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ABSTRACT 
 
In Tangencies Apollonius of Perga showed how to construct a circle that is tangent to three given 
circles.  More generally, Apollonius' problem asks to construct the circle which is tangent to any 
three objects that may be any combination of points, lines, and circles.  The case when all three 
objects are circles is the most complicated case since up to eight solution circles are possible 
depending on the arrangement of the given circles.  Within the last two centuries, solutions have 
been given by J. D. Gergonne in 1816, by Frederick Soddy in 1936, and most recently by David 
Eppstein in 2001.  In this report, we illustrate the solution using the geometry software 
Cinderella™, survey some connections among the three solutions, and provide a framework for 
further study. 
 
I. INTRODUCTION 

 
Apollonius of Perga was known as 

'The Great Geometer'.  He should not be 
confused with other Greek scholars named 
Apollonius, for it was a common name.  
Little is known of his life except that he was 
born in Perga, Pamphylia, which today is 
known as Murtina, or Murtana, and is now in 
Antalya, Turkey.  The years 262 to 190 B.C. 
have been suggested for his life [1-3].  It is 
commonly believed that Apollonius went to 
Alexandria where he studied under the 
followers of Euclid and possibly taught there 
later. 

This paper focuses on a problem 
solved by Apollonius in his book 
Tangencies.  Apollonius’ works have had a 
great influence on the development of 
mathematics [4].  In particular, his famous 
book Conics introduced terms which are 
familiar to us today such as parabola, ellipse 
and hyperbola. In Book IV of the Elements, 
Euclid details how to construct a circle 
tangent to three sides of a given triangle 
(Proposition 4) and how to construct a circle 

containing three noncollinear points 
(Proposition 5) [5, p. 182].  The latter 
construction is accomplished by finding the 
intersection point of the perpendicular 
bisectors of any two sides of the triangle 
with the three given points as vertices.  In 
Tangencies Apollonius poses a 
generalization to Euclid’s two propositions: 
given any three points, lines or circles in the 
plane, construct a circle which contains the 
points and is tangent to the lines and circles.  
Apollonius enumerated the ten combinations 
of points, lines and circles and solved the 
cases not already solved by Euclid [6, 
p.182].  The case when all three objects are 
circles is the most complicated of the ten 
cases since up to eight solution circles are 
possible depending on the arrangement of 
the circles (see Figure 1). 

Since no copy of Apollonius’ 
Tangencies has survived the ages, Pappus 
of Alexandria deserves credit for eternally 
linking Apollonius’ name with the tangents 
problem.  Pappus, who lived some five 
centuries after Apollonius and is known 
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Figure 1.   Eight solution circles to Apollonius’ problem. 
 
 
mostly for his encyclopedic recording and 
commenting of Greek mathematics, wrote a 
“Treasury of Analysis” in Book VII of his 
Mathematical Collections dedicated to works 
of Euclid, Aristaeus, and Apollonius.  Here 
he succinctly states Apollonius’ problem, 
acknowledges the ten cases, and provides a 
compass and straightedge solution for at 
least one solution circle [6, p. 182]. 

Excepting Arabic reconstructions of 
Apollonius’ works, Apollonius’ problem lay 
dormant in the literature until François Viète 
(1540-1603) restored the Tangencies in 
1603. Having unveiled Apollonius’ solution, 
Viète challenged Adrianus Romanus to draw 
a circle tangent to three given circles but 
was disappointed by Romanus’ use of 
conics. A century later Newton also went 
beyond compass and straightedge solutions 
by employing hyperbolas [7].  Agreeing with 
Viète’s preference for compass and 
straightedge solutions, we are motivated to 
include three related constructions under the 
same cover: the Euler-Gergonne-Soddy 
triangle, which contains the centers of the 
two solution circles in the special case when 
the circles are mutually tangent or “kissing;” 
a solution found by David Eppstein in 2001 
for the same special case; and an 
adaptation to Gergonne’s analytic solution 
which constructs all eight solution circles in 
the general case for three circles in generic 
position.  We conclude with some 
connections among the three solutions and 

provide a framework for further study 
beyond the scope of this paper. 
 
