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Abstract. A key-encapsulation mechanism (KEM) is a cryptographic
primitive that allows anyone in possession of some party’s public key
to securely transmit a key to that party. A KEM can be viewed as a
key-exchange protocol in which only a single message is transmitted; the
main application is in combination with symmetric encryption to achieve
public-key encryption of messages of arbitrary length.
The security of KEMs is usually defined in terms of a certain game
that no efficient adversary can win with non-negligible advantage. A
main drawback of game-based definitions is that they often do not have
clear semantics, and that the security of each higher-level protocol that
makes use of KEMs needs to be proved by showing a tailor-made security
reduction from breaking the security of the KEM to breaking the security
of the combined protocol.
We propose a novel approach to the security and applications of KEMs,
following the constructive cryptography paradigm by Maurer and Ren-
ner (ICS 2011). The goal of a KEM is to construct a resource that models
a shared key available to the honest parties. This resource can be used
in designing and proving higher-level protocols; the composition theorem
guarantees the security of the combined protocol without the need for a
specific reduction.

1 Introduction

Key establishment is a cryptographic primitive that allows two parties to obtain
a shared secret key, which can subsequently be used in cryptographic mech-
anisms such as encryption schemes or message authentication codes (MACs).
The most important application of key-establishment protocols is in the setup
phases of protocols for secure communication, such as TLS or IPSec, but, further-
more, their unidirectional variant—key-encapsulation mechanisms (KEMs)—are
an important building block in most practical public-key encryption schemes.

This paper is dedicated to Johannes Buchmann on the occasion of his 60th

birthday. The topic of the paper, the key-establishment problem, a fundamen-
tal problem in cryptography, is one of the areas to which he has contributed
significantly (e.g., [3–5, 21]).

In this paper, we focus on the particular case where keys are established using
KEMs and only unidirectional communication. We build on [8], where public-key
encryption is treated in constructive cryptography, and some parts of this work
are taken from that paper.



1.1 Security Notions for Key-Encapsulation Mechanisms

An important question for the application of KEMs is which level of KEM secu-
rity is required in order for a higher-level protocol that makes use of a KEM to
be secure. To define KEM security, game-based security notions for public-key
encryption have been adapted to work with KEMs. A game-based definition is
usually characterized by a security property that is to be maintained in the pres-
ence of an adversary launching a certain attack against the scheme in question.
Both security property and attack are encoded only implicitly into the security
game. As a consequence, the traditional answer to the above question is that for
each protocol one needs to identify the appropriate security notion and provide
a reduction proof to show that a KEM satisfying this notion yields a secure
protocol.

An alternative approach is to capture the semantics of a security notion by
characterizing directly what it achieves, making explicit in which applications
it can be used securely. The constructive cryptography framework [15, 16] was
proposed with this general goal in mind. Resources such as different types of
communication channels and keys are modeled explicitly, and the goal of a cryp-
tographic protocol or scheme π is to construct a stronger or more useful resource

S from an assumed resource R, denoted as R
π

==⇒ S. Two such construction
steps can then be composed, i.e., if we additionally consider a protocol ψ that
assumes the resource S and constructs a resource T , the composition theorem
states that

R
π

==⇒ S ∧ S
ψ

==⇒ T =⇒ R
ψ◦π

==⇒ T,

where ψ ◦ π denotes the composed protocol.

Following the constructive paradigm, a protocol is built in a modular fashion
from isolated construction steps. A security proof guarantees the soundness of
one such step, and each proof is independent of the remaining steps. The compo-
sition theorem then guarantees that several such steps can be composed. While
the general approach to protocol design based on reduction proofs is in principle
sound, it is substantially more complex, more error-prone, and not suitable for
re-use.

In this spirit, we treat the use of KEMs as such a construction step. We
show how one can construct, using KEMs, shared keys from authenticated and
insecure channels.

1.2 Constructing Keys using KEMs

From the perspective of constructive cryptography [15, 16], the purpose of a
KEM is to construct a shared key from non-confidential communication, which
is modeled as channels. Channels and keys are resources that involve a sender,
a receiver, and—to model different levels of security—an attacker. The security
properties of a particular resource are captured by the capabilities available



to the attacker. In the case of a channel they might, e.g., include reading or
modifying the messages in transmission.

