
_____________________________________________________________________
CREDIT Research Paper

No.  01/03
_____________________________________________________________________

Inequality and Economic Growth: The
Empirical Relationship Reconsidered in

the Light of Comparable Data

by

Stephen Knowles

_____________________________________________________________________

Centre for Research in Economic Development and International Trade,
University of Nottingham



The Centre for Research in Economic Development and International Trade is based
in the School of Economics at the University of Nottingham. It aims to promote
research in all aspects of economic development and international trade on both a
long term and a short term basis. To this end, CREDIT organises seminar series on
Development Economics, acts as a point for collaborative research with other UK and
overseas institutions and publishes research papers on topics central to its interests. A
list of CREDIT Research Papers is given on the final page of this publication.

Authors who wish to submit a paper for publication should send their manuscript to
the Editor of the CREDIT Research Papers, Professor M F Bleaney, at:

Centre for Research in Economic Development and International Trade,
School of Economics,
University of Nottingham,
University Park,
Nottingham, NG7 2RD,
UNITED KINGDOM

Telephone (0115) 951 5620
Fax: (0115) 951 4159

CREDIT Research Papers are distributed free of charge to members of the Centre.
Enquiries concerning copies of individual Research Papers or CREDIT membership
should be addressed to the CREDIT Secretary at the above address.



_____________________________________________________________________
CREDIT Research Paper

No.  01/03

Inequality and Economic Growth: The
Empirical Relationship Reconsidered in

the Light of Comparable Data

by

Stephen Knowles

_____________________________________________________________________

Centre for Research in Economic Development and International Trade,
University of Nottingham



The Author
Stephen Knowles is Senior Lecturer, University of Otago and CREDIT External
Research Fellow.

Acknowledgements
I am grateful to Quentin Grafton, Oliver Morrissey, Christophe Muller and Dorian
Owen for their helpful comments and suggestions on an earlier draft of this paper.
This research was undertaken while I was a Visiting Research Fellow in the School of
Economics at the University of Nottingham. I am grateful for the hospitality received,
and research facilities provided. Financial support from the Marsden Fund,
administered by the Royal Society of New Zealand is gratefully acknowledged.

____________________________________________________________
 March 2001



Inequality and Economic Growth: The Empirical Relationship Reconsidered in
the Light of Comparable Data

By
Stephen Knowles

Abstract
All of the recent empirical work on the relationship between income inequality and
economic growth has used inequality data that are not consistently measured. This
paper argues that this is inappropriate and shows that the significant negative
correlation often found between income inequality and growth across countries is not
robust when income inequality is measured in a consistent manner. However,
evidence is found of a significant negative correlation between consistently measured
inequality of expenditure data and economic growth for a sample of developing
countries.

Outline
1. Introduction
2. Why would be expect inequality to affect economic growth?
3. Problems with the existing work on income inequality and economic

performance
4. Estimating the effect of income inequality on economic growth using

consistently measured data
5. Conclusions
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1. INTRODUCTION

Whether income inequality reduces economic growth is an issue that has been explored

in many empirical studies over the last decade or so. Many studies find that there is a

negative correlation between income inequality and economic growth. This paper will

argue that these studies need to be interpreted with a great deal of caution, as they

measure inequality in an inconsistent manner.

Inequality can be measured using data on gross income, net income or expenditure. In

addition, the unit of measurement can be the individual or the household. A priori, we

would expect to obtain quite different measures of inequality, depending on which of

these classifications are used. It follows that in empirical work it is important to use

consistently measured data that are not, for example, based on gross income for some

countries and based on expenditure for others. Unfortunately, due to a lack of

comparable data, this is exactly what previous researchers, through no fault of their own,

have been forced to do. Some researchers (eg Barro, 2000) suggest that mixing different

classifications of data together does not affect the results. The results obtained in this

paper, using a recently compiled data set with more observations, suggest that it does.

Other studies (eg Perotti, 1996; Deininger and Squire, 1998) transform the data in order

to try and make them more comparable. It will also be shown that different results are

obtained if the data are measured consistently, rather than performing such

transformations.