II. THE EULER-GERGONNE-SODDY 

TRIANGLE OF A TRIANGLE 
 

A special case of Apollonius' 
problem is known today as the three coins 
problem, or kissing coins problem.  In this 
variant, the three circles, of possibly different 
radii, are taken to be mutually tangent.  
There are two solutions to this special case 
of Apollonius’ problem: a small circle where 
all three given circles are externally tangent, 
and a large circle where the three given 
circles are internally tangent.  In 1643 Renè 
Descartes sent a letter to Princess Elisabeth 
of Bohemia in which he provided a solution 
to this special case of Apollonius’ problem.  
His solution became known as Descartes’ 
circle theorem. Philip Beecroft, an English 
amateur mathematician, rediscovered 
Descartes’ circle theorem in 1842.  Then it 
was discovered again in 1936 by Frederick 
Soddy (1877-1956), who had won a Nobel 
Prize in 1921 for his discovery of isotopes 
[8].  Soddy expressed the theorem in the 
form of a poem, "The Kiss Precise," which 
was published in the journal Nature and is 
included below.  It may have been the flavor 
of the added poem that set Soddy apart 
from his predecessors, as the two circles are 
known today as the inner and outer Soddy 
circles.  Additionally, Soddy extended the 
theorem to the analogous formula for six 
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spheres in three dimensions [9, Soddy 
Circles]. 

Though Soddy provided an analytic 
solution to the kissing coins problem, we do 
not know whether he constructed a synthetic 
solution using compass and straightedge.  
For our part we find compass and 
straightedge solutions easier to understand 
than their analytic counterparts.  This 
section is devoted to the Euler-Gergonne-
Soddy triangle (EGST).  Though it does not 
provide a solution to the kissing coins 
problem, it does provide a unique insight to 
finding the Soddy circles.  Many of the 
connections between the EGST and the 
Soddy circles solution to the kissing coins 
problem were inspired by Oldknow’s article 
[8], which uses trilinear coordinates, 
harmonic ranges, and parameterizations of 
lines to construct the EGST.  It is interesting 
to note that Oldknow attributes many of his 
investigations to the use of geometric 
software packages, a current trend among 
geometry researchers. 
 As noted already, the kissing coins 
problem is the special case of Apollonius’ 
problem where all three circles are mutually 
tangent.  In this arrangement there are two 
solution circles, the inner and outer Soddy 
circles as shown in Figure 2.  There are two 
questions of interest that arise from this 
special case: what are the radii of the Soddy 
circles and where are their centers located? 
 As a partial answer to the latter 
question,  the  Soddy  centers  lie on the line 
 
 

 
 
 

Figure 2.  Soddy circles. 

 

The Kiss Precise 
For pairs of lips to kiss maybe 
Involves no trigonometry. 
'Tis not so when four circles kiss 
Each one the other three. 
To bring this off the four must be 
As three in one or one in three. 
If one in three, beyond a doubt 
Each gets three kisses from without. 
If three in one, then is that one 
Thrice kissed internally. 

Four circles to the kissing come. 
The smaller are the benter. 
The bend is just the inverse of 
The distance from the center. 
Though their intrigue left Euclid dumb, 
There's now no need for rule of thumb. 
Since zero bend's a dead straight line 
And concave bends have minus sign, 
*The sum of the squares of all four bends 
Is half the square of their sum.* 

To spy out spherical affairs 
An oscular surveyor 
Might find the task laborious, 
The sphere is much the gayer, 
And now besides the pair of pairs 
A fifth sphere in the kissing shares. 
Yet, signs and zero as before, 
For each to kiss the other four 
*The square of the sum of all five bends 
Is thrice the sum of their squares.* 

Frederick Soddy (Nobel Prize, Chemistry, 
1921) Nature, June 20, 1936 [10]. 

 
determined by the incenter and Gergonne 
point of the reference triangle.  This line is 
known as the Soddy line and it contains one 
of the sides of the EGST.  Given three 
vertices of a triangle, we show how to 
construct its EGST.  The reader may want to 
refer to the Appendix for a glossary of 
geometric terms involved in this 
construction. 
 We start with the Euler line since it 
is the easiest to construct.  Given a 
reference triangle, find the circumcenter as 
the intersection of the perpendicular 
bisectors and the orthocenter as the 
intersection of the altitudes.  These two 
points determine the Euler line, which also 
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Figure 3.  The Gergonne point, incenter, incircle and Soddy line. 
 