The parties access resources through the interfaces they provide; these are
specific to each party. For example, the sender’s interface of a channel allows
to input messages, and the receiver’s interface allows to receive them. We refer
to the interfaces by labels A, B, and E, where A and B are the sender’s and
the receiver’s interfaces, respectively, and E is the adversary’s interface. In this
work, we consider two types of channels and two types of keys:1

– An insecure channel, denoted − →→ , allows the adversary to read, deliver,
and to delete all messages input at A, as well as to inject her own messages.

– An authenticated channel, denoted •−�→→ , still allows to read all messages,
but the adversary is limited to forwarding or deleting messages input at
interface A.

– A unilateral key, denoted =�=•, allows A to request keys. The adversary at
interface E may choose to deliver or delete keys requested at interface A to
B or to inject her own keys.

– A bilateral key, denoted •=�=•, also allows A to request keys, but the adver-
sary may not inject any keys.

In the straightforward application of a KEM, the receiver initially generates
a key pair and transmits the public key to the sender. The sender needs to obtain
the correct public key, which corresponds to assuming that the channel from B
to A is authenticated (←−•2). The sender, using the public key, generates a key
and corresponding ciphertext, which he sends to the receiver over a channel that
could either be authenticated or completely insecure.

The type of key that is constructed depends on the type of assumed channel
used to transmit the ciphertext to the receiver: We show that if the assumed
channel is authenticated (•−�→→ ) and the KEM scheme is ind-cpa-secure, the
constructed key is bilateral (•=�=•). If the assumed channel is insecure (− →→ )
and the PKE scheme is ind-cca-secure, the constructed key is unilateral (=�=•).

Using the above notation, for protocols π and π′ based on ind-cpa and ind-cca
KEMs, respectively, these constructions can be written as

[←−•, •−�→→ ]
π

==⇒ •=�=•

and

[←−•,− →→ ]
π′

==⇒ =�=•,

where the bracket notation means that both resources in the brackets are avail-
able.

1 The notation is taken from [18]: The “•” in the notation signifies that the capabilities
at the marked interface, i.e., sending or receiving, are exclusive to the respective
party. If the “•” is missing, the adversary also has these capabilities. The �-symbol
is explained in Section 2.4.

2 The simple arrow indicates that ←−• is a single-use channel, i.e., only one message
can be transmitted.



The notion of constructing the bilateral or unilateral keys from the two as-
sumed non-confidential channels is made precise in a simulation-based sense [16,
15], where the simulator can be interpreted as translating all attacks on the
protocol into attacks on the constructed (ideal) key. As the constructed key is
secure by definition, there are no attacks on the protocol.

The composability of the construction notion then means that the con-
structed key can again be used as an assumed resource (possibly along with
additional assumed or constructed resources) in other protocols. For instance,
if a higher-level protocol uses a unilateral key in symmetric encryption to con-
fidentially transmit a message, then the proof of this protocol is based on the
“idealized” unilateral key and does not (need to) include a reduction to the se-
curity of the KEM. In the same spirit, the authenticated channel from B to A
could be a physically authenticated channel, but it could also be constructed by
using, for instance, a digital signature scheme to authenticate the transmission
of the public key (which is done by certificates in practice).

1.3 Related Work

Game-based security. The notion of KEMs was introduced by Cramer and
Shoup [9, 22], when they proposed an ISO standard for public-key encryption
(PKE). They adapted the standard security notions for PKE schemes to work
with KEMs. Today’s standard security notions for PKE are indistinguishability
under chosen-plaintext attack (ind-cpa) and (the stronger) indistinguishability
under chosen-ciphertext attack (ind-cca). Bellare et al. [2] compare them to var-
ious other PKE security notions. Herranz et al. [12] analyze the security of PKE
schemes obtained from KEMs in conjunction with symmetric encryption schemes
with various security levels.

