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ABSTRACT
The Algorithm of Mode Isolation (AMI) identifies the

natural frequencies, modal damping ratios, and mode vec-
tors of a system by processing complex frequency response
data. It uses an iterative procedure based on the fact that
a general frequency response function is a superposition of
modal contributions. The iterations focus successively on
a single mode. The mode that is in focus is isolated by
subtracting the other modal contributions using prior es-
timates of their modal properties. This process leads to
a self-contained identification of the number of modes that
participate in any frequency band, whereas other techniques
require a priori guesses. This paper describes modifications
intended to improve AMI’s accuracy and reduce its compu-
tational effort. These involve the use of a new linear least
squares method for identifying the natural frequency and
damping ratio of a single mode, and a linear least squares
global fit of the data in order to identify mode vectors. Re-
sults are presented for a model of a cantilever beam with
suspended spring-mass-dashpot systems. This system was
used by Drexel, Ginsberg, and Zaki [Journal of Vibration
and Acoustics, 2003 (forthcoming)] to assess the prior ver-
sion’s ability to identify weakly excited modes and modes
having close natural frequencies in the presence of high noise
levels. Application of the modified version of AMI to the
same system is shown to lead to significantly more accu-
rate damping ratios and mode vectors, with equally good
natural frequencies.
KEYWORDS:
Experimental modal analysis, system identification.

NOMENCLATURE
A
(1)
jk , A

(2)
jk Modal displacement factors

GjP (ω) Displacement transfer function

GjPk (ω) kth mode’s contribution to GjP (ω)
Qj Generalized force amplitudes
{q} Generalized coordinates
Ψn Ritz series basis functions
w Transverse displacement
X(k) (ω) ,
Y (k−1) (ω)

½
Frequency domain data used
to identify the kth mode

yj (tn) Time domain impulse responses
ζk kth modal damping ratio
λk kth eigenvalue
ωk kth natural frequency
ω Drive frequency
{Φk} Mass-normalized mode vectors

INTRODUCTION

Most experimental modal analysis algorithms in current
use try to identify all modal parameters simultaneously, cre-
ating a need to estimate in advance the number of modes on
which the “best fit” model will be constructed. Typically,
the number of modes is over-estimated, then the redundant
modes are truncated. Most methods identify the correct
model order via singular value decomposition and/or stabi-
lization diagrams, which display eigenvalues obtained from
a range of guesses for the system order. Even then, it can
be difficult to determine the true order of the system and
to distinguish the true modes of the system from computa-
tional modes. For example, Doebling, Alvin and Peterson
[1], working with the Eigensystem Realization Algorithm,
showed that not only might overestimating the number of
modes raise the computational effort, but it can also lead
to false estimations and numerical instability.
Previous papers have indicated that the Algorithm of

Mode Isolation (AMI) offers a promising alternative. The
algorithm was initially described by Drexel and Ginsberg [2]
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for classical, undamped, modal analysis. The algorithm was
then extended to modal analysis in the state space in order
to account for arbitrary damping (Drexel and Ginsberg [3],
Drexel, Ginsberg, and Zaki [4]). Subsequent to these basic
developments, an improvement implemented by Zaki [5] and
Zaki and Ginsberg [6] was to use the original AMI concept
to identify the eigenvalues, after which the mode vectors
are obtained from a linear least-squares global fit to all fre-
quency response functions (FRF). The concept of separat-
ing evaluation of eigenvalues and mode vectors is contained
in the procedure described by Balmes [7], which iterates be-
tween the poles and residues of complex frequency response
functions (FRF). In the present context one would expect it
to provide more accurate results for mass-normalized mode
vectors, especially in cases where the drive point mobility of
a mode is weak. A different aspect of AMI was addressed by
Ginsberg, Allen, and Ferri [8], who introduced a linear least
squares algorithm for fitting the resonant peak of an FRF
to the general form of a single mode’s contribution to an
FRF. This procedure may be used to replace the non-linear
least squares routine previously implemented in AMI.
The complete elimination of non-linear least squares rou-

tine represents a significant improvement to AMI, so a new
description and evaluation of its performance is in order.
The system used for this assessment is the same as the
one previously used by Drexel, Ginsberg, and Zaki [4],
specifically, a cantilevered beam with three suspended mass-
spring-dashpot subsystems, see Figure 1. The subsystem
at the end of the beam is tuned so that its natural frequency
coincides with the first bending frequency of the beam, so
the subsystem at the end acts like a vibration absorber for
excitation at that location. This leads to two natural fre-
quencies close to the fundamental frequency of the isolated
beam. Further, because the other two subsystems are de-
tuned from the isolated beam’s natural frequencies, these
subsystems give rise to modes that are poorly excited by an
excitation of the beam.
The damping is light, yet non-proportional, and suffi-

