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Abstract

Given a planar graph G(V,E) and a partition of the neighbors of each vertex v ∈ V in four sets
↗
v,

↖
v,

↙
v, and

↘
v, the problem WINDROSE PLANARITY asks to decide whether G admits a windrose-planar drawing, that is, a
planar drawing in which (i) each neighbor u ∈ ↗

v is above and to the right of v, (ii) each neighbor u ∈ ↖
v is above

and to the left of v, (iii) each neighbor u ∈ ↙
v is below and to the left of v, (iv) each neighbor u ∈ ↘

v is below
and to the right of v, and (v) edges are represented by curves that are monotone with respect to each axis. By
exploiting both the horizontal and the vertical relationship among vertices, windrose-planar drawings allow to
simultaneously visualize two partial orders defined by means of the edges of the graph.

Although the problem is NP-hard in the general case, we give a polynomial-time algorithm for testing
whether there exists a windrose-planar drawing that respects a combinatorial embedding that is given as part of
the input. This algorithm is based on a characterization of the plane triangulations admitting a windrose-planar
drawing. Furthermore, for any embedded graph admitting a windrose-planar drawing we show how to construct
one with at most one bend per edge on an O(n) × O(n) grid. The latter result contrasts with the fact that
straight-line windrose-planar drawings may require exponential area.

1 Introduction
Planarity is among the most studied topics in Graph Algorithms and Graph Theory, and a great body of literature
is devoted to the study of constrained notions of planarity. Classical examples are clustered planarity [2, 6, 13], in
which vertices are constrained into prescribed regions of the plane called clusters, level planarity [3, 17], in which
vertices are assigned to horizontal lines, strip planarity [1], in which vertices have to lie inside parallel strips of
the plane, and upward planarity. A directed acyclic graph is upward-planar if it admits a planar drawing in which,
for each directed edge (u, v), vertex u lies below v and (u, v) is represented as a y-monotone curve. Intuitively,
edges “flow” from South to North. While testing upward planarity is in general NP-hard [15], the case in which
the combinatorial embedding of the graph is prescribed can be tested in polynomial time [4].

We introduce and study WINDROSE PLANARITY, a notion of planarity that naturally generalizes upward
planarity. While upward planarity considers only two cardinal points (North and South), windrose planarity
distinguishes four directions (NE, NW, SW, and SE), which we denote by the symbols ↗,↖,↙, and ↘,
respectively. More formally, letG be a graph and suppose that, for each vertex v ofG, its neighbors are partitioned
into four (possibly empty) sets

↗
v,

↖
v,

↙
v, and

↘
v. A drawing of G is windrose-planar if it is planar, edges are drawn

as curves that are both x- and y-monotone, and, for each vertex v, the vertices in
↗
v,

↖
v,

↙
v, and

↘
v lie NE, NW, SW,

and SE of v, respectively; see Fig. 1 for an illustration. Note that, in order for a windrose-planar drawing of the
graph in Fig. 1 to exist, the embedding has to be changed. However, even windrose-planar drawings with the same
embedding might be very different; see Fig. 2 for two windrose-planar drawings of the same cycle. While upward-
planar drawings represent one partial order, windrose-planar drawings can be used to represent two independent
partial orders, given through the same edges.
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Figure 1: (a) A graph with specified quadrant directions for each edge (black edges are directed bottom-right, gray
edges are directed top-right), (b) a windrose-planar drawing.

The study of this problem is also motivated by its strong relation with BI-MONOTONICITY, introduced by
Fulek et al. [14]. The BI-MONOTONICITY problem is a WINDROSE PLANARITY problem where the relative
positions of the vertices are specified not only for adjacent vertices, but for all pairs of vertices. A similar notion
for grid drawings has been studied previously under the name of Manhattan-geodesic drawings [16, 18]. Di
Giacomo et al. [11] studied the problem of constructing a planar drawing of a directed graph where each edge
can be drawn either x-monotone or y-monotone. While WINDROSE PLANARITY is a generalization of upward
planarity, this problem is a relaxation of it. Di Battista et al. [8] investigated the problem of computing a crossing-
free 3D orthogonal drawing of a cycle whose edges have each been assigned a desired direction (East, West, North,
South, Up, or Down).

Our contributions are as follows. Given that WINDROSE PLANARITY generalizes upward planarity, we get
as an immediate consequence that testing WINDROSE PLANARITY is NP-hard and that straight-line windrose-
planar drawings may require exponential area (Section 2). Hence, we study plane graphs, that is, planar graphs
with a fixed combinatorial embedding. Our main contribution is to provide a polynomial-time testing algorithm
for this case (Sections 4 and 5). The algorithm is based on the following main concepts. Let G be a plane graph.
First, we introduce a labeling with angle categories 0◦, 90◦, 180◦, 270◦, and 360◦ of the pairs of edges that are
consecutive on a face of G; a labeling is angular if labels around a vertex sum up to 360◦ and for each internal
(external) facial cycle of length k the sum of the labels respects the formula for the angle sum of a k-gon, i.e.,
k · 180◦− 360◦ (k · 180◦+ 360◦). Second, we show that if G is a triangulation, then the constraints on the relative
positions of the adjacent vertices of G naturally determine a unique labeling. We prove that if such a labeling
is angular, then G is windrose-planar and admits a 1-bend windrose-planar drawing on an O(n) × O(n) grid.
The proof is based on an augmentation technique that transforms the triangulation in such a way that its angular
labeling only has 0◦ and 90◦ labels. Third, we deal with general plane graphs. In this case, it is no longer true that
the constraints on the relative positions of the adjacent vertices of G determine a unique labeling. We show how
to find an angular labeling if it exists, by solving a flow problem in a planar network. Fourth, we show that a plane
graph with an angular labeling can be augmented to a triangulation with an angular labeling. Finally, we directly
get a characterization of the plane graphs admitting a windrose-planar drawing based on the above arguments.

We also investigate the question whether a windrose-planar graph admits a straight-line windrose-planar
drawing; observe that this is always true for upward-planar graphs [9]. Even though we do not answer this question
in its entirety, we present three interesting related results. First, we give an algorithm to construct windrose-planar
drawings of windrose-planar graphs with at most one bend per edge, and whose vertices and bends lie on a
polynomial-size grid (Section 4); we remark that straight-line drawings of windrose-planar graphs may require
exponential area (Section 2 and 6). Second, we provide an algorithm to compute straight-line windrose-planar
drawings for a notable class of graphs (Section 6). Third, we answer in the negative an open question by Fulek et
al. [14] about the straight-line realizability of bi-monotone drawings (Section 6).

2 Preliminaries
A planar drawing of a graph G maps the vertices of G to distinct points in the plane and the edges of G to simple
interior-disjoint Jordan curves between their endpoints. A planar drawing Γ induces a combinatorial embedding
or planar embedding which is the class of topologically equivalent drawings. In particular, an embedding specifies
the regions of the plane, called faces, whose boundary consists of a cyclic sequence of edges. The unbounded face
is called the outer face, the other faces are called internal faces. Vertices and edges incident to the outer face are
called external vertices and edges, respectively. The remaining vertices and edges are internal. A plane graph
is a graph together with a combinatorial embedding and a prescribed outer face. A vertex of a plane graph G is
external if it is incident to the outer face of G and internal otherwise. A plane graph G is (internally) triangulated
if all (internal) faces are 3-cycles. A triangulation is a triangulated plane graph. We say that a drawing in which
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Figure 2: Two windrose-planar drawings of the same cycle. Note that for each vertex the set of neighbors in each
of the four quadrants is the same in the two drawings.

edges are represented by polylines is a k-bend drawing on a grid if each edge has at most k bends, and all vertices
and bends of the edges lie on the points of the grid.

A separating k-set of a graph is a set of k vertices whose removal increases the number of connected
components. A vertex constituting a separating 1-set is also called cutvertex. A graph is k-connected if it has
at least k+ 1 vertices and does not have any separating (k− 1)-set. Graphs that are 2-connected and 3-connected
are also called biconnected and triconnected, respectively. A block of a graph G is a maximal subgraph that is
biconnected.

A k-subdivision G′ of a (plane) graph G is a (plane) graph obtained from G by replacing each edge (u, v)
with a path between u and v containing at most k intermediate vertices. If the path replacing (u, v) has at least
one intermediate vertex, we call the edges of the path subdivision edges and its intermediate vertices subdivision
vertices. An augmentation G′ of a (plane) graph G is a (plane) graph obtained from G by adding some dummy
vertices and edges.

Planar 3-trees, also referred as stacked triangulations or Apollonian graphs, are special types of planar
triangulations which can be generated from a triangle by a sequential addition of vertices of degree 3 inside
faces.