Real-world/ideal-world security. The idea of defining protocol security with re-
spect to an ideal execution was first proposed by Goldreich et al. [10]; the concept
of a simulator can be traced back to the seminal work by Goldwasser et al. [11]
on zero-knowledge proofs. Canetti [6] introduced the universal composability
framework (UC), which allows the formalization of arbitrary functionalities to be
realized by cryptographic protocols. The framework is designed from a bottom-
up perspective (starting from a selected machine model), whereas we follow the
top-down approach of [16], which leads to simpler, more abstract definitions and
statements. Nagao et al. [20] give a treatment of KEMs in the UC framework.
They show that combining a cca-secure KEM with cca-secure symmetric encryp-
tion realizes an “ideal KEM” functionality, which can be used to implement the
secure channel functionality of [7].

The constructive cryptography paradigm has been introduced by Maurer and
Renner [16, 15]. Several primitives have been modeled and analyzed following this
paradigm, including symmetric encryption [17] and public-key encryption [8].
Similarly to this work, both papers model the primitives as constructions and
compare the resulting security definitions to (game-based) notions from the lit-
erature. The unilateral key resource we use here is described in [19], where it is



shown to be achievable by an interactive protocol based on (signatures and) a
cpa-secure KEM.

2 Preliminaries

2.1 Systems: Resources, Converters, Distinguishers, and Reductions

Resources and converters are modeled as systems. At the highest level of ab-
straction (following the hierarchy in [16]), systems are objects with interfaces
by which they connect to (interfaces of) other systems; each interface is labeled
with an element of a label set and connects to only a single other interface.
This concept, which we refer to as abstract systems, captures the topological
structures that result when multiple systems are connected in this manner.

The abstract systems concept, however, does not model the behavior of sys-
tems, i.e., how the systems interact via their interfaces. Consequently, statements
about cryptographic protocols are statements at the next (lower) abstraction
level. In this work, we describe all systems in terms of (probabilistic) discrete
systems, which we explain in Section 2.2.

Resources and converters. Resources in this work are systems with three inter-
faces labeled by A, B, and E. A protocol is modeled as a pair of two so-called
converters (one for each honest party), which are directed in that they have an
inside and an outside interface, denoted by in and out, respectively. As a nota-
tional convention, we generally use upper-case, bold-face letters (e.g., R, S) or
channel symbols (e.g., •−�→→ ) to denote resources and lower-case Greek letters
(e.g., α, β) or sans-serif fonts (e.g., snd, rcv) for converters. We denote by Φ the
set of all resources and by Σ the set of all converters.

The topology of a composite system is described using a term algebra, where
each expression starts from one (or more) resources on the right-hand side and is
subsequently extended with further terms on the left-hand side. An expression
is interpreted in the way that all interfaces of the system it describes can be
connected to interfaces of systems which are appended on the left. For instance,
for a single resource R ∈ Φ, all its interfaces A, B, and E are accessible.

For I ∈ {A,B,E}, a resource R ∈ Φ, and a converter α ∈ Σ, the expression
αIR denotes the composite system obtained by connecting the inside interface
of α to interface I of R; the outside interface of α becomes the I-interface of the
composite system. The system αIR is again a resource (cf. Figure 1 on page 10).

For two resources R and S, [R,S] denotes the parallel composition of R
and S. For each I ∈ {A,B,E}, the I-interfaces of R and S are merged and
become the sub-interfaces of the I-interface of [R,S], which we denote by I.1
and I.2. A converter α that connects to the I-interface of [R,S] has two inside
sub-interfaces, denoted by in.1 and in.2, where the first one connects to I.1 of
R and the second one connects to I.2 of S.

Any two converters α and β can be composed sequentially by connecting the
inside interface of β to the outside interface of α, written β ◦ α, with the effect



that (β ◦ α)IR = βIαIR. Moreover, converters can also be taken in parallel,
denoted by [α, β], with the effect that [α, β]I [R,S] = [αIR, βIS].

We assume the existence of an identity converter id ∈ Σ with idIR = R
for all resources R ∈ Φ and interfaces I ∈ {A,B,E} and of a special converter
⊥ ∈ Σ with an inactive outside interface.

Distinguishers. A distinguisher is a special type of system D that connects to all
interfaces of a resource U and outputs a single bit at the end of its interaction
with U. In the term algebra, this appears as the expression DU, which defines
a binary random variable. The distinguishing advantage of a distinguisher D on
two systems U and V is defined as

∆D(U,V) := |P[DU = 1]− P[DV = 1]|.