cient to cause the closely spaced modes’ resonant peaks to
merge, which is the phenomenon of mode coupling. The
response data for the trial is derived analytically by solving
the (state-space) modal differential equations for the im-
pulse response, to which a significant level of white noise is
added. FFT processing of the noise contaminated impulse
responses yields the complex frequency response data that
is input to AMI.

THE BASIC ALGORITHM

The Algorithm of Mode Isolation (AMI) is a SIMO
(single-input-multi-output) or MISO, technique for extract-
ing modal properties from frequency domain response data.
A brief description follows. For more details see [4] and
[6]. The steady-state response of a linear system to a set of
generalized forces at frequency ω with complex amplitudes

Qn is given by

qj = Re
NX
n=1

Gjn(ω)Qn exp (iωt) (1)

The raw data for AMI is the set of j displacement FRFsGjP

generated by excitation at the P th location over a range
of frequencies. By reciprocity, GjP = GPj , so the data
may also be extracted by measuring the displacement at a
fixed location P resulting from excitation at a multitude of
locations j. These response functions may be expressed in
terms of the properties of complex modes associated with a
state-space description, see Ginsberg [9]. It is assumed that
all modes are underdamped, corresponding to eigenvalues
that occur as complex conjugate pairs according to

λk = −ζkωk ± iωk

q¡
1− ζ2k

¢
(2)

where ωk and ζk are the undamped natural frequency and
damping ratio for mode k,

ωk = |λk| , ζk = −Re (λk) / |λk| (3)

Each FRF may be described as a sum of contributions of
individual modes, with the individual terms described by a
pole and a residue. A series of manipulations based on the
conjugate properties of the complex modes [4] reveals that

GjP (ω) =
NP
k=1

GjPk (ω)

GjPk (ω) =
A
(1)
jk + iA

(2)
jk

iω − λk
+

A
(1)
jk − iA

(2)
jk

iω − λ∗k

(4)

where A(1)jk and A
(2)
jk are residue coefficients associated with

the pole at iω = λk. These constants depend solely on the
eigensolution for mode k,

A
(1)
jk = Re (λkΦjkΦPk)

A
(2)
jk = Im(λkΦjkΦPk)

(5)

A full application of the AMI algorithm requires a set of
FRFsGjP (ω) spanning a range of frequencies for a specified
drive point P and all measured response points j. Each data
set for a specified pair of indices j and P forms a complex
vector that is processed individually by AMI in the first two
of a three phase process. In the Subtraction Phase, initial
estimates for the properties of each mode are obtained by
a single-degree-of-freedom (SDOF) technique. This entails
matching the largest peak in the FRF to the contribution
of a single mode. As each estimate is found, it is used to
subtract that mode’s contribution from the FRF, thereby
making the next most significant mode appear to have the
largest contribution. This process continues until the FRF
has been reduced to noise. Prior to AMI, Ewins [10] and
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Maia et al [11] had also suggested these subtraction op-
erations without any further steps. However, terminating
processing at this stage fails to recognize that other modes
might contribute significantly in the vicinity of a specific
mode’s resonance. This is especially the case when mode
coupling occurs, for then the difference of natural frequen-
cies is comparable to the individual mode’s bandwidth.
The Isolation Phase compensates for these overlapping

contributions. Here, the current estimates for each mode’s
properties are used in an iterative process to improve the
estimate for each mode. These operation entail sequentially
bringing each mode into focus by subtracting the contribu-
tions of the other modes to the FRF data. Performing an
SDOF fit on the isolated FRF yields an improved estimate
for the isolated mode’s properties. Isolation of each mode
continues until convergence criteria for the modal proper-
ties are satisfied. The eigenvalues from all j FRFs are then
averaged resulting in a set of N eigenvalues for the system.
The Global Mode Vector Phase uses the identified eigenval-
ues to fit all FRFs to the standard form given by eq. (4).
This last phase was the primary innovation introduced by
Zaki [5]. A detailed description of these operations follows.