Section 2 will review the theoretical arguments as to why inequality is likely to affect

economic growth. The discussion will bring out the fact that for one of these arguments

it is the distribution of gross income that is relevant, but that for the other arguments it is

the distribution of net income or expenditure that matters. This is something that should

be kept in mind when conducting empirical work, but that has tended to be ignored in the

past. The fact that most of the arguments are more likely to apply in the long run, rather

than the short run, will also be discussed. Section 3 will analyse in more detail the

problems with the way income inequality data have been used in previous empirical

work. In Section 4 a standard cross-country growth regression, including income

inequality as an explanatory variable, will be estimated in order to assess the sensitivity

of the results to how income inequality is measured. Section 5 will conclude.
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2. WHY WOULD WE EXPECT INEQUALITY TO AFFECT ECONOMIC

      GROWTH?

Traditionally there are two main arguments as to why income redistribution, to achieve a

more equal distribution of income, will reduce the rate of economic growth. The first is

that redistribution is typically accompanied by a progressive income tax structure, which

has an adverse effect on incentives. This in turn is likely to reduce investment and lead to

a reduced work effort. The second argument is that as those on high incomes tend to

have a higher savings rate than those on low incomes, redistribution will reduce the rate

of savings, and hence investment and growth.

There are four main arguments in the literature as to why income inequality will be

harmful for economic growth. These arguments have been clearly summarised by Perotti

(1996). The first argument is that an unequal distribution of income will lead to pressure

for redistribution through distortionary taxes, hence reducing growth. Perotti is not

explicit about this, but it is presumably an unequal pre-tax (or gross) distribution of

income that is potentially bad for growth. Observing an equal after-tax distribution of

income may simply mean that redistribution via progressive taxation, as discussed in the

previous paragraph, has already taken place. If this argument is to be tested empirically

then data on pre-tax income should be used, however Perotti uses data on the distribution

of both the pre-tax and the post-tax distribution of income.1 In fact, if data on the post-

tax distribution of income are used a positive relationship between inequality and growth

would be expected, assuming that countries with a more equal distribution of after-tax

income have higher rates of redistribution and also assuming that redistribution does

affect incentives.2 Another point not discussed by Perotti is that the hypothesised

negative relationship between inequality and growth is more likely to hold in the long

run, rather than the short run. This is because there is likely to be a considerable time lag

between an increase in inequality, mounting pressure for more redistribution, and for

redistribution to then take place.

                                                
1 Perotti is not explicit about whether the data he uses are for gross income, net income or expenditure. Two thirds

of the data in the Deininger and Squire (1996) data set for the 1950s and 1960s (which includes some of the
data used by Perotti) are for gross income. The remainder are for net income or expenditure.

2 In effect, if data on the distribution of after-tax (or net) income are used, this hypothesis collapses to the
argument, discussed in the previous paragraph, that redistribution distorts incentives and hence growth.
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The second argument is that inequality may lead to sociopolitical instability, which will

in turn reduce investment and hence growth. Again, this is more likely to occur in the

long run, with it taking some time for inequality to lead to political instability (although

the effect of instability on investment and hence growth may well be more immediate).

The third argument is that in the presence of imperfect capital markets inequality will

reduce investment in human capital, which will in turn reduce growth. This is also likely

to be a long-run, rather than short-run, phenomena. The fourth and final argument is that

as inequality increases, fertility is likely to rise and human capital investment fall, both

reducing growth. Again, there may be significant time lags involved. Note that with these

last three arguments it is not so much the distribution of gross income that is important,

but the distribution of net income or expenditure that is likely to be relevant. This should

be taken into account when testing these hypotheses empirically.

It is important to note that the arguments as to why redistribution of income (leading to a

more equal distribution of income) may be harmful for growth may apply in the short

run, as well as the long run, as it may not take long for redistribution to affect both

incentives and savings behaviour. By contrast, the arguments as to why inequality may

be harmful for growth are likely to apply only in the long run. This is consistent with the

fact that the three empirical studies that focus on the short-run relationship (Li and Zou,

1998; Forbes, 2000; Deininger and Olinto, 2000) find a positive partial correlation

between inequality and growth, whereas studies which use data over a longer time span

tend to find a negative partial correlation between inequality and growth.3 Alesina and

Rodrik (1994), Birdsall, Ross and Sabot (1995), Sylwester (2000) and Easterly (2000) all

obtain a negative partial correlation between income inequality and economic growth.

