable No

FCBT [7] 2 3⌈logn

2 ⌉ Decrease with n 6 3n + (α − 1)⌈logn

2 ⌉ Predictable No

DSA [7] 2 α⌈logn

2 + 1⌉ stable n + (α − 1)⌈logα

2 + 1⌉ Not Predictable Yes

SSA [7] 1 2α2 stable 6 n + 2α2 Not Predictable Yes

FAAC < 2 + ⌈logk

2⌉ 2k stable n + k + α⌈(1 + logk

2)⌉ Predictable No

work [7]. ni is the number of data values in a group whereas

n =
∑p

i=1 ni is the total amount of data in p groups. p
is the maximum number of groups which can be put into

α segments [7]. In practical applications (e.g. SMVM), n is

usually much larger than ni which in turn is much larger than

k. As mentioned in [7], the practical value of n is over tens

of thousands and α is under 20 while k in our design is only

4.

As discussed in Section IV, the number of adders to

accumulate k partial sums is ⌈logk
2⌉. Suppose the adder which

only performs addition in our architecture has k stages instead

of 4. The number of adders we use are the k-stage adder, the

subtractor and ⌈logk
2⌉ full adders which is less than 2+⌈logk

2⌉
adders. The buffers used in the FAAC are two stacks whose

sizes are equal to 2k.

The delay to accumulate a set of groups is referred to as

the total latency which starts from the clock cycle at which

the first number of the first group comes into the accumulator

until the clock cycle at which the sums for all groups come

out of the pipeline. The latency per group is the latency to

accumulate a group with ni numbers starting from the clock

cycle at which the first number enters into the accumulator

until the clock cycle at which the sum comes out of it. Suppose

the last data in a group entered into the accumulator at clock

cycle ts. The sum of the numbers in the group is ready in

clock cycle ts +C where C is the sum of the pipelines stages

in the FAAC. In our implementation, C = 4+14+15+15 =
48. If a full adder has α pipeline stages and the subtractor is

considered to be a full adder, C is equal to k+α+α⌈logk
2⌉ =

k + α⌈(1 + logk
2)⌉. The latency per group of the FAAC is

therefore only dependent on the amount of data in the current

group and equal to ni + C. In each clock cycle, input data

enters into the FAAC without stalls. It takes n clock cycles for

the last number in the last group to enter into the FAAC. After

C clock cycles, the sum of the last group is ready. Therefore,

the total latency of the FAAC is n + C.

As mentioned in [7], the PCBT design is infeasible to

be implemented in an FPGA due to the large number of

floating-point adders. From Table II, the area of PCBT, FCBT,

and DSA increases with the number of data values to be

accumulated; SSA has the smallest number of adders while the

FAAC has the smallest buffer size. With the rapidly increasing

gate count in modern FPGAs, the number of adders in the

FAAC which grows logarithmically with k is acceptable. As

we will see later in this section, the FAAC circuit with k = 4
occupies only a small fraction of a Xilinx Virtex 5 device

TABLE III
CHARACTERISTICS OF FAAC MODULES ON XILINX FPGAS

Module
Pipe XC2VP30 XC5VLX110T

Stages Slices (%) MHz Slices (%) MHz

Adder 4 548 (4%) 162 267 (1.5%) 244

Distributor 4 1303 (9%) 162 562 (3%) 244

Subtractor 14 1367 (9%) 187 494 (2%) 297

Sadder1 15 1806 (13%) 176 740 (4%) 286

Sadder2 15 1798 (13%) 191 702 (4%) 280

Total: 48 6252 (45%) 162 2269 (13%) 244

which makes it suitable to be used as a building block in a

larger FPGA-based system on the same chip.

The clock frequency of PCBT and FCBT will decrease

dramatically with n [7]. Thus, they are not proper choices to

accumulate large sets of data. The PCBT and FCBT designs

cannot start the computation without knowing the maximum

size of datasets beforehand. The total latency of DSA and

SSA depends on not only the amount of data in the current

group but also on those of previous and subsequent groups.

The unpredictable latency of DSA and SSA imposes great

difficulty when applying them to large-scale SMVM and other

applications. The dependency comes from the fact that DSA

and SSA schedule inputs from different groups to the adders.

The previously arrived group whose size is very large might

still be coalescing while a small group finishes. This also

results in another drawback of the DSA and SSA designs

that the order of the sums is different from the order of the

input groups. The authors in [7] suggest writing the outputs

into a buffer and reading them out in order. An additional tag

has to be attached to each group to differentiate them in the

end. In contrast, the FAAC has a reasonable and predictable

latency for each group. The latency for a group in the FAAC

is only determined by the size of the current group and the

total number of pipeline stages in the accumulator. The output

order of the sums in the FAAC is the same as the input order

of the groups which eliminates any post processing.