Subtraction Phase

The first phase begins by using the original GjP (ω) data
set to obtain estimates for the most dominant mode’s eigen-
value λ1 and residue coefficients A

(1)
j1 and A

(2)
j1 .The first es-

timated mode’s eigenvalue and residue coefficients are used
to form GjP1 at each frequency according to the second of
eqs. (4). This forms a “subtraction residual FRF” that
is then used to estimate the next most dominant mode’s
properties. To place these steps in an analytical framework
let Y (k)

j (ω) denote the subtraction residual after modes 1
to k have been subtracted. Then the successive subtraction
residuals are computed according to

Y
(0)
j (ω) = GjP (ω)

Y
(k)
j (ω) = Y

(k−1)
j (ω)−GjPk (ω)

(6)

where GjPk (ω) is computed by substituting the kth mode’s
properties into the second of eqs. (4). Each subtraction
residual Y (k)

j (ω) in the frequency range of its maximum
magnitude is fit to the form in the second of eqs. (4) in order
to identify the values of λk, A

(1)
jk and A

(2)
jk corresponding to

that peak. Previous work used a non-linear least squares
approach to fit the data, but this is replaced in the present
work with the recent linear least squares procedure [8]. A
summary of this procedure will be provided after the AMI
operations have been discussed.
The subtraction process continues until the residual FRF

contains no identifiable mode. Recognition of this condi-
tion presently is achieved by visual inspection of Bode and

Nyquist plots of the residual FRF. The preliminary esti-
mate for the number of modes is taken to be the number of
subtraction steps carried out in this first phase.

Isolation Phase

The general concept of “isolating” a mode involves us-
ing the current estimates of the other modes’ parameters
to subtract their contribution from the FRF data. If those
estimates were exact and noise were not present in the data,
what remains after subtraction would be the isolated mode.
When the parameters of that mode are identified by the sin-
gle mode identification scheme used in the Isolation Phase,
the results should be more accurate because the data that
is processed does not contain the contributions of other
modes. Let X(n)

j (ω) denote the “isolation residual” data
set for displacement j when mode n is in focus. By defini-
tion this data set is computed by subtracting from GjP (ω)
the contributions of all modes except mode n,

X
(n)
j (ω) = GjP (ω)−

NX
k=1
k 6=n

GjPk (ω) (7)

where the Gjpk (ω) at each frequency are found by substi-
tuting into eq. (4) the current estimates of modal para-
meters obtained from previous operations. The X(n)

j data

set is processed to estimate λn, A
(1)
jn , and A

(2)
jn . Because the

data now is dominated by a single mode, the result should
be improved estimates. As was the case for the subtrac-
tion phase, the modes are isolated in the sequence of their
contribution to the FRF data.
Because the identification of the other modes is not exact

and noise is present, an isolation residual contains the errors
due to misidentification of the modes that are not in focus,
as well as the noise. Consequently, the isolated mode also
is not identified exactly. An iterative process progressively
reduces identification errors. A full isolation step processes
all modes according to eq. (7), until n = N. The sequence
is repeated until convergence criteria for the modal parame-
ters are met. Iterating until the real and imaginary parts
of each eigenvalue change by less than 0.01% yields good
results. For moderately coupled modes only four to five it-
erations are typically required. Many more iterations may
be necessary if a pair of modes are closely coupled.
After a convergent set of parameters have been obtained,

it is possible to test whether the number of identified modes
N is correct. To do so, a subtraction residual Y (N)

j (ω) is
formed according to the second of eqs. (6) using the conver-
gent set of modal parameters. If this subtraction residual
appears to contain coherent artifacts of a mode, the data
is processed by the single mode identification scheme, the
value of N is incremented, and the newly identified modal

3 Copyright c° 2003 by ASME



parameters are combined with the values already obtained
to restart the isolation phase.

Global Mode Vector Phase

Theoretically, processing the data set for coordinate qj as
described in the preceding would give an estimate of λk for
k = 1, ..., N. It would also yield an estimate of the coeffi-
cients A(1)jk and A

(2)
jk for that specific j (coordinate) and all

k (modes). Subjecting each displacement data set to the
same processing in such ideal circumstances would lead to
multiple estimates of the natural frequencies, and a single
estimate of the set of A(1)jk and A

(2)
jk coefficients. The nor-

malized eigenvectors would then be calculated by solving
eqs. (5),

ΦPk =

Ã
A
(1)
Pk + iA

(2)
Pk

λk

!1/2
Φjk =

Ã
A
(1)
jk + iA

(2)
jk

λkΦPk

!
, j 6= P

(8)