A directed graph is acyclic if it does not contain any directed cycle.
An x-monotone (y-monotone) curve is a curve that intersects every vertical line (every horizontal line) in at

most one point. An xy-monotone curve is both x-monotone and y-monotone.
A drawing in which edges are drawn as polylines is a k-bend drawing on a grid if each edge has at most k

bends, and all vertices and bends have integer coordinates. For such a drawing the area of the drawing is defined
by the area of its minimum bounding box. If the vertices are not required to lie on a grid, the area denotes the ratio
of the lengths of the longest and the shortest edge.

Windrose Planarity. A quadrant-constrained graph (q-constrained graph) is a pair (G,Q) where G is an
undirected planar graph andQ contains q-constraints, that is, a partition of the neighbors of each vertex v into four
sets

↗
v,

↖
v,

↙
v, and

↘
v. We define the ↗-, ↖-, ↙-, and ↘-quadrant of a vertex v in a drawing as the first, second, third,

and fourth quadrant around the point where v lies, respectively. A windrose-planar drawing of a q-constrained
graph (G,Q) is a planar drawing of G such that each edge (u, v) is drawn as an xy-monotone curve and u lies
in the ◦-quadrant of v, if u ∈ ◦

v. We say that (G,Q) is a windrose-planar graph if it admits a windrose-planar
drawing. We assume throughout that the relative assignment of adjacent vertices is consistent in the following
sense: for each edge (u, v), we have v ∈ ↖

u ⇔ u ∈ ↘
v, and v ∈ ↗

u ⇔ u ∈ ↙
v. Whenever we add an edge (u, v) to a

q-constrained graph and assign v to one of the four quadrants of u, we will implicitly assume that u is added to the
appropriate quadrant of v to maintain consistency. The problem WINDROSE PLANARITY asks whether a given
q-constrained graph is windrose-planar; see Fig. 3 for a negative example. Clearly, a disconnected q-constrained
graph is windrose-planar if and only if all its connected components are. Hence, in the remainder of the paper we
assume the graphs to be connected.

Let (G,Q) be a q-constrained plane graph with planar embedding E . The leftmost (the rightmost) neighbor
of a vertex v of G in

◦
v, with ◦ ∈ {↗,↖,↙,↘}, is the neighbor u ∈ ◦

v, such that there exists no vertex u′ ∈ ◦
v that

precedes (follows) u in the clockwise order of the neighbors around v in E . Note that such a neighbor might not
exist. We denote by G↑ the graph obtained from G by directing its edges from u to v if v ∈ ↖

u ∪ ↗
u. Similarly, we

denote by G→ the graph obtained from G by directing its edges from u to v if v ∈ ↗
u ∪ ↘

u.

OBSERVATION 1. In any embedding corresponding to a windrose-planar drawing of a q-constrained graph
(G,Q), for each vertex u of G, the neighbors of u appear around u in this clockwise order: first the vertices
in

↖
u, then the vertices in

↗
u, then the vertices in

↘
u, and then the vertices in

↙
u.

Relationship with Upward Planarity. WINDROSE PLANARITY has a strong relationship with upward
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Figure 3: (a) Illustration of a q-constrained plane graph (G,Q) that is not windrose-planar, indicating the desired
quadrant for each edge. (b–c) Upward-planar drawings of the plane graphs G↑ and G→.

planarity [4], which is defined as follows. Let D be a directed graph. An upward-planar drawing of D is a
planar drawing in which each directed edge (u, v) is drawn as a y-monotone curve such that vertex u lies below
vertex v. The upward planarity problem asks whether D admits an upward-planar drawing. The first relationship
concerns graphs G↑ and G→. We say that a q-constrained graph (G,Q) is bi-acyclic if G↑ and G→ are acyclic.
Recall that upward-planar graphs are acyclic, hence any q-constrained windrose-planar graph is bi-acyclic. It
is easy to see that the upward planarity of G↑ and G→ is a necessary condition for the windrose planarity of
(G,Q). On the other hand, this condition is not sufficient, as shown in Fig. 3. An even stronger relationship is
that WINDROSE PLANARITY is, in fact, a generalization of upward planarity. Namely, an instance of upward
planarity can be translated into one of WINDROSE PLANARITY by just placing the outgoing neighbors and the
incoming neighbors of a vertex v into sets

↗
v and

↙
v, respectively. The two instances are then equivalent: If we

have an upward-planar drawing, we can assume that the edges are straight-line segments [9]; then, we can make
all slopes larger than 1 in absolute value by scaling the x-axis; and finally perform a rotation by π/4 to make
the drawing windrose-planar. The other direction is trivial, as any windrose-planar drawing of (G,Q) is also an
upward planar drawing of G↑. Since upward planarity is NP-complete [15] and since there are directed graphs
requiring exponential area in any straight-line upward-planar drawing [10], the following negative results are
immediate consequences.

THEOREM 2.1. The problem WINDROSE PLANARITY is NP-complete.

THEOREM 2.2. There exists an infinite family of q-constrained graphs (Gn, Qn) on n vertices such that any
straight-line windrose-planar drawing of (Gn, Qn) has area Ω(2n/2), under any resolution rule.

In Section 6, we strengthen Theorem 2.2 by exploiting all four sets of neighbors to give a
q-constrained n-vertex graph requiring Ω(4n/3) area in any straight-line windrose-planar drawing.

3 Q-Constraints and Angle Categories
In this section, we develop an alternative description of q-constrained graphs that is sometimes more useful than
the quadrant-based view. We consider only xy-monotone drawings. Further, since any xy-monotone drawing
can be transformed into an xy-monotone polyline drawing by suitably adding bends, we consider only polyline
drawings. Finally, we assume that segments incident to vertices are close to having slope 1 or −1. Note that every
xy-monotone drawing can be transformed into an xy-monotone drawing satisfying these restrictions by adding
bends close to the vertices.

Consider a plane graph. We call an incidence between a vertex v and a face f an angle. Every angle is
bounded by two edges e and e′ incident to v, where e precedes e′ in the clockwise circular order of the edges
incident to v; we denote the angle by 〈e, e′〉 and say that 〈e, e′〉 ∈ f . If vertex v has degree 1, then it has just one
angle 〈e, e〉 that is bounded by the same edge from both sides. If a vertex v has only one angle in f (e.g., if the
graph is a triangulation), then we also denote the angle by 〈v, f〉.

We consider five different angle categories: 0◦, 90◦, 180◦, 270◦, and 360◦. A labeling A assigns to each
angle of a plane graph one of these angle categories; see Fig.4(a). A labeled graph (G,A) is a pair where G is a
plane graph andA is a labeling of its angles. An angular drawing of (G,A) is an xy-monotone drawing ofG such
that (i) the first and the last segment of an edge have slopes close to 1 or−1, i.e., the polar angles of such segments
differ by at most 1◦ from one of values ±45◦ or ±135◦, and (ii) the geometric angle α formed by two consecutive
adjacent edges e and e′ is close to the angle category of the corresponding angle 〈e, e′〉, i.e., |α−A(〈e, e′〉)| < 2◦.
See Fig. 4(b).

LEMMA 3.1. Let (G,A) be a labeled graph. If (G,A) admits an angular drawing, then A satisfies the following
conditions.
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Figure 4: (a) Windrose-planar drawing Γ of a q-constrained plane graph (G,Q). Angle categories of the labeling
A corresponding to Γ are shown. (b) Angular drawing Γ′ of (G,A); note that Γ′ is also a windrose-planar drawing
of (G,Q).

(a) Vertex condition: the sum of the incident angle categories is 360◦ for every vertex.
(b) Cycle condition: for every face f of length k, if f is an internal face, then the sum of the angles is

k · 180◦ − 360◦; otherwise, if f is the outer face, then the sum of its angle categories is k · 180◦ + 360◦.

Proof. Let Γ be an angular drawing of (G,A) that we assume, without loss of generality, to be a polyg-
onal drawing (i.e., each edge is a polyline). Let e = (u, v) be an edge of G. Refer to Fig. 5.
The direction du(e) of e at u is the polar angle of e at u, where du(e) ∈ (−180◦,+180◦). The reference di-
rection ru(e) of e at u is the polar angle of the diagonal line in the center of the angular range corresponding
to the quadrant of u containing v, where ru(e) ∈ {±45◦,±135◦}. The correction term αu(e) of e at u equals
du(e)− ru(e). Note that du(e) = 180◦ − dv(e) and ru(e) = 180◦ − rv(e), hence αu(e) = αv(e) and we simply
write α(e).

Consider an angle 〈e, e′〉 at a vertex v. We denote by β(〈e, e′〉) the geometric angle of e and e′ at v. By the
definition of the correction terms we have the following: β(〈e, e′〉) = A(〈e, e′〉)− α(e) + α(e′).

