
12

ODE: Ontology-Assisted Data Extraction

WEIFENG SU

BNU-HKBU United International College and Shenzhen Key Laboratory of
Intelligent Media and Speech, PKU-HKUST Shenzhen Hong Kong Institution

JIYING WANG

City University of Hong Kong

and

FREDERICK H. LOCHOVSKY

The Hong Kong University of Science and Technology

Online databases respond to a user query with result records encoded in HTML files. Data extrac-

tion, which is important for many applications, extracts the records from the HTML files automati-

cally. We present a novel data extraction method, ODE (Ontology-assisted Data Extraction), which

automatically extracts the query result records from the HTML pages. ODE first constructs an

ontology for a domain according to information matching between the query interfaces and query

result pages from different Web sites within the same domain. Then, the constructed domain on-

tology is used during data extraction to identify the query result section in a query result page and

to align and label the data values in the extracted records. The ontology-assisted data extraction

method is fully automatic and overcomes many of the deficiencies of current automatic data extrac-

tion methods. Experimental results show that ODE is extremely accurate for identifying the query

result section in an HTML page, segmenting the query result section into query result records, and

aligning and labeling the data values in the query result records.

Categories and Subject Descriptors: H.3.m [Information Storage and Retrieval]: Miscellaneous

General Terms: Algorithms, Performance, Experimentation

Additional Key Words and Phrases: Domain ontology, label assignment, data value alignment

ACM Reference Format:
Su, W., Wang, J., and Lochovsky, F. H. 2009. ODE: Ontology-assisted data extraction. ACM Trans.

Database Syst., 34, 2, Article 12 (June 2009), 35 pages.

DOI = 10.1145/1538909.1538914 http://doi.acm.org/10.1145/1538909.1538914.

This research was supported by the Research Grants Council of Hong Kong under grant

HKUST6172/04E.

Authors’ addresses: W. Su, Computer Science and Technology Program, BNU-HKBU-UIC, 28, Jin-

feng Road, Tangjiawan Zhuhai, Guangdong Prov., China; email: wfsu@uic.edu.hk; J. Wang, Com-

puter Science Department, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong;

email: wangjy@cityu.edu.hk; F. Lochovsky, Department of Computer Science and Engineering, The

Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong; email:

fred@cse.ust.hk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use

is granted without fee provided that copies are not made or distributed for profit or commercial

advantage and that copies show this notice on the first page or initial screen of a display along

with the full citation. Copyrights for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,

to redistribute to lists, or to use any component of this work in other works requires prior specific

permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn

Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2009 ACM 0362-5915/2009/06-ART12 $10.00

DOI 10.1145/1538909.1538914 http://doi.acm.org/10.1145/1538909.1538914

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:2 • W. Su et al.

1. INTRODUCTION

Databases accessible on the Web, called Web databases, compose what is re-
ferred to as the deep Web. Unlike pages in the surface Web, which are stored
for subsequent querying after they are generated, deep Web pages are usually
not stored, but are generated dynamically from Web databases in response to
a user query submitted through a query interface. A survey in July 2000 esti-
mated that there were 43,000–96,000 deep Web sites and that the deep Web
content was 500 times larger than that of the surface Web [Bergman 2001]. A
subsequent survey in April 2004 estimated that there were 307,000 deep Web
sites [Chang et al. 2004]. In less than 4 years the number of deep Web Sites
had expanded 3–7 times.

A Web database responds to a user query with the relevant data, either
structured or semistructured, embedded in HTML pages (called query result
pages in this article). To utilize this data, it is necessary to extract it from
the query result pages. Automatic data extraction is very important for many
applications, such as metaquerying, data integration, and data warehousing,
that need to cooperate with multiple Web databases. Only when the data are
extracted and stored in a database can they be easily compared and aggregated
using traditional database querying techniques. Consequently, an accurate data
extraction method is vital for these applications to operate correctly.

The goal of data extraction is to remove the irrelevant information from a
query result page, extract the query result records (referred to in this article as
QRRs) from the page, and align the data values in the extracted records into a
table so that the data values for the same attribute in each record are put into
the same column in the table. This process can be viewed as being composed of
the following consecutive steps as denoted in Figure 1.

(1) Query result section1 identification decides what section in a dynamically
generated query result page contains the data that need to be extracted.

(2) Record segmentation segments the query result section into records and
extracts them.

(3) Data value alignment aligns the data values2 from multiple records that
belong to the same attribute so that they can be arranged into a table.

(4) Label assignment assigns a suitable, meaningful label (i.e., an attribute
name) to each column in an aligned table.

Most data extractors assume that a regular expression can be employed to
model the query result page. Given an alphabet of symbols � and a special token
“text” that is not in �, a regular expression over � is a string over �∪{text, *, ?,
|, (,)} defined as follows [Wang and Lochovsky 2003]:

1A query result section is also referred to as a data region in the literature.
2We use the term “data value” to refer to a specific value of an attribute in a Web page generated

from a Web database. For example, Irresistable Rise of Harry Potter may be the data value of the

title attribute of a book and “15,000” may be the data value of the price attribute of a car. We also

use the term “raw data string” to refer to any string that is not part of a tag element in an HTML

file. For example, in a query result section, a raw data string can be a data value or the name of an

attribute.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:3

Fig. 1. Data extraction workflow.

—The empty string ε and all elements of �∪{text} are regular expressions.

—If A and B are regular expressions, then AB, (A|B), and (A)? are regular
expressions, where (A|B) stands for A or B, which means that A and B are
disjunctive attributes, and (A)? stands for (A|ε),which means that A is an
optional attribute.

—If A is a regular expression, (A)+ is a regular expression, where (A)+ stands
for A or AA or ..., which means that A is a nested data structure.

Considering the growth and dynamic nature of the deep Web, for data extraction
to be effective and practical, each step should be performed automatically with-
out requiring any training examples or human involvement. Although there are
some existing automatic data extraction systems, as discussed in the related
work section, most current data extraction methods suffer from one or more of
the following problems.

(1) Incapable of processing either zero or few query results. Almost all exist-
ing data extraction methods rely on tag or visual regularity features to do
the data extraction. Consequently, they require at least two records in a
query result page (e.g., DeLa [Wang and Lochovsky 2003]). However, it is
quite common for a query result page to have zero or only one record. Fur-
thermore, if there is only one record, often that record is wrongly split into
multiple records if there is some tag or visual regularity within it. Accord-
ing to our survey of 160 Web sites over four ecommerce domains, 84 Web
sites return some other QRRs if few or no record satisfies the user’s query
while the other 76 Web sites do not.

(2) Vulnerable to optional and disjunctive attributes. Optional and disjunctive
attributes affect the tag and visual regularity, which may cause data values
to be aligned incorrectly.

(3) Incapable of processing nested data structures. Many methods can only pro-
cess a flat data structure and fail for a nested data structure. However,
nested data structures are common on the Web.

(4) No label assignment. While most existing data extraction methods perform
the first three data extraction steps, they do not assign a suitable label
to each column in the result record table. However, label assignment is
important for many applications that need to know the meaning (i.e., the
semantics) of the data.

We present a novel data extraction method, ODE (Ontology-assisted Data
Extraction), that automatically extracts the QRRs embedded in an HTML page
generated by a deep Web site. For a given query, ODE uses both the query in-
terfaces and the query result pages of deep Web sites from the same domain

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:4 • W. Su et al.

to automatically construct a domain ontology. In doing so, ODE makes use of
the observation that the information from different Web sites can be comple-
mentary to each other to help in building the domain ontology. Subsequently,
this domain ontology is used in the first, third, and fourth data extraction steps
shown in Figure 1. In the query result section identification step, the ontology
is used to find a subtree in the HTML tag tree that has a large correlation with
the domain ontology. In the data value alignment and label assignment steps,
the ontology is used to associate each data value in a QRR with an ontology at-
tribute, with the assistance of a maximum entropy model that assigns attribute
names to data values using context and tag structure information as features.
To our knowledge, we are the first to use a maximum entropy model for data
extraction. ODE is fully automatic and overcomes many of the shortcomings of
current automatic data extraction methods. Furthermore, experimental results
show that ODE is extremely accurate in identifying the query result section in
an HTML page, segmenting the query result section into records, and aligning
and labeling the data values in the records.

The rest of the article is organized as follows. Section 2 presents an overview
of the ODE data extraction system. Section 3 describes the algorithm for con-
structing an ontology from the query interfaces and query result pages of a
domain. Section 4 shows how to do the data extraction using the ontology.
Section 5 reports the experimental results of applying ODE on four popular do-
mains on the Web. Section 6 reviews related work. Finally, section 7 concludes
the article.

2. ODE OVERVIEW

To address the data extraction problems enumerated in Section 1, we propose to
use an ontology-assisted method. The ontology for a domain is first constructed
from query result pages and query interfaces of the Web sites, and then used to
extract data records from a query result page in the domain. In this section, we
first present the observations about query result pages and query interfaces of
Web databases in a domain,3 on which the ontology construction approach is
based. Then, examples are given to motivate the intuition behind our ontology-
assisted data extraction approach. Finally, the problem formulation and the
framework of the ODE method are presented.

2.1 Observations About Deep Web Query Interfaces and Query Result Pages

2.1.1 Amazon Effect. The “Amazon effect” states that Web databases
within a domain tend to be influenced by their peers as the number of Web
databases grows [Chang et al. 2004]. One consequence of this effect is that the
query interface vocabulary of Web databases within a domain tends to converge
to a small size. By manually checking 160 query result pages from four pop-
ular ecommerce domains, Book, Airfare, Music, and Movie, we found that the

3These observations come from, and therefore are primarily applicable to, consumer-oriented, ecom-

merce Web databases. Whether, and to what extent, they are applicable to other types of Web

databases (e.g., biological Web databases) would be interesting to explore, but is not pursued in

this article.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:5

Fig. 2. Fragments of query interfaces and query results. Each column contains a fragment of a

query interface and a fragment of a query result from a book selling Web site.

