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ABSTRACT 

This paper presents an intelligent agent model for simulating the behavior of a jazz bass 
player during live performance. In jazz performance, there is a strikingly large gap 
between the instructions given in a chord grid and the music actually being played. To 
bridge this gap, we integrate Artificial Intelligence (AI) methods within the intelligent 
agent paradigm, focusing on two critical aspects. First, the experience acquired by 
musicians in terms of previously heard or played melodic fragments, which are stored in 
the agent’s “musical memory”. Second, the use of these known fragments within the 
evolving context of live improvisation. In previous papers, we have presented a model for 
an improvising bass player, emphasizing the underlying problem solving method. In this 
paper, we describe the fully implemented model and give more details on how melodic 
fragments are represented, indexed and retrieved. 

1. INTRODUCTION 
In live performances (such as theater, orchestra, dance or music), the artists must follow a script, 

which constrains their behavior. However, in most cases they must adapt this script to the environment. The 
interaction within a typical small jazz ensemble (soloist, pianist, bass player and drummer) playing for an 
audience can be sketched by a network where each player and the audience are represented by nodes (Cf. 
Figure 1). A chord grid contains a sequence of chords (e.g., Fm7, Bb7(9), EbMaj7) typically found in 
“real/fake books” (Sher 1991), which represents the underlying harmony of the song. Figure 2 shows the 
chord grid of “Stella by Starlight” (by N. Washington and V Young). Each musician's choices depend on 
three information sources: (1) the chord grid contents, (2) other musician's playing up to the present instant, 
and (3) the musician's own playing up to the present instant. The way human musicians actually consider 
these information sources to take musical decisions is unknown. This state of affairs characterizes 
computational modeling of jazz performance as an interesting and difficult problem to treat.  

Besides their scientific interest, there is a growing demand for tonal music improvisation and 
accompaniment systems. These systems can automatically generate melodic lines (e.g., saxophone and 
bass), rhythmic lines (e.g., drums) and/or chord voicing chaining (e.g., piano) in a particular music style 
according to a given chord grid. They have been used as arrangement assistants (avoiding the detailed 
specification of the parts of some instruments), as rehearsal partners (letting the user play his/her 
instrument, while the computer plays the other ones), and as improvisation teachers (giving examples of 
possible improvisations for the chord sequences given by the user). So far, most of these systems have been 
dedicated to jazz (Baggi 1992; Brown & Sidley 1993; Giomi & Ligabue 1991; Hidaka, Goto & Muraoka 
1995; Hodgson 1996; Horowitz 1995; Johnson-Laird 1991; Pachet 1990; Pennycook, Stammen & Reynolds 
1993; Spector & Alpern 1995; Ulrich 1977; Walker 1994; Ramalho 1997a, Rowe 1993). However, other 
musical styles are also found, such as rock, reggae, bossa nova, etc. (Ames & Domino 1992; Band-in-a-box 
1995; Levitt 1993).  
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Figure 1 - Interaction model of a jazz ensemble  

The jazz performance problem discussed above fits well within the cybernetics scope of study, due 
to the interaction network established among the performers. Born in the early forties, the cybernetic 
movement refers to three main conceptual constituents: input/output, feedback and information. 
Input/output refers implicitly to the notion of automata that simulate some elementary function (e.g., 
neurons). Feedback refers to the network of connections among automata, and to all the possible loops in 
this network. Finally, information corresponds to the means due to which all transformation and transfer 
operations take place. The recent evolution of the cybernetic paradigm is twofold. One approach is mainly 
concerned with the global behavior of networks and with the ability for networks to automatically learn 
connections among automata: it corresponds to the study of the so-called connectionism and dynamic 
systems (Fausett 1994). The other approach focuses on more complex automata, which are seen as 
intelligent agents cooperating in an environment. The latter approach is usually classified as Distributed 
Artificial Intelligence, or multi-agents systems (Gasser 1991; Jennings & Wooldridge 1995).  

E m7(b5) A 7 C m 7 F 7

F m 7 Bb 7 Eb maj7 Ab 7

Bb maj7 Em7(b5) A7 D m7 G m7 C7

F maj7 G m7 C7 Am7(b5) D 7

G 7 G7 C m7 C m7

Eb m7 Eb m7 Ab 7 Bb maj7 Bb maj7 

E m7(b5) A 7 D m7(b5) G 7

C m7(b5) F 7 Bb maj7 Bb maj7 
 

Figure 2 - Chord grid example 
Our approach has been more closely related to Distributed Artificial Intelligence, since our project 

has addressed the construction of an intelligent agent, a jazz performer, interacting with its environment. 
However, unlike typical multi-agent models, we have not been concerned with the global evolution of the 
system, or with learning connections among the musicians or between the audience and the musicians. 
Instead of focusing on the system’s behavior as a whol, we have concentrated our research on the way a 
particular performer interacts with the environment. More precisely, we have modelled the behavior of a 
bass player, whose task is to create and play a melody (bass line) in real time.  

To accomplish this task, our agent reuses melodic fragments, originally played by human players. 
These fragments, called cases in reference to Case-Based Reasoning (Kolodner 1993), are stored in the 
agent's musical memory. According to the perceived context (the other agents' playing, the chord grid and 
the bass line played so far), the agent chooses the most adequate fragment in its memory, adapts it and 
“appends” it to the bass line being played.  

The technique of reusing previously stored melodic and rhythmic fragments to compose new 
melodies and rhythmic lines has been increasingly applied in the design of tonal music improvisation and 
accompaniment systems, particularly in jazz styles (Ramalho, 1997b). However, the success of this 
technique depends on critical design choices concerning (rhythmic or melodic) fragments' nature, 
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representation, indexing, preference and adaptation. We propose an original problem solving method 
(Newell & Simon 1972) in which domain knowledge is intensively used. This additional knowledge 
provides more appropriate solutions to musical fragment reuse than those proposed by the current existing 
systems. 

In previous papers (e.g., Ramalho and Ganascia 1994b) we have presented a preliminary model of 
an improvising bass player from an AI perspective, emphasizing the underlying problem solving method. In 
this paper, we will describe the fully implemented model and give more details on how the melodic 
fragments are represented, indexed and retrieved. The paper is structured as follows. Section 2 is concerned 
with the presentation of the interaction model, which corresponds to the external environment. Section 3 
will outline the internal structure of the bass player which is built on an atypical problem solver where the 
goal is to play and where the inference engine combines two AI techniques: Case-Based and Rule-Based 
reasoning. Section 4 discusses results and points out possible extensions. Conclusions are given in the last 
section. 

2. OUR JAZZ PLAYER AGENT 
An agent is an entity (a program, a robot) that perceives its environment through sensors (camera, 

keyboard, microphone, etc.) and acts upon the environment by the means of effectors (hands, speakers, 
etc.). A rational agent is an agent that follows a rationality principle, according to which, given the 
perceptual data, the agent will choose the action that best satisfies its goals according to its knowledge 
(McCarthy & Hayes 1969; Newell 1982). From a computational point of view, the importance of the 
rational agent framework is to facilitate both analysis and design of intelligent programs. These goals are 
achieved since the agent's behavior can be described at an abstract level involving only perceptual data, 
goals, actions and knowledge. This avoids premature considerations about knowledge representation 
languages and inference mechanisms that will be used in the implementation of the actual agent. 

2.1. Agent's architecture 
The left-hand part of Figure 3 shows the basic components of a bass playing agent's environment, 

i.e., the chord grid, the other musicians and the audience. Instead of trying to deal with the complexity of 
real-time perception, we simulate the environment by means of a scenario, which will be explained in the 
next section.  
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Figure 3 - Overall picture of our jazz playing agent structure 

To define our agent we used the classic agent architecture adopted in AI and robotics applications 
(Ambros-Ingerson & Steel 1988; Russel & Norvig 1995). This architecture reflects the division of the 
agent’s tasks into perception, reasoning (or planning) and acting. The right-hand part of Figure 3 depicts our 
bass-playing agent, which is composed of three specialized agents. The listener, that gathers the perceptual 
data, the reasoner, that plans the note to be played, and the executor that actually plays the notes at their 
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appropriate starting time. The agents’ own performance, as played by the bass executor up to the present 
moment, is fed back into the agent’s input. This reflects the fact that what a human performer has just 
played has a major influence on choices regarding what to play next (avoiding too numerous repetitions or 
smoothing transitions between phrases, for example).  