Consider the edges e1, e2, . . . , ek in this circular order around vertex v, and let ek+1 = e1. Then,
360◦ =

∑k
i=1 β(〈ei, ei+1〉) =

∑k
i=1A(〈ei, ei+1〉) since the correction terms cancel out. Hence, the Vertex

condition holds.
Consider the edges e1, e2, . . . , ek in this circular order along face f , and let ek+1 = e1. We can add additional

vertices at the bend points of the edges. Subdividing an edge increases k but it also creates an additional angle of
category 180◦, so the total effect neutralizes. Thus, we now we have a k-gon (possibly with a larger k than
before) whose edges ei are straight-line segments. By the formula for the angle sum of a k-gon, we have
k · 180◦ − 360◦ =

∑k
i=1 β(〈ei, ei+1〉) =

∑k
i=1A(〈ei, ei+1〉), where the latter equality holds since the correction

terms cancel out. The proof for the outer face is analogous. Hence, the Cycle condition holds. �

A labeling satisfying the conditions of Lemma 3.1 is called an angular labeling. We now establish a
connection between angular labelings and q-constraints. Given a labeled graph (G,A), the relative positions
of the adjacent vertices with respect to each other in any angular drawing Γ of (G,A) are unique up to a rotation
of Γ by a multiple of 90◦. Hence, starting fromA, we can uniquely define q-constraintsQA forG that preserve the

v

u

du(e)

e

ru(e)

αu(e)

Figure 5: Illustrations for the definitions of direction, reference direction, and correction term.



circular order of their quadrants. Namely, consider an angle 〈e, e′〉 bounded by edges e = (v, u) and e′ = (v, w).
Assume, without loss of generality up to a rotation by a multiple of 90◦, that u ∈ ↗

v. If either A(〈e, e′〉) = 0◦

or A(〈e, e′〉) = 360◦, then u and w lie in the same quadrant of v in any angular drawing of G respecting A; we
represent this fact by setting w ∈ ↗

v; if A(〈e, e′〉) = 90◦, then w ∈ ↘
v; if A(〈e, e′〉) = 180◦, then w ∈ ↙

v; and if
A(〈e, e′〉) = 270◦, then w ∈ ↖

v. We formalize these concepts in the following observation.

OBSERVATION 2. An angular labeling A defines a unique (up to cyclically shifting the quadrants) set QA of q-
constraints. Any angular drawing of (G,A) is a windrose-planar drawing of (G,QA) (after a possible rotation
by a multiple of 90◦).

Conversely, for a q-constrained graph (G,Q) there may exist different angular labelings A and A′ such that
QA = QA′ = Q. Suppose we are given a windrose-planar drawing Γ of a q-constrained graph (G,Q). Assume
that the first and the last segment of each edge has slope close to 1 or to−1; see Fig. 4(b). Now, all geometric angles
at the vertices are close to one of the angles in {0◦, 90◦, 180◦, 270◦, 360◦} in Γ. This determines a unique angular
labeling AΓ of G. However, the angular labeling AΓ depends on Γ, not only on Q. In fact, while angle categories
of 90◦, 180◦, and 270◦ are uniquely defined by the q-constraints, the assignment of 0◦ and 360◦ angle categories is
not unique. This is the case precisely for those vertices that have degree at least 2 and whose neighbors all lie in the
same quadrant. We call such vertices ambiguous. Vertices A,C,E, F,G,H, I,M of Fig. 2 are ambiguous, while
the remaining vertices are not. A large-angle assignment L assigns to each ambiguous vertex one of its incident
angles. The q-constraints Q together with a large-angle assignment L uniquely determine a labeling AQ,L of G.

OBSERVATION 3. Any windrose-planar drawing of (G,Q) in which the first and the last segment of each edge
has slope close to 1 or−1 and the geometric angles close to 360◦ comply with the large-angle assignment L is an
angular drawing of (G,AQ,L).

Once we have performed the large-angle assignment for each vertex, the problems of computing windrose-
planar drawings and angular drawings are equivalent. Hence, in the following, we will refer to these notions of
drawings interchangeably.

Let G ⊆ G′ be two plane graphs and let A and A′ be labelings of G and G′, respectively. We say that A′

refines A if for each angle 〈e, e′〉 of G we have A(〈e, e′〉) =
∑
〈l,l′〉∈C(e,e′)A(〈l, l′〉), where C(e, e′) denotes the

angles of G′ clockwise between e and e′.

LEMMA 3.2. Let (G,A) be a labeled graph and let G′ be the graph obtained by adding to G an edge e inside a
face f of G. Also, let f1 and f2 be the two faces of G′ that are incident to e. Let A′ be a labeling of G′ refining A.
Then, A′ is an angular labeling if and only if A is an angular labeling and f1 satisfies the Cycle condition.

Proof. Clearly, A′ satisfies the Vertex condition for all vertices if and only if A does, due to the fact that A′ refines
A.

We now consider the Cycle condition. First observe that all faces of G′ not incident to e also occur in G with
the same angles; hence their Cycle conditions are equivalent.

Suppose that A′ is an angular labeling, which implies that f1 and f2 satisfy the Cycle condition. Hence,
si =

∑
〈a,b〉∈fi = 180◦ · ki − 360◦, with i = 1, 2, where ki is the length of the facial cycle of fi. Since A′ refines

A, we have that s =
∑
〈a,b〉∈f = s1 + s2 = 180◦ · k1 − 360◦ + 180◦ · k2 − 360◦ = 180◦ · (k1 + k2 − 2)− 360◦.

Given that the length of the facial cycle of f is k = k1 + k2 − 2, we have that f satisfies the Cycle condition.
Suppose thatA is an angular labeling and that f1 satisfies the Cycle condition. Hence, s = 180◦ ·k−360◦ and

s1 = 180◦·k1−360◦. SinceA′ refinesA, we have that s2 = s−s1. Thus, s2 = 180◦·k−360◦−(180◦·k1−360◦) =
180◦ · (k − k1) = 180◦ · (k − k1 + 2) − 360. Given that k2 = k − k1 + 2, we have that f2 satisfies the Cycle
condition. This concludes the proof. �

COROLLARY 3.1. Let (G′, A′) be a labeled graph such that A′ is angular and let G be a connected subgraph
of G′ with the unique labeling A such that A′ refines A. Then, A is an angular labeling. In particular, for every
simple cycle C of G′, the face obtained by removing the interior of C satisfies the Cycle condition.

4 Triangulated q-constrained graphs
In this section, we consider windrose-planar drawings of triangulated q-constrained graphs. We prove that, for
these graphs, the necessary condition that the labeling determined by the q-constraints is angular (Lemma 3.1) is
also sufficient for windrose-planarity. Further, we prove that a windrose-planar triangulated q-constrained graph
admits a windrose-planar drawing with one bend per edge and polynomial area.

We start by observing some important properties of triangulated q-constrained graphs and of their angular
labelings. The first observation directly follows from the Cycle condition, which requires that the sum of the angle
categories of the angles incident to each internal triangular face is 180◦.
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Figure 6: Windrose-planar drawings of two quasi-triangulated q-constrained graph.

OBSERVATION 4. Let (G,Q) be a triangulated q-constrained graph with large-angle assignment L and let AQ,L

be the corresponding labeling of G. If AQ,L is angular, then no internal angle of G has category larger than 180◦

and each internal face f of G has at least an internal angle with category 0◦.

An implication of this observation is that no internal angle can be assigned category 360◦. In fact, a large-
angle assignment is needed only for vertices incident to the outer face. Hence, an angular labeling of a triangulated
q-constrained graph, if any, is unique. In the remainder of the section, when considering a triangulated q-con-
strained graph, we will thus omit to explicitly refer to its large-angle assignment.

LEMMA 4.1. Let (G,Q) be a triangulated q-constrained graph and suppose that the labeling AQ determined
by Q is angular. Then, (i) the two graphs G↑ and G→ do not have internal sources or sinks, and (ii) (G,Q) is
bi-acyclic.

Proof. We first prove that G↑ and G→ do not have internal sources or sinks. Assume that there is an internal
source v in G↑. This implies that

↘
v =

↙
v = ∅, and hence v has an internal angle with category 270◦ or 360◦, which

contradicts Observation 4. The cases that v is a sink or that v is a source/sink in G→ are analogous. Thus, there
are no internal sources and sinks.

To prove that (G,Q) is bi-acyclic, we first show that the internal faces of G↑ and G→ are acyclic. Consider
any internal face f = (u, v, w) and the angle 〈e, e′〉, where e = (v, u) and e′ = (v, w), such that A(〈e, e′〉) = 0◦,
which exists by Observation 4. By construction of AQ, we have that u,w ∈ ◦

v, for some ◦ ∈ {↗,↖,↙,↘}, and
hence e and e′ are either both outgoing or both incoming edges of v in G↑ and G→. Hence, f is acyclic in both
G↑ and G→.

