
Theoretical Computer Science 320 (2004) 89–109
www.elsevier.com/locate/tcs

On the computational complexity of
membrane systems�

Oscar H. Ibarra∗

Department of Computer Science, University of California, Santa Barbara, CA 93106-5110, USA

Abstract

We show how techniques in machine-based complexity can be used to analyze the complexity
of membrane computing systems. We focus on catalytic systems, communicating P systems, and
systems with only symport/antiport rules, but our techniques are applicable to other P systems that
are universal. We de/ne space and time complexity measures and show hierarchies of complexity
classes similar to well-known results concerning Turing machines and counter machines. We also
show that the deterministic communicating P system simulating a deterministic counter machine
in (Sosik (2002)) (Pre-Proc. of Workshop on Membrane Computing (WMC-CdeA2002), Curtea
de Arges, Romania, 2002, pp. 371–382), (Sosik and Matysek (2002)) (Unconventional Models
of Computation 2002, Lecture Notes in Computer Science, vol. 2509, Springer, Berlin, 2002, pp.
264–275.) can be constructed to have a /xed number of membranes, answering positively an
open question in Sosik (2002), Sosik and Matysek (2002). We prove that reachability of extended
con/gurations for symport/antiport systems (as well as for catalytic systems and communicating P
systems) can be decided in nondeterministic log n space and, hence, in deterministic log2n space
or in polynomial time, improving the main result in Paun et al. (2002) (On the reachability
problem for P systems with symport/antiport, 2002, submitted for publication.). We propose
two equivalent systems that de/ne languages (instead of multisets of objects): the /rst is a
catalytic system language generator and the other is a communicating P system acceptor (or a
symport/antiport system acceptor). These devices are universal and therefore can also be analyzed
with respect to space and time complexity. Finally, we give a characterization of semilinear
languages in terms of a restricted form of catalytic system language generator.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Membrane computing; Catalytic system; Communicating P system; Symport/antiport system;
Space bounded; Time bounded; Reachability; Acceptor; Generator; Semilinear

� This research was supported in part by NSF Grants IIS-0101134 and CCR02-08595.
∗ Tel.: +1-805-893-4171; fax: +1-805-893-8553.
E-mail address: ibarra@cs.ucsb.edu (O.H. Ibarra).

0304-3975/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.03.045

mailto:ibarra@cs.ucsb.edu

90 O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109

1. Introduction

In recent years, there has been a Eurry of research activities in the area of membrane
computing [21,22,24], which identi/es an unconventional computing model (namely a
P system) from natural phenomena of cell evolutions and chemical reactions [1]. Due
to the built-in nature of maximal parallelism inherent in the model, P systems have a
great potential for implementing massively concurrent systems in an eIcient way, once
future bio-technology (or silicon-technology) gives way to practical bio-realization (or
a chip-realization).
A large number of papers have been written concerning the “universality” of the

computing power of various models of P systems. These model are all equivalent
in the sense that all of them are able to simulate a Turing machine. A fundamental
question concerning P systems or any new model of computation is how to quantify
its computing power in terms of some complexity measures, like time and=or space
(memory). Very little work has been done on this subject. In this paper, we present
some results along these lines.
A P system G consists of a /nite number of membranes, each of which contains

a multiset of objects (symbols). The membranes are organized as a Venn diagram or
a tree structure where membranes may contain other membranes. The dynamics of
G is governed by a set of rules associated with each membrane. Each rule speci/es
how objects evolve and move into neighboring membranes. The rule set can also be
associated with priority: a lower priority rule does not apply if one with a higher priority
is applicable. A precise de/nition of G can be found in [21,22,24]. Various models of
P systems have been shown to be equivalent to Turing machines in computing power.
For example, recent results in [30,31,6] show that P systems with one membrane (i.e.,
1-region P systems) using only catalytic rules without priority are already able to
simulate a two counter machines and hence universal [18]. In this paper, we look at
three P system models:
• Catalytic systems [21,22,24,30,31,6]. But here, we only allow rules of the form

Ca → Cv, where C is a catalyst, a is a noncatalyst, and v is a (possibly null) string
of noncatalysts.

• Communicating P systems [30,32,8].
• P systems with only symport=antiport rules [19,20,16,17,8,23,9].
We show how techniques in machine-based complexity can be used to analyze the
computational complexity of these systems. Our techniques are applicable to other P
systems that are universal. We de/ne space and time complexity measures and show
hierarchies of complexity classes similar to well known results concerning Turing ma-
chines and counter machines. In the process, we are able to give a positive answer
to an open question in [30,32]: That the deterministic communicating P system sim-
ulating a deterministic counter machine in [30,32] can be constructed to have a /xed
number of membranes. We also prove that reachability of extended con/gurations for
symport=antiport systems (as well as for catalytic systems and communicating P sys-
tems) can be decided in nondeterministic log n space and, hence, also in deterministic
log2 n space or in polynomial time, improving the main result in [23]. We propose
two equivalent systems that de/ne languages (instead of multisets of objects): the /rst

O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109 91

is a catalytic system language generator and the other is a communicating P system
acceptor (or a symport=antiport system acceptor). The latter is similar to the study of P
automata in [3,7]. These devices are universal and therefore can also be analyzed with
respect to space and time complexity. Finally, we give a characterization of semilinear
languages in terms of a restricted form of catalytic system language generator.
We should mention that computational complexity with respect to the possibilities

of trading space for time in P systems has been investigated in various places, e.g.,
for solving NP-complete problems in polynomial time by using membrane division that
generates exponential space, and by using “active membranes” (see, e.g., [22,33,27,26]).

2. Catalytic systems

In this section, we consider catalytic systems (CSs) with only one region. Such a
system G operates on two types of symbols: catalytic symbols called catalysts (denoted
by capital letters C, D, etc.) and noncatalytic symbols called noncatalysts (denoted by
lower case letters a; b; c; d, etc.). An evolution rule in G is of the form Ca → Cv,
where C is a catalyst, a is a noncatalyst, and v is a (possibly null) string (an obvious
representation of a multiset) of noncatalysts. There are no rules of the form a → v. A
CS G is speci/ed by a /nite set of rules together with an initial multiset (con/guration)
w0, which is a string of catalysts and noncatalysts. As with the standard semantics of P
systems [21,22,24], each evolution step of G is a result of applying all the rules in G
in a maximally parallel manner. More precisely, starting from the initial con/guration,
w0, the system goes through a sequence of con/gurations, where each con/guration
is derived from the directly preceding con/guration in one step by the application of
a subset of rules, which are chosen nondeterministically. Note that a rule Ca → Cv
is applicable if there is a C and an a in the preceding con/guration. The result of
applying this rule is the replacement of a by v. If there is another occurrence of C
and another occurrence of a, then the same rule or another rule with Ca on the left
hand side can be applied. We require that the chosen subset of rules to apply must
be maximally parallel in the sense that no other applicable rule can be added to the
subset. Con/guration w is reachable if it appears in some execution sequence; w is
halting if no rule is applicable on w.
It is important to note that our de/nition of catalytic system is diLerent from what

is usually called catalytic system in the literature. Here, we do not allow rules without
catalysts, i.e., rules of the form a → v. Thus our systems use only purely catalytic
rules. Also, in our de/nition, there is no target indication associated with the objects,
i.e., we do not allow objects to exit the membrane into the environment.
We denote by R(G) the Parikh map of all reachable con/gurations with respect to

noncatalysts only. (Thus, if a1; : : : ; ak are the noncatalysts, then R(G)= {(#a1 (x); : : : ;
#ak (x)) | x is a reachable con/guration in G}, where #ai(x) is the number of occur-
rences of noncatalyst ai in x.) For convenience, when we talk about con/gurations,
we sometimes do not include the catalysts. R(G) is called the reachability set of G.
Rh(G) will denote the set of all halting reachable con/gurations. Let N be the set
of all nonnegative integers and k be a positive integer. It is known that for any set