2.2. The listener 
The full interaction model sketched on Figure 1 involves hard issues on real time music perception 

(Pennycook, Stammen & Reynolds 1993; Rowe 1993). For instance, all musicians need to track the others' 
tempo (beat induction problem) (Allen & Dannenberg 1990; Desain & Honing 1994). In addition, 
musicians often need to detect phrase boundaries of what the other performers are playing (musical 
segmentation problem) (Dowling 1986; Lerdahl & Jackendoff 1983; Narmour 1989). Musicians also need 
to evaluate other musicians' performance in terms of more abstract musical properties, such as dissonance, 
style, syncopation, etc. (see e.g., Longuet-Higgins 1984, Sloboda 1985).  

In order to avoid tackling these delicate problems, we have decided to simulate the environment by 
means of the notion of a scenario: a simpler yet powerful representation of the evolving context. This 
scenario, which is given to the system in addition to the chord grid, is composed of two kinds of events (i.e., 
state descriptions): (1) the other performers events (e.g., “pianist is using dorian mode”, “drummer is 
playing louder and louder” or “soloist is playing arpeggio based on the current chord”); (2) the audience 
events (e.g., “audience applauds” or “police comes”). The language we use to represent musical scenario 
events is inspired by Cypher system (Rowe 1993). This language allows the representation of various global 
musical properties (e.g., pitch range, loudness, temporal density, etc.) as well as the tracking of their 
variation in time. Influenced by ideas of Hidaka (Hidaka, Goto & Muraoka 1995) and Baggi (Baggi 1992), 
we have extended musical events’ description to highlight the global musical atmosphere. For instance, “the 
temperature gets hot” when the other musicians are playing more notes, louder, in a higher tessitura and in 
more syncopated way. In addition, “the atmosphere is more colorful” when musicians are using chromatic 
scale, making chord substitutions and playing more dissonantly. Figure 4 shows a hierarchy of object-
oriented classes used to represent scenario events. For instance, the fact “the pianist is playing more and 
more notes since beat 20 (to current beat 36)” is represented by an instance of RhythmicEvent whose 
attribute-values are: lapse = 20-36, musician = 'pianist', type = 'density', value = 'medium', variation = 
'ascendant'. 

Temporal Object ('lapse') 
 ScenarioEvent () 
  MusicianEvent ('musician') 
   BasicMusicalEvent ('type' 'value' 'variation') 
    DynamicsEvent () 
    HarmonicEvent () 
    RhythmicEvent () 
    GlobalEvent () 
   AudienceEvent ('action') 

Figure 4 - The hierarchy of classes used to represent scenario events 

The soloist, pianist, drummer and audience shown in Figure 3 are simplified agents whose main 
task is to extract, in real time, events from their respective scenario’s part and then signaling these events to 
the bass player. This way, the information about the future cannot be accessed by the bass player, since the 
scenario events are only available at their specified starting time (see Figure 5). The synchronization 
between the various agents is carried out using a discrete time clock.  
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Figure 5 - Reasoning gap and scenario events access with respect to the reasoner 

 and executor's current positions 

2.3. The executor 
The executor behaves as a scheduler. It simply holds a full description of the notes (pitch, starting 

time, duration, amplitude) planned by the bass reasoner, and plays these notes on a MIDI synthesizer at 
their precise starting time (see Figure 3). 

The notes that are currently being played by the executor have been planned earlier by the 
improviser. In other words, there is a time lag (called reasoning gap) between the creation of the bass line 
(by the improviser) and its actual execution. The improviser will typically plan notes for the nth chord grid 
segment while the executor is playing the notes corresponding to the (n - 1)th segment, or an even earlier 
one. Interleaved planning and execution is a technique widely used in robotics and in other real-time 
planning applications (Russel & Norvig 1995). As shown on Figure 5, the current time position of the 
executor determines what scenario events are available to the improviser. 

Besides its scheduling task, the executor performs some changes in the notes planned by the 
reasoner. For instance, the starting time and duration of the notes are changed according to the tempo, to 
give a swing-like feel. Figure 6 illustrates some of these changes. Another important change performed by 
the executor is the modification of the last notes of a given melodic fragment in order to smooth the passage 
between it and the next fragment. This avoids melodic jumps and improves the homogeneity and fluidity of 
the bass line. 

3 3

. .
3

 
Figure 6 - Examples of changes in notes duration and starting time  

2.4. The reasoner 
The reasoner is the most complex agent to design, since it must be able to choose, in real time, the 

notes which will be played in the next grid segment. This must be done according to different information 
sources: the chord grid's contents, what the other musicians have been playing so far (i.e., the scenario's 
contents), and what the agent itself has been playing. The main difficulty in building this agent is the 
acquisition and representation of the knowledge used by musicians to interpret and combine all this 
information. Often, musicians cannot explain their choices at the note level in terms of rules, constraints or 
any known formalism (Pachet 1990; Baggi 1992; Ramalho 1997a). They usually justify what they have 
played in terms of more “abstract” musical properties, such as swing, tension, contour, density, etc. 
However, the interaction between these concepts is not simple to be determined. For instance, a soloist may 
not be able to explain the choice of each note (pitch, amplitude and duration) of a passage, even if a given 
scale is consciously used. Let us mention that such abstract musical properties are crucial for successfully 
modeling other kinds of musical tasks, e.g., pattern extraction (Rolland & Ganascia 1996), and 
interpretation learning (Widmer 1994). 
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2.4.1. Reuse of melodic and rhythmic fragments 
During the knowledge elicitation work, we have realized that the difficulty of the interviewed 

jazzmen in given an analytical explanation of their choices is partially due to the empirical way they learn 
how to create music. Although the jazzmen use rules they have learned in schools, these rules do not 
embody all the knowledge they employ when playing. For example, there is no logical rule chaining that 
can directly instantiate important musical properties such as tension, style, swing and contrast, in terms of 
notes. Especially in jazz, musicians learn how to play by listening to and imitating performances of famous 
musicians (Ramalho & Ganascia 1994a; Sabatella 1996). Through this empirical learning process, the 
musicians acquire a set of examples of melodic/rhythmic phrases (and chord chaining) which can be reused 
in the future. This claim is corroborated by the work of musicologists on the identification of typical 
melodic fragments used by famous jazzmen, such as Charlie Parker (Owens 1974), Bill Evans (Smith 
1993), Miles Davis (Baker 1980), John Coltrane (Kernfeld 1983), Lester Young (Rottlieb 1991). 

Usually, the literature employs the term “pattern” in a broad sense, including any melodic or 
rhythmic fragment occurred once in a given corpus. However, the word “pattern” should designate only 
recurrent musical structures, i.e., melodic fragments that occur frequently enough, according to some 
specific threshold (Rolland 1998; Rolland & Ganascia 1999). In this paper, we prefer to use the term 
“fragment” due to its generality: all patterns are fragments, but the inverse does not hold. Incidentally, most 
of the musical improvisation and accompaniment systems impose no restrictions on the occurrence 
frequency of what they call “patterns”. 

From the computer science standpoint, what is important is that melodic/rhythmic fragments reuse 
is an extremely powerful technique to minimize knowledge acquisition problems. First, these fragments can 
be easily acquired either by consulting experts or the literature (Aabersold 1979; Coker 1970), or by using 
melodic/rhythmic pattern extraction programs (Rolland & Ganascia 1999; Pennycook et al. 1993; Rolland 
1998; Rowe 1993). Second, melodic/rhythmic fragments represent knowledge in extension (Woods 1975), 
since they implicitly codify concrete example solutions (e.g., appropriate phrases) for a given musical 
problem (e.g., a chord sequence). For instance, it is hard to identify complete and fine-grained “rules” that 
indicate how to build a bass melodic phrase for a given chord sequence with respect to different contexts 
(e.g., position within the song, what the musicians are playing, etc.) and desired musical properties (e.g., 
density, melodic contour, etc.). Figure 7 shows two bass line fragments that could be retrieved, transposed 
and reused to Fm7(b5) Bb7. In a situation where a simple and smooth phrase is wanted, the left-hand side 
fragment is more adequate. In a situation where a slightly dissonant and syncopated phrase in the medium 
range is wanted, containing several notes and using mainly chord notes, then the right hand side fragment is 
preferable. 