 
contains the triangle’s centroid (the 
intersection of the medians).  The Euler line 
also contains a number of other important 
triangle centers including the center of the 
nine-point circle. 
 The Soddy line is determined by the 
incenter, where the angle bisectors coincide, 
and the Gergonne point.  The incenter is the 
center of the unique circle that is internally 
tangent to its reference triangle at three 
points.  These three points are called the 
contact points, and together they form the 
contact triangle of the reference triangle.  
The Gergonne point can most easily be 
found as follows: erect perpendiculars 
containing the incenter from each side of the 
reference triangle.  These perpendiculars 
meet the reference triangle at the contact 
points.  The lines containing the contact 
points and the opposite vertices on the 
reference triangle coincide at the Gergonne 
point (see Figure 3). 
 Importantly, the contact points have 
special meaning to the kissing coins 
problem.  Given three noncollinear points, 
one can uniquely construct the three 
mutually tangent circles centered at these 
points.  Construct the reference triangle with 
these vertices and its contact triangle, as 
described above; the mutually tangent 
circles are centered at the vertices of the 
reference triangle and contain the nearby 
vertices of the contact triangle!  Hence, 

three non-collinear points uniquely 
determine the radii of the kissing coins. 

To construct the Gergonne line, one 
must understand the notion of triangles in 
perspective.  The idea of perspective was 
introduced in the Renaissance to create the 
idea of depth in art.  The principle of 
perspective is that all lines meet at a point, 
thus providing depth.  A well-known example 
of this is Leonardo da Vinci’s Last Supper, 
where all the lines forming the walls, ceiling 
and edges of the table meet at a point of 
perspective, which happens to be the head 
of Christ. 

The idea of perspective objects can 
be applied in geometry in relation to 
triangles.  The two triangles ∆ABC and 
∆A'B'C' in Figure 4 are perspective from a 
line since the extensions of their three pairs 
of corresponding sides meet in collinear 
points X, Y, and Z.  The line joining these 
points is called the perspectrix.  It can also 
be said that two triangles are perspective 
from a point if their three pairs of lines 
joining their corresponding sides meet at a 
point of concurrence O. This point is called 
the perspector, perspective center, 
homology center, or pole [9, Perspective 
Triangles]. 

In the kissing coins problem the 
triangle formed by the centers of the circles 
and its contact triangle are perspective 
triangles.  The perspector and the 
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Figure 4.  Triangles in perspective: Triangles ∆ABC and ∆A'B'C' are perspective from a line since 
the extensions of their three pairs of corresponding sides meet in collinear points X, Y, and Z. 
 
 
perspectrix of these two triangles are called 
the Gergonne point and Gergonne line, 
respectively, as shown in Figure 5. 

The union of the Euler line, Soddy 
line and Gergonne line form the EGST, as 
seen in Figure 6.  The vertices of EGST are 
known as the de Longchamps point, Evans 
point and Fletcher point.  The Soddy line 
and Gergonne line always form a right angle 
at the Fletcher point [8, p. 328].  As 
mentioned previously the Soddy points, 

being the centers of the inner and outer 
Soddy circles, lie on the Soddy line and form 
a harmonic range with the incenter and 
Gergonne point [8, p. 326].  Further, the 
radii of both Soddy circles can be expressed 
in terms of ratios of the radii of the three 
given circles and the incircle.  We will see in 
the next section that two of the solution 
circles to Apollonius’ problem are centered 
on the Soddy line of the EGST.  

  

 
 

 
Figure 5.  Gergonne point and line. 
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Figure 6.  Euler-Gergonne-Soddy triangle. 
 
 

III. THE EPPSTEIN SOLUTION 
 

David Eppstein, a professor in the 
Department of Information and Computer 
Science at the University of California at 
Irvine, is a researcher in the areas of 
computational geometry and graph 
algorithms.  Eppstein is also the founder and 
author of the popular Geometry Junkyard 
website.  On this site Eppstein details a 
solution, discovered by Eppstein himself, 
that constructs Frederick Soddy’s circles 
with a compass and straightedge.  The basis 
of Eppstein’s solution comes from an article 
in The American Mathematical Monthly [13].  
In this article Eppstein proves that three 
lines through opposite points of tangency of 
any four mutually tangent spheres in three-
space are coincident.  A resulting corollary 
from this lemma is that three lines through 
opposite points of tangency of any four 
mutually tangent circles in the plane are 
coincident.   