Barro (2000) finds evidence of a negative relationship for poor countries, but a positive

relationship for rich countries.4 In contrast, Perotti finds evidence of a negative

correlation between inequality and growth, with some suggestion that the correlation

                                                
3 Forbes acknowledges that she is looking at the short-run relationship, whereas most other studies are concerned

with the long run. Her reason for arguing this is that she uses panel data for periods of only five years,
whereas most of the other studies use cross-country data looking at growth over a period of about twenty-five
years. Like Forbes, Deininger and Olinto (2000) and Li and Zou (1998) use panel data for five year periods,
whereas Barro (2000) uses panel data for ten-year periods.

4 It is also of interest to note that the other three panel data studies include a large number of observations for
high-income countries. Therefore, the positive coefficient on income inequality in these studies could, in part,
be due to the sample of countries.
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may be insignificant for poor countries. Persson and Tabellini (1994) find a negative

correlation for democracies only, whereas Clarke (1995) obtains a negative correlation

for both democracies and non-democracies. Deininger and Squire (1998) and Castelló

and Doménech (2001) obtain a negative coefficient, but this becomes insignificant once

continental dummies are included in the regression equation.5 Keefer and Knack (2000)

find evidence of a negative correlation between income inequality and growth, but this

correlation becomes insignificant once a measure of property rights is included as a

control variable.

In summary, most of the existing studies focus on growth over a long time span and,

therefore, are estimating the long-run effect of inequality on growth. The arguments

suggesting that inequality is harmful for growth are more likely to apply in the long run

than are the arguments suggesting redistribution is harmful for growth. It is also

important to note that three out of four of the theoretical arguments predicting a negative

correlation (and both of the arguments predicting a positive correlation) refer to the

distribution of income after redistribution has taken place. Data on the distribution of net

income or the distribution of expenditure are therefore the most appropriate to use in

empirical work. The next section will discuss in detail the data problems that pertain to

the existing empirical literature.

3. PROBLEMS WITH THE EXISTING EMPIRICAL WORK ON INCOME

      INEQUALITY AND ECONOMIC PERFORMANCE

The major argument of this paper is that all of the existing empirical work on the effect

of income inequality on economic growth suffers from potentially serious data problems.

The first problem is that of data quality. It is often argued that studies predating the

release of the Deininger and Squire (1996) data set include data of dubious quality. Such

studies include Persson and Tabellini (1994), Alesina and Rodrik (1994), Clarke (1995),

Birdsall, Ross and Sabot (1995) and Perotti (1996).

                                                
5 Perotti finds that the inclusion of continental dummy variables reduces both the coefficient and the t-statistic on

the distribution of income. However, the distribution of income remains significant at the ten percent level.
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Deininger and Squire (1996) compile a data set based on existing surveys of the

distribution of income and expenditure. To be included in Deininger and Squire’s “high

quality” data set, the data have to meet three main criteria. The data must be based on

household surveys, rather than estimates derived from national accounts statistics; the

population covered must be representative of the whole population rather than covering,

for example, the urban population or wage earners only; and the measure of income or

expenditure must include income from self employment, nonwage earnings, and

nonmonetary income. Deininger and Squire consider 2,600 observations, but only 682

qualify to be included in their “high quality” data set. Many of the observations that do

not satisfy their “high quality” criteria have been included in the studies mentioned

above. Persson and Tabellini, for example, use income distribution data compiled by

Paukert (1973). However, Paukert acknowledges that many of the data are “of rather

doubtful value” (Paukert, 1973, p.125). Deininger and Squire (1998) note that only 18 of

the 55 observations in the Paukert data set meet their minimum criteria. Studies which

use the more reliable “high quality” Deininger and Squire data in growth regressions

include Deininger and Squire (1998), Li and Zou (1998), Rodrik (1999), Forbes (2000),