In order to prove that both G↑ and G→ are acyclic, we show by a counting argument that the acyclicity of
each internal face of a triangulated directed graph H without internal sources and sinks implies the acyclicity of
the whole graph. Namely, since each internal triangular face of H is acyclic, it has a source and a sink vertex,
plus a vertex that we call transition vertex. Assume, for a contradiction, that H has a simple directed cycle C with
nC vertices. Consider the internally triangulated subgraph H ′ of H consisting of C together with all vertices and
edges in the interior of C. If H ′ has nI interior vertices, then it has 2nI + nC − 2 internal triangular faces. Since
H does not have internal sources or sinks, neither does H ′. Therefore, every internal vertex v of H ′ is a transition
vertex for at least two faces, namely the faces whose boundary contains an incoming and an outgoing edge of v.
Also, every vertex v on the cycle C is a transition vertex for at least one face since, by assumption, C is a directed
cycle and hence v has at least one incoming and at least one outgoing edge inH ′. Thus, there are at least 2nI +nC
pairs v, f such that v is a transition vertex for face f . However, there are only 2nI + nC − 2 faces, each with one
transition vertex, a contradiction. Hence, H is acyclic. This concludes the proof of the lemma. �

We now show that a triangulated q-constrained graph (G,Q) whose corresponding labeling AQ is angular
is windrose-planar. By Observation 4, each internal angle of (G,Q) has category 0◦, 90◦, or 180◦ in AQ. In
Lemma 4.2, we prove that, if no internal angle has category 180◦, then (G,Q) admits a straight-line windrose-
planar drawing on the n×n grid. We prove this lemma under the assumption that (G,Q) is internally triangulated
and its outer face has four incident vertices wN, wW, wS, wE, with wN ∈

↗
wW, wW ∈ ↖

wS, wS ∈
↙
wE, and

wE ∈
↘
wN; we say that (G,Q) is quasi-triangulated (see Fig. 6). We will then exploit this lemma to prove the

main result of the section in Theorem 4.1.

LEMMA 4.2. Let (G,Q) be a quasi-triangulated q-constrained graph whose corresponding labeling AQ is
angular. If each internal angle of (G,AQ) has category 0◦ or 90◦, then (G,Q) has a straight-line windrose-
planar drawing on the n× n grid, which can be constructed in O(n) time.
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Figure 7: Orientations of a face f = (u, v, w), when (a) one angle has category 0◦ and (b–c) two angles have
category 0◦.

Proof. We construct a straight-line drawing Γ of (G,Q) by assigning the x-coordinates of the vertices according
to a topological ordering of G→ and the y-coordinates according to a topological ordering of G↑. Since, by
Lemma 4.1, G is bi-acyclic, such topological orderings can always be found, and the vertices of G lie in Γ on the
n× n grid. Clearly, drawing Γ can be constructed in O(n) time.

We now show that Γ is windrose-planar. Let us consider an internal face f = (u, v, w). Since no internal
angle has category 180◦ and since AQ satisfies the Cycle condition, we have that one of the internal angles of f
has category 0◦, say A(〈u, f〉) = 0◦, while the others have 90◦, that is, A(〈v, f〉) = A(〈w, f〉) = 90◦.

We will show that f is drawn in Γ with the same orientation as in the planar embedding of G, that is, the
order of the edges around each of the vertices of f in Γ coincides with the one in the given planar embedding of
G. This is equivalent to saying that the order in which u, v, and w are encountered when traversing f clockwise
in Γ is the same as they appear along the boundary of f in the planar embedding of G. In fact, the orientation of f
is uniquely determined by the order of the x- and y-coordinates imposed by G→ and G↑, respectively; see Fig. 7.
This is due to the fact that, since A(〈u, f〉) = 0◦, vertex u is either a source or a sink of f in both G→ and G↑,
while, since A(〈v, f〉) = A(〈w, f〉) = 90◦, each of vertices v and w is either a sink or a source in exactly one
of G→ and G↑, and neither a sink nor a source in the other one. Hence, the x-coordinate of w lies between those
of u and v, and the y-coordinate of v lies between those of u and w, as in Fig. 7(a), or vice versa. Note that this
property would not hold if two interior angles of f had category 0◦ and the third one 180◦, as in Fig. 7(b)–7(c),
but this case is excluded by hypothesis.

We claim that the orientation of f in Γ agrees with the orientation of f in the planar embedding ofG. Suppose
that u,w, v appear in this clockwise order along f in this embedding. Since A(〈u, f〉) = 0◦, vertices v and w
belong to the same quadrant of u, say v, w ∈ ↗

u. Since u,w, v appear in this clockwise order along f , vertex v
immediately precedes u in the clockwise order around w in the planar embedding of G. This, together with the
fact that A(〈w, f〉) = 90◦, implies that v ∈ ↘

w (note that u ∈ ↙
w since w ∈ ↗

u). These q-constraints uniquely
determine the orientation of the edges of f in G↑ and G→, and hence the ordering of the x- and y-coordinates of
u, v, and w in Γ. Namely, x(u) < x(w) < x(v) and y(u) < y(v) < y(w). Note that any drawing of f respecting
these two orders is such that u, v, and w appear in this clockwise order (see Fig. 7(a)), which concludes the proof
of the claim.

As for the outer face, the fact that its orientation in Γ agrees with the one in the planar embedding of G
directly follows from the fact that, by the definition of quasi-triangulated q-constrained graphs, the outer face has
a unique orientation, namely wW, wN, wE, wS always appear in this clockwise order around the outer face. This
agrees with the order in which they appear in Γ, since wW and wE (wS and wN) are the first and the last vertices
in any topological ordering of G→ (of G↑).

To complete the proof, we have to argue that having all the faces of G drawn in Γ with the same orientation as
in the planar embedding ofG is sufficient for Γ to be planar. We define a function ϕ : R2 → N, where ϕ(x) counts
the number of triangles of G bounding a face in which a point x is contained. Since the triangles are oriented
consistently, ϕ(x) does not change when x crosses an interior edge: it leaves one triangle and enters another. The
function ϕ(x) changes only (by ±1) when crossing an external edge, and we have ϕ(x) = 0 at infinity. Thus,
ϕ(x) = 1 inside the external quadrilateral (except on edges and vertices) and ϕ(x) = 0 outside. We conclude that
the triangular faces form a tiling of the external quadrilateral, and thus they form a straight-line planar drawing. �

We now prove that every triangulated q-constrained graph whose corresponding labeling is angular can be
transformed into a q-constrained graph that satisfies the conditions of Lemma 4.2.

LEMMA 4.3. Let (G,Q) be a triangulated q-constrained graph whose corresponding labeling AQ is angular.
Then, there exists a quasi-triangulated q-constrained graph (G∗, Q∗) such that (i) the labeling AQ∗ of (G∗, Q∗)
is angular and no internal angle has category 180◦ in AQ∗ , and (ii) (G∗, Q∗) contains a 1-subdivision of G as a
subgraph. Also, (G∗, Q∗) can be constructed in linear time.
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Figure 8: (a) The ↗-subgraph G↗(v) of G with respect to a vertex v with
↗
v = ∅. Black edges belong to G↗(v),

while gray edges do not. Bold edges compose the paths P↑(v), P̂ (v), and P→(v) delimitingG↗(v). (b) Illustration
for the case in which edge (u,w) is not incident to the outer face of G. The gray-shaded region is the one where
r can lie in G, since r /∈ ↖

u and r /∈ ↘
w.

Proof. We first need to introduce some additional definitions; refer to Fig. 8(a). Let v be any vertex ofG. Consider
the unique path P↑(v) = u1, . . . , um such that (i) u1 = v, (ii) um is the unique vertex of P↑(v) incident to the
outer face of G, and (iii) for each i = 1, . . . ,m − 1, vertex ui+1 is the rightmost neighbor of ui in

↖
ui if

↖
ui 6= ∅;

otherwise, it is the leftmost neighbor of ui in
↗
ui. Since AQ is angular, no internal angle has category larger than

180◦, and hence
↖
ui ∪

↗
ui 6= ∅ as long as ui is not an external vertex, and since, by Lemma 4.1, G↑ is acyclic, the

path P↑(v) can be constructed. Analogously, consider the unique path P→(v) = w1, . . . , wh such that (i) w1 = v,
( ii) wh is the unique vertex of P→(v) incident to the outer face of G, and (iii) for each i = 1, . . . , h − 1, vertex
wi+1 is the leftmost neighbor of wi in

↘
wi if

↘
wi 6= ∅; otherwise, it is the rightmost neighbor of wi in

↗
wi. Since

↗
wi ∪

↘
wi 6= ∅ as long as wi is not an external vertex and since, by Lemma 4.1, G→ is acyclic, the path P→(v) can

be constructed. Graphs G↖(v), G↙(v), and G↘(v) are defined analogously.
We now proceed with the proof of the statement. Assume that there exists at least one internal angle 〈v, f〉

with category 180◦ in G.
We describe the case in which

↗
v = ∅; the other cases are analogous. Consider the set X↗ of internal vertices

such that for each x ∈ X↗ there exists a face fx with A(〈x, fx〉) = 180◦ and
↗
x = ∅. Let v ∈ X↗ be a vertex

such that the rightmost neighbor u of v in
↖
v and the leftmost neighbor w of v in

↘
v are not in X↗. Since G↗(u)

and G↗(w) are subgraphs of G↗(v) \ v, it follows that such a vertex exists.
Observe that, since

↗
v = ∅ and since G is triangulated, the triangle (u, v, w) is a face of G. Also, u ∈ ↖

w, by
the bi-acyclicity of (G,Q).