92 O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109

Q ⊆Nk that can be accepted by a Turing machine, we can construct a CS G with
only purely catalytic rules such that Rh(G)=Q [30,31,6]. In fact, Freund et al. [6]
shows that three catalysts (even when each catalyst appears exactly once in the initial
con/guration) are already suIcient for universality. If, however, the initial con/gura-
tion w0 of G has only one catalyst, then Rh(G) and Rh(S) are eLectively computable
semilinear sets [14]. The case when there are only two catalysts remain an interesting
open question.
For de/ning complexity measures, it is convenient to modify the de/nition of a

CS G to make it an acceptor of tuples of natural numbers. Let C be the set of all
catalysts, V the set of all noncatalysts, and �= {a1; : : : ; ak} ⊆V be a special set of
“input” noncatalysts. There is a /xed string w0 ∈ (C∪ (V − �))+ associated with G.
We say that G accepts a k-tuple (i1; : : : ; ik) of nonnegative integers if G, when started
in initial con/guration w0a

i1
1 ; : : : ; a

ik
k , has a computation that halts. If every computation

is nonhalting, then the tuple is not accepted. We call G a CS acceptor, or simply CSA.
Let S(n)¿n and T (n)¿n be monotonic functions. We say that G is S(n) space

bounded (respectively, T (n) time bounded) if for every tuple (i1; : : : ; ik) that is accepted,
there is a halting computation in which the maximum number of noncatalysts that G
uses during the computation excluding the objects in w0a

i1
1 ; : : : ; a

ik
k (respectively, the

total number of steps in the entire computation) is at most S(n) (respectively, T (n)),
where n= i1 + · · ·+ ik .
We are interested in studying the complexity of sets of tuples de/ned by CSAs.

We denote by CATSPACE(S(n)) (respectively, CATTIME(T (n))) the class of tuples
accepted by S(n) space bounded (respectively, T (n) time bounded) CSAs. It turns out
that these classes are related to space bounded (time bounded) computations of Turing
machines (TMs) and (multi)counter machines.
When we are dealing with languages that are subsets of �∗, we assume, without loss

of generality, that � is an alphabet containing only two symbols, which we identify
with the digits 1; 2. We interpret each string w∈�+ as a number Num(w) in 2-adic
notation. So if w=dn−1; : : : ; d0, each di ∈�, then Num(w)=dn−12n−1 + · · · + d020.
Note that if |w|= n, then 2n − 16Num(w)62n+1 − 2. If L⊆�+ is a language, let
Tally(L)= {1Num(w) |w∈L}.
Let M be a Turing machine (TM) with a one-way read-only input tape (with a right

endmarker) and several two-way read=write worktapes. M is S(n) space bounded if,
on every input w of length n that is accepted, there is an accepting computation which
uses no more than S(n) cells on any of its worktape. It is well known that any S(n)
space bounded TM with multiple worktapes can be transformed to an equivalent S(n)
space bounded TM with only one worktape. A two-way TM is one whose input tape
is two-way (with both left and right endmarkers). We will assume throughout, unless
otherwise noted, that S(n)¿n. It is then obvious that an S(n) space bounded one-way
TM is equivalent to an S(n) space bounded two-way TM.
Convention. In the paper, when we say that a device (e.g., TM, CSA, etc.) uses

S(n) space (or is S(n) space bounded) on an input x of length n, we mean that this
is the bound for some accepting computation on x. By our de/nition of S(n) space
bounded, the bound need not hold if x is not accepted. All logarithms in this paper
have base 2.

O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109 93

We will need the following lemma. A similar result was shown in [29,2], but is
not quite applicable for our purposes. Note that the parameter n in a space bound
that concerns a language L refers to the length of strings in L, but when it concerns
Tally(L), it refers to the length of strings in Tally(L).

Lemma 1. Let S(n)¿n.
1. If L is accepted by a deterministic (respectively, nondeterministic) S(n) space
bounded one-way TM, then Tally(L) is accepted by a deterministic (respectively,
nondeterministic) S(log n+ 1) space bounded one-way TM.

2. If Tally(L) is accepted by a deterministic (respectively, nondeterministic) S(log n−
1) space bounded one-way TM, then L is accepted by a deterministic (respectively,
nondeterministic) S(n) space bounded one-way TM.

Proof. Given an S(n) space bounded TM M , we construct a TM M ′ which, when
given a unary input y, /rst converts y to a 2-adic string w over {1; 2} on one of
the worktapes. Note that M′ need only read y from left to right (i.e., one-way). If
2n −16y ¡ 2n+1−2, then w will have length n. M ′ has enough space since S(n)¿n.
Then M ′ simulates M on w using another worktape that uses S(n) space. Hence, M ′

on an input y with 2n − 16y62n+1 − 2, uses S(n) space. It follows that M ′ accepts
Tally(L) and is S(log(n+ 1))6S(log n+ 1) space bounded.
Conversely, suppose M is an S(log n − 1) space bounded TM accepting Tally(L).

We construct a TM M ′ to accept L as follows. M ′, when given w of length n, /rst
writes w on the worktape, using space n. Then M ′ simulates the computation of M
on Num(w) by using the worktape that contains w. Since S(n)¿n, M ′ has enough
space to write and work on w. In the simulation, M ′ uses another tape for simulating
the worktape of M . This worktape is S(log (Num(w)) − 1)6S(log (2n+1 − 2) − 1)
6S(log (2n+1) − 1)= S(n) space bounded. Thus, M ′ accepts L and, on input w of
length n, uses at most S(n) space.

Let NSPACE(S(n)) (respectively, DSPACE(S(n))) denote the class of languages
accepted by nondeterministic (respectively, deterministic) S(n) space bounded one-way
TMs.

Corollary 1. Let S1(n)¿n and S2(n)¿n. If L is in NSPACE(S2(n))−NSPACE(S1(n)),
then Tally(L) is in NSPACE(S2(log n+1))−NSPACE(S1(log n−1)). This also holds
for the deterministic classes.

In the remainder of the paper, to simplify the notation and presentation of the results,
we will assume that S(n) satis/es the following property: For every S(n) space bounded
TM M , we can construct an S(n−1) space bounded TM M ′ which accepts exactly the
strings accepted by M whose lengths are greater than 1. This is true for many space
bounds. Then the corollary above reduces to:

Corollary 2. Let S1(n)¿n and S2(n)¿n. If L is in NSPACE(S2(n))−NSPACE(S1(n)),
then Tally(L) is in NSPACE(S2(log n))−NSPACE(S1(log n)). This also holds for the
deterministic classes.