The difficulty with this procedure is that it requires that
each mode be identified at the drive point P , so that the
factors A(1)Pk and A

(2)
Pk are known. In practice, some modes

might not be identified at the drive point, either because the
modal force is small, or because the mode’s contribution to
the FRF is masked by noise. This may be remedied by
discarding the residue factors obtained from the Isolation
Phase. Instead, corresponding eigenvalues obtained from
each FRF are averaged, then used to perform a global fit of
the FRF data for each displacement j to the standard form
given by eq. (4).
Let Ωm denote a set of frequencies in the vicinity of each

natural frequencies. Only the FRF data at these frequen-
cies is used for the global fit, because the signal to noise
ratio should be the highest there. A total error residual is
formed by subtracting from the FRF at each Ωm the model
equation for that FRF, and then adding the differences,

Rj =
X
m

"
GjP (Ωm)−

NX
k=1

Ã
A
(1)
jk + iA

(2)
jk

iΩm − λk
+

A
(1)
jk − iA

(2)
jk

iΩm − λ∗k

!#
(9)

Because the eigenvalues have been set, the only unknowns in
this residual are the A(1)jk and A

(2)
jk coefficients, which occur

linearly. A merit function of these unknown coefficients
is formed by decomposing Rj into its real and imaginary
parts and then summing the squares. A linear least squares
procedure, as described by Chapra [12], leads to the desired
values. The A(1)jk and A

(2)
jk that have been determined are

then substituted into eqs. (8) in order to determine the
mode vectors.
It should be noted that this procedure leads to identifi-

cation of all A(1)jk and A
(2)
jk coefficients, even if a mode was

not identified when some of the FRF data was processed
in the subtraction and isolation phases. This means that
the outcome will be estimation of all normal modes, which
would seem to overcome the aforementioned difficulty of
low drive point mobility in a mode. Such thinking can be
deceptive. If the contribution of a particular mode k at
the drive point is significantly below the noise threshold,
the value of GPP (Ωm) in the region where Ωm is close to
Im (λk) will reflect the mean noise amplitude, rather than
the true contribution of that mode. Such a situation will
lead to substantial error in calculation of ΦPk, and hence
of all Φjk. In this case the overall proportions of the mode
vector will be correct for any coordinates whose FRF values
in this frequency range are above the noise level, although
the mode will not be accurately normalized.

Single Mode Parameter Identification

A key operation for both the Subtraction and Isolation
Phases is fitting of the FRF data to the form of a single
mode in order to estimate an eigenvalue and associated
residue coefficients. A linear least squares procedure for
carrying out this task was offered by Ginsberg, Allen, and
Ferri [8]. Its highlights will be presented here for the sake
of completeness. The first step is to consider the FRF to
consist of a single mode, represented by rationalizing the
second of eqs. (4). This gives

GjP (ω) = 2
[iω −Re (λk)]A(1)jk − Im (λk)A(2)jk

|λk|2 − ω2 − 2iωRe (λk)
(10)

Clearing the denominator in eq. (10) and breaking the re-
sult into real and imaginary parts then leads to

Re [GjP (ω)]
³
|λk|2 − ω2

´
+ 2ω Im [GjP (ω)] Re (λk)

= −2
h
Re (λk)A

(1)
jk + Im(λk)A

(2)
jk

i
(11)

Im [GjP (ω)]
³
|λk|2 − ω2

´
− 2ωRe [GjP (ω)] Re (λk)

= 2ωA
(1)
jk

(12)
Both equations are linear in the four variables |λk|2 ,

Re (λk) , A
(1)
jk , and

³
Re (λk)A

(1)
jk + Im(λk)A

(2)
jk

´
. If this

pair of real equations are evaluated at two arbitrary frequen-
cies, the result is four linear simultaneous equations that
may be solved for the unknowns. Once those quantities are
determined, the values of Im (λk) and A

(2)
jk are readily ex-

tracted. In practice, evaluation of eqs. (11) and (12) at two
frequencies is not sufficient, because the values of GjP (ω)
contain the contribution of more than one mode, and also
because these values are contaminated with noise. Conse-
quently, the four combination variables are determined by
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evaluating the equations at a multitude of frequencies, and
then solving them in a least squares sense.
Selecting which frequencies to use for the least squares so-

lution leads to a dilemma because the best signal-to-noise
ratios are at the resonance peaks. If the least squares
solution uses many frequencies far from a resonance, the
corresponding GjP (ω) might differ significantly from the
true value, thereby enhancing the error of the identifica-
tion. However, if too few frequencies are used (the mini-
mum is two), there will be little opportunity for the least
squares computation to minimize the effect of noise. This
dilemma was resolved by Ginsberg, Allen, and Ferri [8]
through a detailed Monte Carlo study. They found that
using all FRF points above the quarter-power points gave
the best results for uniformly distributed random noise at
several levels. This criterion is met by selecting for the
least-squares fit only those values of GjP (ω) that satisfy
|GjP (ω)| ≥ δmax(|GjP (ω)|), where δ = 0.5 yields the
quarter-power points.