If edge (u,w) is not incident to the outer face, then there exists a vertex r creating a face (u,w, r) in G; refer
to Fig. 8(b). We claim that r /∈ ↖

u and r /∈ ↘
w. Namely, r ∈ ↖

u would imply that
↗
u = ∅, since w ∈ ↘

u and edges
(u, r) and (u,w) are clockwise consecutive around u. Analogous considerations lead to conclude that r /∈ ↘

w.
Now, we subdivide (u,w) with a vertex z and augment the obtained 1-subdivision of G with two dummy

edges (v, z) and (z, r) such that u ∈ ↖
z, r ∈ ↗

z, w ∈ ↘
z, and v ∈ ↙

z.
The obtained q-constrained graph (G′, Q′) is internally-triangulated.
We claim that the labeling AQ′ determined by Q′ is angular. By construction, AQ′ refines AQ, and hence the

Vertex condition is satisfied by all the vertices different from z; the Vertex condition for z holds since all its four
incident angles have category 90◦. Also, all the faces of G′ that are not incident to z are also faces of G and hence
satisfy the Cycle condition. Faces (u, z, v) and (v, z, w) have an angle with category 0◦ at u and w, respectively,
while all the other angles have category 90◦, and hence they satisfy the Cycle condition; finally, faces (u, r, z) and
(z, r, w) always have an angle with category 0◦ and two angles with category 90◦, regardless of the category of
the angle at r in AQ. By Lemma 4.1, we have that (G′, Q′) is bi-acyclic and has no internal sources or sinks.

We remark that the addition of the path between v and r via z adds a constraint on the relative position of
v and r in G′ that was not in G, namely that r has to lie above and to the right of v. However, we proved that
this does not alter the bi-acyclicity of (G′, Q′). This could also be seen by observing that the presence of edge
(u,w) and of vertices u and w implies that there exists no path inG from r to v whose edges are either all directed
upwards or all directed rightwards.

Finally, note that the two angles incident to v that are delimited by edge (v, z) get category 90◦, since z ∈ ↗
v,

and hence AQ′ has fewer internal angles with category 180◦ than AQ.
The case that the edge (u,w) is incident to the outer face is simpler. We subdivide (u,w) with a vertex z,

augment the obtained 1-subdivision of G with a dummy edge (v, z), and set z ∈ ↗
v, z ∈ ↖

w, and z ∈ ↘
u; hence

obtaining a new internally-triangulated q-constrained graph (G′, Q′). The proof that AQ′ is angular and has fewer
internal angles with category 180◦ than AQ proceeds as above.



Since, in both cases, we reduced the number of angles with category 180◦ by at least one, iterating the above
construction yields a q-constrained graph (G+, Q+) whose corresponding labeling AQ+ is angular and has no
angles with category 180◦.

Observe that (G+, Q+) contains a 1-subdivision of G as a subgraph; in fact, neither the subdivision nor the
dummy edges added to G to obtain G′ are subdivided again in the following applications of the transformation.
For the subdivision edge (w, z), this depends on the fact that the (at most) two vertices v and r creating a face with
w and z are such that z ∈ ↗

v, w ∈ ↘
v, z ∈ ↙

r, and either w ∈ ↙
r or w ∈ ↘

r; the proof for the other edges is analogous.
Further, G+ is internally-triangulated and its outer face is a 1-subdivision of the outer face of G such that, if d

is the subdivision vertex of edge (a, b) and b ∈ ◦
a, for some ◦ ∈ {↗,↖,↙,↘}, then d ∈ ◦

a and b ∈
◦
d. We augment

(G+, Q+) to a quasi-triangulated q-constrained graph (G∗, Q∗) by adding four vertices wN, wW, wS, and wE in
such a way that they respect the required conditions of the definition of a quasi-triangulated q-constrained graph.
Also, we add edges between the vertices on the outer face of (G+, Q+) and wN, wW, wS, wE in such a way that
each vertex of the outer face of (G+, Q+) has at least a neighbor in each of its quadrants, as follows (refer to
Fig. 6). For each vertex v on the outer face of (G+, Q+) such that

↗
v = ∅ (

↖
v = ∅, ↙

v = ∅, or
↘
v = ∅), we connect v

to wE (to wN , to wW , or to wS , respectively), and add wE to
↗
v (wN to

↖
v, wW to

↙
v, or wS to

↘
v, respectively). Note

that, by construction all the internal angles at the vertices on the outer face of (G+, Q+) get labels at most 90◦

in the labeling AQ∗ determined by Q∗. By construction, the four external vertices satisfy the Vertex condition;
also, AQ∗ refines AQ, and hence the Vertex condition is satisfied by all the internal vertices. Also, all the faces
of G∗ that are not incident to the four external vertices are also faces of G′ and hence satisfy the Cycle condition.
Faces of G∗ that are incident to exactly one of wN, wW, wS, wE, say wN, have the angle at wN with category
0◦ and the two other angles with category 90◦. Finally, the faces that are incident to two clockwise-consecutive
external vertices, say wN and wE, have the angle at wN with category 0◦ and the two other angles with category
90◦. Hence, all the faces satisfy the Cycle condition. By Lemma 4.1, we have that (G∗, Q∗) is bi-acyclic and has
no internal sources or sinks.

We now show that the augmentation of (G,Q) to (G∗, Q∗) can be performed in linear time. Clearly, we can
construct P↑(v), P←(v), P↓(v), and P→(v) for all vertices in total linear time via a depth-first search. In fact,
observe that a path P4(v) of a vertex v, with 4 ∈ {↑,←, ↓,→}, passing through a vertex u entirely contains path
P4(u). For each ◦ ∈ {↗,↖,↙,↘}, consider the set X◦ of internal vertices such that for each x ∈ X◦ there exists
a face fx withA(〈x, fx〉) = 180◦ and

◦
x = ∅. Let ◦ = ↗; the other cases are analogous. UntilX↗ 6= ∅, we select a

vertex v ∈ X↗ and test whether the rightmost neighbor u of v in
↖
v and the leftmost neighbor w of v in

↘
v are not in

X↗. If this is the case, we perform the augmentation described above, which can be easily performed in constant
time, and remove v from X↗. Otherwise, at least one of u and w belongs to X↗, say u, and we recursively repeat
the test starting from u. It follows from the fact that G↗(u) and G↗(w) are subgraphs of G↗(v) \ v, that each
vertex in X↗ appears exactly once in the recursion tree. This concludes the proof of the lemma. �

We now present the main results of the section.

THEOREM 4.1. A triangulated q-constrained graph (G,Q) is windrose-planar if and only if the labeling AQ

determined by its q-constraints is angular. Also, if (G,Q) is windrose-planar, then it admits a 1-bend windrose-
planar drawing on an O(n)×O(n) grid, which can be constructed in O(n) time.

Proof. The necessity comes from Observation 3 and Lemma 3.1. We prove the sufficiency. First, apply Lemma 4.3
to construct in linear time a quasi-triangulated q-constrained graph (G∗, Q∗) such that (i) (G∗, Q∗) admits an
angular labeling AQ∗ in which no internal angle has category 180◦, and (ii) G∗ contains a 1-subdivision of G as a
subgraph. Then, the first condition implies that we can apply Lemma 4.2 to construct in linear time a straight-line
windrose-planar drawing Γ∗ of (G∗, Q∗) on an O(n) × O(n) grid. Finally, construct a 1-bend windrose-planar
drawing Γ of (G,Q) starting from Γ∗, as follows. Initialize Γ as Γ∗ restricted to the vertices and edges of G.
Then, for each edge (u,w) of G that is not in G∗, consider the subdivision vertex z of (u,w) in G∗. Draw edge
(u, v) in Γ with a 1-bend poly-line whose two straight-line segments coincide with the drawing of the edges (u, z)
and (z, w) in Γ∗. Edge (u,w) is crossing-free in Γ since (u, z) and (z, w) are crossing-free in Γ∗. Also, it is
drawn in Γ as an xy-monotone curve and u lies in the correct quadrant of w due to the fact that Γ∗ is a straight-line
drawing and that, by construction, if u ∈ ◦

w in G, for some ◦ ∈ {↗,↖,↙,↘}, then z ∈ ◦
w and u ∈ ◦

z in G∗.
Vertices and bends of edges of G lie on an O(n)×O(n) grid in Γ, since they both correspond to vertices of G∗ in
Γ∗. �

The characterization provided in Theorem 4.1 directly yields a linear-time testing algorithm for the class of
triangulated q-constrained graphs, as the conditions of the theorem can be tested efficiently.