The advantage of a class D of distinguishers is defined as

∆D(U,V) := sup
D∈D

∆D(U,V).

The distinguishing advantage measures how much the output distribution of D
differs when it is connected to either U or V. There is an equivalence notion
on systems (which is defined on the discrete systems level), denoted by U ≡ V,
which implies that ∆D(U,V) = 0 for all distinguishers D. The distinguish-
ing advantage satisfies the triangle inequality, i.e., ∆D(U,W) ≤ ∆D(U,V) +
∆D(V,W) for all resources U, V, and W and distinguishers D.

Games. We capture games defining security properties as distinguishing prob-
lems in which an adversary A tries to distinguish between two game systems G0

and G1. Game systems (or simply games) are single-interface systems, which
appear, similarly to resources, on the right-hand side of the expressions in the
term algebra. The adversary is similar to a distinguisher, except that it connects
to a game instead of a resource.

Reductions. When relating two distinguishing problems, it is convenient to use a
special type of system C that translates one setting into the other. Formally, C
is a converter that has an inside and an outside interface. When it is connected
to a system S, which is denoted by CS, the inside interface of C connects to the
(merged) interface(s) of S and the outside interface of C is the interface of the
composed system. C is called a reduction system (or simply reduction).

To reduce distinguishing two systems S,T to distinguishing two systems
U,V, one exhibits a reduction C such that CS ≡ U and CT ≡ V.3 Then, for
all distinguishers D, we have ∆D(U,V) = ∆D(CS,CT) = ∆DC(S,T). The last
equality follows from the fact that C can also be thought of as being part of the
distinguisher.

3 For instance, we consider reductions from distinguishing game systems to distinguish-
ing resources. Then, C connects to a game on the inside and provides interfaces A,
B, and E on the outside.



2.2 Discrete Systems

Protocols that communicate by passing messages and the respective resources are
described as (probabilistic) discrete systems. Their behavior can be formalized by
random systems as in [14], i.e., as families of conditional probability distributions
of the outputs (as random variables) given all previous inputs and outputs of
the system. For systems with multiple interfaces, the interface to which an input
or output is associated is explicitly specified as part of the input or output. For
the restricted (but here sufficient) class of systems that for each input provide
(at most) a single output, an execution of a collection of systems is defined as
the consecutive evaluation of the respective random systems (this is similar to
the models in [6, 13]).

2.3 The Notion of Construction

Recall that we consider resources with interfaces A, B, and E, where A and
B are interfaces of honest parties and E is the interface of the adversary. We
formalize the security of protocols via the following notion of construction (which
is a special case of the abstraction notion from [16]):

Definition 1. Let Φ and Σ be as in Section 2.1. A protocol π = (π1, π2) ∈ Σ2

constructs resource S ∈ Φ from resource R ∈ Φ within ε and with respect to
distinguisher class D, denoted

R
(π,ε)
==⇒ S,

if {
∆D(πA1 π

B
2 ⊥ER,⊥ES) ≤ ε (availability)

∃σ ∈ Σ : ∆D(πA1 π
B
2 R, σES) ≤ ε (security).

The availability condition captures that a protocol must correctly implement
the functionality of the constructed resource in the absence of the adversary. The
security condition models the requirement that everything the adversary can
achieve in the real-world system (i.e., the assumed resource with the protocol)
he can also accomplish in the ideal-world system (i.e., the constructed resource
with the simulator). More details can be found in [15].

An important property of Definition 1 is its composability. Intuitively, if a
resource S is used in the construction of a larger system, then the composability
implies that S can be replaced by a construction πA1 π

B
2 R without affecting the

security of the composed system. Security and availability are preserved under
composition. More formally, if for some resources R, S, and T and protocols π
and φ,

R
(π,ε)
==⇒ S and S

(φ,ε′)
==⇒ T,

then

R
(φ◦π,ε+ε′)

==⇒ T,



as well as

[R,U]
([π,id],ε)
==⇒ [S,U] and [U,R]

([id,π],ε)
==⇒ [U,S]

for any resource U. More details can be found in [15].