Barro (2000), Keefer and Knack (2000), Banerjee and Duflo (2000), Deininger and

Olinto (2000) and Castelló and Doménech (2001).6

The more recent empirical work which uses the Deininger and Squire data set is, in one

respect, an improvement on what came before. However, another potentially serious data

problem is that virtually all of the previous empirical work examining the effect of the

distribution of income/expenditure on economic growth (eg Alesina and Rodrik, 1994;

Clarke, 1995; Birdsall, Ross and Sabot, 1995; Perotti, 1996; Deininger and Squire, 1998;

Forbes, 2000; Barro, 2000; Banerjee and Duflo, 2000; Keefer and Knack, 2000; Easterly,

2000; Deininger and Olinto, 2000; Sylwester, 2000; Castelló and Doménech, 2001) has

failed to measure the distribution of income/expenditure in a consistent manner.

Gini coefficients can be calculated either for the distribution of income before tax, the

distribution of income after tax, or the distribution of expenditure. In addition, the unit of

measurement can be the individual or the household. It is important when making cross-

                                                
6 Easterly (2000) and Sylwester (2000) make us of all the data included in the Deininger and Squire
data set, including those omitted from the “high quality” category.
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country comparisons that like is being compared with like, as a priori we would expect

the distribution of income before tax to be less equal that the distribution of income after

tax, as long as the tax structure in a given country is progressive. We would also expect

the distribution of expenditure to be more equal than the distribution of income

(measured either before or after tax) if individuals or households smooth their

expenditure over their life times. In addition, given that in developing countries most

households contain a large number of children with zero or low incomes, we would

expect the distribution of income to be more equal for households, than for individuals.

Making cross-country comparisons of the distribution of income/expenditure which mix

these different measures together is not likely to provide much useful information.

However, this is precisely what is done in the existing literature. This is not a criticism of

those conducting this research, many of who are aware of the problem, as at the time

insufficient comparable data existed to measure the distribution of income in a

comparable manner. Some researchers have attempted to get around this problem by

transforming the data to make them more comparable. These transformations are an

improvement on doing nothing, but it will be argued that this is less satisfactory than

using comparably measured data. Studies which do not transform the data include

Alesina and Rodrik (1994), Clarke (1995), Birdsall, Ross and Sabot (1995), Rodrik

(1999), Easterly (2000), Keefer and Knack (2000), Sylwester (2000) and Castelló and

Doménech (2001).

The first study to transform the data is Perotti (1996), who measures the distribution of

income as the income share of the middle class (MID), where the middle class is defined

as the third and fourth quintiles of the income distribution. Perotti is aware of the fact

that individual and household data are not comparable, and transforms the data in the

following manner. He calculates the average MID based on personal income data

(avMIDIND) and the average MID based on household data (avMIDHSLD) “where the

average is taken over all years and countries for which data on MID organised by

households and individuals are available.” (p.156) For countries that only have data on

the distribution of individual income he multiplies MIDIND for country i by (avMIDHSLD)/
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(avMIDIND).7, 8 This transformation is a useful attempt to make the data more

comparable, but it implicitly assumes that the relationship between individual and

household measures of the distribution of income is relatively stable across countries and

time. Even if the transformation is accepted as valid, the problem remains that data on

the distribution of gross income, net income and expenditure are being treated as

comparable.

In the Deininger and Squire data set the average difference between expenditure based

Ginis and gross income Ginis is 6.6 percentage points, for countries that have data on

both. This has led Deininger and Squire (1998), Li and Zou (1998), Banerjee and Duflo

(2000), Keefer and Knack (2000) and Forbes (2000) to add 6.6 to expenditure based Gini

coefficients to transform them into gross income based Ginis. This approach may be

valid if there is relatively little deviation around the mean difference of 6.6, but

unfortunately this is not the case. Deininger and Squire (1996) report that the range of

values is between –3 (for Bangladesh in 1973) and 20 (for Tanzania in 1969). They also

report that the gap between expenditure and income based Ginis is narrowing over time.