TUNED VIBRATION ABSORBER

The system and its analysis was described in detail by
Drexel, Ginsberg, and Zaki [4]; a brief summary is re-
peated here. The system consists of a steel cantilever beam,
with three spring-mass-damper systems attached to it at
x1 = L/2, x2 = 3L/4, x3 = L, measured from the sup-
port point as shown in Figure 1. The beam has a modu-
lus of elasticity E = 207 GPa, density ρ = 7800 kg/m3,
second moment of area I = 3.125

¡
10−7

¢
m4, cross sec-

tional area A = 0.0015 m2, and length L = 2 meters.
The natural frequencies of the isolated beam without at-
tachments are denoted as ω̂n; the fundamental frequency
is ω̂1 = 65.3594 rad/s. The parameters of the attached

c
k

m

1
1

1

F=   (t)m 0

c
k

m

3
3

3

c
k

m

2
2

2

L

x   
x   

1

2

Figure 1: Cantilever beam with attached subsystems.

subsystems are defined such that their stiffnesses kj are
equal, their fixed-base natural frequencies Ωj increase lin-

early, and their fixed-base damping ratios are constant at ζ.
Thus, the jth spring-mass-damper system is described by
kj = σρALω̂21 , mj = kj/Ω

2
j and cj = 2ζ(kjmj)

1/2, where
σ = 0.0001, Ωj = [30.5555 48.0392 65.5228] rad/s, and
ζ = 0.015 for this example. The FRFs processed by AMI
are the beam displacement at the end, where the excitation
is applied, and the displacements of the three subsystems.
This system was chosen because it exhibits some of the

phenomena that typically cause difficulty for mode identifi-
cation algorithms. The attachment at the end of the beam
is tuned such that its natural frequency matches the fun-
damental frequency of the beam. This subsystem acts as
a vibration absorber, whose split natural frequencies are
closely spaced as a consequence of the smallness of the sus-
pended mass m3. The dashpot constant c3 is adjusted such
that the bandwidth of the closely spaced modes is compa-
rable to the frequency difference. Furthermore, because the
other subsystems have low mass, and are detuned relative
to the beam and the farthest subsystem, the drive point
mobility at the natural frequencies of those subsystems is
extremely low.
To represent the coupled response of the beam and the

subsystems, the beam displacement is described by an Ritz
series having J terms,

w(x, t) =
JP
j=1
Ψj(x)qj(t) (13)

The mode functions of the isolated clamped-free beam are
used as the basis functions, so

Ψj(x) = sin (αjx)− sinh (αjx)
−Rj ∗ (cos (αjx)− cosh (αjx))

Rj =

µ
sinh(αj) + sin(αj)

cosh(αj) + cos(αj)

¶
cos(αj) cosh(αj) = −1

(14)

The number of degrees of freedom is J + 3. Using the Ritz
series to construct the mechanical energies and power dis-
sipation leads to mass, stiffness, and damping matrices.
The first four natural frequencies of the system are ωk =
30.6, 48.03, 65.0, 65.90 rad/s, and the respective damping ra-
tios are ζk = 0.015, 0.015, 0.006, 0.009. (The fifth and higher
modes are the second and higher modes of the beam, with
no significant displacement of the attached subsystems.)
The response of the system to an impulsive force at the

end of the beam is constructed using a damped modal so-
lution to the equations of motion. This involves solving
a symmetric eigenvalue problem associated with the state-
space form of the equations of motion, which accounts for
nonproportional damping without approximation [9]. That
transformation leads to J + 3 uncoupled first order differ-
ential equations for the modal coordinates, accompanied
by J + 3 corresponding complex conjugate equations that
need not be solved explicitly. The modal impulse responses
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have the form Ck exp (λkt) with participation factors Ck

that depend on the modal coefficients for the drive point.
Retracing the modal transformation leads to the time re-
sponses of the Ritz series coefficients and the positions of
the masses. For the present analysis, the displacement at
the tip of the beam, as well as the displacements of the
attached masses were collected to form the generalized co-
ordinate vector {y (t)} = [wL w1 w2 w3]