2.4 Important Resources

In this work, we consider two types of resources: channels and keys. Both types
initially expect a special cheating bit b ∈ {0, 1} at interface E, indicating whether
the adversary is present and intends to interfere with the transmission of the
messages. The special converter ⊥ (cf. Section 2.1) always sets b = 0, in which
case all messages/keys input at the sender’s interface are delivered immediately
to the receiver. For simplicity, we will assume that whenever ⊥ is not present,
all cheating bits are set to 1.

An authenticated channel from A to B with message space M is a resource
•−�→→ with interfaces A, B, and E and behaves as follows: When the ith message
m ∈M is input at interface A, it is recorded as (i,m) and (msg, i,m) is output
at interface E. When (dlv, i′) is input at interface E, if (i′,m′) has been recorded,
m′ is delivered at interface B. An insecure channel − →→ behaves as •−�→→ , but,
additionally, when (inj,m′) is input at interface E, m′ is output at interface B.

A bilateral key between A and B with key space K is a resource •=�=• with
interfaces A, B, and E and behaves as follows: When req is input for the ith time
at interface A, a key k ←R K is chosen uniformly at random and is recorded as
(i, k). Then, k is output at interface A and (key, i) at interface E. When (dlv, i′)
is input at interface E, if (i′, k′) has been recorded, k′ is output at interface B.
A unilateral key =�=• behaves as •=�=•, but, additionally, when (inj, k′) is input
at interface E, k′ is output at interface B.4

For R ∈ {− →→ , •−�→→ ,=�=•, •=�=•}, denote by
n

R the resource that processes

only the first n queries at A and E (e.g.,
n

•−�→→ only processes the first n messages
input at A and the first n queries at E).

2.5 Key-Encapsulation Mechanisms

A key-encapsulation mechanism (KEM) with key space K is a triple of algorithms
Π = (K,E,D). The key generation algorithm K outputs a key pair (pk, sk) ←
K, the (probabilistic) encryption algorithm takes a public key pk and outputs
a pair (k, c) ← Epk, where k ∈ K and c is the corresponding ciphertext, and
the decryption algorithm takes a secret key sk and a ciphertext c and outputs
k′ ← Dsk(c

′), where k′ = � indicates an invalid ciphertext.
A KEM is correct if for (k, c) ← Epk, Dsk(c) = k (with probability 1 over

the randomness of E) for all key pairs (pk, sk) generated by K. For security

4 Note that neither the channels nor the keys prevent the adversary from reordering
or replaying messages/keys sent by A. The �-symbol suggests the “internal buffer”
in which a channel/key stores messages input at A.



properties of KEM schemes which are defined via a bit-guessing game, it will
be more convenient to phrase the game as a distinguishing problem between
two game systems (cf. Section 2.1). We consider the following games, which
correspond to the (standard) notions of ind-cpa (cpa for short) and ind-cca2
(cca).5

CPA game. Consider systems Gcpa
0 and Gcpa

1 : For a KEM scheme Π, both ini-
tially run the key-generation algorithm to obtain (pk, sk) and output pk. When
the query chall is input, they compute (k, c) ← Epk. Then, Gcpa

0 outputs (k, c)
and Gcpa

1 outputs (k̄, c) for a randomly chosen k̄ ∈ K. Ciphertext c is called the
challenge.

CCA game. Consider systems Gcca
0 and Gcca

1 : They proceed as in the CPA case
but also answer decryption queries (dec, c′) by returning k′ ← Dsk(c

′) unless c′

equals the challenge c (if defined), in which case the answer is test.

3 Bilateral and Unilateral Keys from KEMs

In the spirit of constructive cryptography, we explicitly consider the purpose
of KEMs, namely to achieve a shared key between A and B over an untrusted
network. As a constructive statement this means that we view the KEM as
a protocol, a pair of converters (snd, rcv), whose goal is to construct a shared
key from non-confidential channels. Differentiating between the two cases where
the communication from the sender A to the receiver B is authenticated and
unauthenticated, this is written as

[←−•, •−�→→ ]
(snd,rcv)
==⇒ •=�=• (1)

and

[←−•,− →→ ]
(snd,rcv)
==⇒ =�=•, (2)

respectively.
In both cases, the channel ←−• captures the ability of the sender to obtain

the receiver’s public key in an authenticated fashion. In construction (1), the
communication from the sender A to the receiver B is authenticated, which is
modeled by the channel •−�→→ . The goal is to achieve a bilateral key •=�=•. In
construction (2), the communication from A to B is completely insecure, which
is captured by the insecure channel − →→ . Here, the goal is to achieve a unilateral
key =�=•, which does not prevent the adversary from sending its own keys to B.