Cm7(b5) F7 Em7(b5) A7

a) b)

 
Figure 7 - Two bass line fragments as played originally by Ron Carter on Stella by Starlight  

(Aabersold 1979) 

The idea of fragment reuse is to retrieve and adapt previously stored melodic or rhythmic fragment 
and to chain them in order to compose new melodic or rhythmic lines, as illustrated in Figure 8. The current 
fragment reuse context C may be characterized by the following elements: (1) the melodic/rhythmic line 
played so far by the system and by the other musicians/systems; and (2) the chord grid-related information 
(previous, current and future chords; current position within the song; song style; song tempo, etc.). This 
does not mean that playing jazz is limited to chaining previously known fragments. Nevertheless, this is a 
successful way of constructing tonal music improvisation and accompaniment systems.  
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While current-position < end-of -grid, do: 
  Determine the next chord grid segment S whose notes will computed; 
  Describe the current context C with respect to S;  
  Retrieve, from the library L, a melodic/rhythmic fragment F that is the most adequate with respect to C; 
  Adapt F to C, obtaining F'; 
  Add F' to the melodic or rhythmic line played so far 

Figure 8 - Basic loop of the systematic fragment reuse algorithm 

To implement the fragment reuse strategy, we have introduced in our agent model the notion of 
musical memory, which is a repository of melodic fragments as played originally by famous jazz bass 
players. Furthermore, we have placed this strategy within Case Based-Reasoning (CBR) theoretical 
framework (Kolodner 1995), which is a powerful tool for highlighting and proposing solutions for the main 
issues in musical fragment reuse. In fact, musical fragment reuse can be viewed in the CBR perspective, 
since melodic and rhythmic fragments are episodes that can be reused in a similar context in the future. A 
case is generally composed of the description of a problem and its corresponding solution. When a new 
problem is presented to a case-based system, its relevant properties (indexes) must be described. The system 
uses these indexes to perform a search into the case base, in order to retrieve a case whose problem part is 
the most similar to the new given problem. The solution associated to the previously stored problem is 
adapted to solve the new one. Under this standpoint, the main issues on musical fragment reuse are the 
following:  

• What are the fragments’ nature (information content) and length? 

• How should fragments be represented? 

• How should the case base (fragment library) be organized? 

• What are the good indexes for storing a musical fragment so as to retrieve it adequately in the 
future? 

• What are the criteria for preferring a particular fragment in the case base? 

• How should the retrieved fragment be adapted to the current situation?  
Other developers of music improvisation and accompaniment systems have reached conclusions 

similar to ours. They have adopted the reuse of melodic or rhythmic fragments (or “cases”) as the 
systematic strategy (Ulrich 1977; Baggi 1992; Band-in-a-box 1995; Hodgson 1996) or as an additional 
strategy (Spector & Alpern 1995; Pennycook, Stammen & Reynolds 1993; Walker 1994). The existing 
systems employ different kinds (from melodic fragments to pitch interval sequences) and lengths (from one-
chord to many-measure fragments) of musical fragments, as well as different representation schemes (from 
simple character strings to sophisticated object-oriented representations). These systems employ a random-
based strategy to retrieve musical fragments. However, each of them take advantage of different information 
(from fragment’s desired properties to the similarity between the fragment’s original context and the current 
context) in order to bind the random choices. They also apply different adaptations (from none to significant 
ones) on the retrieved fragment with respect to the current context.  

In our model, a case corresponds to a bass melodic fragment (the solution part) exactly as it has 
originally been played (pitch, onset, duration and loudness). The problem description part consists of a set 
of indexes indicating two sorts of information: the context within which the fragment was played (e.g., 
underlying chords, local tonality, location within the song, etc.); and the musical properties concerning the 
fragment (e.g., dissonance, melodic contour, etc.). The fragments may have different lengths, corresponding 
to particular chord sequences, called chord chunks (e.g., II-V, II-V-I). The appropriate fragment is retrieved 
according (1) to how similar the context in which it was played is to the current context, and (2) how close 
the fragment fits the required musical properties.  

It is out of the scope of this paper to discuss in details the pros and cons of each design choice 
made by the current systems (see Ramalho 1997b for this). Here, we will concentrate on describing 
accurately our approach to determine melodic fragments' length, as well as the indexing and preference 
criteria for melodic fragment reuse.  
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2.4.2. Overview of the reasoner’s functioning 
Some researches (Johnson-Laird 1992; Pressing 1988) have pointed out the difficulties in 

formalizing improvisation and accompaniment tasks as problem solving (Newell & Simon 1972). The 
formalization begins by the definition of the states describing the domain problem and the operators, which 
yield the passage from one state to another. Then, problem solving can be formally characterized by a 
process of applying operators to a given initial state until the final or goal state is reached. Taking as an 
initial state of the problem space a time segment with no notes, the music composition problem would 
consist of filling this segment with notes satisfying some criteria. The main difficulty is the determination of 
well-defined and static goals (i.e., the criteria for recognizing the final state). In fact, at the beginning of the 
performance, musicians seem to have only vague, sometimes contradictory, ideas about what they will 
really play. These ideas only become coherent and precise during the process of playing. Worse, they can 
change continuously according to the environment events. For instance, the performer reacts accordingly to 
what is being played by the other musicians. 

Despite these obstacles, we claim that it is possible to formalize music creation activities, such as 
improvisation and accompaniment, as problem solving. To do this, problem solving should include the 
process departing from “vague ideas” to precise criteria under which a given set of notes is considered an 
acceptable solution (Ramalho & Ganascia 1994b). More precisely, the music accompaniment or 
improvisation process can be formalized as two main problem-solving stages. The first stage is the 
determination of the criteria (length and musical properties) that will guide the notes to be played. The last 
stage is the effective materialization of these criteria in terms of notes. In other words, the agent needs to 
know both how to set and how to solve the problem, and must execute these two tasks continuously, in 
order to capture the environment changes along the performance.  

According to this perspective, our agent’s composition process was implemented as a succession 
of four reasoning sub-processes, which is repeated until the end of the grid:  

1. Grid segmentation: the agent establishes the chord grid segment with respect to which the 
notes will be computed and played. This segmentation is done by recognizing particular chord 
sequences called chord chunks (Section 3.1); 

2. PACTs activation: some PACTs (Potential ACTions) are activated according to the 
environment perceptual information (i.e., the grid, the scenario events occurred so far, and the 
bass executor's own output). These PACTs (described in Section 3.2) are performance 
intentions that arise and vanish at definite times, such as “play diatonic scale in the ascending 
direction during this measure”. They serve to determine an initial set of musical properties 
(such as dissonance, scale, melodic contour, etc.), which will influence the choice of the best 
stored melodic fragment; 

3. PACTs selection and assembly: this stage (Section 3.4) aims at combining musical properties 
associated to the activated PACT, as well as solving the conflicts among them, in order to get 
a single PACT. The activated PACTs considered in this stage are those whose lifetimes 
“intersect” the current chord grid;  

4. Fragment retrieval and adaptation: the query to the musical memory (Section 3.5) is 
formulated using the information of the resulting PACT plus the description of the current 
context (i.e., current grid segment, last grid segment, recent scenario events, etc.). Once 
retrieved, the fragment is adapted to the current musical context. 

The first three steps above define a set of criteria in terms of musical properties. It is important to 
emphasize the dynamic, “on the flight”, characteristic of these stages. To our knowledge, excepting (Pachet 
1990, Walker 1994), most of the improvisation and accompaniment systems uses fixed pre-defined criteria 
to generate the music from the beginning to the end. In other words, the machine cannot change autonously 
and dynamically the criteria during the improvisation or accompaniment. This solution does not take into 
account the impromptu changes in the environment and the natural evolution of the performance. Without 
an on-line criteria adjustment, the very essence of jazz is compromised, since the spontaneous interaction 
between musicians cannot be apprehended.  
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The last step actually concretizes these criteria (musical properties) by retrieving from the musical 
memory a most appropriate melodic fragment with respect to them. It would possible to retrieve a melodic 
fragment based only on the description of the current context (i.e., underlying chords, type of chord 
sequence, position within the form, etc.), as shown in Figure 8. However, PACTs activation and assembling 
aid to improve the control on melodic fragment’s retrieval. For instance, instead of simply addressing the 
request “find a melodic fragment played on the chord sequence “G7 Cmaj7”, lasting 8 beats, at the 
beginning of the chorus”, we can enrich the query by appending other criteria, such as “a fragment that is 
chord-based, has few notes, and is on a low tessitura”. 

3. THE REASONER IN DETAILS 
In this Section, we will present the main stages of the composition process carried out by the 

reasoner during the performance. 

3.1. Grid segmentation 
The choice of melodic fragments length should take into account the musical plausibility (fixed vs. 

variable length) and the granularity (local vs. global information) (Ramalho 1997b).  