Whereas it has become traditional to transform expenditure data into gross income data,

it has become equally as traditional not to worry about the distinction between pre-tax

and post-tax data and household versus individual data.9 This is due to the fact that in

the Deininger and Squire data set, for countries with data on both household and

individual income, the average difference in Gini coefficients is only 1.7 percentage

points. For pre-tax and post-tax data the difference is 2.7 percentage points. Again, these

averages are likely to mask significant deviations around the means. For example,

Deininger and Squire (1996) note that for Sweden in 1981 the Gini coefficient is 5

                                                
7 Perotti uses the same methodology to convert data based on “income recipients” (those with an income) and

“economically active persons” (those of working age) to data based on households. Note that data based on
either of these two categories are not included in the Deininger and Squire “high quality” data set as they are
unrepresentative of the whole population.

8 Perotti (1996, p.157) notes that his empirical results are not altered in any way if non-adjusted data are used.

9 The two exceptions are Perotti (1996) and Lundberg and Squire (1999). Perotti transforms individual to
household data in the manner described above. However, Perotti does not transform pre-tax into post-tax
data. Lundberg and Squire convert all data to individual expenditure data, following the methodology
described below.
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percentage points higher when measured pre-tax, rather than post-tax. This difference is

hardly insignificant.

Barro (2000), who uses data from Deininger and Squire (1996), supplemented by

additional observations that he argues are of high quality, combines data on net income,

gross income and expenditure, and also combines data based on households and

individuals. He notes that he did try transforming the data to take account of whether the

data are for net or gross income or expenditure and whether they refer to individuals or

households and this “turns out to have little consequence for the estimated effects of

inequality on growth and investment.”(p.17). However, Barro gives no details of how the

data were transformed, nor does he elaborate further on how sensitive the results were.

The fact that transforming the data has “little consequence” for the results could simply

mean that the transformations are imperfect. Deininger and Squire (1998) note that their

results are not significantly different if 6.6 is added to expenditure Ginis to transform

them to gross income Ginis or not.

One paper which attempts to deal with all of the possible measurement inconsistencies

outlined above, in a slightly different context, is Lundberg and Squire (1999). This paper

simultaneously estimates the determinants of income inequality and economic growth,

but without including income inequality in the growth regression. Strictly speaking,

therefore, this is not a study on the effect of income inequality on growth. Lundberg and

Squire transform the various different categories of inequality data in an attempt to make

them all comparable to individual expenditure data. Their methodology involves running

a fixed effects regression with the measured Gini coefficient as the dependent variable

and with dummy variables for gross income, net income, other income and household-

level data as the explanatory variables (the omitted categories are individual-level and

expenditure-based data). The coefficients obtained for these dummy variables, all of

which are significant, are then used to convert the data into individual expenditure data.

Their results suggest that to make this conversion 2.096 should be subtracted from Ginis

based on gross income, 3.127 subtracted from Ginis based on net income, 5.762

subtracted from Ginis based on other income and 3.171 added to Ginis based on

household data. Like the Perotti and Deininger and Squire transformations, this

methodology assumes that the relationship between the different categories of
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income/expenditure is constant across countries and across time, which is a heroic

assumption to make. 10

Atkinson and Brandolini (1999), in a paper which critiques the Deininger and Squire

(1996) data set, particularly with respect to the OECD countries, caution against such

adjustments, arguing “[i]n our view, the solution to the heterogeneity of the available

statistics is unlikely to be the simple additional or multiplicative adjustment. In order to

assess differences in income distribution across countries, what is needed is a data-set

where the observations are as fully consistent as possible.” Deininger and Squire (1996,

p.581) appear to agree, when they argue that “[m]ethodologically, the most justifiable

way to ensure cross-country comparability of inequality measures is to use only measures

that are defined consistently.” The only reason they do not do this is because they would

end up with a very small data set. Deininger and Squire (1996, p.582) also argue that

“[i]t would be prudent to examine whether [empirical results using income distribution

data] hold for (a) the raw data, (b) data that have been adjusted for differences between

expenditure and income-based coefficients, and (c) data consistently based on a common

definition.” The World Income Inequality Database (WIID), compiled by the United

Nations University/World Institute for Development Economics Research (1999),

contains sufficient data that are measured consistently that it is now possible to proceed

with (c) using cross-country data. This database extends the Deininger and Squire data

set and is more comprehensive, including approximately twice as many data points. By

only making use of data labelled as being “reliable” and which apply to the whole

population it is possible to obtain a subset of this data which meet the same “high

quality” criteria as those adopted by Deininger and Squire.