94 O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109

A nondeterministic (respectively, deterministic) counter machine, or CM, is a ma-
chine with a one-way read-only input (with a right endmarker) and a /nite number
of counters that are initially zero. During the computation, the machine can test each
counter against zero, increment=decrement it by 1, or leave it unchanged. The coun-
ters can only assume nonnegative values. The machine accepts the input if there is a
computation that halts, with all counters zero. The machine is S(n) space bounded if
for any input of length n that is accepted, there is a computation in which the sum of
the counter values at any time during the computation is at most S(n).
We will need the following two results from [5]:

Lemma 2. Let S(n)¿n. The following statements hold for both deterministic and
nondeterministic CMs:
1. (Linear space compression without increasing the number of counters.) Given any

S(n) space bounded CM with r counters, we can construct a time-equivalent (i.e.,
no loss of time) cS(n) space bounded CM with r counters for any
constant c ¿ 0.

2. (At the cost of adding more counters.) For every k, given any Sk(n) space bounded
CM, we can construct a time-equivalent S(n) space bounded CM. Thus in par-
ticular, a polynomial space bounded CM can be converted to one which is linear
space bounded.

Lemma 3. Let S(n)¿n. A language L is accepted by a nondeterministic (respectively,
deterministic) S(n) space bounded CM if and only if it is accepted by a nondeter-
ministic (respectively, deterministic) log(S(n)) space bounded TM.

NCMSPACE(S(n)) denotes the class of languages accepted by S(n) space bounded
nondeterministic one-way counter machines. DCMSPACE(S(n)) denotes the determin-
istic class.
From Corollary 2 and Lemma 3, we have:

Theorem 1. Let S1(n)¿n and S2(n)¿n. If L is in NSPACE(S2(n))−NSPACE(S1(n)),
then Tally(L) is in NCMSPACE(2S2(log n)) − NCMSPACE(2S1(log n)). This also holds
for the deterministic classes.

Suppose M is a CM whose inputs are bounded, i.e., of the form 1i121i22; : : : ; 21ik

(with a right endmarker) for some /xed k, where i1; : : : ; ik are nonnegative integers.
Clearly, the one-way bounded input can be simulated by k counters which initially
contain the tuple (i1; : : : ; ik). We will use this second model (but still call it CM) in
the remainder of this section.
The connection between CSAs and (nondeterministic) CMs is given by the following

theorem.

Theorem 2. A set of tuples Q ⊆Nk is accepted by an S(n) space bounded CSA if
and only if it is accepted by an S(n) space bounded one-way CM.

O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109 95

Proof. Clearly, an S(n) space bounded CSA can be simulated by a cS(n) space
bounded CM for some c, where each noncatalyst is associated with a counter. We
then use Lemma 2 part 1 to bring the constant c down to 1. The converse follows
from the construction in [30,31]. That is, given an S(n) space bounded CM M , we /rst
use Lemma 2 part 1 to construct an equivalent CM M ′ that is dS(n) time bounded
for a constant d yet to be determined. Then from the construction in [30,31], we
can construct from M ′ an equivalent CSA G whose space bound is linear in the
space bound of M ′. By using the appropriate d, the CSA G can be made S(n) space
bounded.

From the above theorem and Lemma 2, we have:

Corollary 3. Let S(n)¿n.
1. Given any S(n) space bounded CSA, we can construct an equivalent cS(n) space
bounded CSA for any constant c ¿ 0.

2. For every k, given any Sk(n) space bounded CSA, we can construct an equivalent
S(n) space bounded CSA. Thus in particular, a polynomial space bounded CSA
can be converted to one which is linear space bounded.

From Theorems 1 and 2, we have:

Corollary 4. Suppose L is in NSPACE(S2(n))− NSPACE(S1(n)). Then Tally(L) is in
CATSPACE(2S2(log n))− CATSPACE(2S1(log n)).

The above corollary shows that there is an in/nite hierarchy of space bounded CSA
computations. It can be used to show separation between complexity classes. For exam-
ple, it is known [12] that for any positive integer k, NSPACE(nk+1) properly contains
NSPACE(nk). Hence, from Corollary 4, there is a subset Q of N that is accepted
by a CSA in space 2log

k+1 n that is not accepted by any CSA in space 2log
k n. Thus

CATSPACE(2log
k+1 n) properly contains CATSPACE(2log

k n).
The following gives the trade-oL between space bounded and time bounded compu-

tations in CSA’s.

Theorem 3. A set of tuples Q is accepted by an S(n) space bounded CSA if and
only if it is accepted by an Sk(n) time bounded CSA for some k. In particu-
lar, polynomial space bounded CSA’s are equivalent to polynomial time bounded
CSAs.

Proof. Let G be an S(n) space bounded CSA. Let m be the number of noncatalysts in
G. Then the number of possible con/gurations that G can be in is at most (S(n)+1)m.
(Note that the catalysts do not change during the computation and therefore are not
counted in this number.) Hence, G is (S(n)k time-bounded for some k. The converse
is obvious, using Corollary 3 part 2.

96 O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109

3. Communicating P systems

Here we look at communicating P systems [30,32]. A communicating P system
G consists of membranes organized in a tree-like structure. Each membrane has a
(possibly empty) set of rules associated with it. The evolution rules are of the following
forms, where V is the set of all objects that can appear in the system:
1. a → a%,
2. ab → a%1b%2 ,
3. ab → a%1b%2ccome,
where a; b; c∈V and %; %1; %2 ∈ ({here; out} ∪ {inj | 16j6n}). The meaning of the sub-
script out (respectively, inj) on an object is to transport the object from the mem-
brane containing it into the membrane immediately outside it (respectively, into mem-
brane labeled j, provided j is adjacent to the object). The subscript here on an
object means that the object remains in the same membrane after the transition. A
rule of the form (3) can occur only within the region enclosed by the skin mem-
brane. When such a rule is applied, then c is imported through the skin membrane
from the outer space (environment) and will become an element of this region. In
one step, all rules are applied in a maximally parallel manner. There is an abundant
(in/nite) supply of some objects outside the skin membrane, i.e., the environment.
Some objects are not available initially in the environment but may enter the envi-
ronment during the computation. Thus, the number of each such object in the whole
system (including the environment) remains the same. The system starts from some
/xed initial con/guration with objects distributed among the membranes. Some mem-
branes can be designated input (respectively, output) membranes, to contain the ini-
tial input (respectively, /nal output) objects. We refer the reader to [30,32] for the
details.
We know that in a communicating P system, a step of the computation is an ap-

plication of a set of nondeterministically chosen rules in parallel to the current con-
/guration to obtain the next con/guration (thus, all rules must be applicable at the
same time). The set of rules is maximal in the sense that no additional rule can be
added to the set which still makes the resulting set of rules applicable. To empha-
size this parallelism, we will also refer to this system as a parallel communicating P
system.
Now de/ne a sequential communicating P system as one in which a computa-

tion step consists of an application of a single rule in some membrane to the current
con/guration. The membrane and rule are chosen nondeterministically. If no rule in
any membrane is applicable to the current con/guration, the system halts. A deter-
ministic communicating P system is a sequential communicating P system which is
deterministic, i.e., there is a unique possible sequence of con/gurations from the initial
con/guration.
A communicating P system (parallel or sequential) computes a function f : N →

N if, when given an in the input membrane (representing the nonnegative integer
n) together with some /xed initial distribution of objects (diLerent from a) in some
membranes, the system halts if and only if f(n) is de/ned, and if it halts, then af(n)

is in the output membrane. See [30,32] for details.