The “natural” structure for building melodic lines is the (melodic) phrase, which has different 
lengths (Lerdahl & Jackendoff 1983; Narmour 1989). However, unlike natural language, there is no clear 
definition for the beginning and end of these musical phrases. Because of the difficulties in identifying 
musical phrases boundaries, some music systems adopt a fixed-length composition or improvisation “step”. 
This step is usually equal to one beat (Johnson-Laird 1991; Hidaka, Goto & Muraoka, 1995), one measure 
(Giomi & Ligabue 1991) or two measures (Brown & Sidley 1993).  

Regarding the reasoning granularity, one should find a compromise to guarantee both continuity 
and quick reaction. On one hand, it is difficult to control the overall coherence using too short musical 
fragment, such as one beat or one note, since the line generated is too “broken”. Moreover, some musical 
properties (e.g., density), that may serve as guidelines for choosing the best musical fragment, cannot be 
measured adequately for too short fragments. On the other hand, very long fragments are inadequate since, 
while the system is playing a melodic or rhythmic fragment, many important events may occur in the 
environment (e.g., the soloist is playing chromatic scales). The system will not be able to react quickly, 
changing what it has planned to play accordingly.  

The best compromise (regarding both plausibility and granularity) employed by the existing 
systems so far is to choose musical fragments corresponding to a single chord (Band-in-a-box 95; Pachet 
90) or a particular chord chunk (Hodgson 96; Ramalho 97a). Chord chunks, such as II-V, II-V-I, VI-II-V-I, 
are abundantly catalogued in the Jazz literature (Baudoin 1990) because of the role they play in jazz 
harmonic analysis, listening and extemporization. Many jazz improvisation methods suggest that such chord 
chunks can be the basis for constructing one's own improvisations, and listening to and retaining Masters' 
solos and accompaniments (Baker 1980). In our work, we have adopted the hypothesis that the bass player's 
improvisation and accompaniment processes progress by steps, each corresponding to a chord chunk.  

The recognition of chord chunks is performed by a particular harmonic analysis system based on a 
more general analysis system that our research team developed earlier (Pachet et al. 1996). Contrary to the 
latter system’s task that provides a complete hierarchical analysis of tonalities in a chord grid, our analysis 
task is simpler, since it is only concerned with chunk recognition. However, as described below, we needed 
to introduce some particular rules for solving conflicts and for completing grid segmentation, taking into 
account chords duration and testing the availability of melodic fragments in the musical memory for a given 
chord chunk.  
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The computation of the grid segmentation follows roughly three steps: 

• Chunk recognition: for a sequence of chords, all chord chunks belonging to a given lexicon 
are identified. This lexicon is composed of all chord chunks underlying the melodic fragments 
contained into the agents’ musical memory;  

• Chunks conflict resolution: the conflicts due to time overlapping between chunks are solved;  

• Grid filling in: the chords that do not belong to any chunk are analyzed as single-chord 
chunks.  

Figure 9 shows a rule for recognizing a V-I major. A chunk is only recognized if the musical 
memory contains a bass fragment played on the same kind of chunk, i.e., the chunks’ tonalities may be 
different, but their shapes and rhythmic structures must be identical. Because of this three step processing 
structure, the simplest grid segmentation occurs when the lexicon contains no (composed) chord chunk. In 
that case, the grid will be segmented chord by chord.  

Rule: majorTwoFive 
For c1, and c2 instances of Chord and for a given set of chunks referred to as Lexicon 
IF 
 meets(c1,c2). “c2 begins when c1 ends” 
 duration(c1) = 4. 
 duration(c2) = 4. 
 isMinor(c1). 
 not(isHalfDiminished(c1)). 
 isDominant(c2). 
 intervalBetweenRoots(c1,c2) = fourth. 
 includesShape(Lexicon, MajorTwoFive, rhythmicStructure(c1, c2))) 
THEN 
 x := Create a MajorTwoFive. 
 tonality(x) := majorScale(fourth(rootPitchClass(c2))). 
 Complete description of x given c1, c2 and c3. 
 Insert x in the fact base 

Figure 9- Example of rule for recognizing a chord chunk 

Conflict resolution is done according to preferences concerning chord chunk types and lengths 
(larger chunks are preferred to smaller ones if the first chunk's lapse completely contains the second's). For 
instance, a sequence like “E7 Am7 Dm7 G7 Cmaj7” will be segmented into “E7-Am7” and “Dm7-G7-
Cmaj7” instead of “E7” and “Am7-Dm7-G7-Cmaj7”. The preferred chunks are kept in the base fact, while 
the others are discarded. 

Figure 10 illustrates a possible segmentation of “Stella by Starlight” according to a given chord 
chunk lexicon. This lexicon is composed of the chord chunks the bass player can recognize at a given 
moment, i.e., the set of chord chunks that compose the bass player 's musical memory, as discussed later.  

Besides the identification of the next chord chunk, the agent's task includes the description of each 
chunk according to the following features:  

• harmonic shape (e.g., II-V, II-SubV-I, V-I, VI-II-V-I);  

• local tonality (e.g., Eb major, A minor);  

• time lapse; underlying chords; rhythmic structure (i.e., duration of each chord);  

• position in form (e.g., beginning, turnback or turnaround);  

• section (e.g., in a 32-bar AABA standard, a chunk beginning at the bar 9 is in the second 
section);  

• repetition (i.e., the cardinality of the current chorus);  

• backward resolution (i.e. interval between the root of the previous chunk last chord and the 
root of the current chunk first chord);  

• forward resolution (i.e. interval between the root of the current chunk last chord and the root 
of the next chunk first chord— taking into account grid circularity). 
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Figure 10 - Example of chord grid segmentation. The chunks elements displayed are: the lapse, harmonic 

shape and rhythmic structure (as a unique word) plus the underlying chords. 

All this information is important to evaluate how similar the current chunk (context) is to the 
musical fragments' original underlying chunks (context). Figure 12 shows examples of detailed description 
of two particular chord chunks, as they are described in the musical memory of our agent. 

3.2. The notions of PACTs and musical memory  
In our approach, we assumed that, at any given time, the agent has “intentions” related to notes that 

it plans to play immediately or at a later moment. These intentions may concern the notes themselves or 
some musical properties (e.g., “syncopateness”, intensity, scale) of the notes. We represent such intentions 
under the form of PACTs as originally introduced by Pachet (Pachet 1990). Examples of PACTs are: “play 
syncopated phrase during this last section”, “play louder and louder until the end of the improvisation 
section”, “two measures from now start playing using dorian mode”.  

The notion of PACTs constitutes the keystone of our model, unifying the representation of both the 
concrete melodic fragments in the musical memory and the abstract musical properties. In fact, PACTs 
provide a knowledge representation framework whose flexibility favors the description of musical material 
according to different points of views and at different abstract levels (Ramalho & Ganascia 1994b). For 
instance, the melodic fragments that constitute the musical memory are represented as fully specialized 
PACTs, called playable PACTs. These PACTs contain descriptions of a melodic fragment in terms of its 
sequence of notes (represented by their onset, duration, pitch and loudness) as well as the above mentioned 
musical properties. Through a knowledge acquisition work with some jazz bass players, we have identified 
a core vocabulary of musical properties for describing bass line fragments. These properties are: loudness, 
amplitude contour, pitch contour, tessitura, scale, dissonance, syncopation, density, rhythmic style (quarter-
based, half-based, or eight-based), leading tone (whether leading tones are used), inversion (whether the 
tonic is played in the first beat), line style (chord-based or stepwise), pull down, repeated notes (whether 
repeating notes technique is used), and “classicness” (how recurrent the fragment is).  

The PACTs that describe partially or completely melodic fragments in declarative terms are called 
Standard PACTs. A different kind of PACT, called Transforming PACT, describes transformations applied 
to a playable PACT. An example of the latter is the PACT “now, play this lick transposed one step higher”). 
Figure 11 illustrates the hierarchy of object-oriented classes used to represent the two main kinds of PACTs. 
This is a simplified hierarchy, as a detailed description of PACTs implementation is out of the scope of this 
paper (see Ramalho 97, for further details).  
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Temporal Object (‘lapse’) 
 Pact () 
  StandardPact (‘creationDate’) 
   BassStandardPact (‘loudness’, ‘amplitudeContour’, ‘pitchContour’, ‘tessitura’, ‘scale’, ‘dissonance’, 
       ‘syncopation’, ‘density’, ‘rhythmicStyle’, ‘leadingTone’, ‘inversion’, ‘lineStyle’,  
       ‘pullDown’, ‘repeatedNotes’,  ‘classicness’, ‘melodicFragment’) 
  TransformingPact () 
   BassTransformingPact(‘sourcePact’, ‘transformation’) 

Figure 11 - The hierarchy of PACTs classes 

Once the notion of PACT has been defined, we can now introduce more precisely the musical 
memory. A case in the musical memory is composed of one primary standard PACT (called consequent 
PACT) and one secondary PACT (called antecedent PACT). The consequent PACT contains the melodic 
fragment that will actually be retrieved and reused when the agent is playing, while the antecedent one 
corresponds to the PACT played just before. Figure 12 shows the interface used for case acquisition of a 
fragment of Ron Carter's bass line played in “Stella by Starlight” (Aabersold 1979). For both the antecedent 
and the consequent PACT, three main kinds of information are stored:  

• the melodic fragment itself (bottom window of Figure 12);  

• the description of the underlying chord grid segment (middle window of Figure 12); 

• its musical properties (top window of Figure 12). 