B. Design Implementations

We made use of a double precision floating-point core

from the OpenCores library [12], which we enhanced to

perform accumulation using our own VHDL modules. Mentor

Graphics Modelsim 6.4c and Xilinx ISE 10.1 were used for

simulation and implementation. The proposed architecture was

implemented in both a Xilinx Virtex-V XC5VLX110T and a

Xilinx Virtex-II Pro XC2VP30 FPGA. The characteristics of

all components are listed in Table III. The Adder is the 4-

TABLE IV
IMPLEMENTATION CHARACTERISTICS (n=128, α = 14, k = 4)

Design Adders Slices BRAMs Clk Freq Latency

PCBT 7 6808 − 165 MHz 226
FCBT 2 2859 10 170 MHz 6 475
DSA 2 2215 3 142 MHz 232
SSA 1 1804 6 165 MHz 6 520

FAAC < 4 6252 0 162 MHz 176

JK
LM
N

OPQR SPQR TUV UUV SVVPWXYZ[\ZY]̂_̀abcd
(a) a single set of 128 inputs

efghhghfgghggfgih
jklm nklm opq ppq nqqkrstuvwutxyz{|}~�

(b) 128 sets of 128 inputs

Fig. 8. Latency for Accumulating Datasets

stage adder which only performs addition. The Subtractor is

the adder which only performs subtraction. The stages of the

FAAC are the sum of the stages in Distributor, Subtractor
and two Sadders. However, the area of the FAAC is larger

than the sum of the components since the multiplexers and

logic gates shown in Figure 5 are not included in those

components. In the Virtex-II Pro implementation, no more than

1% of the area is used for control logic. The total area of the

FAAC is less than 4 full adders. In this initial implementation,

only the rounding toward zero mode is supported. Even

though the 4-stage adder has a low delay, the critical path of

the FAAC lies in the 4-stage adder of the distributor.

We compared our architecture implemented in the Virtex-

II Pro device with those designs in [7]. The characteristics

of the different designs are summarized in Table IV where

n = 128, α = 14, and k = 4. The latency is computed

according to clock cycles based on the formula provided in

Table II. Though the FAAC uses no more than four adders,

the number of the slices it uses is almost the same as that of

PCBT. This is due in part to the fact that we used an inefficient

open-source floating-point core. Shrinking the resource usage

of the adder is part of our future work.

C. Performance Comparison

Figure 8(a) shows the total latency of the designs for

accumulating a single set of 128 inputs. Even though the

clock frequency of the FAAC is not the highest, it achieves

the smallest latency to reduce a single set. This is because

the FAAC requires the smallest number of clock cycles.

Figure 8(b) shows the total latency for accumulating 128

sequential sets of 128 inputs. The FAAC has larger latency

than PCBT and FCBT since the clock period dominates the

latency with a large number of inputs. However as mentioned

in [7], PCBT is not realistic for most FPGA-based designs;

PCBT and FCBT must know the largest size of datasets

beforehand.

VIII. CONCLUSION

In this paper we described an area and performance efficient

architecture for a floating-point adder accumulator which can

be used to reduce an arbitrary number of groups with arbitrary

sizes. Compared with previous work, our approach has several

advantages: (1) the area and the clock frequency remain

unaffected by the inputs; (2) the accumulation time for each

group does not depend on any other group; (3) the number of

clock cycles to accumulate a group is equal to the sum of the

group size and the number of pipeline stages in the FAAC; (4)

the output order of the sums is the same as the input order of

the groups; (5) the design does not require any preprocessing

of the input data. Besides those advantages mentioned above,

the performance analysis shows that our architecture is very

competitive compared with other designs.

Though the area usage of the FAAC is greater than most

of profiled existing designs, the total amount of area fits

comfortably into current-generation (Virtex 5) and older-

generation (Virtex-II Pro) mid-range FPGA devices. We be-

lieve our FAAC circuit is a good choice for FPGA-based high

performance computing applications.

REFERENCES

[1] L. M.Ni and K. Hwang, “Vector-reduction techniques for arithmetic
pipelines,” IEEE Transactions on Computers, vol. c-34, no. 5, pp. 404–
411, 1985.

[2] U. Kulisch, “The fifth floating-point operation for top-performance
computers,” Universitat Karlsruhe, Tech. Rep., 1997.

[3] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel,
“Optimization of sparse matrx-vector multiplication on emerging mul-
ticore platforms,” in Proceedings of Supercomputing (SC), 2007.

[4] S. McGettrick, D. Geraghty, and C. McElroy, “An FPGA architecture for
the PageRank eigenvector problem,” in Proceedings of the International

Conference on Field Programmable Logic and Applications (FPL),
2008, pp. 523–526.

[5] L. Zhuo and V. Prasanna, “High-performance and area-efficient reduc-
tion circuits on FPGAs,” in Proceedings of the International Symposium

on Computer Architecture on High Performance Computing (SBAC-

PAD), 2005, pp. 52–59.
[6] L. Zhuo, G. Morris, and V. Prasanna, “Designing scalable FPGA-based

reduction circuits using pipelined floating-point cores,” in Proceedings

of the International Parallel and Distributed Processing Symposium

(IPDPS), 2005.
[7] ——, “High-performance reduction circuits using deeply pipelined op-

erators on FPGAs,” IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 10,
pp. 1377–1392, 2007.

[8] K. D. Underwood, K. S. Hemmert, and C. Ulmer, “Architectures
and APIs: assessing requirements for delivering fpga performance to
applications,” in Proceedings of Supercomputing (SC), 2006.

[9] P. M. Kogge, The Architecture of Pipelined Computers. Hemisphere
Publishing Corporation, 1981.

[10] F. de Dinechin, B. Pasca, O. Cret, and R. Tudoran, “An FPGA-
specific approach to floating-point accumulation and sum-of-products,”
in International Conference on Field-Programmable Technology (FPT),
2008, pp. 33–40.

[11] C. He, G. Qin, M. Lu, and W. Zhao, “Group-alignment based ac-
curate floating-point summation on FPGAs,” in Proceedings of the

International Conference on Engineering of Reconfigurable Systems and

Algorithms (ERSA), 2006, pp. 136–142.
[12] Double Precision Floating Point Core, www.opencores.org, OpenCores,

2009.