O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109 97

Lemma 4. A deterministic communicating P system can be simulated by a determin-
istic CM (i.e., counter machine). Thus any function f : N → N that can be com-
puted by a deterministic communication P system can be computed by a deterministic
CM.

Proof. The deterministic counter machine has a counter A(a;m) for each object a and
membrane m in the communicating P system. The machine also uses some auxiliary
counters. The counter machine simulates each computation step of the P system faith-
fully, where each step consists of an application of the rules in a maximally parallel
manner (the auxiliary counters are used in updating the contents of the counters A(a;m)’s
in the simulation of a step). Since the P system is deterministic, the counter machine
is guaranteed to be deterministic.

The converse of the above lemma is also true. It was shown in [30,32] that a deter-
ministic CM can be simulated by a deterministic communicating P system. The number
of membranes used in the simulation grows with the size (number of instructions) in
the program of the CM being simulated. It was left open in [30,32] whether the num-
ber of membranes can be bounded by some /xed number. Two membranes were later
shown to be suIcient for the simulation in [8]. However, the simulating system in [8]
is a parallel communicating P system (it uses “trap” objects that cause the system to
go into an in/nite loop if the correct simulation is not taken). Below we provide an
answer to the question raised in [30,32].

Theorem 4. There is a 9xed positive integer k such that an arbitrary recursively
enumerable function (i.e., Turing machine computable function) f : N → N can be
computed by a deterministic communicating P system with k membranes.

Proof. Clearly, any recursively enumerable function f can be computed by a deter-
ministic TM, M , with a one-way unary read-only input tape (with right endmarker),
one read-write worktape, and one unary output tape. M , when given n on its input
tape, computes (using its worktape) and outputs f(n) on its output tape and halts, if
f(n) is de/ned; otherwise, M does not halt.
It is well known that we can construct a universal deterministic TM U with two

read-only input tapes, one read-write tape, and one unary output tape. U , when given
n and the 2-adic description xM of a deterministic TM M on its two input tapes, will
simulate the computation of M on n and output f(n) on its output tape if M halts with
output f(n). If M does not halt, U does not halt. Note that the unary input containing
n is one-way.
First, we convert U to an equivalent universal deterministic TM U ′, where the

description of xM is given as Tally(xM) (i.e., in unary), instead of 2-adic. The idea is
for U ′ to read Tally(xM) on the input and convert it into 2-adic representation xM on
the /rst track of the worktape. Then U ′ uses xM to simulate U on n using the second
track of the worktape. So now U ′ has two read-only unary input tapes, a worktape,
and a unary output tape.

98 O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109

Next, we convert the worktape of U ′ to a /nite number of counters. Three counters
are suIcient to simulate the TM worktape, as shown in [4,5]. The new machine U ′′

will now have two-unary inputs, one unary output, and three counters.
Finally, we convert U ′′ to a deterministic counter machine M which will use two

counters to simulate the two unary input tapes (note that the unary input tapes are
one-way), one counter for the output, and three working counters, all of which are
initially zero.
Thus, M has 6 counters. Initially, the /rst counter contains n, the second counter

contains Tally(xM), and the other 4 counters are zero. If and when M halts, the output
counter will contain f(n). We may assume that M zero out all but the output counter
before it halts.
Let s be the number of states of M . Then by the construction in [30,32], we

can convert a CM M with m counters to a deterministic communicating P system
G with k =3s+m+1 membranes. Hence, an arbitrary recursively enumerable function
f : N → N can be computed by a (3s + 7)-membrane deterministic communicating
P system Gf obtained from G. Note that Gf has the same program for any f. The
only diLerence is the starting con/guration: the input n is initially stored in the /rst
membrane and the unary description Tally(xM) of the TM M computing f is initially
stored in the second membrane. Thus, G is a “universal deterministic communicating P
system”.

Clearly, the theorem above generalizes to computing recursively enumerable func-
tions f : Nk → Nl. Also one can de/ne a communicating P system acceptor accepting
a set of tuples Q ⊆Nk in the obvious way—the input tuple (i1; : : : ; ik) is represented
(along with other objects) in the initial con/guration of the system. The tuple is ac-
cepted if the system halts.

Remark 1. The construction in the proof of Theorem 4 can be used to show that for
a universal P system of any given type, there exists a /xed universal P system of the
same type. Thus, we can construct, e.g., a universal CSA, a universal symport=antiport
system, etc.

We can derive results similar to those in the previous sections concerning space
bounded communicating P systems. A deterministic (respectively, nondeterministic)
S(n) space bounded communicating P system acceptor is de/ned in the obvious way—
S(n) is the maximum number of objects imported from the environment during the
computation on an input (i1; : : : ; ik) of size n= i1 + · · · + ik . In fact, because of the
“deterministic simulation” of [30,32], we can prove a tighter hierarchy for deterministic
space bounded communicating P systems because the space hierarchy theorem for
deterministic TM’s is tighter. For example, we can prove the following theorem by
using the “deterministic version” of Theorem 1 and the fact (follows from Lemma 4
and the construction in [30,32]) that a set Q of tuples is accepted by an S(n) space
bounded deterministic communicating P system acceptor if and only if it is accepted
by an S(n) space bounded deterministic CM.

O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109 99

Theorem 5. Let S1(n)¿n and S2(n)¿n be tape constructable functions. [S(n) is tape
constructable if there is deterministic TM which on every input of length n (accepted
or not) uses exactly S(n) space and halts.] If limn→∞ S1(n)=S2(n)= 0, then there is
a set of tuples accepted by a 2S2(log n) space bounded deterministic communicating P
system acceptor that cannot be accepted by a 2S1(log n) space bounded deterministic
communicating P system acceptor.

4. Systems with symport=antiport rules

The results of the previous sections also apply to space bounded systems with
symport=antiport rules. Thus, the only rules allowed are of the form (u, out; v, in),
where u and v are in V ∗ with uv �= .. See [19,20,16,17,8,23,9].
The environment has an abundant supply of some objects and /nite (possibly empty)

supply for some objects. The amount of objects from the environment used during the
computation (not including the objects in the initial con/guration of the system) is the
measure of the space bound.

Theorem 6. A set of tuples Q ⊆Nk is accepted by an S(n) space bounded symport=
antiport system if and only if it is accepted by an S(n) space bounded one-way CM.

Proof. The proof of the “only if part” is similar to Theorem 2. Given an S(n) space
bounded symport=antiport system G, we construct an S(n) space bounded CM M by
assigning a counter A(a;m) for each object a and each membrane in the system. We also
assign a counter Bb for each object b present in the environment that does not have
in/nite supply. We do not assign counters to objects with in/nite supply. M simulates
the computation of G using the counters to keep track of the multiplicities of distinct
objects in distinct membranes. M also uses some auxiliary counters in the simulation.
Clearly, M is O(S(n)) space bounded, but this can be reduced to S(n) by the linear
space compression lemma.
The converse follows from the construction in [30,31] and Theorem 2, since the

rules in [30,31] (which can be converted to be all purely catalytic) can directly be
written as symport=antiport rules, i.e., Ca → Cv becomes the rule (Ca out; Cv in).