Eppstein’s solution is as follows 
(see Figure 7a): form a triangle connecting 
the three circle centers and drop a 
perpendicular line from each center to the 
opposite triangle edge. Each of these lines 
cuts its circle at two points.  Seen in Figure 
7b, construct a line from each cut point to 
the point of tangency of the other two 
circles. These lines cut their circles in two 
more points, yielding six total, which are the 
points of tangency of the Soddy circles. 
Once these six points are known, the Soddy 
circles’ centers are easily found to lie on the 

line determined by the incenter and 
Gergonne point, a.k.a. the Soddy line. 

In Eppstein’s solution, one may 
notice that there are two sets of three lines, 
as seen in Figure 7b, each intersecting at a 
common point.  This is the result of the 
corollary from Eppstein’s article mentioned 
above.  Eppstein points out that despite their 
simplicity of definition and the large amount 
of study into triangle geometry, these two 
points do not appear in the list of over 1,000 
known triangle centers collected by Clark 
Kimberling and Peter Yff [13, p. 65].  Thus, 
these two points have become known as the 
Eppstein points and, remarkably, they lie on 
the Soddy line and form a harmonic range 
with the Gergonne point and incenter [8, p. 
327]. 

 
 
 
 

 
 
 
 
Figure 7a. The Eppstein solution. 
 
 
 
 

 
 
 
 
Figure 7b. Soddy circle and Eppstein 
points. 
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Figure 8.  Inversion of line l through circle C. 
 
 
IV. THE GERGONNE SOLUTION 
 

Joseph Diaz Gergonne was born in 
France in 1771 and died there in 1859.  He 
spent most of his youth serving in the 
military until 1795.  Afterwards, he began his 
mathematical study, which spawned a 
number of mathematical ideas but mostly 
focused on the area of geometry.  Gergonne 
is well known for creating the journal 
officially called the Annales de 
Mathématique Pures et Appliquées but 
became known as Annales de Gergonne 
[14, p. 226].  His journal featured such 
prominent mathematicians as Jakob Steiner 
and Evariste Galois.  Mentioned earlier are a 
few of the results of his work in the solution 
of the Soddy circles.  Not only did Gergonne 
supply all eight solution circles to Apollonius’ 
problem, he also introduced the word polar 
as it applies to inversion geometry.   

Inversion geometry deals with 
transformations of the plane that leave a 
given circle fixed while taking its interior 
points to its exterior and vice versa.  Not just 
the subject of advanced Euclidean 
geometry, inversion geometry arises in 
hyperbolic geometry and conformal 
mappings of the complex plane.  While the 
details and intricacies of inversion geometry 
are beyond the scope of this paper, we do 
make use of the fact that we can invert any 
point through a given circle using compass 
and straightedge constructions [15]. 

For our purposes, we need the 
inversion geometry fact that a circle 
inversion through the circle C of radius r 
centered O in Figure 8 takes the line l to the 
circle with diameter OQ .  In this 
arrangement P and Q are on the line 
perpendicular to l containing O, and 

(OP)(OQ) = r2.  Points P and Q are easily 
constructed with compass and straightedge, 
and point Q is called the inversion pole of 
the line l.  

Gergonne’s solution requires 
constructing the dilation points for each pair 
of circles [16].  The dilation points of a pair 
of circles are the two points of central 
similarity about which one circle can be 
dilated (or contracted) to the other.  As there 
are three pairs of circles with two dilation 
points each, this process yields six points.  
These lie three by three on four lines, 
forming a four-line geometry, as illustrated in 
Figure 9. 

Determine the inversion poles of 
one of the dilation lines with respect to each 
of the three circles, as in Figure 10a, and 
connect the inversion poles with the radical 
center, as shown in Figure 10b.  The radical 
center is the intersection of the three radical 
axes; the radical axis of two circles is the 
line  that  contains  the  center  points  of  all 

 
 

 
 
Figure 9. Dilation points and lines 
 
 

 
 
Figure 10a. Inversion poles 
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Figure 10b. Tangent points. 
 