Em7(b5)    A7       Dm7                     Gm7     C7
Fmaj7

 
Figure 12 - Example of a musical memory case 

We now comment briefly on how these three kinds of information are considered in the various 
systems. In representing the melodic fragment, we take into account all the notes’ basic dimensions (i.e., 
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pitch, beginning, duration, amplitude, and timbre). According to the Case-Based Reasoning paradigm, the 
closer a fragment is to a transcription of an actual improvisation or accompaniment fragment performed by 
a professional musician, the better it is, since it carries more information and implicit knowledge. By 
loosing rhythm information in the fragment description, Ulrich’s system discards one of the musical 
knowledge’s aspects that is hard to formalize (Ramalho 1997a). Moreover, it is simpler to “grasp” the 
mutual interaction among the various dimensions by coding them altogether. This interaction is in fact 
difficult to formalize. Hodgson and Band-in-a-box designers also adopt that same policy as us for coding 
the fragments. 

The majority of the current systems restrain the context description to the fragment’s underlying 
current chords solely. Band-in-a-box, Hodgson’s and Baggi’s extend the context representation to include 
the next segment’s first chord or the interval between the current segment’s last chord root and the root of 
the subsequent one. As discussed in Section 2.4.1 and Section 3.1, we enrich the current grid segment 
description by adding information about the local tonality, chord chunk type, etc. The inclusion of the 
antecedent PACT aims to extend the description of the context in which the (consequent) fragment was 
played. In fact, the antecedent PACT imposes prerequisites in terms of harmonic and melodic continuity to 
the next fragment to be played (i.e., the consequent PACT itself). 

Regarding indexing, most of the current systems consider only a small set of musical properties to 
describe the musical fragments. NeurSwing (Baggi 1992) includes fragment density, and Hodgson includes 
melodic contour, dissonance and few other properties. Fragment length is taken into account by all the 
systems. Our system, instead, incorporates a quite exhaustive list of properties for describing bass line 
fragments in jazz style, as enumerated at the beginning of this section (e.g., loudness, amplitude contour, 
pitch contour, tessitura, etc.). The use of a rich indexing vocabulary enables a more accurate retrieval and 
also improves fragment reusability, since it facilitates the computation of the similarity between two 
melodic/rhythmic fragments (Ramalho 1997b). On the other hand, the inclusion of rich context descriptions 
and desired musical properties as additional criteria in fragment retrieval demand more domain knowledge 
as well as the implementation of further reasoning mechanisms. In fact, the system designer must perform a 
knowledge acquisition effort in order to identify all the relevant features, the relationships between them, 
the conditions under which a given property is desired, etc. This work depends on the collaboration with the 
expert and may be quite long. There is a trade off between the fragment retrieval powerfulness and the 
system implementation simplicity.  

As seen previously, the grid segmentation process depends on a given lexicon of chord chunks. 
This lexicon corresponds to the set of underlying chunks of each consequent PACT in the musical memory. 
Thus, considering the grid segmentation process,in order that any chord grid be able to be segmented, this 
memory must contain a minimal set of PACTs “covering” all possible single-chord chunks: major, minor, 
dominant, half diminished and diminished. 

3.3. PACTs activation 
PACTs activation knowledge is represented in terms of production rules of the type “If situation S 

is perceived then activate PACT P”. By means of a first order logic forward chaining inference engine, new 
PACTs are activated at each cycle (i.e., a chord chunk) according to different perceptual data. The 
activation of a PACT corresponds to the assignment of values to its attributes, i.e., the object-oriented 
instantiation of a given PACT class. Besides the knowledge representation facilities they offer (Watterman 
& Hayes-Roth 1978), production rules are highly adequate to implement agents’ reactions to dynamic 
PACTs environments (Laird, Newell & Rosembloom 1987; Russel & Norvig 1995). All activated PACTs 
are stored in the agent’s working memory, which operates as the fact base of classical expert systems. For 
each inference cycle, this working memory is updated by eliminating “obsolete” PACTs—i.e., PACTs 
whose lifetime ends before the beginning of the current chunk lapse—and by adding recently activated 
PACTs.  
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Many kinds of perceptual data may trigger PACTs activation. Some PACTs are activated 
according to specific grid chords or chunks. Here are some examples of these activation rules:  

• IF the agent’s “current chord chunk CC contains an altered chord, THEN activate PACT “play dissonant 
during chord chunk CC”;  

• IF the agent’s current chord chunk C contains short chords (lasting less than 3 beats), THEN activate PACT 
“play the tonic of each chord at its first beat”;  

• IF the agent’s current chord chunk has the same shape (e.g., II-V, II-V-I) as the one played just before, AND 
the agent is at an improvisation chorus, THEN activate a PACT with the same duration, different line style 
(e.g., arpeggio or stepwise), and different dissonance degree with respect to the last played PACT. (Figure 
13 shows the implementation of this rule). 

Other PACTs can be activated taking into account the chord grid’s structure, style and tempo, as 
exemplified below: 

• IF the agent is at the very beginning of the theme exposition chorus, THEN activate PACT “play arpeggio-
based line, with tonics at the first beat of each chords during the next 8 measures”;  

• IF the song is a ballad played in a slow tempo (typically less than 120 quarternotes per minute), THEN 
activate PACT “play syncopated with low density (i.e., few notes) until the end of the song”;  

• IF the agent is at the very beginning of the improvisation chorus, THEN activate PACT “play gradually 
more and more notes until the end of improvisation part”. 

 

Rule: theSameShapeAsPreviousChunkWithDifferentColor 
For bass-player bp  
IF isAtImprovisation(bp). 
 shape(currentChordChunk(bp)) = shape(chordChunk(lastPlayedPact(bp))). 
THEN 
 | p |  
 p := new(BassStandardPact). 
 lapse(p) := lapse(currentChunk(bp)) 
 dissonance(p) := different(dissonance(lastPlayedPact(bp))). 
 lineStyle(p) := different(lineStyle(lastPlayedPact(bp))). 
 firstInversion(p) := not(firstInversion(lastPlayedPact(bp))). 
 addPact(p, workingMemory(bp))  

Figure 13 - Example of PACT activation rule 

The recently detected scenario events also fire the activation of PACTs. Here are some examples 
of scenario-dependent activation rules: 

• IF the drummer is playing quieter, THEN activate PACT “play quieter during the current chord chunk”;  

• IF soloist is using chromatic scale notes, THEN activate PACT “play with low dissonance (arpeggio-based 
line) during the current chord chunk”;  

• IF the soloist is playing many notes (high density), THEN activate PACT “play with low density”;  

• IF the environment’s “temperature” is hot (i.e., musicians are playing more notes, louder, more syncopated 
and in a higher tessitura), THEN activate PACT “play hot during the current chord chunk”. 

Finally, PACTs are activated with respect to the bass line played so far, as exemplified below:  

• IF the agent is at the beginning of an improvisation chorus and its bass line has been chord-based 
(arpeggio) during the two last chord chunks or more, THEN activate PACT “play walking bass until the end 
of the improvisation”;  

• IF the agent has been playing stepwise in ascendant direction for more than two measures, THEN activate 
PACT “make a drop during the current chunk”.  

As can be realized, most of these activating PACTs rules concern abstract musical properties of the 
notes to be played rather than the specific note-level information (i.e., pitch, onset, duration, amplitude of 
each note). As we said before, acquiring knowledge about the choice of specific notes is too hard. PACTs 
yield a more flexible way of acquiring and representing musical knowledge, since it is much simpler for 
musicians to justify their choices in terms of these general musical properties. In fact, we have verified that 
it is extremely easy to improve the agent performance by simply adding new PACTs activation rules to the 
knowledge base. During the development of our system, human bass players have listened to and played the 
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bass lines generated by our system. After each of these evaluations, we had no problem in adding new rules 
in order to activate more precise and adequate PACTs, achieving better results in melodic fragment 
retrieval.  