5. Reachability problem

The reachability problem for any P system G is de/ned as follows:
Given: A P system G with initial con/guration w0, and a con/guration x.
Question: Is there a computation of G from w0 which reaches x?
Clearly, if G is universal, the reachability problem is undecidable, in general. How-

ever, for restricted cases, e.g., for space bounded G, the problem is decidable. For
example if G is S(n) space bounded, and S(n) is computable, then, for a given n,
there are at most cS(n) possible reachable con/gurations of length n from w0, for some

100 O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109

eLectively computable constant c. Thus, given x of length n, we can examine all reach-
able con/gurations and check if x is one of these.
In [23], it was shown that the reachability problem for symport=antiport systems is

decidable if the con/guration x (for which we are trying to determine reachability)
also includes the objects which are sent out of system into the environment. Thus,
the con/guration x will always have length proportional to the maximum number of
objects brought in from the environment during the computation. In this sense, x is
called an extended con9guration. It was shown in [23] that the set of all reachable
extended con/gurations is a context-sensitive language (and, in fact, can be generated
by a matrix grammar with appearance checking with .-free rules). The algorithm in
[23] runs in time exponential in the length of the extended con/guration x, where x is
represented as z1dz2d; : : : ; dzmdzm+1, where d is a delimiter, m is the number of mem-
branes, zi (i=1; : : : ; m) represents the unary encodings of the multiplicities of objects
(separated by markers) in membrane i, and zm+1 represents the unary encodings of the
multiplicities of objects sent out to the environment. Here, we observe that, in fact, the
set of reachable extended con/gurations can be accepted by a log n space bounded two-
way nondeterministic TM and, hence, from Savitch’s result [28], can also be accepted
by a log2 n space-bounded two-way deterministic TM. Since a log n space bounded
two-way nondeterministic TM can be simulated by a deterministic TM in polynomial
time, the set of extended con/gurations is also in PTIME (= polynomial time):

Theorem 7. Let G be a symport/antiport system. The set of reachable extended con-
9gurations of G can be accepted by a log n space-bounded nondeterministic two-way
TM. The same result holds if we are only interested in halting reachable extended
con9gurations.

Proof. The idea is the following: Given a symport=antiport system G, we construct a
log n space-bounded nondeterministic TM (with a two-way read-only input with end-
markers) M which, when given the extended con/guration x, /rst converts the input
into binary representation using a /nite number k of worktapes by writing the multi-
plicities of the objects in binary. Clearly, if the length of x is n, the space needed for
the worktapes is at most O(log n). Then M simulates the nondeterministic computa-
tion of G (starting from the initial con/guration) on another set of k worktapes. In the
simulation, M records=updates the multiplicities of the diLerent objects (which are in
binary), making sure that at each step of the simulation, the second set of worktapes
use no more space than the /rst set of worktapes. At some point during the computa-
tion, M guesses that it has reached the target con/guration and checks that the tapes in
the /rst set of worktapes are identical to the corresponding tapes in the second set, and
accepts and halts; otherwise, M rejects and halts. Clearly, M is log n space bounded.
If we were only interested in halting reachable extended con/gurations, before the

simulation, M /rst checks that x is a halting con/guration by making sure that no
transition rules are applicable to x.

We note that the above construction can be used to solve the reachability problem
of extended con/gurations for other membrane computing systems.

O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109 101

6. Catalytic system generator

In this section and the next, we study two models of P systems that de/ne languages
(instead of multisets of objects): the catalytic system generator and the communicating
P system acceptor. Both are universal and therefore can also be analyzed with respect
to space and time complexity. Language de/ning P systems have been studied before,
e.g., P systems with external output [25], traces describing the itineraries of a given
object (called “traveller”) through membranes [15], and P automata [3,7]. We now
de/ne the model of a catalytic system generator.
Let G be a CS (thus the rules are of the form Ca → Cv). Let V be the set of all

noncatalysts, and � (called language alphabet) be a subset of V . We require that:
G has no rules of the form Ca → Cv, where a∈�.

This means that symbols from � cannot be catalyzed (modi/ed). This requirement can
be made without loss of generality (see Remark 2).
If R is a rule, let h(R) be the string obtained from the RHS of the rule by deleting all

catalysts and noncatalysts not in �, preserving the order the symbols in � are written
in the RHS. Thus, h(R) is a (possibly null) string in �∗.
At the beginning, the initial con/guration of G contains only a string of catalysts

and noncatalysts not in �. Thus, we can think of w0 = . (the null string) to be the
only string in �∗ present in the initial con/guration. During the computation of G,
w0 is built up as follows. Suppose that w is the string in �∗ in the current con/g-
uration. If in the next step {R1; : : : ; Rk} is a maximal set of applicable rules, then
in the next con/guration, h(Ri1)h(Ri2) : : : h(Rik) is appended to the right of w, where
i1; : : : ; ik is some nondeterministically chosen permutation of 1; : : : ; k, yielding the string
w′=wh(Ri1)h(Ri2) : : : ; h(Rik)∈�∗ in the next con/guration. We will see later (Corol-
lary 6) that, in fact, every CSG can be converted to an equivalent CSG such that at
most one symbol is appended to the string w at each step of the computation.
A string x= a1; : : : ; an ∈�∗ is generated if G when started from its initial con/gu-

ration, halts after generating the symbols in x. (Note that the catalysts remain in the
system, and there may be other noncatalysts not in � when the system halts.) The
language (set of all strings) generated by G is denoted by L(G). Call the CS just
described a CS generator (CSG).

G is S(n) space bounded if for every string x of length n that is in L(G), there is
a halting computation for x in which the sum of the multiplicities of all noncatalysts
not in � in the system at any time during the computation is at most S(n). Time
boundedness is de/ned similarly.
In what follows, we assume without loss of generality that � contains only two

symbols, 1 and 2. (Our results easily extend to the case when the alphabet has more
than two symbols).
To simplify the proofs in this section, we use an equivalent model of a one-way

counter machine (CM) (see the paragraph before Lemma 2 in Section 2). Here we
assume that an atomic move of the CM consists of one of the following labeled
instructions:
1. Read input; if it is 1 go to (k1 or . . . or kr) else go to (l1 or . . . or ls).
(The labels need not be distinct. Thus, in general, the next instruction depends on
the symbol read. Note that the use of “or” makes the instruction nondeterministic.)

102 O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109

2. Increment counter X by 1 and go to (k1 or : : : or kr).
3. If counter X is positive then decrement the counter by 1 and go to (k1 or . . . or kr)
else go to (l1 or : : : or ls).

4. Halt.
Note that an unconditional goto instruction “Go to (k1 or . . . or kr)” can be simulated by
an instruction of type 2 followed by an instruction of type 3. Hence, in the simulation
proofs, we can use unconditional gotos.
A string x is accepted by M if M , when started in its initial state with all counters

zero, halts after reading x.
There is an equivalent model called counter generator. Such a machine is like a

counter acceptor but, instead of the Read instruction above, we have:
Generate z and go to (k1 or . . . or kr). (Here, z is either 1 or 2.)
Every counter generator can be simulated by a counter acceptor, and conversely.