T for the experi-
ment, where wL is the displacement of the tip of the beam
and w1,w2, and w3 are the vertical displacements of the at-
tached masses. Because the excitation is applied at the end
of the beam, P = 1, so the FRFs to be processed by AMI
are Gj1 (ω) .
It is important that the analysis simulate a properly im-

plemented experiment. This requires selection of the sam-
pling rate and the time window. Based on the minimum
modal decay constant −Re(λk), a 60 second time window
was chosen to eliminate leakage. The corresponding fre-
quency increment is 0.1047 rad/s, which is much less than
the bandwidth 2ζkωk for the lowest four modes, as well as
the difference between the proximate natural frequencies.
The number of samples was taken to be 212, so that the
Nyquist frequency 214 rad/s is much larger than the largest
frequency component in the response.
The analytical time-domain data at each instant is con-

taminated by Gaussian white noise at 15% of the signal
amplitude according to

yj (tn)corrupt = yj (tn) + α
h
max
n
(yj (tn))

i
rjn (15)

where −1 < rjn < 1 is a uniformly distributed random
number, the bracketed term is a diagonal array of maxima,
and α is a constant that scales the random value to the
required fraction of signal amplitude (0.15 for this case).
The contaminated impulse response data for each j is then
transformed into the frequency domain by an FFT, which
leads to a set of FRFs, Gj1 (ω) .

Eigenvalue Results

Figures 2 and 3 respectively display the noise contami-
nated FRF and clean FRF at the end of the beam, j = 1,
while Figures 4 and 5 convey the corresponding results for
the displacement of the suspended mass at x = 3L/4. The
3rd and 4th natural frequencies are sufficiently close that
at first glance only a single peak is evident in the FRFs.
Zooming in on the peak of the noise-free version of G11 (ω)
reveals a small dip that suggests the presence of two modes,
but that feature is not evident in the noise contaminated
data.
The signal to noise ratio at any frequency may be eval-

uated from the noise contaminated value Gj1 (ω) and the
analytical value, which may be computed directly in the
frequency domain. The ratio at the peaks ranged from 10

dB to 21 dB; the latter was observed in the FRF for the end
of the beam, j = 1, close to the third and fourth natural
frequencies. The averages of the signal-to-noise ratios for
each FRF at all frequencies were computed to be 3.1dB, 2.4
dB, 2.4 dB, and 2.6 dB for j = 1, 2, 3, 4, respectively.

Figure 2: Magnitude of the noise-contaminated FRF for
displacement at the end of the beam.

Figure 3: Magnitude of the noise-free FRF for displacement
at the end of the beam.
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Figure 4: Magnitude of the noise-contaminated FRF for
displacement of the suspended subsystem at x = 0.75L.

Figure 5: Magnitude of the noise-free FRF for displacement
of the suspended subsystem at x = 0.75L.

The result of processing the four noise-contaminated
FRFs with the Subtraction and Isolation phases of the AMI
algorithm was four sets of eigenvalues. Tables 1 and 2 list
the values that were obtained. Two or three modes were
identified from each Gj1 data set. An × in the table indi-
cates that the mode was not detected in the corresponding
FRF.
Failure to recognize a mode in a specific FRF may be ex-

plained by examining the noise-free FRF data. For example,

Processed data Mode 1 Mode 2
G11 × ×
G21 -0.46025+30.555i ×
G31 × -0.71644+ 48.041i
G41 × ×

Average -0.46025+30.555i -0.71644+48.041i
Analytical -0.45827+30.551i -0.71973+48.025i

Error (%) 0.43+0.0125i -0.46+0.0338i

Table 1: Eigenvalues Identified in Each FRF

Processed data Mode 3 Mode 4
G11 -0.3513+65.046i -0.46740+65.803i
G21 -0.48261+65.190i ×
G31 -0.34713+64.983i -0.57261+65.789i
G41 -0.39469+65.010i -0.59237+65.915i

Average -0.39394+65.057i -0.54413+65.836i
Analytical -0.39311+65i -0.59137+65.896i