“Amazon effect” also happens in the query result pages within a domain, namely,
as follows.

(1) The size of the set of attribute labels in the query result pages of a domain
is not arbitrarily large, but converges to a relatively small size. Thus, the
attribute names/labels are usually the same or similar from different Web
sites within a domain.

(2) The representations of the values for the same attribute from different Web
sites within a domain are usually similar. For example, the Price represen-
tation in the different Web sites in the Book domain in our survey is almost
always “$\£ (REAL)”. Thus, an attribute’s data type and value domain in
the query result pages are also the same or similar.

(3) The attribute sequences within a record from different Web sites within a
domain are usually similar. For example, a record in the Book domain usu-
ally begins with the title, followed by the author, then the format, followed
by the publisher, etc., as illustrated by the records in Figure 2.

2.1.2 Complementary Information in Query Result Pages. The Amazon ef-
fect focuses on the information similarities in the query interfaces and query
result pages among Web databases. However, we found that there are also some
information dissimilarities among the query result pages from different Web
sites within the same domain, which are often complementary to each other for
data extraction. For example, it is possible that some data values can get their
labels from the query result pages of other Web sites. In the query result frag-
ment in Figure 2(a), the attribute value “hardback” can be labeled as “Format”
from the information available in the query result fragment in Figure 2(b).

2.1.3 Complementary Information in Query Interfaces. The information
matching (within one site, or among multiple sites) between a query result
page and a query interface also can be very useful to understand the query
result pages and has been used in label assignment in multiple data extraction

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:6 • W. Su et al.

Fig. 3. Ontology-assisted Data Extraction (ODE) workflow.

models [Tijerino et al. 2005]. For example, in the query result fragment in
both Figure 2(a) and Figure 2(b), the attribute corresponding to the data value
“Harry Potter and the Half-Blood Prince” can be labeled as “title” from their own
query interfaces. Moreover, the query interfaces from other Web sites within
the same domain can be very useful to understand the query result page. For
example, in Figure 2, the attribute corresponding to the data value “2005” in
the query result fragment in Figure 2(a) can be labeled as “Published Date”
from the information available in the query interface in Figure 2(b).

2.2 ODE Workflow

Based on the observations in Section 2.1, our objective is to acquire sufficient
domain knowledge that is available from the query interfaces and the query
result pages in a domain and to use the acquired knowledge to extract the data
instances from the query result pages of the domain. A domain ontology is used
to represent the acquired domain knowledge.

Figure 3 shows the workflow of our ontology-assisted data extraction sys-
tem, which consists of two main components: ontology construction and data
extraction. The ontology construction component (i.e., Component 1) builds the

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:7

ontology for the entity4 of a domain. The ontology contains the domain knowl-
edge, which consists of the descriptions for all attributes in the domain, ex-
tracted from the query interfaces and query result pages of multiple Web
databases in the domain. Instead of constructing the ontology manually, we
utilize the matching among query interfaces and query result pages within a
domain to automatically generate the ontology. After the domain ontology is
built, the data extraction component (i.e., Component 2) extracts the data from
the query result pages using the ontology for several data extraction substeps
as described in detail in Section 4.

2.3 Advantages of ODE

ODE addresses the shortcomings of current data extraction methods enumer-
ated in Section 1 as follows.

(1) As described in detail in Section 4.2, ODE can effectively process query
result pages containing zero or few QRRs.
(a) When there is only one QRR in a query result page, ODE identifies the

part in the page that has the largest correlation with the ontology to be
the only QRR.

(b) When there is no QRR in a query result page, ODE finds no section
that has a high correlation with the ontology (i.e., no section will be
identified as the query result section).

(2) Since the ontology provides an overview of the QRRs generated from a Web
database, the influence of optional and disjunctive attributes on the data
extraction is decreased, especially for the data value alignment step. ODE
maps the raw data string, which could be an attribute label or some actual
data value, to attributes in the ontology according to the various kinds of
information found in an HTML page, such as tag or context information.
Recall that the ontology is constructed by extracting attributes from query
interfaces and query result pages of multiple Web databases in a domain.
Thus, in the data value alignment step for each single Web site, it is not
really very important whether the raw data strings to align are generated
by optional, disjunctive, or “repeated” attributes.

(3) By mapping the raw data strings in a query result page to the attributes in
the domain ontology, we can discover the nested structure within a record
when the raw data strings are mapped to the same attributes consecutively.

(4) With the aid of the ontology, each aligned column can be assigned a suitable
name from the attribute description in the ontology.

Furthermore, ODE also has the following additional advantages.

(1) Fully automatic data extraction: All data extraction steps can be per-
formed automatically (i.e., no manual labeling or other human interaction
is required).

4The entity of a domain is the major concept that is described by the data of the domain. For

example, book, car, and movie might be the entities in domains dealing with book sales, automobile

sales/rentals, and movie sales/rentals, respectively.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:8 • W. Su et al.

(2) Understanding the query result page semantically: By assigning a suitable
label to each column of the extracted table, the meaning of the data can
be more easily interpreted (i.e., understood semantically), which can be
very useful for many other applications (e.g., data integration and data
warehousing).

3. ONTOLOGY CONSTRUCTION COMPONENT

The goal of the ontology construction component is to build an ontology for a do-
main using the query interfaces and some training query result pages from Web
sites within the domain. As shown by Component 1 of Figure 3, the workflow
for the ontology construction component consists of the following four steps.

(1) Given a set of query result pages within the same domain, the primary
wrapping step uses a primary wrapper to extract the QRRs from the query
result pages and align them into a query result table.

(2) The query result annotation step uses a query result annotator to assign a
suitable name to each column of the output table of the primary wrapper, us-
ing information obtained from the query result pages and query interfaces.

(3) The attribute matching step matches the columns of the query result tables
and query interfaces to each other using an attribute matcher.

(4) Finally, the ontology construction step uses the matching results to con-
struct the ontology.

In this section, the first subsection presents the domain-ontology specifica-
tion. Then each subsequent subsection describes a step in the ontology con-
struction workflow in detail.

3.1 Ontology Specification

We define a domain ontology to be a data model that describes a set of concepts
within the domain and the relationships between those concepts. It should be
understandable to a computer so that it can be used to reason about the objects
within that domain. In particular, the ontology O for a domain is composed of
two related components.

(1) An ontology attribute model that describes the organization of the attributes
of the entity within the domain. For example, Figure 4 shows the ontology
attribute model for the Book domain ontology. A solid border rectangle
denotes the entity of the domain (e.g., Book). Each dashed border rectangle

represents an attribute of the entity (e.g., Title, Price, Subject, Author,
Last Name, First Name, and Publisher). The solid triangle � defines an
aggregation with the superpart attribute connected to the apex of the tri-
angle and the component-part attributes connected to its base. For example,
Author is an aggregation of Last Name and First Name in Figure 4.

(2) An attribute description that lists the values for each attribute field in the
ontology O. As shown by the example attribute description for the attribute
Price in the Book domain in Figure 5, each attribute in O contains the
following fields.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:9

Fig. 4. Ontology attribute model for the Book domain.

(a) Name is the name of the attribute (e.g., Price).
(b) Alias is an alias for the attribute. There can be multiple aliases for each

attribute (e.g., our Price, lowest Price).
(c) Data type is the data type of the attribute, which is obtained from the

parsing of its values (e.g., Real). In our experiments, the data type can
be datetime, int, real, price, and string. We empirically set an attribute
to a certain data type if 80% of its values in the training Web sites
belong to that data type.

(d) External representation is the representation of the attribute value in a
query result page. There can be multiple representations of the values
for each attribute (e.g., $, £).

(e) Value contains the attribute values that have appeared in the training
query result pages (e.g., $5.10, £12.20, $16.30).

(f) Value probability is the likelihood that the attribute value occurs in a
record (e.g., 88.5%).

(g) Name probability is the likelihood that the name or one of its aliases
occurs in a record in a query result page (e.g., 78.2%).

(h) Max occurrence is the maximum number of occurrences of the attribute’s
values within a record in the training query result pages. It is a positive
integer (e.g., 1).

3.2 Primary Wrapping

The domain ontology is built from the query interfaces and the query result
records (i.e., instances of the ontology) within the same domain. However, since
obtaining the query result records is the goal of data extraction, it appears that
we would have an unsolvable problem. To overcome this problem, a primary
wrapper is used to obtain some instances from a query result page. The re-
quirement for the primary wrapper is that it can correctly identify the QRRs

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:10 • W. Su et al.

Fig. 5. Ontology description for the attribute Price in the Book domain.

in most cases if there are multiple QRRs in a query result page. 6 Most existing
wrapper construction methods satisfy this requirement. In our experiments,
the PADE wrapper construction method is used as the primary wrapper [Su
et al. 2009].

PADE builds a wrapper for a query result page from its HTML tag tree.
Similar to Simon and Lausen [2005] and Zhai and Liu [2006], PADE assumes
that similar QRRs are represented as child subtrees of the same parent node in
a tag tree. The similar QRRs form a data region. To identify a data region, PADE
requires that the data region include several sets of similar nodes in the tag tree.
Two nodes n1 and n2 are similar if their similarity, sim12, is larger than or equal
to a threshold Tnsim. For n1 and n2, their corresponding tag strings s1 and s2 are
used to evaluate their similarity using the normalized edit distance between
them [Baeza-Yates 1989; Gusfield 1997]. To overcome the problem caused by
optional attributes and repetitive subparts, the similarity threshold Tnsim is
empirically set to 0.6 [Zhai and Liu 2006]. However, it is still possible that
two similar nodes have a normalized edit distance less than a small threshold
because of the repetitive subparts. Therefore, the so called tandem repeats7

that are present in both tag strings are identified and zero cost is allowed for
deletion and insertion operations inside additional repetitive instances [Simon
and Lausen 2005].