Going from generator to acceptor is obvious. To simulate the Generate instruction,
the acceptor Reads the input and if the input is z, it goes to instruction labeled (k1
or : : : or kr); otherwise, the acceptor goes into an in/nite loop by cycling through
an increment(+1)=decrement(−1) of some /xed counter. To see the converse, sup-
pose M is an acceptor. We construct a generator M ′ as follows. We introduce a new
counter, DUMMY, which is initially zero. Suppose there is a Read instruction in M
labeled h,

h: Read input; if it is 1 go to (k1 or : : : or kr) else go to (l1 or : : : or ls)
We replace this instruction by the following instructions:

h: Increment counter DUMMY by 1 and go to (k ′ or l′)
k ′: If counter DUMMY is positive then decrement the counter by 1 and go to k else
go to k
l′: If counter DUMMY is positive then decrement the counter by 1 and go to l else
go to l
k: Generate 1 and go to (k1 or : : : or kr)
l: Generate 2 and go to (l1 or : : : or ls)

The labels k ′; l′; k; l are new and only used for instruction h. We use the above pro-
cedure to transform all Read instructions to Generate instructions.
We denote the language accepted (generated) by a counter acceptor (generator) M

by L(M).

Corollary 5. A language L is accepted by an S(n) space bounded counter acceptor if
and only if it is generated by an S(n) space bounded counter generator.

We now show that a counter generator is equivalent to a CSG.

Theorem 8. 1. Let G be an S(n) space bounded CSG that runs in T (n) time. We
can construct an S(n) space bounded counter generator M that runs in O(T (n))
time such that L(M)=L(G).

O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109 103

2. Let M be an S(n) space bounded counter generator that runs in T (n) time. We
can construct an S(n) space bounded CSG G that runs in O(T (n)) time such that
L(G)=L(M).

Proof. The /rst part follows from a straightforward simulation of the CSG by a counter
generator, using one counter for each noncatalyst not in � to keep track of its multi-
plicity noting that the counter generator takes at most O(k) steps to simulate 1 step of
the CSG, where k is the number of catalysts. We need to use Lemma 2 part 1 on the
counter machine so that it uses no more than S(n) space.
The second part is an easy generalization of the construction in [30,31]. First we

note that the construction in [30,31] involves the simulation of a deterministic counter
machine. However, the construction easily generalizes to the case when the counter
machine is nondeterministic (i.e., the use of “or” in the go to instructions). Clearly,
the simulation of the Generate instruction is handled like incrementing a counter by 1.
Again, we need to use Lemma 2 part 1 on the counter machine before applying the
construction so that the resulting CSG remains S(n) space bounded.

From part 2 of Theorem 8, the de/nition of a counter generator, and the fact that
the simulation described in [30,31] is faithful, we have:

Corollary 6. Every CSG can be converted to an equivalent CSG such that at most
one symbol in � is appended to the string w∈�∗ at each step of the computation.

Remark 2. The construction of the counter generator in part 1 of Theorem 8 still works
even if we allow the CSG to have rules of the form Ca → Cv, where a∈�. Then we
can use part 2 to construct (from the counter generator) an equivalent CSG without
such rules.

The next corollary follows from Lemma 3, Corollary 5, Theorem 8, and the fact
that for S(n)¿n, an S(n) space bounded TM with a one-way input tape is equivalent
to an S(n) space bounded TM with a two-way input tape. In what follows, TM means
a two-way TM.

Corollary 7. Let L be a language.
1. L is generated by a CSG if and only if it is accepted by a TM. Hence, a CSG
can generate any recursively enumerable set.

2. Let S(n)¿n. L is generated by a cS(n) space bounded CSG (for some c) if and
only if it is accepted by a nondeterministic S(n) space bounded TM.

3. L is generated by a cn space bounded CSG (for some c) if and only if it is
context-sensitive.

4. L is generated by an nk space bounded CSG (for some k) if and only if it is
accepted bu a nondeterministic log n space bounded one-way TM.

From Theorem 8 and Lemma 2, we have:

104 O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109

Corollary 8. Let S(n)¿n.
1. Given any S(n) space bounded CSG, we can construct an equivalent cS(n) space
bounded CSG for any constant c ¿ 0.

2. For every k, given any Sk(n) space bounded CSG, we can construct an equivalent
S(n) space bounded CSG. Thus in particular, a polynomial space bounded CSG
can be converted to one which is linear space bounded.

Because of the equivalence in Theorem 8, we can talk about space bounded and
time bounded CSGs. We can use the techniques in the previous sections to prove
results concerning complexity classes of languages de/ned by CSGs. For example, the
following follows from Lemma 3:

Theorem 9. If L is in NSPACE(S2(n))−NSPACE(S1(n)), then L can be generated by
a 2S2(n) space bounded CSG but not by a 2S1(n) spaced bounded CSG.

So, e.g., since for any integer k ¿ 0, NSPACE(nk+1) − NSPACE(nk) is not empty
[12], it follows that there is a language generated by a 2n

k+1
space bounded CSG that

cannot be generated by a 2n
k
space bounded CSG.

The next result says that linear space is a lower bound for CSG to generate a
nonregular language.

Theorem 10. If a CSG G generates a language L that is not regular, then G must
use linear space (i.e., linear number of objects) for in9nitely many strings in L.

Proof. It is known that if L is accepted by a nondeterministic one-way TM and L is
not regular, then the TM uses log n space for in/nitely many inputs of length n [11].
The result follows from Theorem 8 and Lemma 3.

Consider the languages L1 = {y |y∈ {1; 2}+; |y| is even and y is not a palindrome}
and L2 = {1i2i | i¿1}. Clearly, L1 and L2 can be accepted by log n space-bounded
(one-way) TMs. Hence by Lemma 3, they can be accepted by CM acceptors (or,
equivalently, by CM generators) in linear space and, therefore, can also be generated
by CSGs in linear space. By the theorem above, L1 and L2 cannot be generated by
CSGs in sublinear space.
Now consider L3 = {xxR | x∈ {1; 2}+}, which is essentially the complement of L1.

Clearly, L3 can be accepted by a one-way TM in linear space. It is known that any
one-way TM accepting L3 must use linear space for in/nitely many strings in L3.
Hence, L3 can be generated by an exponential space bounded CSG, and any CSG
generating L3 must use exponential space for in/nitely many strings in L3.

7. Communicating P system acceptor

Using the ideas in the previous section, we can de/ne a communicating P system
acceptor (rather than a generator). Our approach is similar to the study of P automata
in [3,7].

O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109 105

Let G be a communicating P system [30,32,8]. Recall that the rules in G are of the
following forms, where V is the set of all objects:
1. a → a%,
2. ab → a%1b%2 ,
3. ab → a%1b%2ccome,
where a; b; c∈V and %1; %2 ∈ ({here; out} ∪ {inj | 16j6n}). A rule of form (3) can oc-
cur only within the region enclosed by the skin membrane. When such a rule is applied,
then c is imported through the skin membrane from the outer space (environment) and
will become an element of this region.
We can make G a language acceptor, called a CPA. Let �= {1; 2} be a distinguished

subset of V , called the language alphabet. We impose the following requirements:
1. Initially, G does not contain any object in �.
2. No object in � appears on the left hand side of any rule. This means that when a
symbol c in � enters the skin membrane from the environment (using a rule of the
form ab → a%1b%2ccome), it remains in the skin region and is not exported to any
region. Thus c is “read-only”.