 
 

 
 
Figure 11a. Tangent circle. 
 
 

 
 
 
Figure 11b.  Another tangent circle. 

that are orthogonal to both of the given 
circles.  In this case, each line containing the 
radical center and an inversion pole 
intersects its respective circle at two points. 

The center of the upper circle in 
Figure 10b is alone on one side of the 
dilation line formed by the dilation points. On 
that circle pick the intersection point furthest 
from the radical center. On the other two 
circles pick the near intersection points. 
These three points are the tangent points for 
the solution circle shown in Figure 11a. The 
other three intersection points are the 
tangent points for another solution circle, 
shown in Figure 11b. 

This construction sequence yields 
all four lines formed from the dilation points, 
and for each line produces at most two 
solution circles.  Thus, all eight solution 
circles can be constructed.  We should 
mention that this process, while not terribly 
complicated, does require careful record 
keeping.  When constructing Gergonne’s 
solution, we used the interactive geometry 
software program Cinderella™.  
Cinderella™ allows one to hide lines and 
circles.  Without this capability we do not 
believe that we could have constructed the 
solution.  As pictured below in Figure 12, the 
solution becomes very cluttered when every 
line and circle is visible.  We are truly 
impressed that Gergonne, or anyone before 
the computer age, could have the patience 
to perform this feat. 
 
V. CONNECTIONS AND 

EXTENSIONS 
 

In this section we observe some 
connections relating the EGST, Eppstein’s 
solution and Gergonne’s solution and 
suggest some routes for further study.   

One of the most intriguing properties 
that we have found is the relation of the 
Gergonne line and the Gergonne solution.  
Since both share the name of J. D. 
Gergonne it might come as no surprise that 
they are related, but we do not consider this 
fact to be obvious.  In Gergonne’s solution 
one may recall that a line formed by the 
three outer dilation points, which we call the 
outer dilation line, is used to find two 
solution circles.  In the special case where 
all three circles are mutually tangent, the 
Gergonne line and the outer dilation line 
coincide.  Also, when the given circles are
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Figure 12.  The Complete Gergonne Solution. 
 
 
mutually tangent, the two solution circles 
formed by the outer dilation line are the 
Soddy circles.  Thus, one begins to see the 
importance of the Euler-Gergonne-Soddy 
triangle and the role it plays in Apollonius’ 
problem.  Furthermore, if the three given 
circles are mutually tangent, the incenter of 
the reference triangle coincides with the 
radical center, and the radical axes that 
define the radical center are the 
perpendicular lines from the triangle sides to 
the incenter. 

Until now we have allowed the 
reader to believe that Eppstein’s solution to 
the kissing coins problem only solves for two 
of the solution circles whereas Gergonne’s 
solution finds all eight solution circles to the 
general Apollonius’ problem.  The observant 
reader should ask: “Where are the 
remaining six tangent circles in the kissing 
coins arrangement?”  It turns out that each 
of the three given circles represents two 
solutions.  This can best be observed using 
geometry software to execute Gergonne’s 
solution and arranging the three given 
circles to be nearly tangent.  One will 
observe that the coins, now separated by a 
small distance from each other, are each 

internally tangent to two solution circles just 
slightly larger than the coin itself. 

As another special case of three 
circles in general position, consider what 
happens when the radius of one of the given 
circles tends toward zero.  Here, the eight 
solution circles collapse to four, and they do 
so in pairs.  When the radius of a second 
circle decreases, the four solution circles 
collapse to two.  Finally, when the radius of 
the third circle shrinks, the two solutions 
collapse to one. Figure 13 illustrates this 
nicely for a sequence of circles whose radii 
tend toward zero.  Hence, Euclid’s 
Proposition 5, Book IV, for finding the 
circumcenter of a triangle should really be 
viewed as a very special case of Gergonne’s 
solution to Apollonius’ problem! 
 As yet another special case, 
consider when the given circles are the 
excircles of a triangle.  Here, the vertices of 
the triangle are the inner dilation points for 
the pairs of circles.  Surprisingly, the lines 
extending the triangle sides are three of the 
Apollonius solutions; they are limiting cases 
as the radii of three of the solution circles 
tend to infinity!  Feuerbach’s Theorem 
guarantees that the nine-point circle is
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Figure 13.  Shrinking circles and collapsing solutions. 
 