In summary, due to data limitations, the vast majority of the existing empirical literature

on the effect of income inequality on economic growth does not measure income

inequality in a consistent manner. Persson and Tabellini (1994) is the only study that

uses consistently measured data, but much of the data are of questionable accuracy.

Some attempts have been made to transform the data to make them more comparable,

                                                
10 Note that these results lead to the counter intuitive conclusion that gross income is more equally distributed

than net income. As the authors point out, this either means that taxes and transfers are regressive, or that
countries that would have a more equal distribution of income, if it were measured consistently, tend to have
Gini coefficients based on gross income. The former seems unlikely, while the latter calls into question the
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but these transformations are less satisfactory than using consistently measured data.

Barro (2000) and Deininger and Squire (1998) both argue that transforming the data

makes little difference to the results, but this may simply call into question the validity of

the transformations. This paper will test whether results that hold for the raw data are

robust when the data are transformed in the manner of Deininger and Squire and Perotti,

and, more importantly, whether these results are robust when the data are measured

consistently.11

4. ESTIMATING THE EFFECT OF INCOME INEQUALITY ON ECONOMIC

     GROWTH USING CONSISTENTLY MEASURED DATA

4.1   The empirical model and data

The purpose of this paper is to test whether the results found in the existing empirical

literature are robust to measuring the distribution of income in a consistent manner. For

the sake of comparability, it therefore seems desirable to estimate an equation as close as

possible to that employed in the existing literature. Many of the existing studies estimate

a Barro-style growth regression such as that given in equation (1)

(1) Growthi = Constant + β1GDPi + β2MSEi + β3FSEi + β4PPPIi + β5Ineqi + ei

where Growth is the growth rate of GDP per capita, GDP is income per capita in the base

year, MSE is average years of male secondary schooling in the base year, FSE is average

years of female schooling in the base year, PPPI is the PPP value of the investment

deflator relative to that in the United States in the base year, Ineq is income inequality,

measured as close to the base year as possible, and ei is the country-specific error term.

PPPI is included as a proxy for price distortions within the economy. Perotti (1996)

estimates equation (1) and Forbes (2000) estimates a panel data variant of equation (1),

                                                                                                                                          
validity of the transformation.

11 The focus is on assessing the usefulness of the Perotti and Deininger and Squire transformations, rather than
the Lundberg and Squire transformation, as data based on the latter have yet to be included in a growth
regression. The Deininger and Squire transformation, on the other  hand, has been used extensively in the
literature, with the Perotti transformation being used in one influential study.
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but with the initial income term logged.12  An equation reasonably similar to (1) is

estimated by Barro (2000), Deininger and Squire (1998), Clarke (1995), Alesina and

Rodrik (1994), Birdsall, Ross and Sabot (1995), Li and Zou (1998), Deininger and

Olinto (2000), Keefer and Knack (2000) and Castelló and Doménech (2001). As well as

including income inequality as an explanatory variable, Deininger and Squire (1998) and

Deininger and Olinto (2000) also include the distribution of land as an explanatory

variable and Castelló and Doménech include educational inequality. These proxies for

the distribution of wealth are not subject to the data problems for the distribution of

income discussed in this paper. Forbes and Deininger and Olinto use five-yearly panel

data and a generalised method of moments (GMM) estimator, whereas Li and Zou use

five-yearly panel data and both fixed and random effects estimators. All the other studies

use cross-country data over a reasonably long time span, except for Barro who uses ten-

yearly panel data. Cross-country data will be used in this paper for two reasons. The first

is for comparability with the existing literature, the majority of which uses cross-country

data. The second is the more practical reason that sufficient comparable data are not

available in the WIID data set to conduct meaningful panel-data analysis.

Data on output per capita in 1960 and 1990 are taken from the Penn World Tables

version 5.6. The variable used is real output per capita, calculated using the chain index.