The restriction that c is “read-only” can be made without loss of generality (see
Remark 3).
At the start of the computation, the only string from �∗ imported so far from the

environment is w= .. Symbols from � are appended to w as they are imported from
the environment during the computation. Note that in general, because of “maximal
parallelism”, an unbounded number of symbols from � can enter the skin membrane
in one step since several rules of type 3 may be applicable to an unbounded number
of ab pairs in the skin membrane. If the symbols that enter the membrane in the step
are c1; : : : ; ck (note that k is not /xed), then ci1 ; : : : ; cik is the string appended to w,
where i1; : : : ; ik is some nondeterministically chosen permutation of 1; : : : ; k. Later, we
will see that, in fact, we can assume without loss of generality that k61 (Corollary 9).
We say that a string x= a1; : : : ; an ∈�∗ is accepted by a CPA G if G has a halting

computation after importing symbols a1; : : : ; an from the environment. The language
accepted by G is denoted by L(G). G is S(n) space bounded if for every string x of
length n that is in L(G), there is a halting computation for x in which the sum of the
multiplicities of all symbols not in � in the system at any time during the computation
is at most S(n).

Theorem 11. 1. Let G be an S(n) space bounded CPA. We can construct an S(n)
space bounded counter generator M such that L(M)=L(G).

2. Let M be an S(n) space bounded counter generator. We can construct an S(n)
space bounded CPA G such that L(G)=L(M).

Proof. The proof of the /rst part is similar to the proof of Lemma 4. Again, auxiliary
counters are used in the simulation. Note that if in one step, c1; : : : ; ck (k is not /xed)
from � enter the skin membrane, the counter generator needs to generate ci1 ; : : : ; cik ,
where i1; : : : ; ik is some nondeterministically chosen permutation of 1; : : : ; k. This can
be done since each ci comes from a rule of the form ab → a%1b%2ccome, and the
multiplicities of a and b are recorded in the counters.

106 O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109

The second part follows from the construction in [30,32]. The only modi/cation is
when an object in � is imported to the skin membrane (region 1) from the environment,
the symbol remains in the skin membrane.

The next result follows from the above theorem, the de/nition of a counter generator,
and the fact that the simulation described in [30,32] is faithful.

Corollary 9. Every CPA can be converted to an equivalent CPA such that at most
one symbol from � is imported from the environment (i.e., at most one symbol is
appended to the string w∈�∗) at each step of the computation.

Remark 3. The construction of the counter generator in part 1 of Theorem 11 still
works even if the CPA has rules that allow symbols in � to be exported from the skin
membrane to other regions. Then we can use part 2 to construct (from the counter
generator) an equivalent CPA without such rules.

From Theorems 8 and 11, we obtain:

Corollary 10. A language L is generated by an S(n) space bounded CSG if and only
if it is accepted by an S(n) space bounded CPA.

As in Corollary 7, we have:

Corollary 11. Let L be a language.
1. L is accepted a CPA if and only if it is accepted by a TM. Hence, a CPA can
accept any recursively enumerable set.

2. Let S(n)¿n. L is accepted by a cS(n) space bounded CPA (for some c) if and
only if it is accepted by a nondeterministic S(n) space bounded TM.

3. L is accepted by a cn space bounded CPA (for some c) if and only if it is
context-sensitive.

4. L is accepted by an nk space bounded CPA (for some k) if and only if it is
accepted by a nondeterministic log n space bounded one-way TM.

Again, we can prove complexity results (hierarchies, etc.) concerning CPAs similar
to those in the previous section. One can also study symport=antiport acceptors [3,7]
that are space bounded and obtain similar hierarchy results.

8. Semilinear languages

In this section, we give a characterization of semilinear languages in terms of a
restricted form of CSG (catalytic system generator).
First we recall the de/nition of a semilinear set. Let N be the set of all nonnegative

integers and n be a positive integer. A set S ⊆Nn is a linear set if there exist vectors
v0; v1; : : : ; vt in Nn such that S = {v | v= v0 + a1v1 + · · · + atvt ; ai ∈N}: The vectors

O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109 107

v0 (referred to as the constant vector) and v1; v2; : : : ; vt (referred to as the periods) are
called the generators of the linear set S. A set S ⊆Nn is semilinear if it is a /nite union
of linear sets. The empty set is a trivial (semi)linear set, where the set of generators
is empty. Every /nite subset of Nn is semilinear—it is a /nite union of linear sets
whose generators are constant vectors. Clearly, semilinear sets are closed under union
and projection. It is also known that semilinear sets are closed under intersection and
complementation.
Let �= {a1; a2; : : : ; an} be an alphabet. For each string w in �∗, de/ne the Parikh

map of w to be (w)= (#a1 (w); : : : ; #an(w)), where #ai(x) is the number of occurrences
of ai in w. For a language L⊆�∗, the Parikh map of L is (L)= { (w) |w∈L}.
We say that a class L of languages is a semilinear class of languages if (a) for

every language L in L, (L) is a semilinear set, and (b) for every semilinear set S,
the language L(S)= {ai1

1 ; : : : ; a
in
n | (i1; : : : ; in)∈ S} is in L.

Let G be a CSG with language alphabet �= {a1; a2; : : : ; an}, and k be a positive
integer. De/ne the set Lk(G)= {x | there is a halting computation on x such that for
each object in G, the number of times its multiplicity changes mode from nondecreasing
to nonincreasing and vice-versa during the computation is at most k}. We call Lk(G)
the k reversal bounded language generated by G. If every string generated by G has
a k reversal bounded computation, then we say that G is k reversal bounded. G is
reversal bounded if it is k reversal bounded for some k. Let Lrev(CSG)= {Lk(G) |G
is a CSG and k is a positive integer }. Similar notions of k reversal boundedness, etc.
apply to counter acceptors (which are equivalent to counter generators). In particular,
Lrev(CM)= {Lk(M) |M is a CM and k is a positive integer }, where CM denotes
counter acceptor.
The shu>e u � v of two words u; v∈�∗ is a /nite set consisting of the words

u1v1; : : : ; ukvk , where u= u1u2; : : : ; uk and v= v1v2; : : : ; vk for some ui; vi ∈�∗. If L1 and
L2 are two languages, their shu>e is the language

L1 � L2 =
⋃

u∈L1 ;v∈L2

u � v:

It is known that Lrev(CM) is a semilinear class of languages [13]. It is also known
[10] that Lrev(CM) is the smallest class containing the regular sets that is closed under
homomorphism, intersection, and the shuTe operation. Thus, we have:

Theorem 12. 1. Lrev(CSG) is a semilinear class of languages.
2. Lrev(CSG) is the smallest class containing the regular sets that is closed under
homomorphism, intersection, and the shu>e operation.

9. Conclusion

We showed how techniques in machine-based complexity can be used to analyze the
space and time complexity of membrane computing systems. Our focus was on catalytic
systems, communicating P systems, and systems with only symport=antiport rules, but
our techniques are applicable to other P systems that are universal. In particular, the

108 O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109

space hierarchy results apply to any universal P system, since any such system that
is S(n) space bounded can be simulated by an S(n) space bounded counter machine,
and vice-versa. Our results on time complexity was only for catalytic systems where
the only rules are of the form Ca → Cv. We will look at time complexity issues for
other types of systems (e.g., allowing rules of the form a → v in the catalytic system;
communicating P system; symport=antiport system; etc.) in the future. We also showed
that there is a /xed k such that any deterministic counter machine can be simulated
by a deterministic communicating P system with k membranes, answering positively
an open question in [30,32]. We improved the main result in [23]—that reachability of
extended con/gurations for symport=antiport systems (as well as catalytic systems and
communicating P systems) can be decided in nondeterministic log n space and, hence,
in deterministic log2 n space or in polynomial time. We introduced two equivalent
systems that de/ne languages (instead of multisets of objects): the /rst is a catalytic
system language generator and the other is a communicating P system acceptor (or a
symport=antiport system acceptor). These devices are universal and therefore can also
be analyzed with respect to space and time complexity. Finally, gave a characterization
of semilinear languages in terms of a restricted form of catalytic system generator.