THEOREM 4.2. It is possible to test inO(n) time whether a triangulated q-constrained graph (G,Q) is windrose-
planar and, if so, to build a 1-bend windrose-planar drawing of it on an O(n)×O(n) grid.



5 Testing windrose planarity with fixed planar embedding
We now extend the results of Section 4 to general q-constrained plane graphs. Namely, we show that a q-con-
strained plane graph is windrose-planar if and only if its q-constraints determine an angular labeling. However,
while a triangulated q-constrained graph admits a unique labeling, a general q-constrained plane graph may
determine several labelings, one for each large-angle assignment.

We first show that a large-angle assignment for each vertex such that the corresponding labeling is angular, if
one exists, can be found via a simple flow network that is inspired by the one devised by Bertolazzi et al. [4] for
testing upward-planarity. The proof of the next lemma is based on such a flow network.

LEMMA 5.1. Given a q-constrained plane graph (G,Q), it can be determined in O(n log3 n) time whether there
exists a large-angle assignment L such that the corresponding labeling AQ,L is angular.

Proof. Recall that the angle assignment around a vertex is unique, except for the ambiguous vertices of (G,Q).
For such vertices, by the Vertex condition, exactly one of their incident angles needs to be assigned an angle
category of 360◦. Consider an internal face f whose facial cycle has length k. By the Cycle condition the angles
incident to f must sum up to k · 180◦ − 360◦. Since we know the angles at all non-ambiguous vertices, we can
compute a demand d(f) of how many ambiguous vertices must assign an angle of 360◦ to f such that the Cycle
condition is satisfied for f . Similarly, a demand can be computed for the outer face. Clearly, it is a necessary
condition that d(f) is a non-negative integer.

Altogether, we thus need to find an assignment of large angles (360◦) of ambiguous vertices to faces such that
each ambiguous vertex assigns one large angle to an incident face and such that each face f receives d(f) large
angles. We model this as a flow network. Let F be the set of faces of G and let B denote the set of ambiguous
vertices. The flow network N has vertex set F ∪ B and it contains arcs with capacity 1 connecting each vertex
b ∈ B to its incident faces. The vertices in B are sources with maximum out-flow 1, the vertices in F are sinks
with maximum in-flow d(f). By construction, the maximum flows of N where every vertex in B has out-flow 1
and each face f has in-flow d(f) correspond bijectively to the large-angle assignments of (G,Q) that result in an
angular labeling.

Observe that N is planar, and hence we can use the algorithm by Borradaile et al. [5] to compute such a flow
in O(n log3 n) time. To control the maximum in-flow and maximum out-flow of vertices, we simply connect a
new source vertex to each source and we connect each sink to a new sink vertex, so that the capacities of their
incident arcs can be used to limit the maximum in- and out-flows. �

In the following, let G be a plane graph with an angular labeling A. We show how to augment G to a
triangulated plane graph G′ with an angular labeling A′ that refines A. Then, an angular drawing of (G,A) can
be obtained from an angular drawing of (G′, A′), which exists by Theorem 4.1.

LEMMA 5.2. Let G be a plane graph with an angular labeling A. Then, G can be augmented in linear time to a
triangulated plane graph G′ with angular labeling A′ that refines A.

Proof. If the outer face of G is not a triangle, let e and e′ be two consecutive edges on the outer face of G,
sharing a vertex v. We add a new triangle (a, b, c) that contains G in its interior and an edge (v, a), and we set
A(〈(a, b), (a, v)〉) = A(〈(a, v), (a, c)〉) = 0, A(〈(b, c), (b, a)〉) = A(〈(c, a), (c, b)〉) = 90◦, A(〈e, (v, a)〉) = 0,
and A(〈(v, a), e′〉) = A(〈e, e′〉). Clearly, labeling A is still angular.

The original outer face has been turned into an additional interior face of this new graph. The new graph,
which we again denote by G, is connected, and its outer face is a triangle.

In the following, we will iteratively add edges until G becomes triangulated. We show that, as long as G is
not triangulated, we can add an edge e to G such that the resulting graph G + e is plane and admits an angular
labeling A′ that refines A. The lemma follows by induction.

Let f be an internal face of G whose facial cycle has length k ≥ 4. We have the following claim.

Claim. Let α1, α2, . . . , αk be a cyclic sequence of k ≥ 4 angles from the range {0◦, 90◦, 180◦, 270◦, 360◦} with
sum k · 180◦ − 360◦. Such a sequence is either the sequence (90◦, 90◦, 90◦, 90◦) of length 4, or it must contain
an adjacent pair (γ, δ) with γ ∈ {180◦, 270◦, 360◦} and δ ∈ {0◦, 90◦} (or vice versa).

Proof. Observe that the average angle is less than 180◦. Hence, if one of the angles above average, i.e.,
180◦, 270◦, 360◦, occurs at all, some of the other two angles 0◦, 90◦ must also occur, and somewhere the two
classes of angles must appear in adjacent positions. We are left with the case that only angles 0◦ or 90◦ appear;
this allows only the cyclic sequences (90◦ + 90◦ + 90◦ + 90◦), (90◦ + 90◦ + 0◦), and (0◦ + 0◦), but the last two
are excluded because they have less than four elements. �
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Figure 9: (a) A face f with four consecutive vertices v1v2v3v4. (b) Cutting a triangular ear v2v3v4 from f . The
dashed edges are the new edge v2v4 and parallel edges that might already exist in the graph.

Then, one of the patterns of the previous claim must occur, and, in each case, we will show that we can cut
off a triangular “ear” from f .

We will illustrate the operation for the pattern (270◦, 90◦). Together with the adjacent angles, we have a
subsequence (α, 270◦, 90◦, β) at four vertices v1, v2, v3, v4. We will add a diagonal edge between v2 and v4,
transforming the angle sequence into (α, 180◦ + 90◦, 90◦, 0◦ + β). This sequence indicates how the angles at
v2 and v4 are split by the new edge; see Fig. 9. The angles in the triangle (v2, v3, v4) are (90◦, 90◦, 0◦) (the
subsequence between the two + signs). According to Lemma 3.2, it suffices to check that the angles were
correctly split: 270◦ = 180◦ + 90◦ and β = 0◦ + β; and that the triangular face has the correct angle sum:
90◦+ 90◦+ 0◦ = 180◦. This means that we have split the k-cycle into a triangle and a (k− 1)-cycle such that the
Vertex and Cycle conditions are satisfied (Lemma 3.2). It remains to show that (v2, v4) did not create a multiple
edge. Fig. 9(b) shows the two possible ways how (v2, v4) might already be connected by an edge running outside
the face f . In both cases, consider the internal face g of the resulting 2-gon (v2, v4) after removing its interior.
By Corollary 3.1, it satisfies the Cycle condition, that is, all its internal angles have category 0◦. On the other
hand, it has a nonzero angle at v2, namely, at least 90◦ if v3 is inside g, and at least 180◦, otherwise. This is a
contradiction. It is also obvious that v2 and v4 are distinct vertices, because otherwise the angle at v3 would have
to be 360◦.

We represent the above example and three other cases in tabular form in Table 1(a). The treatment is similar
in all cases. The crucial property for excluding parallel edges is that both new angles at v2 are always positive.

Table 1(b) shows the three remaining cases of the previous claim. Here, we use a different argument to avoid
multiple edges: we always have two choices for inserting a diagonal, (v1, v3) or (v2, v4). By planarity, these pairs
cannot both be connected outside C.

To show that the augmentation of G can be performed in linear time, we describe how to augment a face f in
time linear in the size of f . We consider the angles around f in clockwise order and push them onto a stack. After
each push operation, we check whether the three top-most angles or the four top-most angles on the stack match
one the patterns in Table 1(a) or 1(b), respectively; if this is the case, then we apply the augmentation and the
corresponding transformation of the stack. This transformation updates the three top-most or the four top-most
positions of the stack and reduces the stack size by one. We exhaustively perform such reductions before we push
the next angle onto the stack. Clearly, the number of reductions is bounded by the number of push operations and
each reduction takes constant time. �

Table 1: Cutting off an ear from a face.
(a) The four cases involving angles 270◦ and 360◦.

v2 v3 v4

270◦, 90◦, β
⇒ 180◦ + 90◦, 90◦, 0◦ + β

360◦, 90◦, β
⇒ 270◦ + 90◦, 90◦, 0◦ + β

270◦, 0◦, β
⇒ 90◦ + 180◦, 0◦, 0◦ + β

360◦, 0◦, β
⇒ 180◦ + 180◦, 0◦, 0◦ + β

(b) The three cases not involving angles 270◦ and 360◦.

v1 v2 v3 v4

α, 180◦, 0◦, β
⇒ α+ 0◦, 180◦, 0◦ + 0◦, β
⇒ α, 0◦ + 180◦, 0◦, 0◦ + β

α, 180◦, 90◦, β
⇒ α+ 0◦, 180◦, 0◦ + 90◦, β
⇒ α, 90◦ + 90◦, 90◦, 0◦ + β

90◦, 90◦, 90◦, 90◦

⇒ 90◦ + 0◦, 90◦, 90◦ + 0◦, 90◦

⇒ 90◦, 0◦ + 90◦, 90◦, 0◦ + 90◦



By using Lemma 5.2, we can prove the following.