In the following we first show how a KEM Π can be seen as a converter
pair (snd, rcv). We then prove that (snd, rcv) achieves construction (1) if Π is
cpa-secure, and construction (2) if Π is cca-secure.

5 We consider the so-called real-or-random versions of these games, which are equiv-
alent to the more popular left-or-right formulations (as shown in [1] for symmetric
encryption).



3.1 KEMs as Protocols

Let Π = (K,E,D) be a KEM. Based on Π, we define a pair of protocol con-
verters (snd, rcv) for constructions (1) and (2). Both converters have two sub-
interfaces, denoted by in.1 and in.2, on the inside, as we connect them to a
resource that is a parallel composition of two other resources (cf. Section 2.1).

Converter snd works as follows: It initially expects a public key pk at in.1.
When req is input at the outside interface, snd computes (k, c) ← Epk and
outputs k at the outside interface and c at the inside interface in.2. Converter
rcv initially generates a key pair (pk, sk) using key-generation algorithm K and
outputs pk at in.1. When rcv receives c′ at in.2, it computes k′ ← Dsk(c

′) and,
if k′ 6= �, outputs k′ at the outside interface.

3.2 Bilateral Keys from Authenticated Channels

Towards proving that the protocol (snd, rcv) indeed achieves construction (1),
note first that the correctness of the KEM immediately implies that the avail-
ability condition of Definition 1 is satisfied. To prove security, we need to exhibit
a simulator σ such that the assumed resource [←−•, •−�→→ ] with the protocol con-
verters is indistinguishable from the constructed resource •=�=• with the simula-
tor (cf. Figure 1). Theorem 1 implies that (snd, rcv) realizes (1) if the underlying
KEM is cpa-secure.

A B

E

←−•

•−�→→

snd rcv A B

E

•=�=•

σ

Fig. 1. Left: The assumed resource (two authenticated channels) with protocol con-
verters snd and rcv attached to interfaces A and B, denoted sndArcvB [←−•, •−�→→ ].
Right: The constructed resource (a bilateral key) with simulator σ attached to the E-
interface, denoted σE•=�=•. In particular, σ must simulate the E-interfaces of the two
authenticated channels. The protocol is secure if the two systems are indistinguishable.

Theorem 1. There exists a simulator σ and for any n ∈ N there exists a (effi-
cient) reduction C such that for every D,

∆D(sndArcvB [←−•,
n

•−�→→ ], σE
n•=�=•) ≤ n ·∆DC(Gcpa

0 ,Gcpa
1 ).

Proof. Consider the following simulator σ for interface E of •=�=•: Initially, it
generates a key pair (pk, sk) and outputs (msg, 1, pk) at out.1. On (key, i) at the



inside interface in, it generates (k, c)← Epk and outputs (msg, i, c) at out.2. On
(dlv, i′) at out.2, it outputs (dlv, i′) at in. Consider the two systems

sndArcvB [←−•,
1

•−�→→ ] and σE
1

•−�→→• .

Distinguishing Gcpa
0 from Gcpa

1 can be reduced to distinguishing these two sys-
tems via the following reduction system C′, which connects to a game on the
inside and provides interfaces A, B, and E on the outside (cf. Section 2.1 for
details on reduction systems): Initially, it takes a value pk on the inside and
outputs (msg, 1, pk) at the (outside) E.1-interface. On req at the A-interface, it
outputs chall at in. On subsequent key and challenge (k, c) at in, it outputs
k at A and (msg, 1, c) at E.2. On (dlv, 1) at the E.2-interface, it outputs k at
interface B. We have

C′Gcpa
0 ≡ sndArcvB [←−•,

1
•−�→→ ] and C′Gcpa

1 ≡ σE 1•=�=•,

and thus

∆D(sndArcvB [←−•,
n

•−�→→ ], σE
n•=�=•)