Given that a query result page contains at least two QRRs, PADE adopts the
solution used in Simon and Lausen [2005] and Zhai and Liu [2006] to identify
data regions. Starting from the root, it searches the tag tree for similar children
nodes under the same parent and the ordered sets of those similar nodes com-
pose the raw data regions. Next, PADE segments the raw data regions into raw
data records according to the starting and ending positions of the tandem re-
peats and the visual gap between the segmented records. Finally, but different
from Simon and Lausen [2005] and Zhai and Liu [2006], PADE tries to com-
pare the segmented records and merge the raw data regions containing similar
records, even though they may be present under different parent nodes.

5The symbol “\” indicates that “($\£)” should be treated as characters while the symbol “?” indicates

that the characters “($\£)” are optional.
6Note that the primary wrapper may still have some or all of the deficiencies enumerated in

Section 1. However, this is not a problem as the primary wrapper just needs to be “good enough”

to allow the ontology to be constructed from its extraction result.
7A tandem repeat refers to repeated tag substrings that are directly adjacent to each other.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:11

In general, after performing the data region merge step, there may still be
multiple data regions in a query result page. However, PADE assumes that
there is only one actual query result section in a query result page that contains
the QRRs. To determine which of the remaining data regions corresponds to the
actual query result section, PADE uses the following three simple heuristics.

(1) The query result section is usually located at the center of the query result
page [Zhao et al. 2005]. For each remaining data region, a center distance is
calculated between the center of the page and the center of the data region.
For each data region d , a center distance weight, which is calculated as the
smallest center distance divided by d ’s center distance, is assigned for d .

(2) The query result section usually occupies a large space in the query result
page [Zhao et al. 2005]. For each remaining data region d , an area weight,
which is calculated as d ’s area divided by the largest area data region, is
assigned for d .

(3) Each QRR usually contains more raw data strings than the records in other
sections. For each remaining data region d , a value weight, which is calcu-
lated as the average number of raw data strings in a record divided by the
largest average number of data values, is assigned for d .

The aforesaid three weights are summed and the data region that has the
largest summed weight is selected as the query result section. Records in this
data region are assumed to be the QRRs.

After identifying the QRRs, PADE performs data value alignment using a
pair-wise alignment to align the data values in the QRRs so that they can be
put into a table. Both data content similarity and tag structure are used in
the alignment process. In particular, given a set of QRRs, every two different
records are aligned first. Since the data values for the same attribute usually
have the same data type and are often similar to each other, the pair-wise record
alignment consists of finding an alignment with the maximal content similarity
score. After all pairs of records are aligned, an iterative alignment is performed
to align all records, in which the goal of each step is to find a global alignment
that has the largest number of pair-wise alignments. Finally, a nested data
structure identification method is used to handle any nested structure that
exists in the QRRs.

Experimental results show that PADE is very accurate in extracting and
aligning the QRRs in a query result page, achieving an accuracy of 96% in ex-
tracting and aligning the QRRs when there are at least two QRRs in the query
result page. While PADE suffers from the first and fourth deficiencies listed
in Section 1, nevertheless, the high accuracy of PADE provides a solid basis
for building a good ontology. Table I shows the output tables constructed for
the query result segments in Figure 6. PADE can also effectively handle the
optional attribute and nested structure problems. For example, the optional
attribute, ISBN, can be identified, even though it does not occur in the first
record. Furthermore, there are two authors in the first record (i.e., the occur-
rence of author is 2), and these two occurrences, which form a nested structure,
are correctly identified and aligned.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:12 • W. Su et al.

Fig. 6. Query result segment example.

Table I. Aligned Result for Figure 6

Visions of the East:

Orientalism in Film

by Matthew Bernstein

Gaylyn Studlar

Published/Distributed by

Rutgers University Press

$25.35

Orientalism: A Reader by Alexander Lyon Macfie Published/Distributed by

NYU Press

ISBN No: 081475

6654

$22.50

Orientalism in Art by Christine Peltre Published/Distributed by

Abbeville Press

ISBN No: 078920

4592

$62.50

Table II. Annotated Query Result table for Figure 6

Title by Published/Distributed by ISBN No: Price

Visions of the East:

Orientalism in Film

Matthew Bernstein

Gaylyn Studlar

Rutgers University Press $25.35

Orientalism: A Reader Alexander Lyon

Macfie

NYU Press 0814756654 $22.50

Orientalism in Art Christine Peltre Abbeville Press 0789204592 $62.50

3.3 Query Result Annotation

To assign labels to the columns of the data table containing the extracted QRRs
(i.e., to interpret the meaning of the data values), the four heuristics proposed
in Wang and Lochovsky [2003] are used. Table II shows the annotated query
result table for the Book records in Figure 6.

Heuristic 1: Match query interface element labels to data values. Assuming
that the Web database designers try their best to answer user queries with
the most relevant data, then keywords submitted through one specific query
interface element will reappear in the corresponding data values in the query
result pages. Therefore, for each keyword query, if the keyword mostly appears
in one specific column of the result data table, then we assign the label of that
query interface element to the column. For example, given the keyword query
title=”%orientalism%”, the first column in Table II is labeled “Title” according
to this heuristic.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:13

Heuristic 2: Search for voluntary labels in table headers. The HTML speci-
fication defines some tags such as <TH> and <THEAD> for page designers to
voluntarily list the headings for the columns of their HTML tables [World Wide
Web Consortium 1999]. Moreover, these labels are usually placed nearby the
data values in a query result page. Therefore, the HTML code near (usually at
the top of) the data values is examined for possible voluntary labels.

Heuristic 3: Search for voluntary labels encoded together with data values.
Some query result pages encode the labels of data values together with the
data values. Therefore, for each column of the data table we try to find the
maximal prefix and maximal suffix shared by all cells of the column and assign
the meaningful prefix to that column and the meaningful suffix to the column
next to that column as the labels of those columns. For example, the second,
third, and fourth columns in Table II get their label using this heuristic. In the
fourth column of Table I, the maximal prefix shared by all cells of the column
is “Published/Distributed by,” which is used as the label for that column.

Heuristic 4: Label data values in conventional formats. Some data have a con-
ventional format (e.g., a date is usually organized as “dd-mm-yy”, “dd/mm/yy”,
etc., an email address usually contains the symbol “@”, price usually has the
symbol “$”, “£”, etc.). Thus, such information is used to label the corresponding
data values. For example, the fifth column in Table II is labeled “Price” using
this heuristic.

If there are conflicts among these heuristics, the heuristic priority sequence is
Heuristic 1 > Heuristic 2 > Heuristic 3 > Heuristic 4. Since the query interface
elements and the data values may not be perfectly matched, some columns may
not have any labels. Nevertheless, experimental results in Wang and Lochovsky
[2003] show that these four heuristics achieve a label assignment accuracy of
around 80%.

3.4 Attribute Matching

Given the query interfaces and the aligned tables for the query result pages
from Web sites within the same domain, an attribute matcher identifies the
matchings among columns from the query result tables and query interfaces
from different Web sites. Three kinds of matchings, which are explained in the
following subsections, are identified.

3.4.1 Value-Level Matching. Value-level matching identifies the match-
ings among the query result table columns from different Web sites using the
data value similarity between different Web sites, which is based on the Amazon
effect in the query result pages described in Section 2.1.1. Value-level match-
ing can be viewed as an instance-based schema matching step and any existing
instance-based schema matching method can be used. In our experiments, the
method in Bilke and Naumann [2005] is used to identify the 1:1 simple match-
ings among different query result tables. We first discover duplicates among
different tables, which refer to multiple representations of the same real-world
object, and then use these duplicates’ attribute values to identify the matching
columns among different tables.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:14 • W. Su et al.

Table III. Identified Matchings for Book Domain

Matching # Discovered Matching

1 Author (String) = {Last Name (String), First Name (String)}
2 Category (String) = Subject (String)

3 Title (String)

3.4.2 Label-Level Matching. Label-level matching identifies the match-
ings among the query result table columns from different Web sites according
to the label cooccurrence pattern in the query result tables. Both simple match-
ings (i.e., 1:1 matching) and complex matchings (i.e., 1:n or n : m matchings) are
identified. A holistic matching algorithm,8 such as He and Chang [2006], Su
et al. [2006], is applied to the labels of the query result tables after the value-
level matching, according to the label cooccurrence pattern, without requiring
any domain knowledge. For example, the first and second matchings in Table III
are the matchings identified for the Book domain using label-level matching.

3.4.3 Label-Value Matching. Label-value matching identifies the match-
ings among query interfaces and query result tables among Web sites (i.e.,
inter-Web site). A probing method, such as in Gravano et al. [2003], Wang et al.
[2004], is used for this task. A query submission component exhaustively sub-
mits instances into the input elements in the query interfaces and the query
results are collected and extracted into a data table. The reoccurrence of sub-
mitted queries in the columns of this table are counted and stored into a Query
Occurrence Cube (QOCube). The QOCube is aggregated/projected in different
ways to reflect the relationship between pairs of schemas (intrasite and inter-
site). The label-value matching bridges the value-level and label-level match-
ings.

After the preceding three matchings are performed, the matching results can
be used to deal with the following tasks.

(1) Checking the assigned label. If a column c1 with label l1 is not matched to
most columns from other Web sites whose label is also l1, we think that the
label l1 is not correctly assigned to c1 and replace l1 with the most common
label for columns to which c1 matched.

(2) Assigning a suitable label for columns without an assigned label. If a col-
umn c1 with no label assigned yet is matched to another column c2 from a
different Web site with a label l2, l2 is assigned to c1 as its label.

(3) Matching conflict resolution. If the column c1 matched to c2 and c3, but c2

and c3 are not matched, we assume one of the two matchings is incorrect.
Suppose that c2 occurs in the query result pages of m Web sites and c3

occurs in the query result pages of n Web sites and m > n. We will further
assume that the matching between c1 and c2 is correct and the matching
between c1 and c3 is incorrect because the matchings among attributes with
higher occurrence, which are identified by the aforesaid three matching
identification methods, are more accurate.