So far, we have coded 35 rules for PACT activation that reflect part of the “common sense rules” 
we have identified based on our interviews with bass players. It is important to notice that activation rules 
have an influence on stylistic and/or aesthetic characteristics of the music produced. More precisely, 
depending of the rule set being used by ImPact, the bass lines it generates can get closer to particular bass 
playing styles or even to particular artists. The current set of rules specifically reflects the playing style and 
techniques of the bass players we interviewed, although we chose to select, among possible rules, those that 
appeared as the most common and versatile ones. 

One of the difficulties in designing agents for dynamic and non-episodic environments concerns 
the selection of the past environment events to be considered in reasoning (Russel & Norvig 1995). Since 
PACTs can be activated with different start-time and duration, they can be notably useful to minimize the 
problem of environment filtering. Instead of trying to filter the most relevant events from the beginning of 
the task, it is easier to schedule some future, potential actions according to what the agent is doing now. For 
instance, let us suppose that the agent intends to create a rhythmic contrast during the bridge (3rd section of 
an AABA-structured song). Some measures before the “bridge” the agent can activate the two following 
PACTs: (a) “play few notes from now to the beginning of the next bridge” and (b) “play a lot of notes 
during the next bridge”. When the agent “arrives” at the bridge, it will naturally find the previously 
activated PACT (i.e., PACT “b”).  

These two characteristics of PACT (abstract description of musical properties and temporal 
scheduling) enable the agent to implement a sort of least commitment planning strategy (Russel & Norvig 
1995), which is crucial in complex environments. 

3.4. PACTs selection and assembly 
Once the new PACTs have been activated and pushed into the agent’s short term memory, the 

agent must select all the relevant PACTs with respect to the current chord chunk. This selection process 
simply consists of choosing from the short term memory all the PACTs (activated at the current step or in 
the past) whose lifetime overlaps the current chord chunk's lapse. These selected PACTs will be assembled 
into a single PACT, which will serve to guide the melodic fragment retrieval from the musical memory (the 
case base). 

Each PACT is activated according to different perceptual data, more or less independently of the 
PACTs activated previously. For this reason, the set of selected PACTs for the current chunk may contain 
incompatible PACTs. For instance, the PACTs “play in descending direction” and “play an ascending 
arpeggio in first inversion” are incompatible with respect to the property “pitch contour”, as well as the 
PACT “play an ascending arpeggio in first inversion” is incompatible with “play stepwise” with respect to 
the property “bass line style”.  

The set of selected PACTs may also contain pairs of compatible PACTs, i.e., PACTs that carry 
complementary information and can therefore be combined into a new PACT. For instance, the PACT “use 
the chromatic scale” combined with “play in ascendant direction” yields “play a chromatic scale in 
ascendant direction”. Sometimes, when the information of the two compatible PACTs are put side by side, 
its is possible to compute unknown values of further attributes not yet instantiated. For example, the PACT 
“play quite dissonant notes” may be combined with the PACT “play chord-based notes”, yielding “play 
chord-based quite dissonant notes, avoiding the root at the first beat and adding passage notes”. In fact, the 
way to augment dissonance, respecting the chord-based constraint, is to avoid the tonic note and to use 
passing notes instead. 

We defined an original problem solving method which solves the incompatibilities taking 
advantage of the fact that PACTs may be combined. According to our method, the agent’s initial state is the 
set of selected activated PACTs (whose lifetimes intersect the current chunk lapse). The final state (goal) is 
a playable PACT; i.e., a PACT whose attributes have specified values, including the very melodic fragment 
(Ramalho & Ganascia 1994b). In fact, the core property of PACTs is that they may be combined into “more 
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playable” PACTs as a function of their compatibility. Our problem solving (assembly) process is performed 
by the successive application of three basic problem-solving operators: delete, combine and propagate. 

The deletion operator is used to solve conflicts between two incompatible PACTs. PACTs that are 
more “playable” are preferred. For instance, between the incompatible PACTs “play ascending arpeggio” 
and “play in descending direction”, the former is preferred. When this criterion is not enough to decide, 
PACTs' creation date is considered: more recent PACTs are preferred since they may represent an urgent 
reaction to the environment. If the indecision remains, longer PACTs are preferred since they can improve 
the bass line homogeneity.  

The combination operator transforms compatible PACTs into a new, more playable, one. For 
instance, “play a eighth-based rhythm” combined with “play chord-based style” yields “play a eighth-based 
rhythm, choosing chord notes”.  

The propagation operator is applied to a single PACT when its specialized attributes (attributes 
with a specified value) can be used to compute the values of other attributes. In the combination example 
cited above, given the values of rhythmicStyle = eight-based and bassStyle = chord-based, it is possible to 
set the value of the attribute repeatedNotes to true. In other words, a strategy of getting low dissonance in 
high-density rhythm is to repeat the notes, i.e., doubling each (chord) note chosen.  

In principle, when a PACT carries all the information about the musical properties the fragment 
must exhibit, the propagation operator is applied to it in order to determine the value of the attribute 
melodicFragment (see Figure 11). In other words, when all musical properties are set, the program starts the 
retrieval process in the musical memory, searching for the most adequate fragment with respect to these 
properties. In practice, there is no guarantee that the assembly process will yield a PACT specifying all 
fragment musical properties used, because the activated PACTs may have covered only a few properties. 
Thus, when only one PACT remains in the assembly space, the program forces the retrieval of a melodic 
fragment even if musical properties are lacking. 

The assembly process is implemented by means of production rules. The rules that implement the 
deletion and combination operators contain in their premises some compatibility tests for a pair of PACTs. 
According to these tests, the action part of these rules specifies which kind of combination, if any, can take 
place between the two PACTs. The propagation operator is implemented by rules that aim to verify 
whether some new attribute value can be derived from the attributes that have just been specified. The Case-
Based Reasoning mechanisms, which serve to retrieve the most adequate bass line fragment, are fired by the 
propagation operator when the conditions discussed in the previous paragraph are met. The presentation of 
the formal specifications of incompatibility measurements, as well as the algorithms for combining PACTs 
and propagating information within a PACT, are out of the scope of this paper (see Ramalho 1997, for 
details). Figure 14 shows one of the rules for detecting incompatibility between two PACTs. In this case, 
since the PACTs have exactly the same instantiated attributes, they are fully incompatible. 

Rule: totalDirectCoverageIncompatibility 
For all PACTs p1 and p2 
IF p1 ≠ p2. 
 specializedAttributes(p1) = specializedAttributes(p2). 
 IsPreferedTo(p1, p2) 
THEN 
 Remove p2 from the base fact 

Figure 14 - Example of a rule for detecting incompatibility between two PACTs 

3.5. Case retrieval and adaptation 
In fragment reuse strategy (see Figure 8), the retrieval process aims to find a fragment whose 

description satisfies a given query. Formally, the query Q = (C, D), is composed of two elements: C = 
{c1,...,ck} is a set of attribute-value pairs describing the current context (e.g., chords = ´Cm7 F7´, tempo = 
120, previouslyPlayedNotes = ´F# E G´, etc.), and D = {d1,...,dj} is another set of attribute-value pairs 
describing the desired musical properties (e.g., dissonance = low, rhythmStyle = quarter-based, etc.). A 
function F(Q,L) establishes how Q is considered for choosing the best fragment from the fragment library L. 
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Not all the systems that are based on fragment reuse perform retrieval exactly as stated in the 
previous paragraph, but the presented formulation is the most general and serve cover the different retrieval 
strategies employed. The policies adopted by the existing systems differ among them in the following 
aspects: the richness of C’s attributes; the richness of D’s attributes; and the retrieval function F(Q,L). As 
discussed earlier (Sections 2.4.1 and 3.2), most of the existing systems restrict indexing vocabulary to few 
features of the current context, and none or very few musical propertiesof fragments are included. The use 
of a short indexing vocabulary minimizes the knowledge acquisition and implementation efforts. However, 
the more attributes are specified in the query, the more accurate is fragment retrieval (Ramalho 97b). The 
retrieval function is random-based in the majority of the existing systems. The query criteria expressed by C 
and D descriptions serve just to bind or weight up the random choice. The Band-in-a-box retrieval strategy, 
instead, works with a user-provided priority weight associated to each fragment. This weight biases the 
random choices. 