Error (%) 0.21+0.0880i -7.99-0.0906i

Table 2: Eigenvalues Identified in Each FRF

Figure 5 for the suspended mass at x = 3L/4 shows no indi-
cation of a resonance at the fundamental natural frequency,
because that mode consists primarily of motion of the first
attached subsystem at its fixed-base natural frequency. A
similar effect shows up in processing G21, which yielded the
least accurate value of λ3 and no value for λ4. In essence, the
fourth mode’s contribution to G21 was completely masked
by the noise, but its presence adversely affected the identi-
fication of mode 3.
The average error is 0.056% in natural frequency and

2.2% in modal damping ratio (2.2% in the real part of the
eigenvalue and 0.056 % in the imaginary part.) A few rep-
etitions with various data sets (various random noise sets)
showed similar results, suggesting that the results above
are typical. Drexel, Ginsberg, and Zaki [4], who employed
a nonlinear least squares procedure to perform the single
mode parameter identification, reported 0.03% average er-
ror in natural frequency and 6% average error in the damp-
ing ratio. (The noise-contaminated data used previously
was not available, so this is not a perfect comparison.)

Mode Vector Results

The average eigenvalues obtained in the preceding section
serve as inputs to the linear least squares routine used to
compute the mode vectors. The result of that computation
is the set of residue factors A(1)jk and A

(2)
jk that best fit all

FRFs when the eigenvalues are the specified values. The
corresponding four normal mode vectors, k = 1, 2, 3, 4, are
obtained according to eqs. (8). Plots of these vectors lack
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Mode 1-AMI Mode 1-Analytical
q1 × 106 394.68 + 365.5i -2.9046 + 93.979i
q2 × 106 -12153 + 10827i 1677.5 +223660i
q3 × 106 521.37 + 392.8i -1.6448 + 42.909i
q4 × 106 3700.6 - 17657i -1.7555 + 49.645i

Table 3: Comparison of identified and analytical first mode
vectors.

Mode 2-AMI Mode 2-Analytical
q1 × 106 211.81 + 375.55i -17.818 + 308.69i
q2 × 106 -13.136 + 56.514i 2.5513 - 29.414i
q3 × 106 -33957 + 55618i 1682.2 +223650i
q4 × 106 12513 - 10253i -18.479 + 275.7i

Table 4: Comparison of identified and analytical second
mode vectors.

resolution, so the identified mode vectors are compared to
the analytical values in Tables 3-6. Each analytical mode
features dominant displacement of one suspended subsys-
tem, with displacement at the end of the beam being sig-
nificant only in the third and fourth modes. For the latter
modes the dominant terms are quite close to the analytical
values.
The overall accuracy of a mode vector may be described

by ratioing the Euclidean norm of the difference between
the identified and analytical modes to the norm of the an-
alytical modes. The error metrics for mode vectors 3 and
4 are respectively 5.0% and 8.4%. These results are signifi-
cantly better than those obtained with the original version
of AMI, as given by Drexel, Ginsberg, and Zaki [4], where
the corresponding errors were 35% and 49%. In contrast,
modes 1 and 2 are in error by more than an order of mag-
nitude. These large discrepancies are readily explained by
examining the FRFs with and without noise in the context
of eq. (9) describing the linear least squares procedure for
computing modes. This equation indicates that process-
ing the drive point FRF, G11 (ω) simultaneously yields the
residue coefficients A(1)1k and A

(2)
1k for modes k = 1 to 4. Fig-

ures 2, and 3 indicate that this FRF is dominated by noise
in the range below 50 rad/s, within which the first two nat-
ural frequencies lie. Consequently, although the linear least
squares routine yields values of A(1)11 and A

(2)
11 needed to

evaluate Φ11, and values of A
(1)
12 and A

(2)
12 needed to eval-

uate Φ12, the FRF data that is fit for that computation is
random noise. Because these mode coefficients at the drive
point are used to scale the modes at all other measurement
points, see eq. (8), the result is large scaling errors.
Similar considerations apply for the other FRFs. Least

squares processing of G21 (ω) yields the residue coefficients
A
(1)
2k and A

(2)
2k , but G21 (ω) is dominated by noise in the

vicinity of the second natural frequency, so A
(1)
22 and A

(2)
22

Mode 3-AMI Mode 3-Analytical
q1 × 106 919.46 - 4051.3i 3087.1 - 9547.9i
q2 × 106 -113.66 + 388.41i -148.09 + 371.8i
q3 × 106 -983.9 + 3138.5i -1204.8 + 3056.2i
q4 × 106 -86751 -146340i -84362 -152480i

Table 5: Comparison of identified and analytical third mode
vectors.