8A holistic matching algorithm considers all inputs simultaneously to do the matching rather than

doing the matching, say, in a pair-wise manner.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:15

Table III shows some identified label matchings for the Book domain.
Matching 1 denotes that the label “Author” with data type String is equal to a
combination of label “First Name” and “Last Name,” both with data type String.
For an attribute that does not match to any other attribute, we consider it to
be a unique matching, such as Matching 3 in Table III, so that all attributes
can be handled in a uniform way. Experimental results show that the attribute-
matching step increases the annotation accuracy to 90% on average.

3.5 Ontology Construction

The attributes for a domain ontology are created by organizing the matchings
identified by the attribute-matching step as follows.

(1) If the matching is unique, an attribute a is created. For example, given the
unique matching “Title (String)”, an attribute with name Title and data
type “string” is created.

(2) If the matching is 1:1, an attribute is created in which any label in the
matching is randomly selected as the attribute name and other labels are
set as aliases. For example, given the matching “Category (String) = Subject
(String)”, an attribute Category is created with data type “string” and alias
“Subject”.

(3) If the matching is 1:n, n + 1 attributes are created. For example, given the
matching “Author (String) = {Last Name (String), First Name (String)}”,
three attributes, Author, First Name, and Last Name, are created with
data type “string”. As explained in Section 3.1, for such a matching Author
is connected to the apex of a solid triangle � and Last Name and First
Name are connected to the base of the solid triangle �, denoting that the
strings generated by Last Name and First Name can be concatenated to be
an Author string.

(4) If the matching is n:m{a1, . . . , an} = {an+1, . . . , an+m}, we can treat it as a 1:n
matching and a 1:m matching by generating an artificial attribute aa and
two matchings to this attribute: aa = {a1, . . . , an} and aa = {an+1, . . . , an+m}
and process the 1:n matching and 1:m matching using the method described
in the 3rd point given before. Hence n + m + 1 attributes are created. For
example, given a 2:2 matching {area, town} = {city, location} in the Hotel
domain, which describes the location of a hotel, we divide the matching into
two 1:2 matchings ai = {area, town} and ai = {city, location}. Each of the
two 1:2 matchings is then handled using the method for the 1:n matching
described previously.

(5) The values of an attribute are obtained from the data values that appear
in the query result pages from the training Web sites.

(6) The data type and external representation of an attribute are derived
through the parsing of its values. The parsing starts from some conven-
tional data format, such as datetime, int, real, etc., and then tries to find
the maximal prefix and maximal suffix shared by data values with the
same label from the same domain. In our implementation, the data types
parsed include datetime, int, real, price, and string. The data type can be

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:16 • W. Su et al.

obtained through analyzing attribute values and the pattern or format of
the values, for example, $300 for price and 3:00PM for datetime. When the
value type is difficult to determine, a default value type (i.e., string) is used.
For example, given data values “Color: Red” and “Color: Blue”, the external
representation is “color: [string]”.

(7) The value probability of an attribute is calculated as the Web-site-average
of the average occurrence probability of a data value in a QRR within each
training Web site.

(8) The name probability of an attribute is calculated as the Web-site-average
of the average occurrence probability of the attribute name in a QRR within
each training Web site.

(9) The max occurrence is the maximum occurrence count of the attribute value
in all QRRs of the training Web sites.

4. DATA EXTRACTION COMPONENT

After constructing the domain ontology, we use it to perform the data extraction.
As shown by Component 2 of Figure 3, the workflow of the data extraction
component is composed of the following three steps.

(1) Query result section identification: Since the query result section is a section
whose text content is mostly related to the domain knowledge, we identify
the query result section by constructing a tag tree from the query result
pages and finding the subtree whose raw data strings have a large correla-
tion with the ontology.

(2) Record segmentation: To segment the query result section into query result
records (QRRs), we use the same techniques as for the primary wrapper
described in Section 3.2.

(3) Data value alignment and label assignment: Both tasks can be performed
simultaneously by assigning an attribute name of the ontology to each data
value of a QRR. A maximum entropy model is used to do attribute name
assignment for data values.

In the rest of this section, we first briefly review the maximum entropy model.
Then each step of the data extraction component is discussed in detail.

4.1 Maximum Entropy Model

The maximum entropy model has been successfully applied to many problems,
such as part-of-speech tagging [Ratnaparkhi 1996], name entity recognition
[Borthwick 1999], and text categorization [Zhang and Oles 2001]. Intuitively,
the principle of maximum entropy is simple: We model all that is known and
assume nothing about that which is unknown. In other words, given a set of
constraints, we choose a model that is consistent with all the constraints, but
otherwise is as uniform as possible.

The goal of a maximum entropy model is to construct a stochastic model that
accurately represents the behavior of a random process [Berger et al. 1996].
Such a model is a method of estimating the conditional probability that, given

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:17

a context x, the process will output y . We denote a single observation by y , a
random variable that takes on values in alphabet Y . Since the identity of y
is influenced by some conditioning information x ∈ X , we seek a conditional
model p(y |x). In ODE, x can be any text or tag information and y can be any
observation relevant to x. For example, if we observe that the attribute Author
usually follows the attribute Title in the Book domain, then we assign x to be
“Title as previous attribute” and y to be “Author”. To study the random process,
we observe its behavior for a while, collecting some training samples (x1, y1),
(x2, y2), . . . , (xn, yn). As a particular pair (x, y) may occur in some or all of
the samples, the training samples are summarized in terms of their empirical
probability

p̃(x, y) ≡ c̃(x, y)/
∑
x, y

c̃(x, y), (1)

in which c̃(x, y) is the number of times (x, y) appears in the collection.
Given a set of features, which determines the statistics that we feel are im-

portant in modeling the process, we would like to build our model in accordance
with these statistics. Generally a feature fi can be defined as

fi(x, y) =
{

1 if the feature is expressed in case (x,y).
0 otherwise (2)

The expected value of feature fi with respect to the empirical distribution
p̃(x, y) is

p̃(fi) =
∑
x, y

p̃(x, y) fi(x, y), (3)

while the expected value of feature fi with respect to the model p(y |x) is

p(fi) =
∑
x, y

p̃(x)p(y |x) fi(x, y), (4)

in which p̃(x) is the empirical distribution of x in the training samples.
The maximum entropy model seeks to maximize the entropy H(p) with re-

spect to p ≡ p(y |x) with the constraints p̃(fi) ≡ p(fi) for all features i = 1, . . . , n.
To accomplish this, a parameter λi (the Lagrange multiplier) is generated for
each feature fi by one of many iterative algorithms, such as Generalized Itera-
tive Scaling or Conjugate Gradient Ascent [Minka 2003]. The joint probability
of a process is determined by those parameters whose corresponding features
are active (i.e., those λi such that fi(x, y) = 1).

The context and tag structure in a query result page provide useful informa-
tion that can be used as features for the different steps of data extraction. The
context information includes the following in our experiments.

(1) Is the raw data string the name, alias, or the value of an attribute in the
ontology?

(2) What is the possible attribute of the previous two and subsequent two raw
data strings?

(3) Is there at most one occurrence for a raw data string in the current QRR?

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:18 • W. Su et al.

(4) What is the possible data type candidate of the raw data string?

(5) What is the external representation of the raw data string?

(6) Is this the first raw data string for the current QRR?

(7) Is this the last raw data string for the current QRR?

(8) How often does an attribute value occur in a record?

(9) How often does the attribute name or one of its aliases occur in a record?

The tag structure information includes the following information.
(1) Does the raw data string have the same tag path as previous raw data

strings in the current QRR? What is the label of those raw data strings
with the same tag structure?

(2) Does the raw data string have the same tag structure as one of the raw data
strings in the previous QRR? What is the label of those raw data strings
with the same tag structure?

Each of the preceding questions and their answers can be encoded as a fea-
ture. For example, a useful feature in the Book domain, based on the second
context information question, can be

f (x, y) =
{

1 if x = “Title as previous attribute” and y = “Author”
0 otherwise (5)

This feature helps the model to discover the fact that “Author” usually follows
“Title” in a book instance. Therefore, the parameter corresponding to this fea-
ture will hopefully boost the probability p(di,“Author”) if the label of the data
value di−1 is “Title”.

4.2 Query Result Section Identification

Query result section identification recognizes the query result section in a query
result page, which is denoted as the first block in Component 2 of Figure 3. ODE
first performs query result section identification using the primary wrapper
PADE. As discussed in Section 3.2, PADE is very precise at identifying a query
result section if two or more QRRs exist in the query result page. For QRRs that
are in the same format and are separated in different regions, PADE can also
effectively combine them into the same query result section. However, ODE
still can improve on PADE by effectively judging whether the instances in the
query result section returned by PADE are the actual QRRs or not. We assume
that an instance is a QRR if its correlation with the ontology O is larger than
a threshold Tc. To allow the threshold Tc to be adaptive to the domain, it is
empirically set to be half of the smallest correlation with the ontology O for all
QRRs in the training Web sites.

If the query result section returned by PADE does not contain QRRs, we
assume one of the following cases.

(1) PADE incorrectly identified the query result section when there are more
than two QRRs in the page. This may happen in some pages when the
query result section is relatively small compared to other sections, such as
advertisements or announcements, or when the query result section is not
in the center of the page.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:19

(2) PADE failed to identify the query result section when there is only one
QRR in the query result page.

(3) There is truly no QRR in the query result page.

To deal with the previous cases, ODE carries out the following steps in
sequence.

(1) Determine whether there is another query result section that contains
QRRs and return the query result section if it exists. ODE removes the
section that has been incorrectly identified as the query result section from
the query result page and identifies a new section in the remaining query
result page using PADE. If the newly identified section includes QRRs
whose correlation with the ontology O is larger than the threshold Tc,
ODE then returns the query result section; otherwise, the following will
happen.

(2) ODE assumes that there is only one QRR in the query result page and
finds the subtree with the largest correlation with the ontology, using the
algorithm described in Section 4.2.2. If the correlation between the subtree
and the ontology O is larger than Tc, ODE returns the subtree as a single
QRR; otherwise, we have the following.

(3) ODE assumes that there is no QRR in the page.

Consequently, a good instance-ontology correlation calculation method is vi-
tal for correctly identifying the query result section.