 
simultaneously tangent to the three 
excircles, providing a fourth solution circle 
[17,p. 46 ].  This solution is analogous to the 
inner Soddy circle solution to the kissing 
coins problem in that the three excircles are 
externally tangent to the nine-point circle.  A 
fifth solution circle lies so that the excircles 
are internally tangent, and the remaining 
three solution circles each have one excircle 
internally tangent and the other two excircles 
externally tangent. 

With regard to further study, the 
interested reader may wish to pursue the 
following topics. 

In Apollonius’ problem the three 
given objects are taken from among circles, 
points and lines.  The latter two objects 
should be thought of as limiting cases when 
the radius of a circle approaches zero or 
infinity.  Gergonne’s solution only applies to 
the case when all three objects are circles 
since circle inversion is used. Rather than 
use three circles, one may wish to examine 
all combinations of points, lines and circles, 
decide for which configurations all eight 
solution circles appear, and use geometry 
software to construct solution circles.  For 
example, no solution circles exist in the case 
of three parallel lines, and two solution 
circles exist for two parallel lines cut by a 
transversal.  Are there any connections to 
Gergonne’s solution? 

It is also worth exploring the special 
case of three circles centered at points that 
are the vertices of an isosceles or an 
equilateral triangle.  If at least two of the 
three sides of the reference triangle are 
congruent, the Euler line and the Soddy line 
coincide, so the EGST is degenerate. In the 
context of Eppstein’s solution, this 
corresponds to kissing coins with equal radii. 

Given three noncollinear points, 
consider all sets of three non-overlapping 
circles centered at these points. What are 
the possible locations for the centers of the 
tangency circles for which the three circles 
are either all internally tangent or all 
externally tangent?  The kissing coins 
problem is the special case when the three 
circles centered at the triangle vertices are 
tangent to each other.  In this instance, 
perhaps the inner and outer Soddy centers 
that solve this problem are known triangle 
centers. 

Finally, as noted in section 2, the EGST 
is always a right triangle.  A benefit of 
Cinderella™ is the ability to dynamically 
move elements while preserving the incident 
relations among points, lines and circles.  
With this capability the vertices of the 
original triangle can be moved freely, and 
we have observed that the EGST always 
appears to be long and skinny (see Figure 
6).  The maximum value of the angle 
between the Euler line and Gergonne line is 
90 degrees, but what is the smallest 
possible value of this angle? 
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APPENDIX: Glossary of Terms
 

 

Points and Centers 
Centroid The intersection of the medians 
Circumcenter The intersection of the perpendicular bisectors 
Incenter Intersection of the angle bisectors 
Orthocenter Intersection of the altitudes 
Gergonne point Perspector of a reference triangle and its contact triangle 
Evans point Intersection of the Euler and Soddy lines 
Fletcher point Intersection of the Soddy and Gergonne lines 
De Longchamps Intersection of the Euler and Gergonne lines 

 

Lines 
Euler line Defined by the circumcenter and orthocenter; also contains the 

centroid and nine-point center 
Gergonne line Line of perspective for a reference triangle and its contact triangle 
Soddy line Defined by the incenter and Gergonne point; also contains the 

Eppstein and Soddy points 
 

Circles 
Circumcircle Unique circle containing a triangle’s vertices 
Incircle Unique circle internally tangent to all three triangle sides 
Nine-point circle Contains side midpoints, feet of altitudes, and midpoints of 

segments joining the orthocenter to the vertices 
Inner Soddy circle Circle that is internally tangent to the kissing coins 
Outer Soddy circle Circle that is externally tangent to the kissing coins 

 

Triangles 
Contact triangle Defined by the points of tangency of reference triangle and its 

incircle; vertices are where the kissing coins touch 
Euler-Gergonne-Soddy 
triangle 

Triangle formed by the Euler, Gergonne and Soddy lines 
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