Data on PPPI in 1960 are from the Barro and Lee (1994) data set. Data on male and

female average years of secondary schooling for the population aged 15 and over are

from the Barro and Lee (2000) data set. Inequality is proxied by the Gini coefficient,

with data being taken from the WIID data set. Only observations labelled as being of

“reliable” quality and applying to the whole population are used. The Gini data are for

the period 1960 to 1970, with the data being taken for the closest possible year to 1960.13

The Gini coefficient is chosen as the measure of inequality, because the data are more

readily available than for other possible measures and for comparability with the existing

                                                
12 The vast majority of empirical studies which include base-period income per capita either take the natural

logarithm of this variable, or include base-period income per capita squared. Perotti is somewhat of an outlier
in measuring base-period income per capita in levels.

13 If there were two or more observations per country for the same year then preference was given to gross

individual income data, then gross household income data, then net individual income data, then net

household income data, then individual expenditure data, then household expenditure data. If there were still

two or more observations for the same year, then an average was taken.
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literature.14 However, as noted by Lundberg and Squire (1999), it should be kept in mind

that the Gini coefficient is a summary statistic that does not convey any information

about the shape of the Lorenz curve. For example, it is possible for the relative incomes

of the poor and rich to change, without changing the aggregate Gini coefficient.

4.2  The implications of using consistently measured gross income data

The first column in Table One gives the results obtained when estimating equation (1)

using the WIID data for all six possible income/expenditure categories (as listed in

footnote 13), without performing any transformations. Combining the different

categories of income/expenditure and not transforming the data is the same approach as

that of Alesina and Rodrik (1994), Clarke (1995), Birdsall, Ross and Sabot (1995),

Rodrik (1999), Easterly (2000), Keefer and Knack (2000), Barro (2000), Sylwester

(2000) and Castelló and Doménech (2001). Initial testing suggested some problems with

heteroscedastiticy, therefore for all regressions reported in this paper the t-statistics are

calculated using White’s (1980) heteroscedasticity-consistent standard errors. In column

(i) male schooling is significant and positive at the ten percent level and the Gini

coefficient is significant and negative at the five percent level. This significant negative

coefficient on income inequality is consistent with that typically found in the literature. It

is of interest to see how sensitive the results are to performing the Perotti transformation

to convert individual income distribution data into household data. The results obtained

when this transformation is performed are reported in column (ii). The correction factor

of 0.97 was calculated by making use of all available distribution data over the period

1960 to 1970. The results in column (ii) are similar to those in column (i), although note

that the Gini coefficient has a slightly lower t-statistic. In column (iii) the Deininger and

Squire transformation, of adding 6.6 to all expenditure based Ginis, is applied, but the

Perotti transformation is not. The only significant variable is the Gini coefficient. The

coefficients and t-statistics on the income inequality variable do not appear to be

                                                
14 All the existing studies discussed in this paper measure income inequality using the Gini coefficient, except for

Perotti, who measures inequality as the income share of the third and fourth quintiles.
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particularly sensitive to applying either the Perotti or Deininger and Squire

transformations. The coefficient on income inequality is negative, with a similar point

estimate and t-statistic, irrespective of whether the transformations are applied or not.

Table One: Income Inequality and Economic Growth

Dependent Variable: Growth in income per capita: 1960-90

(i) (ii) (iii) (iv) (v)

Constant 1.678** 1.631** 1.835** 25.873 -0.018

(4.01) (3.90) (3.98) (0.56) (-1.37)

GDP -0.00003 -0.00003 -0.00004 0.00001 -0.002†

(-0.95) (-0.89) (-1.08) (0.34) (-1.77)

MSE 0.406† 0.433† 0.364 0.395 0.031**

(1.78) (1.91) (1.59) (1.29) (4.05)

FSE -0.342 -0.375 -0.309 -0.316 -0.025**

(-1.39) (-1.53) (-1.24) (-0.90) (-3.06)

PPPI -0.384 -0.400 -0.368 -0.639* -0.002

(-1.49) (-1.53) (-1.38) (-2.49) (-0.30)