≤ n·∆DC′′
(sndArcvB [←−•,

1
•−�→→ ], σE

1•=�=•)

= n·∆DC′′
(C′Gcpa

0 ,C′Gcpa
1 )

= n·∆DC(Gcpa
0 ,Gcpa

1 ),

where C := C′′C′ and the first inequality follows from a standard hybrid argu-
ment for a reduction system C′′. ut

3.3 Unilateral Keys from Unauthenticated Channels

We now prove that (snd, rcv) achieves (2). Note again that the correctness of
the KEM implies that the availability condition of Definition 1 is satisfied. To
prove security, we need to exhibit a simulator σ such that the assumed re-
source [←−•,− →→ ] with the protocol converters is indistinguishable from the
constructed resource =�=• with the simulator. Theorem 1 implies that (snd, rcv)
realizes (2) if the underlying KEM is cca-secure.

Theorem 2. There exists a simulator σ and for any n ∈ N there exists a (effi-
cient) reduction C such that for every D,

∆D(sndArcvB [←−•,
n
− →→ ], σE

n
=�=•) ≤ n ·∆DC(Gcca

0 ,Gcca
1 ).

Proof. Simulator σ for interface E of =�=• again has two outside sub-interfaces
out.1 and out.2 and works as follows: Initially, it generates a key pair (pk, sk) and
outputs (msg, 1, pk) at out.1. When it receives (key, i) at the inside interface in,
it generates (k, c) ← Epk, outputs (msg, i, c) at out.1, and records (c, i). When
(inj, c′) is input at out.2, σ proceeds as follows: If (c′, i′) has been recorded for



some i′, it outputs (dlv, i′) at in. Otherwise, it computes k′ ← Dsk(c
′) and, if

k′ 6= �, outputs (inj, k′) at in.

Denote by
n,q
− →→ the insecure channel that processes the first n inputs at

interface A and the first q inputs at interface E (and similarly for
n,q

=�=•). Consider
now the problem of distinguishing the two systems

U := sndArcvB [←−•,
1,n
− →→ ] and V := σE

1,n
=�=•,

which are depicted in Figure 2. A distinguisher D connected to the real-world
system U initially sees a public key at interface E.1. If D inputs req at interface
A, a key k is output at A and its corresponding encryption is output at interface
E.2 (both created by snd). When D inputs a ciphertext c′ at E.2, it sees a
decryption of c′ (by rcv) at B. The ideal-world system V behaves differently:
Initially, D also sees a public key. But when it inputs req at A, an encryption
c of a key k unrelated to the key k̄ output at A is output at interface E.2 (by
simulator σ). When c is input at interface E.2, k̄ is output at B (as σ issues a
dlv-instruction to the key). When c′ 6= c is input at E, the decryption k′ of c′

(injected by σ) is output at B.

←−•

1,n
− →→

snd rcv

pk

k

c c′

k′

1,n
=�=•

σ

pk

k

c c′

k′

Fig. 2. The systems U and V with the “message flow” from the perspective of a
distinguisher: Initially, a public-key pk is output at interface E.1. Requesting a key k
at interface A causes a ciphertext c to be output at the E.2-interface. Note that c is
the challenge in the cca-game. Inputting a ciphertext c′ at interface E.2 results in a
key k′ being output at B. This corresponds to the decryption oracle in the cca-game.

The translation between the channel setting and the game setting is achieved
by the following reduction system C′: Initially, C′ takes a value pk from the game
and outputs (msg, 1, pk) at the E.1-interface. When req is input at interface A
of C′, chall is output to the game, which returns (k, c). Key k is output at A
and challenge c is output as (msg, 1, c) at interface E.2. When (inj, c) is input
at interface E.2, C′ outputs k at interface B. When (inj, c′) with c′ 6= c is input
at interface E.2, C′ passes c′ to the game’s decryption oracle and outputs the
answer k′ at interface B, provided k′ 6= �. We have

C′Gcca
0 ≡ sndArcvB [←−•,

1,n
− →→ ] and C′Gcca

1 ≡ σE
1,n

=�=•,



and thus

∆D(sndArcvB [←−•,
n
− →→ ], σE

n
=�=•) ≤ n ·∆DC′′

(sndArcvB [←−•,
1,n
− →→ ], σE

1,n
=�=•)