4.2.1 Instance-Ontology Correlation. The instance-ontology correlation
calculation is used to evaluate the similarity between an instance D = {d1,
. . . , dn}, which may or may not be a QRR, and an ontology O. For each raw data
string di of D, its weight Si for the correlation is defined to be

Si =
{

pnj if di is the name or alias of attribute aj

pj otherwise and aj is the largest probability attribute that d j can be.
(6)

That is, if di is identified to be the name of an attribute aj , its weight is equal
to the name probability pnj of aj . Otherwise, if di is recognized to be a value
of several attributes, its weight is equal to the probability pj of attribute aj

that has the largest probability and the maximum occurrence constraint of aj

has not been violated. The normalized sum of all the Si (for di to dn) is then
calculated to be the correlation between D and O

Corr(D, O) =

n∑
i−1

Si

√
mn

, (7)

in which m is the number of attributes in O and n is the number of raw data
strings in D.

4.2.2 Maximum-Correlation-Subtree Identification. According to the nest-
ed structure of the HTML tags in the source HTML file, each query result page
naturally forms a tag tree. The root of the tree is the <HTML> tag and all content

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:20 • W. Su et al.

Fig. 7. Maximum correlation subtree identification.

nodes, such as text and images, are leaf nodes. Figure 7 shows the algorithm
to identify the subtree S in a tag tree that has the largest correlation with the
ontology O. Starting from the root R, a top-down loop is first used to identify a
subtree T which has the largest correlation score with the ontology (lines 1–6).
Assuming a subtree T is an instance of a QRR, its correlation Corr(T ,O) with
the ontology O is calculated using Eq. (7) given in Section 4.2.1. The loop stops
when each of the children of T has a correlation score smaller than T with
the ontology O. Moreover, T is combined either with its immediate left sibling
node if this combination increases the correlation with the ontology (lines 8–
13), or with its immediate right sibling node if this combination increases the
correlation with the ontology (lines 14–19).

4.3 Record Segmentation

The record segmentation algorithm, which is denoted as the second block in
Component 2 of Figure 3, segments the nodes in a query result section into a
set of records given the query result section S. If S contains only one QRR, the
record segmentation does nothing. If S contains more than one QRR, the record
segmentation segments S into multiple QRRs. Given a query result section S,
we first find continuous repeated patterns (C-repeated patterns), each of which
is a repeated substring of S having at least one pair of its occurrences that are
adjacent [Wang and Lochovsky 2003]. For example, in a query result section
R=ABABABA, in which A and B denote two different kinds of tag structures,
two C-repeated patterns will be found: AB and BA. If only one C-repeated pat-
tern is found in a query result section, we assume that each repeat corresponds
to a record. If multiple C-repeated patterns are found in a query result section,
we need to select one of them to denote the record. The following heuristic is

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:21

used for the C-repeated pattern selection: The visual gap between two records
in a query result section should be no smaller than any gap within a data
record [Zhai and Liu 2006]. We select the C-repeated pattern that satisfies this
constraint.

4.4 Data Value Alignment and Label Assignment

As indicated by the third block in Component 2 of Figure 3, data value alignment
and label assignment can be performed simultaneously as a single step; that is,
for each data value, ODE first assigns a label to it. Next, the data values with
the same label are aligned to the same column in the final table and the shared
label assigned as the column’s label.

Given a data value d , its history h is composed of the features that occur
for d . The probability of a history h together with an attribute a is defined as
[Ratnaparkhi 1996]

p(h, a) = π�k
j=1λ

f f (h,a)

j , (8)

where π is a normalization constant and λ j , which is described in Section 4.1,
is the positive parameter corresponding to feature fj . Hence, the probability
that d is generated from an attribute a is

P (a|h) = p(h, a)∑
a∈A p(h, a′)

, (9)

where a′ refers to any attribute in the attribute set A.
Given a sequence of raw data strings {d1, . . . , dm}, an attribute sequence

candidate {a1, . . . , am} has conditional probability

P (a1, . . . , am | d1, . . . , dm) = �m
i=1 p(ai | hi). (10)

Subsequently, label assignment can be performed by finding a most probable
attribute for a data value from the potential attributes within its context.

The label assignment procedure searches over the candidate labels for the
data values in the QRR and the label sequence that has the largest probability
is chosen to be the correct set of labels. A k-beam search algorithm is used to
find the label sequence with the largest probability given a QRR [Feiner et al.
2003].

Let D = {d1, . . . , dn} be a QRR in which di refers to the ith data value in the
QRR and sij is the j th largest probability label sequence up to and including
di. The algorithm shown in Figure 8 is used to find the label sequence with
the largest probability. A k-beam search algorithm is used to avoid exponential
complexity if we exhaustively search for the label sequence with the largest
probability. Given the first data value d1, we set k label sequences s1 j , 1≤ j ≤ k
as the top k labels with the largest probability for d1(line 1). From the second
data value d2 to the last data value, each label sequence s(i−1) j is extended to
multiple label sequences sij to make a new sequence by appending new labels
onto s(i−1) j . A new set of k label sequences is selected from the set of newly
generated label sequences (lines 2–8). The final result is that all the data values
are labeled with the label sequence with the largest probability.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:22 • W. Su et al.

Fig. 8. Largest probability label sequence searching algorithm.

Table IV. Summary of Datasets

Domain # web sites # MRP # SRP # ERP

Book 40 290 43 67

Airfare 40 317 36 47

Music 40 294 53 53

Movie 40 346 48 6

Total 160 1247 180 173

5. EXPERIMENTS

In this section, we present experiments to show the effectiveness of ODE. The
experiments are run on query result pages collected from the Web sites in four
popular ecommerce domains: Book, Airfare, Music, and Movie. We compare the
experimental results of ODE with the primary wrapper PADE and with another
state-of-the-art wrapper DeLa [Wang and Lochovsky 2003].

5.1 Datasets

Table IV summarizes the datasets used in our experiments. For each of the four
domains, 40 ecommerce Web sites are explored and 10 queries are prepared. For
each Web site, each of the 10 queries in the corresponding domain is submitted
and the query result pages are collected. If there is more than one page returned
for a given query, only the first page is collected. We manually inspected the
collected query result pages and divided them into three classes according to
the number of QRRs they contain.

(1) Multiple Result Page (MRP): A page that contains two or more than two
query result records.

(2) Empty Result Page (ERP): A page that contains no query result. An empty
result page may not be available for some Web sites.

(3) Single Result Page (SRP): A page that contains only one query result. A
single result page may not be available for some Web sites.

In the 1,247 MRPs, there are 301 MRPs in which the QRRs are displayed
in at least two sections. We also found that many Web sites return some other
records if there are actually no or few records that fully match the query.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:23

Table V. Data Extraction Accuracies for Columns in

Training and New Web Sites

Training Web Sites New Web Sites

Domain Precision Recall Precision Recall

Book 86.2% 83.4% 85.6% 82.5%

Airfare 89.6% 89.2% 89.5% 89.1%

Music 88.1% 83.3% 86.8% 83.1%

Movie 86.7% 83.5% 86.0% 82.6%

Average 87.6% 84.8% 87.0% 84.3%

In our experiment, we first use DeLa to extract and label the data to reduce
the workload. A double-check is performed to inspect the output of DeLa to
generate the comparison baseline.

5.2 Experiment Results

The Web sites are divided into two categories according to whether they are
used to construct the domain ontology.

(1) Training Web sites are Web sites that are used to construct the domain
ontology.

(2) New Web sites are Web sites that have not been used to construct the
domain ontology.

We ran a four-fold cross-validation on the collected dataset to take full ad-
vantage of the data; that is, for each round, 30 out of the 40 Web sites for each
domain are used as training Web sites to derive the domain ontology and the
remaining 10 Web sites are new Web sites. Since PADE and DeLa do not require
training Web sites, we do not classify the Web sites into the two categories for
them in our experiments.

5.2.1 Data Extraction Accuracy. Table V shows the data extraction accu-
racy for the columns in the training and new Web sites. The precision is the
ratio of the correctly identified, aligned, and labeled columns over all labeled
columns and the recall is the ratio of the correctly identified, aligned, and la-
beled columns over all columns. It can be seen that ODE correctly identifies,
aligns, and labels columns with precision around 87% and recall around 84%,
in both training and new Web sites.

5.2.2 Query Result Section Identification Accuracy. In our experiment, we
assume that a query result section is correctly identified if all and only QRR
information is included in the query result section. Table VI shows the query
result section identification accuracy for the training Web sites. It can be seen
that ODE has excellent performance for any type of query result page. Similar
accuracy can be obtained for query result section identification on new Web
sites, as shown in Table VII. Table VIII shows the query result section identi-
fication accuracy of the three wrappers: ODE, PADE, and DeLa. It can be seen
that ODE outperforms both PADE and DeLa.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:24 • W. Su et al.

Table VI. Query Result Section Identification

Accuracy for Training Web Sites

Domain MRP SRP ERP

Book 97.9% 93.0% 95.5%

Airfare 100% 97.2% 95.8%

Music 98.0% 96.2% 94.3%

Movie 97.7% 95.8% 100%

Average 98.4% 95.6% 95.4%

Table VII. Query Result Section Identification

Accuracy for New Web Sites

Domain MRP SRP ERP

Book 97.6% 95.3% 95.5%

Airfare 100.0% 91.7% 95.7%

Music 97.3% 98.1% 96.2%

Movie 97.7% 93.8% 100.0%

Average 98.2% 95.0% 96.0%

Table VIII. Query Result Section Identification Accuracy of

the Three Wrappers

ODE

Page type Training Test PADE DeLa

MRP 98.4% 98.2% 97.3% 92.6%

SRP 95.6% 95.0% 0% 86.7%

ERP 95.4% 96.0% 0% 88.4%

Average 97.8% 97.6% 75.8% 91.5%

Discussion. In our experiment, ODE identified the query result section ef-
fectively for a Multiple Result Page (MRP) except for the case when the query
result records are arranged into two or more different formats in which only
one format will be identified as the query result section according to its area,
distance to the center of the HTML page, and the number of data values in each
query result record.