THEOREM 5.1. A q-constrained plane graph (G,Q) is windrose-planar if and only if it admits a large-angle
assignment L whose corresponding labeling AQ,L is angular. Also, if (G,Q) is windrose-planar and AQ,L is
given, then it admits a 1-bend windrose-planar drawing that can be computed in O(n) time.

Proof. For the necessity, assume that there exists a windrose-planar drawing Γ of (G,Q). Then, Γ defines a
large-angle assignment L. By Observation 3, Q and L uniquely determine a labeling AQ,L. Since Γ is an angular
drawing of (G,AQ,L), by Lemma 3.1, AQ,L is angular.

We now prove the sufficiency. Let (G,Q) be a q-constrained graph with a large-angle assignment L such that
AQ,L is angular. Then, by Lemma 5.2, G can be augmented to a triangulated plane graphG′ with angular labeling
A′ that refines AQ,L in O(n) time. Let Q′ = QA′ be the set of q-constraints determined by A′ (Observation 2).
By Theorem 4.1, (G′, Q′) admits a 1-bend windrose-planar drawing Γ′ on an O(n) × O(n) grid, which can be
constructed in O(n) time. Since all the q-constraints in Q also belong to Q′, the drawing Γ of (G,Q) obtained by
removing edges and vertices in G′ \G from Γ′ is a 1-bend windrose-planar drawing on an O(n)×O(n) grid. �

We are now ready to prove the main result of the section. By Lemma 5.1, it is possible to compute in
O(n log3 n) time a large-angle assignment L for (G,Q), if one exists, such that the corresponding labeling AQ,L

is angular. By Theorem 5.1, if L exists, then (G,Q) admits a 1-bend windrose-planar drawing on theO(n)×O(n)
grid that can be computed in O(n) time.

THEOREM 5.2. InO(n log3 n) time, it is possible to test whether a q-constrained plane graph is windrose-planar
and, if so, to construct a 1-bend windrose-planar drawing of it on the O(n)×O(n) grid.

6 Straight-line realizability of windrose-planar graphs
In Theorem 5.1, we proved that any windrose-planar q-constrained graph can be realized with one bend per edge.
In this section, we ask whether this is possible even with straight-line edges. We remark that every upward-planar
directed graph admits a straight-line upward-planar drawing [12].

In Theorem 6.1, we answer the above question in the positive for a particular class of graphs, in which every
block is either an edge or a planar 3-tree. Note that this class also includes trees as a subclass. On the other hand,
in Theorem 6.2, we give a family of q-contrained graphs that require exponential area if drawn straight-line, and
in Theorem 6.3, we provide a negative result for the straight-line realizability in a setting that is strongly related
to the one we study. This answers an open question posed by Fulek et al. [14].

THEOREM 6.1. Every windrose-planar q-constrained graph (G,Q) whose blocks are either edges or planar 3-
trees admits a straight-line windrose-planar drawing.

Proof. Let E be the planar embedding of (G,Q) in a windrose-planar drawing of (G,Q). We show how to
compute a straight-line windrose-planar drawing Γ of (G,Q) with the same embedding as E . The construction is
performed inductively on the number n of vertices of (G,Q).

We have two base cases, namely when n = 2 and when n = 3. In the first case, (G,Q) is an edge, and
hence it always admits a straight-line windrose-planar drawing. In the second case, (G,Q) is either a path, and
hence can be realized using straight-line edges, or a 3-cycle4, and, since it is windrose-planar, admits an angular
labeling. Hence, the fact that4 satisfies the Cycle condition implies that it admits a straight-line windrose-planar
drawing.

In the inductive case, n > 3. Consider a block β of (G,Q) such that, if (G,Q) is biconnected, then β =
(G,Q); otherwise, β has a single cutvertex c incident to it and not all the edges of (G,Q) that are incident to the
outer face of (G,Q) in E belong to β. Note that such a block exists; in fact, if (G,Q) is not biconnected, then
there exist at least two blocks with a single cutvertex incident to them. Also, this implies that c is incident to the
outer face of β in E and all the internal faces of β are also faces of (G,Q).

We distinguish three cases, based on whether |β| = 2, |β| = 3, or |β| > 3.
If |β| = 2, then let v be the vertex of β different from c. Note that v has degree 1 in (G,Q). Clearly, graph

G′ = G \ v is still such that every block is either an edge or a planar 3-tree. We inductively compute a straight-
line windrose-planar drawing Γ′ of (G′, Q′) with the same embedding as E restricted to the vertices and edges
of (G′, Q′). Let z and w (possibly z = w) be the neighbors of c that precede and follow v, respectively, in the
clockwise order of the neighbors around c in E ; see Fig. 10(a).

Let D be a disk centered at c of radius sufficiently small not to contain any vertex of (G′, Q′) different from
c in its interior. Let α be the region delimited by the two straight-line edge (c, w) and (c, z) in Γ′ and by the part
of the boundary of D from the intersection with edge (c, z) to the one with edge (c, w) in clockwise direction.
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Figure 11: The two cases for the placement of vertex
v in the interior of triangle (u,w, z) in the proof of
Theorem 6.1.

Note that placing v in any interior point of α yields a straight-line crossing-free drawing of G whose embedding
coincides with E ; refer to Fig. 10(a). We claim that there exists a point inside α such that placing v on this point
yields a straight-line windrose-planar drawing of (G,Q). Let ◦, ×, and 4 be the three indexes such that v ∈ ◦

c,
w ∈ ×c, and z ∈ 4

c. Since E has been obtained from a windrose-planar drawing ofG, it holds, by Observation 1, that
either (i) ◦ = ×, (ii) ◦ =4, or (iii) ◦ is encountered before 4 when traversing the circular set {↗,↖,↙,↘} starting
from ×. In all of these cases, the ◦-quadrant of c has a non-empty intersection with α, and the claim follows.

If |β| = 3, then let u and v be the vertices of β different from c, with v preceding u in the clockwise
order of the neighbors around c in E . Inductively compute a straight-line windrose-planar drawing Γ′ of
(G′ = G \ {v, u}, Q′) with the same embedding as E restricted to the vertices and edges of G′. Let w and z
(possibly w = z) be the neighbors of c that precede v and follow u, respectively, in the clockwise order of the
neighbors around c in E . As in the previous case, the fact that E has been obtained from a windrose-planar drawing
of (G,Q) ensures that the region α, defined as above, intersects the ◦-quadrant and the ×-quadrant of c, where
u ∈ ◦

c and v ∈ ×
c. For the same reason, either ◦ = × or there exists at most one quadrant between ◦ and ×

when traversing {↗,↖,↙,↘} starting from ◦. This implies that there exist pairs of points inside α, one in the
◦-quadrant and one in the ×-quadrant of c, such that, when placing u and v on these points, the angle spanned by
rotating around c in clockwise direction from edge (c, v) to edge (c, u) is smaller than 180◦, which implies that
edge (u, v) can be drawn as a straight-line crossing-free segment while respecting embedding E . By choosing
such an appropriate pair of points for u and v, one can also place u in the correct quadrant of v, and vice versa.
In fact, if there exists a quadrant between ◦ and × when traversing {↗,↖,↙,↘} starting from ◦, then u lies in the
◦-quadrant of v for any placement of u and v in the correct quadrants of c; since this is true even if the edges are
not required to be straight-line, it is also true in the windrose-planar drawing of (G,Q) we used to compute E ;
hence, we have that u ∈ ◦

v. If either ◦ and × are consecutive in {↗,↖,↙,↘} or ◦ = ×, then the correct relative
position of u and v can be obtained by adjusting the length of the edges (c, u) and (c, v), and by the angle they
form.