= n ·∆DC′′
(C′Gcca

0 ,C′Gcca
1 )

= n ·∆DC(Gcca
0 ,Gcca

1 ),

where C := C′′C′ and the first inequality follows from a standard hybrid argu-
ment for a reduction system C′′. ut

The unilateral key −�→→• is the best key one can construct from the two
assumed channels. As the E-interface has the same capabilities as the A-interface
at both the authenticated (from B to A) and the insecure channels, it will
necessarily also be possible to inject keys to the receiver via the E-interface by
simply applying the sender’s protocol converter.

4 Conclusion

The purpose of this paper is to describe KEMs as a construction step that can
be used within higher-level protocols. While the most widespread application is
in the so-called KEM-DEM public-key encryption schemes, KEMs are also used
as a method to establish keys in interactive protocols such as TLS.

The constructive approach allows to fully isolate the analysis of the KEM
schemes from the analysis of the higher-level protocols that use the obtained
keys; protocols that are proven secure assuming a (unilateral or bilateral) shared
key remain secure if the respective key is obtained using a KEM. Hence, the
approach supports a fully modular protocol design where each cryptographic
mechanism is proven in isolation to achieve one construction step, and multiple
such steps are composed by the general composition theorem.

Compared with the traditional approach of explicitly proving tailor-made se-
curity reductions from breaking the security of the underlying schemes to break-
ing the security of a complex protocol, this modular approach leads to security
proofs which are simpler and consequently less prone to errors.
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3. Buchmann, J., Düllmann, S., Williams, H.C.: On the Complexity and Efficiency of
a New Key Exchange System. In: Quisquater, J.J., Vandewalle, J. (eds.) EURO-
CRYPT ’89. LNCS, vol. 434, pp. 597–616. Springer, Heidelberg (1989)



4. Buchmann, J., Williams, H.C.: A Key-Exchange System Based on Imaginary
Quadratic Fields. Journal of Cryptology 1(2), 107–118 (1988)

5. Buchmann, J., Williams, H.C.: A Key Exchange System Based on Real Quadratic
Fields. In: Brassard, G. (ed.) CRYPTO ’89. LNCS, vol. 435, pp. 335–343. Springer,
Heidelberg (1989)

6. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic
Protocols. Cryptology ePrint Archive, Report 2000/067 (2000)

7. Canetti, R., Krawczyk, H.: Universally Composable Notions of Key Exchange and
Secure Channels. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332,
pp. 337–351. Springer, Heidelberg (2002)

8. Coretti, S., Maurer, U., Tackmann, B.: Constructing Confidential Channels from
Authenticated Channels—Public-Key Encryption Revisited. In: Sako, K., Sarkar,
P. (eds.) ASIACRYPT 2013. LNCS, Springer, Heidelberg (2013)

9. Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption
Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM Journal on
Computing 33, 167–226 (2001)

10. Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game or A
Completeness Theorem for Protocols with Honest Majority. In: 19th ACM STOC.
pp. 218–229 (1987)

11. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive
Proof-Systems (Extended Abstract). In: 17th ACM STOC. pp. 291–304 (1985)

12. Herranz, J., Hofheinz, D., Kiltz, E.: Some (in)sufficient conditions for se-
cure hybrid encryption. Cryptology ePrint Archive, Report 2006/265 (2006),
http://eprint.iacr.org/

13. Hofheinz, D., Shoup, V.: GNUC: A New Universal Composability Framework.
Cryptology ePrint Archive, Report 2011/303 (2011)

14. Maurer, U.: Indistinguishability of Random Systems. In: Knudsen, L.R. (ed.) EU-
ROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

15. Maurer, U.: Constructive Cryptography—A New Paradigm for Security Definitions
and Proofs. In: Moedersheim, S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol.
6993, pp. 33–56. Springer, Heidelberg (Apr 2011)

16. Maurer, U., Renner, R.: Abstract Cryptography. In: Chazelle, B. (ed.) The Second
Symposium in Innovations in Computer Science, ICS 2011. pp. 1–21. Tsinghua
University Press (Jan 2011)
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