For a single result page (SRP), most errors result from the following prob-
lems:

(1) Identifying a subtree of the page’s tag tree that is larger than the minimal
subtree that contains the query result section because the additional labels
were incorrectly identified to be relevant to the ontology.

(2) Identifying a subtree of the page’s tag tree that is smaller than the minimal
subtree that contains the query result section because the additional labels
were incorrectly identified to be irrelevant to the ontology.

Some empty result pages (ERPs) are incorrectly identified as MRPs or SRPs
because these pages contain advertisement information, which may be identi-
fied as query result records since they have high correlation with the ontology.

5.2.3 Data Value Alignment Accuracy. To evaluate the accuracy of the data
value alignment process (see Section 4.4), we use two sets of metrics due to the
possibly wide variation in the number of attributes in a query result page.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:25

The first set of metrics calculates the precision9 defined over the attribute
level. Given an attribute a and the data values it generates, the alignment
accuracy is

Pa = Cc

Ca
, (11)

where Cc is the count of correctly aligned data values and Ca is the count of
data values generated by the attribute a. It should be noted that the alignment
accuracy is defined according to the QRR alignment consistency. An alignment
is accurate if the data values generated by an attribute are aligned into the
same column. In the experiment, if the data values generated by one attribute
are not aligned into the same column, we select the column that contains the
most number of data values generated by this attribute as the correctly aligned
column, and mark those data values in this column to be the correctly aligned
values. Thus, the rest of the values that are not aligned to this column are
marked as incorrectly aligned. For example, suppose we have extracted five
data values d1, d2, d3, d4, and d5 that are generated by an attribute a and
they should be aligned into the same column. After the data value alignment
process, the data values in d1, d2, and d3 are aligned into one column and those
in d4 and d5 are aligned into another column. Consequently, we assume that d1,
d2, and d3 are the correctly aligned data values (i.e., Cc = 3) and the accuracy
for the attribute a is 3/5 = 60%. Given a page, its attribute-level accuracy Pr

is defined to be the average of all its attributes’ accuracy.
We further use the following page-level precision to evaluate the performance

of the alignment method. We have

Pp = Cp

Na
, (12)

in which Cp is the count of pages in which the data values in all QRRs are
correctly aligned and Na is the count of pages from which we need to extract
QRRs. It can be seen that the page-level metric is stricter than the record-level
metric because it assumes that an incorrectly aligned record in a page makes
the page fail (i.e., all the records in the page fail), which causes Pp to be smaller
than Pr in general.

Table IX and Table X show the data value alignment accuracy for Multiple
Record Pages (MRPs) in the training Web sites and the new Web sites.10 The
alignment accuracy of records from the training and new Web sites is simi-
lar. Both accuracies are around 99% at the attribute level and the accuracy is
around 97% at the page level. Table XI shows the data value alignment accu-
racy of the three wrappers ODE, PADE, and DeLa. It can be seen that while
all three wrappers achieve very high accuracy for data value alignment, ODE
still slightly outperforms the other two wrappers.

9Note that we do not need to measure recall here, since each data value is aligned to one of the

columns (correctly or not).
10Table IX and Table X show the data value alignment accuracy only for Multiple Record Pages

(MRPs) because Single Record Pages (SRPs) and Empty Record Pages (ERPs) do not need the data

value alignment step.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:26 • W. Su et al.

Table IX. Data Value Alignment

Accuracy for Multiple Record Pages

(MRPs) in Training Web Sites

Domain Pr Pp

Book 99.6% 96.5%

Airfare 99.6% 98.5%

Music 98.9% 97.2%

Movie 99.2% 96.1%

Average 99.3% 97.1%

Table X. Data Value

Alignment Accuracy for

Multiple Record Pages

(MRPs) in New Web Sites

Domain Pr Pp

Book 99.2% 96.1%

Airfare 99.3% 98.6%

Music 98.6% 97.4%

Movie 98.8% 96.0%

Average 99.0% 97.0%

Table XI. Data Value Alignment

Accuracy of the Three Wrappers

Metric ODE PADE DeLa

Pr 99.3% 98.9% 98.4%

Pp 97.1% 96.7% 95.1%

5.2.4 Label Assignment Accuracy. Table XII shows the label assignment
accuracy for the correctly aligned columns in the training and new Web sites.
The precision is the ratio of the correctly labeled columns over all labeled
columns and the recall is the ratio of the correctly labeled columns over all
columns. Recall is usually lower than precision because we do not label columns
whose labels never appear in any query interfaces or query result pages. It can
be seen that ODE has a label assignment precision and recall around 90% and
87% for columns in both training and new Web sites, both of which are much
higher than those of DeLa.

Discussion. The reason that the label recall of ODE is much higher than
that of DeLa is that DeLa labels columns with labels only from the query result
page or query interface from the same Web site. Consequently, many columns
cannot be labeled. On the other hand, ODE may label columns with labels from
other Web sites in the same domain. The reason that the label precision of ODE
is higher than that of DeLa is that ODE uses more domain knowledge, such as
the label sequence and the occurrence probability. This additional knowledge
helps to assign a correct label for a column. For ODE, around 4% of columns are
not labeled in the aligned table, which usually means that no suitable labels
are found in the query interfaces or query result pages from the domain.

5.2.5 Effect of the Number of Training Web Sites. Figure 9 shows the
record-level precision and recall for data value alignment and the label

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:27

Table XII. QRR Label Assignment Accuracies for Columns in Training

and New Web Sites

ODE

Training Web Sites New Web Sites DeLa

Domain Precision Recall Precision Recall Precision Recall

Book 89.2% 86.2% 88.9% 86.0% 81.2% 73.3%

Airfare 92.4% 92.4% 92.7% 91.7% 86.4% 84.6%

Music 90.7% 86.3% 89.9% 86.4% 80.3% 73.7%

Movie 89.8% 86.6% 89.2% 86.4% 74.8% 70.8%

Average 90.5% 87.1% 90.1% 86.8% 80.2% 75.5%

Fig. 9. Effect of number of training Web sites.

assignment precision and recall as the number of training Web sites increases.
It can be seen that all the four metrics increase steadily when more training
Web sites are available, although the effect is different for data value alignment
and label assignment. On the one hand, data value alignment already has high
precision and recall when the number of training Web sites is 10 and the pre-
cision increase is marginal as the number of training Web sites increases. On
the other hand, the precision and recall of label assignment initially increase
rapidly as the number of training Web sites increases to 30, because more la-
bels are available, but is fairly stable thereafter because the number of unique
labels does not increase much after about 30 training Web sites.

6. RELATED WORK

In recent years, the volume and quality of deep Web information has at-
tracted much research attention. As the returned data for a query are em-
bedded in HTML pages, much research has focused on extracting the data from
these query result pages. Simultaneously, many researchers have studied the

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:28 • W. Su et al.

problem of extracting information from HTML files. Earlier works focused on
wrapper induction, during which human assistance is required to build the
wrapper. Recently, several data extraction methods have been proposed to au-
tomatically extract the records from a query result page.

6.1 Wrapper-Based Data Extraction

In early work on wrapper induction, extraction rules are semi-automatically
derived based on inductive learning. A user labels or marks the data to extract
(the target data) in a set of training pages or a list of data records in a page, and
the system then learns the extraction rules from the labeled data and uses them
to extract records from new pages. A rule usually contains two patterns, a prefix
pattern and a suffix pattern, to denote the beginning and the end, respectively, of
the target data. Some existing wrapper induction systems include WL2 [Cohen
et al. 2002], SoftMealy [Hsu and Dung 1998], WIEN [Kushmerick 2000], and
Stalker [Muslea at al. 1999].

Semi-automatic wrapper induction has the advantage that no extraneous
data are extracted as the user can label only the data in which he/she is in-
terested. Furthermore, these methods are usually very fast at extracting data
from Web pages, faster than most other kinds of techniques, including ODE.
Hence, many real-time applications, such as metasearch, use wrapper induc-
tion techniques to extract data from Web pages.

However, semi-automatic wrapper induction requires labor-intensive and
time-consuming manual labeling of data. Hence, it is not scalable to a large
number of Web sites. Moreover, an existing wrapper usually performs poorly
when the format of a query result page changes. Considering that the Web
changes rapidly, the format of a query result page may change frequently.
Hence, wrapper induction involves two further difficult problems: page moni-
toring to determine whether a page’s format has changed and wrapper main-
tenance to maintain a wrapper when a page’s format changes.

To overcome the problems of semi-automatic wrapper induction, some unsu-
pervised learning methods, such as RoadRunner [Crescenzi et al. 2001], Omini
[Buttler et al. 2001], ExAlg [Arasu and Garcia-Molina 2003], IEPAD [Chang
and Lui 2001], DeLa [Wang and Lochovsky 2003], and PickUp [Chen et al.
2004], have been proposed to fully automatically extract the data from a query
result page based on the tag structure that exists in one or several HTML pages
from the same Web site.

RoadRunner [Crescenzi et al. 2001] starts with any page as its initial page
template and then compares this template with each new page. If the template
cannot generate the new page, it is fine-tuned. However, RoadRunner suffers
from several limitations.

(1) When RoadRunner finds that the current template cannot generate a new
page, it searches through an exponential size page schema trying to fine-
tune the template.

(2) RoadRunner assumes that the template generates all HTML tags, which
does not hold for many Web databases.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:29

(3) RoadRunner assumes that there are no disjunctive attributes, which the
authors of RoadRunner admit does not hold for many query result pages.

(4) Data labeling/annotation is not addressed in RoadRunner, since it mainly
focuses on the data extraction problem.

Omini [Buttler et al. 2001] uses several heuristics to extract a subtree that
contains data strings of interest from an HTML page. Then, another set of
heuristics is used to find a separator to segment the minimum data object-
rich11 subtree into data records. However, the results reported in Liu et al.
[2003] indicate that Omini has low effectiveness (recall 39% and precision 56%)
for extracting data records.