Mode 4-AMI Mode 4-Analytical
q1 × 106 1246.7 + 2858.9i 4087.6 + 7212.4i
q2 × 106 -100.92 - 273.44i -140.6 - 286.58i
q3 × 106 -803.4 - 2149i -1149.5 - 2284.9i
q4 × 106 47647 -194670i 64054 -194960i

Table 6: Comparison of identified and analytical fourth
mode vectors.

are unreliable. This compounds the scaling error arising
from poor evaluation of Φ21. Similarly, G31 (ω) , from which
A
(1)
3k and A

(2)
3k are obtained, is dominated by noise in the

vicinity of the first natural frequency, see Figures 4 and 5.
Consequently, the error in A(1)31 and A

(2)
31 is increased beyond

the scaling error associated with an erroneous Φ21. The case
of G41 (ω) is like that of G11 (ω) , in the sense that this data
also is essentially noise below 50 rad/s. Thus, the values of
A
(1)
41 and A

(2)
41 leading to Φ41, and of A

(1)
42 and A

(2)
42 leading

to Φ42, lack reliability.
The significant aspect of the preceding discussion is that

Tables 1 and 2 indicate that the first two phases of AMI
identified the existence of mode 1 solely when G21 (ω) was
processed, while mode 2 was detected solely when G31 (ω)
was processed. The original version of AMI used the residue
coefficients computed simultaneously with the eigenvalues.
Consequently, only values of A(n)21 and A

(n)
32 would have been

found if the original AMI scheme had been followed. This
was the approach followed by Drexel, Ginsberg, and Zaki
[4], so they failed to obtain the first and second normal
mode vectors.

SUMMARY AND CONCLUSIONS

The revised version of the AMI algorithm is a three phase
process. The first two are like those described in the prior
works, except for modification of the scheme used to fit
FRF data to a single mode. The third phase obtains mass-
normalized eigenvectors by performing a global linear least-
squares fit of an FRF. This fit is achieved by fixing the
eigenvalues at the averages obtained from the first two AMI
phases.
The efficacy of this revised scheme was evaluated using

synthetic data for a cantilever beam with attached vibra-
tion absorbers. A Ritz series representation was used to
construct an analytical model. The system’s parameters
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were such that two natural frequencies were separated by
a little more than the half power bandwidth. Also, each
FRF shows no evidence of a contribution from one or two
modes. State space modal analysis was used to uncouple
the equations of motion and derive the impulse response
to a unit force at the tip of the beam. White noise was
added to the time domain impulse response, scaled at 15%
of the maximum signal amplitude for each coordinate. The
FFT of the unit impulse responses then yielded the FRF for
each measurement point. In the frequency domain, the ad-
dition of noise resulted in signal to noise ratios that were
between 10 dB and 21 dB at the peaks, with an average
of approximately 3 dB across the entire frequency range.
Visual inspection of the noise contaminated FRFs showed
little evidence that two modes were present near 65 rad/s.
The first two phases of AMI yielded average eigenvalues

whose average error was 0.056% in natural frequency and
2.2% in modal damping ratio. Four normal modes were then
obtained from the newly added third phase of AMI. This led
to very good identifications of the third and fourth modes,
with error metrics of 5.0% and 8.4%.. Poor identification of
the first and second modes was traced to the fact that some
of the FRF data used for the global linear least squares
fit was dominated by noise in the vicinity of the first and
second natural frequencies. The original version of AMI
completely failed to obtain these normal modes. In essence,
the global least squares fit of an FRF used in the present
version of AMI assures that a normal mode vector will be
obtained for each eigenvalue. However, the quality of that
identification is limited by the quality of the FRF data in
the vicinity of each of the modes.
This numerical experiment suggests that AMI is capable

of accurate identification of modes, even in the presence of
mode coupling. Good estimates of the eigenvalues may be
obtained, even if some FRFs are dominated by noise in the
vicinity of some natural frequencies. However, high quality
estimation of a mode vector requires that the mode’s con-
tribution to the FRF be above the noise level in all FRFs.
Failure to meet this condition at an undriven point results
solely in poor estimation of that element of that mode vec-
tor. However, failure to satisfy it at the drive point leads
to mis-scaling of all elements of the mode vector. Thus,
like any other modal identification algorithm, AMI relies
on suitable selection of the drive point, such that all modes
of interest are well excited.
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