Acknowledgements

I would like to thank Andrei Paun, Gheorghe Paun, and Petr Sosik for their comments
and for providing some of the references concerning communicating P systems and
systems with symport=antiport rules. I would also like to thank the anonymous referee
for suggestions which improve the presentation of our results.

References

[1] G. Berry, G. Boudol, The chemical abstract machine, in: POPL’90, ACM Press, New York, 1990,
pp. 81–94.

[2] R. Book, Tally languages and complexity classes, Inform. and Control 26 (1974) 186–193.
[3] E. Csuhaj-Varju, G. Vaszil, P automata or purely communicating accepting P systems, in:

WMC-CdeA2002, Lecture Notes in Computer Science, vol. 2597, Springer, Berlin, 2003,
pp. 219–233.

[4] P.C. Fischer, Turing machines with restricted memory access, Inform. and Control 9 (1966) 364–379.
[5] P.C. Fischer, A.R. Meyer, A.L. Rosenberg, Counter machines and counter languages, Math. Systems

Theory 2 (1968) 265–283.
[6] R. Freund, L. Kari, M. Oswald, P. Sosik, Computationally universal P systems without priorities: two

catalysts are suIcient, available at http://psystems.disco.unimib.it, 2003.
[7] R. Freund, M. Oswald, A short note on analyzing P systems with antiport rules, Bull. EATCS 78 (2002)

231–236.
[8] R. Freund, A. Paun, Membrane systems with symport/antiport rules: universality results, in:

WMC-CdeA2002, Lecture Notes in Computer Science, vol. 2597, Springer, Berlin, 2003,
pp. 270–287.

[9] P. Frisco, H. Jan Hoogeboom, Simulating counter automata by P systems with symport/antiport, in:
WMC-CdeA2002, Lecture Notes in Computer Science, vol. 2597, Springer, Berlin, 2003, pp. 288–301.

[10] T. Harju, O.H. Ibarra, J. Karhumaki, A. Salomaa, Some decision problems concerning semilinearity and
commutation, J. Comput. System Sci. 65 (2002) 278–294.

http://psystems.disco.unimib.it

O.H. Ibarra / Theoretical Computer Science 320 (2004) 89–109 109

[11] J. Hartmanis, P.M. Lewis II, R.E. Stearns, Hierarchies of memory limited computations, in: IEEE, Conf.
Record on Switching Circuit Theory and Logical Design, IEEE, New York, 1965, pp. 179–190.

[12] O.H. Ibarra, A note concerning nondeterminstic tape complexities, J. ACM 19 (1972) 608–612.
[13] O.H. Ibarra, Reversal-bounded multicounter machines and their decision problems, J. ACM 25 (1)

(1978) 116–133.
[14] O.H. Ibarra, Z. Dang, O. Egecioglu, G. Saxena, Characterizations of catalytic membrane computing

systems, in: Mathematical Foundations of Computer Science 2003. Lecture Notes in Computer Science,
vol. 2747, Springer, Berlin, 2003, pp. 480–489.

[15] M. Ionescu, C. Martin-Vide, Gh. Paun, P systems with symport/antiport rules: the traces of objects,
Grammars 5 (2002) 65–79.

[16] C. Martin-Vide, A. Paun, Gh. Paun, On the power of P systems with symport rules, J. Universal
Comput. Sci. 8 (2) (2002) 317–331.

[17] C. Martin-Vide, A. Paun, Gh. Paun, G. Rozenberg, Membrane systems with coupled transport:
universality and normal forms, Fund. Inform. 49 (2002) 1–15.

[18] M. Minsky, Recursive unsolvability of Post’s problem of Tag and other topics in the theory of Turing
machines, Ann. of Math. 74 (1961) 437–455.

[19] A. Paun, Gh. Paun, The power of communication: P systems with symport/antiport, New Generation
Comput. 20 (3) (2002) 295–306.

[20] A. Paun, Gh. Paun, G. Rozenberg, Computing by communication in networks of membranes, Internat.
J. Found. Comput. Sci. 13 (6) (2002) 779–798.

[21] Gh. Paun, Computing with membranes, J. Comput. System Sci. 61 (1) (2000) 108–143.
[22] Gh. Paun, Membrane Computing: An Introduction, Springer, Berlin, 2002.
[23] Gh. Paun, M. Perez-Jimenez, F. Sancho-Caparrini, On the reachability problem for P systems with

symport/antiport, Proceedings of the 10th International Conference on Automata and Formal Languages,
Debrecen, Hungary, 2002.

[24] Gh. Paun, G. Rozenberg, A guide to membrane computing, Theoret. Comput. Sci. 287 (1) (2002)
73–100.

[25] Gh. Paun, G. Rozenberg, A. Salomaa, Membrane computing with an external output, Fund. Inform. 41
(3) (2000) 259–366.

[26] M.J. Perez-Jimenez, A. Riscos-Nunez, A linear-time solution to the knapsack problem using active
membranes, in: Pre-Proc. Workshop on Membrane Computing (WMC-CdeA2002), Tarragona, Spain,
2003, pp. 326–343.

[27] M.J. Perez-Jimenez, A. Riscos-Nunez, Solving the subset-sum problem by active membranes, New
Generation Computing, Springer, Berlin, to appear in 2004.

[28] W. Savitch, Relationships between nondeterministic and deterministic tape complexities, J. Comput.
System Sci. 4 (1970) 177–192.

[29] W. Savitch, A note on multihead automata and context-sensitive languages, Acta Inform. 2 (1973)
249–252.

[30] P. Sosik, P systems versus register machines: two universality proofs, in: Pre-Proc. Workshop on
Membrane Computing (WMC-CdeA2002), Curtea de Arges, Romania, 2002, pp. 371–382.

[31] P. Sosik, R. Freund, P systems without priorities are computationally universal, in: WMC-CdeA2002,
Lecture Notes in Computer Science, vol. 2597, Springer, Berlin, 2003, pp. 400–409.

[32] P. Sosik, J. Matysek, Membrane computing: when communication is enough, in: Unconventional
Models of Computation 2002, Lecture Notes in Computer Science, vol. 2509, Springer, Berlin, 2002,
pp. 264–275.

[33] C. Zandron, C. Ferretti, G. Mauri, Solving NP complete problems using P systems with active
membranes, available at http://psystems.disco.unimib.it. 2000.

http://psystems.disco.unimib.it

	On the computational complexity ofmembrane systems
	Introduction
	Catalytic systems
	Communicating P systems
	Systems with symport/antiport rules
	Reachability problem
	Catalytic system generator
	Communicating P system acceptor
	Semilinear languages
	Conclusion
	Acknowledgements
	References