ExAlg [Arasu and Garcia-Molina 2003] works on a set of Web pages from the
same Web site and computes equivalence classes, which are sets of tokens hav-
ing the same frequency of occurrence on all input pages. Large and frequently
occurring equivalence classes are extracted for page template generation. ExAlg
has several problems. First, it assumes that a tag or string is used to separate
data strings, which is not valid for many Web sites. Second, while, ExAlg can
handle optional and disjunctive attributes, it cannot handle pages that con-
tain lists. Finally, it is possible that multiple equivalence classes are extracted,
which would then require human involvement to select one.

IEPAD [Chang and Lui 2001] first encodes all HTML tokens of a parsed
Web page into a binary sequence and then uses a PAT tree and heuristics to
find frequent patterns. The users can choose one of the generalized patterns
as an extraction rule. While IEPAD is efficient for Web pages that only contain
plain-structured data, the approach is not fully automatic and cannot handle
nested-structured data with multivalue attributes.

DeLa [Wang and Lochovsky 2003] models the data strings contained in
template-generated Web pages as string instances, encoded in HTML tags, of
the implied nested type of their Web database. A regular expression is employed
to model the HTML-encoded version of the nested type. Since the HTML tag
structure enclosing a data string may appear repeatedly if the page contains
more than one instance of the data string, the page is first transformed into a
token sequence composed of HTML tags and a special token “text” representing
any text string enclosed by pairs of HTML tags. Then, C-repeated substrings
are extracted from the token sequence and a regular expression wrapper is
induced from the repeated substrings according to some hierarchical relation-
ships among them. The main problem with this method is that it often produces
multiple patterns (rules) and it is hard to decide which is correct. PickUp [Chen
et al. 2004] identifies table structures in Web pages by also mining repeated
patterns in HTML tag sequences.

TISP [Tao and Embley 2007] constructs wrappers by looking for commonal-
ities and variations in sibling tables in sibling pages (i.e., pages that are from
the same Web site and have similar structures). Commonalities in sibling ta-
bles represent labels, while variations represent data values. Matching sibling

11An object-rich subtree corresponds to what we refer to as the query result section of a query result

page.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:30 • W. Su et al.

tables are found using a tree-mapping algorithm applied to the DOM tree rep-
resentation of tagged tables in sibling pages. Using several predefined table
structure templates, which are described using regular expressions, TISP “fits”
the tables into one of the templates allowing the table to be interpreted. TISP
is able to handle nested tables as well as variations in table structure (i.e., op-
tional columns) and is able to adjust the predefined templates to account for var-
ious combinations of table templates. The whole process is fully automatic and
experiments show that TISP achieves an overall F-measure of 94.5% on the ex-
perimental dataset. However, TISP can only extract data records embedded in
HTML <table> tags and only works when sibling pages and tables are available.

Several factors make it very difficult to derive accurate wrappers based solely
on HTML tags [Zhao et al. 2005]. First, since HTML tags are often used in unex-
pected and unconventional ways, we cannot rely on “proper” HTML tag usage.
Second, since the main purpose of HTML tags is to facilitate the rendering
of Web pages, they convey little semantic information about the data strings.
Consequently, an ill-structured HTML page may still display correctly. Fur-
thermore, some data strings may contain embedded tags, which may confuse
the wrapper generators, making them even less reliable.

Recently, to overcome these shortcomings, visual features have been used
for data extraction. In DEPTA [Zhai and Liu 2006], the intuition that the gap
within a QRR is typically smaller than that between QRRs is used to segment
data records and to identify individual data records. The data strings in the
records are then aligned, for those data strings that can be aligned with cer-
tainty, based on tree matching. In ViPER [Simon and Lausen 2005] and ViNTs
[Zhao et al. 2005], both visual content features and the HTML tag structure are
used to segment the data records. DEPTA, ViNTs, and ViPER can all handle
nested data structures. However, ViNTs requires a no-query-result page and
multiple QRRs (at least four) in each nonempty query result page to generate
an accurate wrapper and none of them does label assignment.

6.2 Ontology-assisted Data Extraction

In Embley et al. [1999], an ontology-assisted data extraction method is proposed
to extract the records from query result pages using an ontology constructed by
an expert. The ontology (i.e., a conceptual model instance) describes the data
of interest, including relationships, lexical appearance, and context keywords.
By parsing the ontology, a database schema and recognizers for constants and
keywords are produced and then are invoked to recognize and extract data from
unstructured documents and structure it according to the generated database
schema. However, the approach used by Embley et al. [1999] to identify the
query result section may not be realistic, as it simply searches for the subtree
in the HTML tag tree with the largest fan-out.

Snoussi et al. [2001] propose an ontology-assisted method to extract the data
in three steps: (i) convert an HTML page into XML; (ii) construct a data model
using the ontology; and (iii) map the XML document to the elements in the
ontology. The data strings are converted to a predefined format so that other
software can use them.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:31

Creating an ontology is difficult, time consuming, and usually requires
many experts to cooperate. To solve these problems, some semi-automatic
or automatic methods are proposed recently to construct an ontology from
databases or tables. Vivan and Heuser [2002] present a semi-automatic pro-
cess to generate an ontology from relational databases in two parts: First, re-
verse engineer from the relational database schema to the ontology and then
generate regular expressions from the database data instances. The process is
semi-automatic because user decisions are required for alternatives of ontology
generation.

Roitman and Gal [2006] developed OntoBuilder to automatically extract on-
tologies from Web query interfaces and then used them to generate the global
domain ontology. OntoBuilder showed that the precedence order of multiple
attributes helps improve the ontology matching result. In Tijerino et al. [2005],
an approach, called TANGO, tries to automatically generate an ontology from
the tables in the query result pages in four consecutive steps: (i) recognize and
normalize table information; (ii) construct mini-ontologies from the normalized
tables; (iii) discover interontology mappings; and (iv) merge mini-ontologies into
a growing application ontology. The difference between the ontology construc-
tion approaches used by OntoBuilder, TANGO, and ODE is that OntoBuilder
and TANGO consider domain information contained either in query interfaces
(OntoBuilder) or query result pages (TANGO), while ODE considers the domain
information contained in both query interfaces and query result pages.

DeepMiner learns a domain ontology for semantically marking up Web
services [Wu et al. 2005]. DeepMiner collects the domain knowledge from
the source Web sites’ query interface and data pages. The ontology of Deep-
Miner contains similar components as the ODE ontology, such as synonyms in
DeepMiner versus alias in ODE, instance of concept in DeepMiner versus value
in ODE, etc. Compared with ODE, DeepMiner’s goal is simply to build the on-
tology for the source Web services, while ODE further addresses the problem
of how to utilize the ontology to extract and annotate data embedded in query
result pages.

6.3 Label Assignment

Recent work on label assignment includes DeLa [Wang and Lochovsky 2003],
TISP [Tao and Embley 2007], and TISP++ [Tao and Embley 2009] and the work
of Lu et al. [2007]. DeLa uses four heuristics described in Section 3.3, from
which our method starts, to label the query result table [Wang and Lochovsky
2003].

TISP [Tao and Embley 2007] uses the labels that its finds (i.e., the common-
alities shared by sibling tables) when constructing a wrapper for a Web page
to annotate the data extraction result. TISP++ [Tao and Embley 2009] further
augments TISP by generating an OWL12 ontology for a Web site. For each table
label, TISP++ generates an OWL class. The label name becomes the class name.
If a label is paired with an actual value, TISP++ generates an OWL data type

12The Web Ontology Language (OWL) is a knowledge representation language endorsed by W3C

for authoring ontologies.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:32 • W. Su et al.

property for the OWL class associated with this label. After the OWL ontology
is generated, TISP++ automatically annotates the pages from this Web site
with respect to the generated ontology and outputs it as an RDF file suitable
for querying using SPARQL. The limitation of TISP++ is that it only generates
an OWL ontology for a single set of sibling pages from the same Web site and
does not combine ontologies generated from different Web sites in a domain. If
the generated ontology is unable to capture all the data semantics of the site
(e.g., when voluntary labels are not available in the Web pages), then when it
is applied to annotate the rest of the pages from the same Web site, there may
still be some data that cannot be labeled. In contrast, ODE tries to generate the
ontology for multiple Web sites in a domain (i.e., a domain ontology) by utilizing
the complementary information from the different Web sites.

The method in Lu et al. [2007] aggregates several annotators, most of which
are based on the same heuristics as used in Wang and Lochovsky [2003]. One
of the unique proposed annotators, schema value annotator, employs an inte-
grated interface schema and tries to match the data values with attributes in
the “global” schema. Once a match is discovered, the attribute name from the
global schema can be used to label the matched data values. To our knowledge,
the work by Lu et al. [2007] is the most recent and relevant work to ODE. Both
ODE and Lu et al. [2007] share some common heuristics in data annotation
including the idea of matching data values to a global representation of domain
knowledge. In Lu et al.’s work, such global domain knowledge is represented
in an integrated interface schema, while in ODE it is represented in a domain
ontology. The difference between Lu et al.’s work and ODE lies in the algorithm
for combining multiple annotation heuristics/features. Lu et al. [2007] assume
independence between different annotation features and consider each of them
individually. When a conflict arises because two or more features generate dif-
ferent labels, the label with the highest success rate in the past will be chosen.
Furthermore, Lu et al.’s work also assumes a context-free annotation process,
that is, the previous data values’ assigned labels do not affect how to label the
subsequent data values. By contrast, ODE considers multiple features when
calculating the probability of assigning a label to a target data value. In addi-
tion, ODE also takes the labeling sequence into account (i.e., the previous labels
assigned could affect the next label to assign).