Avoiding randomness, our agent chooses the best fragment according to a mathematical similarity 
measure between the query (called target case) and each of the musical memory fragments (called source 
cases). This measure is performed using a k-nearest neighbor classification, a technique commonly used in 
Case-Based Reasoning (Aamodt & Plaza, 1994). This similarity measure is shown on equation 1.  
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T and S are, respectively, the target and source case having attribute set A ={a1, ,..., an}. Each 
attribute ai has a variable weight wi associated with it. The weights serve to give different importance degree 
to the attributes (e.g., tessitura may be less important than rhythmic style). The primitive function sim 
determines the similarity between two attributes-values (e.g., sim(tessituraS= low, tessituraT= low) = 1; 
sim(tessituraS= high, tessituraT= low) = 0; sim(tessituraS= medium, tessituraT= low) = 0.5). The similarity 
between two melodic fragments is then a function of the similarity between each of its musical properties 
and grid context descriptors.  

Once we know how to compute the similarity between any two cases, the retrieval process is 
straightforward.  enumerates the main steps of fragment retrieval and adaptation. As presented in section 
3.2, the antecedent part of the target case is composed of the previous played PACT plus its underlying 
chord chunk. The consequent one is composed of the PACT resulting from the assembly process, plus the 
description of the current chord chunk. Following a general strategy for case retrieval, we have broken the 
retrieval process into two main stages: matching, where the N most relevant cases are selected; and ranking, 
where the best one is chosen. It is convenient to break retrieval into two stages since one can use simpler 
similarity assessments can be used during matching whereas the finer, more time-consuming, procedures are 
left to the ranking stage. 

Function bestFragment(targetCase, MusicalMemory, N) 
candidateCases := sameChunkCases(MusicalMemory, chordChunk(consequentPact(targetCase))) 
Order candidateCases according to the function simalirity(targetCase, c)  
matchingCases := firstNElements(N,candidateCases) 
sourceCase := bestCase(targetCase, matchingCases) 
d := identifyDifferences(sourceCase, targetCase) 
newSourceCase := adapt(sourceCase, d)  
Return newSourceCase 

Figure 15 - Main steps of fragment retrieval and adaptation 

If the case base has many cases, the strategy of performing matching before ranking may not be 
enough to guarantee a good performance in a real time application, since similarity-based retrieval may be 
time-consuming. A hierarchical organization of the case base or some parallel search strategies are useful to 
speed up the retrieval process (Kolodner, 1993). Our system partitions the musical memory into groups of 
fragments. All fragments in each group have the same chord chunk shape (e.g., II-V-I minor, V-I major) and 
chord chunk rhythmic structure (e.g., 4-4-4, 8-8). This partition yields a good reduction in the search. From 
the 256 cases in the musical memory, only 20 in average are examined in each query. 

In order to illustrate the role of PACTs in the retrieval process, let us inspect a simple example. 
The aim is to compute the notes for the grid segment corresponding to the 5th and 6th measures (Am7(b5) 
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Figure 15
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D7) of beginning of “Autumn Leaves”, as shown in Figure 16. The tempo is slow (less than 200 quarters 
per minute). In such tempo and at the beginning of the exposition chorus, various “default” PACTs are 
activated: “play in low tessitura”, “play with low dissonance”, “prefer chord notes”, “play with low 
syncopation”, and “play with few notes”. The resulting assembled PACT biases the case retrieval process to 
choose a particular Ron Carter’s fragment (Figure 17a). Let us suppose that the soloist started to play 
chromatically at the fourth measure. In this case, the PACT “play with high dissonance” is activated to force 
the choice of a different fragment (Figure 17b). 

Once the best fragment is chosen, it is necessary to adapt it to the current situation. The adaptation 
process’ goal is to assure harmonic coherence (with respect to the underlying chords) and melodic 
continuity (with respect to what the fragments have played so far). Moreover, some adaptation will take 
place to minimize the differences between the target and the source case’s attribute values. For instance, the 
target case would require a high-density, dissonant fragment. The retrieved case is dissonant, but contains 
only few notes. In this situation, the transformation called “insert more notes” is identified and then applied 
to the retrieved fragment. 

Fragment adaptation is difficult to implement because of two reasons. First, some transformations 
are hard. For instance, there is no general procedure for adding/deleting notes in a melodic fragment. 
Second, the transformations are not all orthogonal. There is no guarantee that a transformation on a given 
retrieved fragment’s property can be applied without changing fragment’s other properties. For example, it 
is too difficult to change the melodic contour (e.g., from descending to ascending) of a fragment without 
changing is harmonic content. It is necessary to order transformations to control their mutual interference. 
Unfortunately, ordering any set of non-orthogonal musical transformations is an opened issue. As a 
consequence, the majority of the existing systems restrain the adaptation to simple and quite orthogonal 
transformations, such as time shift, tempo change, pitch transposition, and amplitude change. Hodgson’s 
and our system, however, change the pitch and/or duration of some notes, typically the last ones. This is 
useful to “soften” fragments chaining. NeurSwing makes more radical changings by introducing passing 
notes in the bass line, in order to augment density. NeurSwing also changes frequently a fifth by a flat fifth 
in the piano and bass parts, in order to augment tension.  

?

Cherokee:79-81 Wittcl: 7

 
Figure 16- Partially generated bass line on Autumn Leaves. The reused melodic fragments were originally 
played by Ron Carter, respectively, on Cherokee at measures 79-81 and on What is this thing called love 

(Wittcl) at measure 7 (Aabersold 1979)   

?

Cherokee:79-81 Wittcl: 7

Wittcl: 13-14 Stella by starlight: 61-62

?

Cherokee:79-81 Wittcl: 7

Figure 17- Two different bass line continuations on Autumn Leaves. The new fragment was originally 
played by Ron Carter respectively in What is this thing called love at measures 13-14 and Stella by 

starlight at measures 61-62 (Aabersold 1979) 

In order to attenuate the limitations of the fragments adaptation, we have introduced an 
adaptability measure as an additional criterion for fragment choice during the retrieval’s ranking stage 
(Ramalho, 1997). Frequently a fragment fits many desired properties but is not adaptable. For instance, it 
may not be entirely transposable to the current tonality without violating the instrument’s tessitura. In most 
situations, it is not straightforward to make transpositions to adjust some particular notes. In these cases, it 
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is much simpler to find out another fragment. In short, a similarity between the current and the original 
situation does not always guarantee a great adaptability. This problem was also detected by researchers 
working on case-based systems devoted to design tasks (Smyth & Keane, 1994; 1995). For such tasks, the 
adaptability-based retrieval strategy has been producing better results. 

4. RESULTS AND POSSIBLE EXTENSIONS 
In this section, we introduce more details about the implementation of the presented agent model. 

The obtained results, as well as, the future direction for further development are also discussed. 

4.1. Implementation 
Our system, called ImPact, was implemented using the Smalltalk-80 object-oriented programming 

language (Goldberg & Robson 1983). We reused the MusES system (Pachet 1994; Pachet et al. 1995) as a 
basic representation platform for representing the tonal musical concepts, like pitch classes, notes, keys, 
scales, chords, melodies, and so on. As of now, the system represents more than 220 Smalltalk classes and 
4150 methods, half of which belongs originally to the MusES system. ImPact runs on the Macintosh, PC 
and Sun SparcStations. On a Sparc 10, ImPact can generate bass lines in real time, even in very fast tempi 
such as 600 quarter per minutes, which is largely enough for musical applications.  

The mechanisms for rule base inference is handled by the NeOpus system (Pachet 1996), a first-
order forward chaining inference engine implemented in Smalltalk-80. Currently, ImPact contains 84 
production rules distributed among five specialized rule bases (for grid segmentation; PACT activation, 
assembly and information propagation; and implementation of the executor agent´s changes on the planned 
notes). There are also meta-rule bases for providing a declarative control of the rules conflict resolution. 
Concerning the case base, it contains 256 cases made from 354 different bass line fragments (antecedent 
plus consequent ones). All the fragments were originally played by Ron Carter on six different songs 
(Aabersold 1979).  

We also needed to develop some quite complex interfaces in order facilitate tasks such as case 
acquisition, case retrieval trace, PACTs activation and assembly, real-time monitoring of the agent’s 
performance, and so on. 

4.2. Experimental results 
We have performed a great amount of experiments in order achieve an empirical validation of the 

implemented model (Ramalho 1997a). This validation was divided into two points:  

• the verification of the musical and computational repercussion of the main choices we have 
made in the agent model; 

• the assessment of the musical quality of the bass lines generated by ImPact, compared to lines 
created both by human bass players and by some of the existing jazz accompaniment systems 

It is difficult to set up precise evaluation criteria and perform quantitative measurements of musical 
artworks, whether created by a computer or by a human. However, professional musicians can carry out 
accurate analysis of artwork belonging to a particular musical style. That is the case for some instrument 
performances in classic jazz styles, such as bebop. In this perspective, the evaluation method we have 
adopted consisted of presenting them some ImPact’s bass lines and noting down their evaluation. The bass 
lines were presented in sound form and also in score form, where the musician is asked to play the created 
line. The comparison between ImPact and the other system was also supervised by human bass players. 
Despite the fact that the evaluation remains qualitative, this method improves the accuracy.  