Otherwise, |β| > 3 and hence β is a planar 3-tree. Thus, there exists an internal vertex v of β of degree 3. Note
that v 6= c, since c is incident to the outer face of β. Hence, v has degree 3 in G as well, and graph G′ = G \ v is
still a graph of which each block is either an edge or a planar 3-tree. Inductively compute a straight-line windrose-
planar drawing Γ′ of (G′, Q′) with the same embedding as E restricted to the vertices of G′; refer to Fig. 10(b).
Let u, w, and z be the neighbors of v in G. Note that u, w, and z bound a face f of G′. Since G is bi-acyclic and
since the subgraph ofG induced by v, u, w, and z is a complete graph, there exist a total orderO↑ of these vertices
in the upward direction, determined by G↑, and another total order O→ in the rightward direction, determined by
G→. Also, v is neither the first nor the last vertex in these two orders, since it is an internal vertex of this subgraph.
Analogously, there exist two total orders O′↑ and O′→ of u, w, and z in the upward and in the rightward direction,
respectively, determined by (G′, Q′); clearly, O′↑ and O′→ coincide with O↑ and O→, respectively, when restricted
to u, w, and z. Since v lies in the interior of the 3-cycle (u,w, z) in the windrose-planar drawing of (G,Q) we
used to construct E , there exists a point in the interior of the triangle representing (u,w, z) in Γ′ such that placing
v on this point yields a straight-line windrose-planar drawing Γ of (G,Q). In fact, as already observed in the
proof of Lemma 4.2, there exist exactly two possible shapes of triangle (u,w, z) in Γ′, which are determined
by the two possible combinations of categories for the internal angles incident to u, w, and z. Namely, either
one angle has category 0◦, say 〈w, f〉 = 0◦, and 〈u, f〉 = 〈z, f〉 = 90◦, or two angles have category 0◦, say
〈w, f〉 = 〈u, f〉 = 0◦, and 〈z, f〉 = 180◦. In both cases, placing v in any point in the interior of triangle (u,w, z)
satisfies the q-constraints of any vertex with angle category equal to 0◦, say angle 〈w, f〉 = 0◦, since in this case v
belongs to the same quadrant of w as u and z, by Observation 1. Analogously, for the vertices with angle category
equal to 90◦ placing v in any point in the interior of triangle (u,w, z) trivially satisfies the constrains on the relative
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positions of v with respect to u, w, and z imposed by one ofG↑ andG→; we show that it is always possible to find
a point that satisfies the constraints imposed by both G↑ and G→. Consider the case that 〈u, f〉 = 〈z, f〉 = 90◦;
refer to the setting depicted in Fig. 11(a), the other settings being symmetric. In this case, the vertical line passing
through vertex u and the horizontal line passing through vertex z intersect at a point p in the interior of triangle
(u,w, z). Thus, triangle (u,w, z) intersects the four quadrants of point p and we can hence place v in one of these
quadrants so to satisfy the q-constraints of v with respect to u and z. Consider the case that 〈w, f〉 = 〈u, f〉 = 0◦;
refer to the setting depicted in Fig. 11(b), the other settings being symmetric. In this case, only three out of the
four quadrants of z intersect the interior of triangle (u,w, z); assume, as in Fig. 11(b), that the ↙-quadrant does
not intersect (u,w, z). We claim that v /∈ ↙

z. This is due to the fact that w ∈ ↘
z, u ∈ ↖

z, and v lies between u and w
in the clockwise order of the neighbors of z. Then, the claim follows from Observation 1. Hence, we can place v
in one of these three quadrants so to satisfy the q-constraints of v with respect to z.

The planarity of Γ follows from the fact that placing a vertex in any interior point of a triangle and connecting
it to its three vertices does not introduce any crossing. �

In the following theorem we show a family of q-constrained graphs whose windrose-planar drawings require
exponential area.

THEOREM 6.2. There is a q-constrained graph with 3k vertices such that any windrose-planar drawing requires
area at least 4k−1 if the distance between the vertices is at least 1.

Proof. The graph consists of k nested triangles whose edges are alternately directed in the NE-SW and in the
NW-SE direction. Fig. 12(a) shows two successive triangles (a, b, c) and (a′, b′, c′) in this nested sequence. The
graph has additional edges connecting the triangles to ensure nesting, which are not shown. The area of the
circumscribed box R around (a, b, c) is at least twice the area of (a, b, c), since (a, b, c) can be extended to a
parallelogram (a, b, c, d) of double area which is still contained in R. Moreover, as we show below, the area of the
triangle (a′, b′, c′) is at least twice the area of the rectangle R. The area of the innermost triangle is at least 1/2,
and the theorem follows.

To see that the area of the triangle (a′, b′, c′) is at least twice the area of the enclosed rectangle R, consider
the smallest possible triangle for a fixed R; see Fig. 12(b). It is clear that the edges (a′, b′) and (b′, c′) must be
aligned with the edges of R, and (a′, c′) must touch R. A straightforward one-parameter minimization shows that
the minimum area of (a′, b′, c′) is achieved when R touches the midpoint of (a′, c′), and then the area is twice the
area of R. �

The BI-MONOTONICITY problem [14] takes as input a bi-ordered graph, that is, a triple 〈G(V,E), γ, λ〉
where G is a planar graph, while γ : V ↔ {1, . . . , n} and λ : V ↔ {1, . . . , n} are two bijective functions, each
specifying a total order of V , and asks whether a bi-monotone drawing of 〈G(V,E), γ, λ〉 exists, that is, a planar
drawing of G such that x(u) < x(v) if and only if γ(u) < γ(v), y(u) < y(v) if and only if λ(u) < λ(v), and
edges are represented by xy-monotone curves. We say that a bi-ordered graph is bi-monotone if it admits a bi-
monotone drawing. In other words, while problem WINDROSE PLANARITY asks to realize a partial order among
the vertices in one direction and another partial order in the other direction, this problem asks to realize two total
orders. We prove that not all the bi-monotone graphs admit straight-line bi-monotone drawings; see Fig. 13.
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THEOREM 6.3. There exists a bi-monotone bi-ordered graph 〈G(V,E), γ, λ〉 that does not admit any straight-
line bi-monotone drawing.

Proof. Graph G(V,E) consists of cycles (a, b, c, d, e) and (a′, b′, c′, d′, e′); function γ induces a total order
e′, c′, a, b, d′, d, b′, a′, c, e, while function λ induces a total order e′, b′, c′, d′, a′, a, d, c, b, e. A bi-monotone
drawing of 〈G(V,E), γ, λ〉 is provided in Fig. 13.

We only have to prove that 〈G(V,E), γ, λ〉 admits no straight-line bi-monotone drawing. Namely, note that, in
any straight-line bi-monotone drawing of 〈G(V,E), γ, λ〉, the lines through edges (a, b) and (c, d) must converge
on the side of b and c, that is, the half-line starting at a and passing through b must intersect the half-line starting
at d and passing through c, as otherwise edges (a, e) and (d, e) could not be drawn as straight-line segments.
Hence, ∆y(a, b)/∆x(a, b) < ∆y(c, d)/∆x(c, d) must hold, where ∆◦(α, β) = | ◦ (β) − ◦(α)| with ◦ ∈ {x, y}.
However, since ∆y(a, b) > ∆y(c, d) holds due to function λ, in order to satisfy the above inequality it must
be ∆x(a, b) > ∆x(c, d). With a symmetrical argument on cycle (a′, b′, c′, d′, e′), one can prove that it must be
∆x(a′, b′) > ∆x(c′, d′). However, function γ enforces ∆x(a, b) < ∆x(c′, d′) and ∆x(a′, b′) < ∆x(c, d). Hence,
∆x(a, b) < ∆x(c′, d′) < ∆x(a′, b′) < ∆x(c, d) < ∆x(a, b), and the statement follows. �

7 Conclusions and Open Problems
In this paper we studied the concept of WINDROSE PLANARITY of a graph, that is planarity where each neighbor
of a vertex v is constrained to lie in a specific quadrant of v. Besides its theoretical appeal and its practical
applications, we studied this new notion of planarity because of its methodological relevance. Namely, graphs have
been studied for centuries focusing both on their abstract topological nature and on their geometric representations.
In this dichotomy WINDROSE PLANARITY essentially has a intermediate position, since a windrose-planar graph,
while still being an abstract topological structure, has already absorbed – because of the relative positions among
its adjacent vertices – a fair amount of geometry.

We have shown that if the combinatorial embedding of a graph is given, then WINDROSE PLANARITY can
be tested in polynomial time. We also give several contributions on the question whether a windrose-planar graph
admits a straight-line (windrose-planar) drawing, which is probably the most studied geometric representation of
graphs.

Several interesting problems arise. (i) Does a windrose-planar graph always admit a straight-line windrose-
planar drawing? The usual methods for constructing planar straight-line drawings [7, 19] do not seem to be easily
extended to cope with this. (ii) In Section 6 we have stated that every windrose-planar q-constrained graph whose
blocks are either edges or planar 3-trees admits a straight-line windrose-planar drawing, however our techniques
might produce drawings whose vertices are placed arbitrarily close to each other. Are there algorithms for this
family of graphs that assuming a finite resolution rule produce drawings with polynomial area? (iii) The constraints
on the relative positions of the adjacent vertices can be relaxed. For example, for a vertex u with neighbors v,
w, and z in counterclockwise order, one can specify that v is either NE or NW of u, w is SW, and z is either
NE or SW. Is this problem still polynomial? We remark that this version of the problem allows to simultaneously
visualize two partial orders defined by means of different edge sets, provided that their union is planar. One would
then color the edges to indicate whether they belong to one or the other poset or both.
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