7. CONCLUSIONS AND FUTURE WORK

In this article, a novel Ontology-assisted Data Extraction method, ODE, is intro-
duced. In ODE, the ontology for a domain is constructed by matching the query
interfaces and the query result pages among different Web sites. Then, the on-
tology is used to do the data extraction. For query result section identification,
ODE finds a subtree, which has the maximum correlation with the ontology, in
the HTML tag tree. For data value alignment and label assignment, ODE uses
a maximum entropy model. Context, tag structure, and visual information are
used as features for the maximum entropy model. The ontology-assisted data
extraction method is fully automatic and can avoid many of the problems that
exist in most current automatic data extraction methods. Experimental results

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:33

show that ODE is very effective and can satisfactorily address most existing
shortcomings of data extraction approaches.

Despites the effectiveness of ODE, there is still much that can be improved.
One limitation of ODE is that to label attributes it is necessary that the labels
appear in the query interfaces or query result pages within a domain. However,
there are some attributes whose labels never appear in any query interface or
query result page. Consequently, such attributes cannot be labeled. To over-
come this limitation, it might be possible to use the Web, as a repository of
knowledge, to assign a suitable label for these kinds of attributes. By sending
the attribute value and appropriate domain information of such attributes to a
search engine, it may be possible to analyze the returned pages, using natural
language processing techniques, to discover suitable labels for the attributes.
An already mentioned limitation of ODE is that if the query result records are
arranged into two or more different formats in the query result pages, then
only one format will be identified as the query result section. For such query
result pages, it may be possible to use information in the generated ontology to
identify the multiple query result sections. Finally, the performance of ODE on
certain types of query result pages is far from satisfactory. As one example, for
some pages with factor values,13 the factor values may sometimes be removed.
As another example, for pages with off-page links to a significant amount of
desired data, ODE does not extract those desired data. Techniques that could
overcome these limitations, such as that used in Lerman et al. [2004], require
further exploration.

REFERENCES

ARASU, A. AND GARCIA-MOLINA, H. 2003. Extracting structured data from Web pages. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data. 337–348.

BAEZA-YATES, R. 1989. Algorithms for string matching: A survey. ACM SIGIR Forum 23, 3-4,

34–58.

BERGER, A. L., DELLA-PIETRA, S. A., AND DELLA-PIETRA, V. J. 1996. A maximum entropy approach

to natural language processing. Comput. Linguist. 22, 1, 39–71.

BERGMAN, M. K. 2001. The deep Web: Surfacing hidden value. White paper, BrightPlanet Corpo-

ration. http://www.brightplanet.com/resources/details/deepweb.html.

BILKE, A. AND NAUMANN, F. 2005. Schema matching using duplicates. In Proceedings of the 21st
IEEE International Conference on Data Engineering. 69–80.

BORTHWICK, A. 1999. A maximum entropy approach to named entity recognition. Ph.D. thesis,

Computer Science Department, New York University.

BUTTLER, D., LIU, L., AND PU, C. 2001. A fully automated object extraction system for the World

Wide Web. In Proceedings of the 21st International Conference on Distributed Computing Systems.

361–370.

CHANG, C. H. AND LUI, S. C. 2001. IEPAD: Information extraction based on pattern discovery. In

Proceedings of the 10th World Wide Web Conference. 681–688.

CHANG, K. C.-C., HE, B., LI, C., PATEL, M., AND ZHANG, Z. 2004. Structured databases on the Web:

Observations and implications. SIGMOD Rec. 33, 3, 61–70.

CHEN, L., JAMIL, H. M., AND WANG, N. 2004. Automatic composite wrapper generation for semi-

structured biological data based on table structure identification. SIGMOD Rec. 33, 2, 58–64.

13Factored values are those values that appear once for a group of records (e.g., year value 2008

appears once for the group of 2008 cars, year value 2007 appears once for the group of 2007 cars,

etc.).

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

12:34 • W. Su et al.

COHEN, W., HURST, M., AND JENSEN, L. 2002. A flexible learning system for wrapping tables and

lists in HTML documents. In Proceedings of the 11th World Wide Web Conference. 232–241.

CRESCENZI, V., MECCA, G., AND MERIALDO, P. 2001. Roadrunner: Towards automatic data extraction

from large Web sites. In Proceedings of the 27th International Conference on Very Large Data
Bases. 109–118.

EMBLEY, D. W., CAMPBELL, D. M., JIANG, Y. S., LIDDLE, S. W., LONSDALE, D. W., NG, Y.-K., AND SMITH,

R. D. 1999. Conceptual-model-based data extraction from multiple-record Web pages. IEEE
Trans. Data Knowl. Engin. 31, 3, 227–251.

FEINER, A., KRAUS, S., AND KORF, R. E. 2003. KBFS: K-best-first search. Ann. Math. Artif. Intell.
39, 1-2, 19–39.

GRAVANO, L., IPEIROTIS, P. G., AND SAHAMI, M. 2003. QProber: A system for automatic classification

of hidden Web databases. ACM Trans. Inform. Syst. 21, 1, 1–41.

GUSFIELD, D. 1997. Algorithms on Strings, Trees, and Sequences: Computer Science and Compu-
tational Biology. Cambridge University Press, Cambridge, UK.

HE, B. AND CHANG, K. C.-C. 2006. Automatic complex schema matching across Web query inter-

faces: A correlation mining approach. ACM Trans. Datab. Syst. 31, 1, 346–396.

HSU, C.-N. AND DUNG, M.-T. 1998. Generating finite-state transducers for semi-structured data

extraction from the Web. Inform. Syst. 23, 8, 521–538.

KUSHMERICK, N. 2000. Wrapper induction: Efficiency and expressiveness. Artif. Intell. 118, 1–2,

15–68.

LERMAN, K., GETOOR, L., MINTON, S., AND KNOBLOCK, C. 2004. Using the structure of Web sites for

automatic segmentation of tables. In Proceedings of the ACM SIGMOD International Conference
on Management of Data. 119–130.

LIU, B., GROSSMAN, R., AND ZHAI, Y. 2003. Mining data records in Web pages. In Proceedings of the
9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 601–606.

LU, Y., HE, H., ZHAO, H., MENG, W., AND YU, C. 2007. Annotating structured data of the deep Web.

In Proceedings of the 23rd IEEE International Conference on Data Engineering. 376–385.

MINKA, T. 2003. A comparison of numerical optimizers for logistic regression. Tech. rep., Depart-

ment of Statistics, Carnegie Mellon University.

MUSLEA, I., MINTON, S., AND KNOBLOCK, C. 1999. A hierarchical approach to wrapper induction. In

Proceedings of the 3rd Annual Conference on Autonomous Agents. 190–197.

RATNAPARKHI, A. 1996. A maximum entropy model for part-of-speech tagging. In Proceedings of
the 1st Empirical Methods in Natural Language Processing Conference. 133–141.

ROITMAN, H. AND GAL, A. 2006. Ontobuilder: Fully automatic extraction and consolidation of

ontologies from Web sources using sequence semantics. In Proceedings of the EDBT Workshops.

573–576.

SIMON, K. AND LAUSEN, G. 2005. ViPER: Augmenting automatic information extraction with vi-

sual perceptions. In Proceedings of the 14th ACM International Conference on Information and
Knowledge Management. 381–388.

SNOUSSI, H., MAGNIN, L., AND NIE, J.-Y. 2001. Heterogeneous Web data extraction using ontologies.

In Proceedings of the Conference on Agent-Oriented Information Systems. 99–110.

SU, W., WANG, J., AND LOCHOVSKY, F. H. 2006. Holistic schema matching for Web query interfaces.

In Proceedings of the 10th International Conference on Extending Database Technology. 77–94.

SU, W., WANG, J., LOCHOVSKY, F. H., AND LIU, Y. 2009. PADE: Pair-wise alignment-based data

extraction. Tech. rep. HKUST-CS09-01, Department of Computer Science and Engineering, The

Hong Kong University of Science and Technology, Hong Kong.

TAO, C. AND EMBLEY, D. W. 2009. Automatic hidden-Web table interpretation, conceptualization,

and semantic annotation. Data Knowl. Engin. 68, 7, 683–703.

TAO, C. AND EMBLEY, D. W. 2007. Automatic hidden-Web table interpretation by sibling page

comparison. In Conceptual Modeling – ER’07. Lecture Notes in Computer Science, vol. 4801

Springer Berlin, 566–581.

TIJERINO, Y. A., EMBLEY, D. W., LONSDALE, D. W., DING, Y., AND NAGY, G. 2005. Towards ontology

generation from tables. World Wide Web 8, 3, 261–285.

VIVAN, O. M. AND HEUSER, C. A. 2002. Semiautomatic generation of data-extraction ontologies

from relational databases. In Proceedings of the XVII Simpósio Brasileiro de Banco de Dados.

252–262.

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

ODE: Ontology-Assisted Data Extraction • 12:35

WANG, J. AND LOCHOVSKY, F. H. 2003. Data extraction and label assignment for Web databases. In

Proceedings of the 12th World Wide Web Conference. 187–196.

WANG, J., WEN, J., LOCHOVSKY, F. H., AND MA, W. Y. 2004. Instance-Based schema matching for Web

databases by domain-specific query probing. In Proceedings of the 30th International Conference
on Very Large Data Bases. 408–419.

WORLD WIDE WEB CONSORTIUM. 1999. HTML 4.01 specification.

http://www.w3.org/TR/REC-html40/.

WU, W., DOAN, A., YU, C., AND MENG, W. 2005. Boot-strapping domain ontology for semantic Web

services from source Web sites. In Proceedings of the 6th VLDB Workshop on Technologies for
E-Services. 11–12.

ZHAI, Y. AND LIU, B. 2006. Structured data extraction from the Web based on partial tree align-

ment. IEEE Trans. Knowledge Data Engin. 18, 12, 1614–1628.

ZHANG, T. AND OLES, F. J. 2001. Text categorization based on regularized linear classification

methods. Inform. Retriev. 4, 1, 5–31.

ZHAO, H., MENG, W., WU, Z., RAGHAVAN, V., AND YU, C. 2005. Fully automatic wrapper generation

for search engines. In Proceedings of the 14th World Wide Web Conference. 66–75.

Received February 2008; revised January 2009; accepted February 2009

ACM Transactions on Database Systems, Vol. 34, No. 2, Article 12, Publication date: June 2009.