The musical results obtained with our agent model have exceeded our optimist expectations. The 
professional bass players think that ImPact’s bass lines are much better than a human beginner’s bass lines. 
Of course, ImPact plays bass at a much lower level than a skilled jazz player such as Ron Carter does. 
However, its lines are largely satisfactory.  
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We have made some qualitative comparisons between ImPact and two existing jazz 
accompaniment systems: band-in-a-box and NeurSwing. According to the bass players who collaborate with 
us in this research, (including NeurSwing’s author himself), ImPact generated globally better bass lines. 
Figure 18 shows the evaluation criteria used to compare these systems. The criteria are still subjective, but 
they have clarified some differences, which, once again, improves assessment accuracy (Ramalho 1997a).  
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Figure 18 - Comparative table of b bass lines (***=good, **=acceptable, *=mediocre) 

The experiments have shed light on many issues of our model, such as fragment reuse vs. 
accompaniment “rules”, PACT-based retrieval vs. “naïve” case-based retrieval, chord chunks vs. isolated 
chords; adaptability retrieval vs. pure similarity retrieval, scenario influence vs. playing alone, etc. 
Generally, the most important assumptions have been experimentally confirmed. First, the results obtained 
with a musical memory are much better than a pure rule-based approach we previously implemented. The 
experiments also shown that the musical results are all the better as the musical memory is larger. Second, 
the query refinement produced by PACTs activation and assembly has yielded better musical results than a 
retrieval based only on the grid context description. Moreover, PACT-based retrieval has revealed to be a 
simple, efficient and effective way of implementing dynamic reactions to the environment. It is interesting 
to note we have not obtained good results using note-level rules, but the rules employed in setting the 
desired higher-level musical properties have a significant contribution in the retrieval of fragments, which 
are note-level. Third, some experiments shown that choosing a chord chunk or a single chord as the 
reasoning step produces almost the same results, chord chunks being slightly better for “smoothing” the 
transitions between the fragments. In other words, the granularities of these two alternatives are nearly 
equivalent. Fourth, the use of an additional adaptability measure during retrieval has also been confirmed as 
a better strategy than that based only on similarity. Finally, as discussed in next section, using a scenario has 
caused less effect than expected, because the influence goes in only one direction: from the scenario to the 
agent.  

We have made other tests, such as measuring the influence of the agent’s lack of time in reasoning. 
This occurs when the reasoning gap is too short, i.e., when the executor is almost “catching” the reasoner 
(see section 2.3). At the beginning of our work, we thought that considering the available time to think 
could be an important element for simulating musicians’ use of “licks”. For this reason, we implemented an 
any-time computation algorithm that shortcuts the agent’s decision process, forcing the reuse of “classic” 
fragments (licks). However, there was no need of shortcuts in fast enough machines available today (Sparc 
10 or Pentium 166). Experimentally, we have observed that there was neither any musical profit in 
augmenting artificially time constraints to force the reuse of licks. We then gave up the hypothesis. 

The evaluation method, based on the presentation of the score to the bass players, has given us 
important insights on how to ameliorate ImPact’s performance. Being presented one of ImPact’s first bass 
lines, a human bass player made a striking comment: “this line is not logical”. We expected criticisms 
regarding the lack of creativity or feeling, but we were sure that the program was “logical” ! In reality, the 
bass player said that the bass line did not respect the “logical development” in which a line should start with 
simple, consonant fragments and become gradually more complex as the improvisation begins. We added 
some new PACT activation rules, such as “play with tonic on the first beat, at the beginning of each 
chorus”, “play consonant and with few notes during the first section of the theme exposition chorus”, “play 
more and more dissonant during the improvisation chorus”, etc. With these changes, ImPact could 
immediately generate bass lines with a coherent development. This episode has showed us how simple it is 
to add new knowledge to ImPact in order to ameliorate the best-fitted fragment choice. 
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4.3. Criticisms and future developments  
The scenario was very useful to test the capacity of the agent to react appropriately to environment 

events, without having to face, upfront, all the problems related to real-time music perception in. However, 
experiments we have run showed that sometimes the unidirectional character of the dialog between the bass 
player and the environment has negative effects on the quality of the ensemble performance. As no feedback 
exists, the synergistic effects favorable to musical “dialogs” are inhibited.  

To minimize this problem, while still avoiding the implementation of complex perception 
mechanisms, we are implementing a multi-agent model for the entire rhythm section, where each musician 
is simulated by an agent. Since each agent knows what it is playing, from the actual notes to the more 
abstract properties, it will be possible to simulate some dialogues or negotiations that typically take place 
among the musicians. This experiment will try to capture the liveliness and spontaneity of jazz ensemble 
performance, which is often achieved through impromptu, on-the-fly interaction between musicians.  

Another important criticism concerns the agent’s lack of self-evaluation and learning capabilities. 
Our agent does not know whether a fragment it has played was musically adequate or not. All the aesthetic 
preferences and constraints are only used during the process of computing the notes to be played. In other 
words, the preferences and constraints are encoded beforehand in the PACTs activation rules and in cases’ 
content. Consequently, the agent cannot learn or develop a personal style, since it may play many times the 
same song without figuring out what worked better. Its aesthetic preferences and constraints will then 
remain the same. If the agent could evaluate the musical adequacy of the played fragments, it would the 
complete the entire Case-Based Reasoning cycle by inserting them back, after appropriate 
change/adaptation, into the musical memory.  

Of course, the existing systems also lack this “post-playing” musical evaluation. To our 
knowledge, Cypher (Rowe 1993) is the only system that tries to make this evaluation, but it is actually not 
performed after the agent has played. The problem is that the rules for performing an accurate aesthetic 
analysis are neither formalized nor universal. They are rather intuitive or subjective. Despite this difficulty, 
we think that it is possible to build a musical critic for some particular musical styles and instruments. Our 
conviction is based on our observations of the precise comments the experts made during the development 
and validation of our system.  

Finally, in order to strengthen the validation of the presented model, we intend to apply it to 
different instruments and styles. We have already started to work with Brazilian music, whose rhythmic 
complexity rises interesting challenges. In fact, western music harmony and melodic development are well-
investigated disciplines. However, the rhythmic phenomenon seems to be more intuitive, more puzzling to 
formalize. A case-based approach could be fruitful in this situation as well. 

5. CONCLUSIONS 
In this article, we have presented a knowledge-intensive model of a jazz bass player in a live jazz 

ensemble. This agent model attempts to conciliate the need for producing highly relevant reactions to the 
external environment (i.e., the other musicians and the audience) and the necessity of improvising in a 
personal style. To meet that challenge, we have made a particular use of Case-Based Reasoning 
mechanisms through the notion of musical memory. This memory contains reusable melodic fragments, 
originally played by human bass players. Coupled with the case-based approach, the model employs rule-
based inference mechanisms to refine and improve the control of case retrieval, according to the 
environment events. The notion of PACTs guarantees the combination of the multilateral information 
streams between musical memory and environment. Melodic fragments retrieval is all the better as more 
PACTs activation rules are available. However, even in contexts where no such rules may be applied, the 
system can find a reasonable solution, i.e., a melodic fragment that was played in a similar context. The 
most important point of this hybrid model is its facility to incorporate new knowledge in order to improve 
its performance. New cases or new rules can be modularly inserted to the system without needing any 
change of the rest of the model components.  
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The reuse of melodic and rhythmic fragments is a promising technique in designing musical 
improvisation and accompaniment systems. This technique seems to apply even in composition tasks that 
have little or no chord grid guidance, such as those studied by Cope (Cope 1991). Musical fragment reuse 
minimizes knowledge acquisition problems, however, a great amount of knowledge is still needed to guide 
the indexing, retrieval and adaptation of the musical fragments. The systems that incorporate this knowledge 
extensively exhibit the best musical results. In fact, the intelligence of a system based on fragment reuse 
resides in its capability of interpreting a given situation in order to choose the most adequate fragment. The 
integration of different reasoning paradigms (case-, rule-, constraint- and neural net-based) that 
appropriately incorporate the available musical knowledge is the main research direction in building tonal 
musical improvisation and accompaniment systems.  
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