Ineq -0.017* -0.016† -0.020* -0.013 0.118**

(-2.08) (-1.94) (-2.19) (-0.54) (2.84)

N 40 40 40 27 67

R2 0.29 0.28 0.31 0.24 0.30

LM 0.911 0.813 1.346 0.292

RESET(2) 0.060 0.008 0.540 2.843

RESET(3) 2.116 1.359 2.125 5.805*

RESET(4) 1.630 1.238 1.440 4.087*

All variables are as defined in the text and N is the sample size. Column (i) gives the results when data for
all six income/expenditure classifications are used without any transformations being performed. Column
(ii) gives the results when the Perotti transformation is applied to the data and column (iii) gives the results
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when the Deininger and Squire transformation is applied to the data. Column (iv) gives the results when
data on the distribution of gross individual income only are used. Column (v) reproduces the results from
Perotti (1996). For column (v) standard t-statistics are given in parentheses. For all other columns in the
table, asymptotic t-statistics based on heteroscedasticity-consistent standard errors are reported.  **, * and †

indicate significance at the 1%, 5% and 10% level respectively, on the basis of two tailed tests. LM is the
Lagrange multiplier test for normality of the residuals and is chi-squared distributed, with the null
hypothesis of normally distributed residuals. The RESET tests for model mis-specification are F-
distributed, with the null hypothesis of correct model specification.

The key question posed by this paper is what happens to the negative partial correlation

between income inequality and economic growth if the inequality data are measured on a

consistent basis. For the period 1960 – 1970, the category with the largest number of

observations is gross individual income. Ideally, data on net income or expenditure

would be used, as most of the arguments as to why income inequality will affect

economic growth refer to the distribution of income after redistribution has taken place.

Unfortunately, using such data would give a much smaller data sample for the 1960s.

However, it is possible to obtain data for a reasonable number of countries for individual

expenditure for the 1980s and 1990s, and this will be explored later in the paper. For the

moment base-period data will be used to maintain consistency with the existing

literature.

Column (iv) gives the results when only gross individual income distribution data are

used. This reduces the sample to 27 countries. Note that the Gini coefficient is now

insignificant (with a t-statistic of only –0.54). The only significant variable is PPPI, a

variable that was not significant in any of the previous regressions. It should be noted

that two out of the three RESET tests suggest there may be a problem with model mis-

specification. The fact that the Gini coefficient is insignificant suggests that once the

distribution of income is measured on a consistent basis, using gross income data, there

is no significant partial correlation between the distribution of income and economic

growth for the sample of countries included in column (iv). Deininger and Squire (1996)

noted that transforming the data was not as ideal as using consistently measured data.

The results reported in Table One confirm that using only consistently measured data

gives different results to transforming the data. Another possibility, explored more fully

below, is that the empirical results are highly sensitive to the sample of countries

included in the regression equation.
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For the sake of comparison, the results obtained by Perotti (1996) are reported in column

(v)15. The relevant comparison is with column (ii), where the Perotti transformation is

applied. For Perotti’s results, base-period income per capita has the expected negative

sign and is significant at the ten percent level. Male and female schooling are both

significant at the one percent level, with male schooling being positive and female

schooling negative. The negative coefficient on female schooling is counter to

expectations, but is consistent with Barro and Lee (1994) and subsequent work by Robert

Barro and his colleagues (for example, Barro and Sala-i-Martin, 1995; Barro, 1996).16

PPPI is insignificantly different from zero. Income equality, as measured by the income

share of the third and fourth quintiles, is positively correlated with growth.

There are many possible reasons for the difference between the results in column (ii) and

Perotti’s. The first is that Perrotti has data for many more countries, which is most likely

due to the fact that he makes use of some data not considered of high enough quality to

be labelled as “high quality” in the Deininger and Squire (1996) data set or as “reliable”

in the WIID data set. Another possibility is that Perotti uses income inequality data from

outside the period 1960 to 1970. Perotti takes data from as close as possible to 1960, but

does not discuss the time span of the data. Note also that Perotti measures income

inequality using data on the income share of the third and fourth quintiles, whereas this

paper uses the Gini coefficient. However, Forbes (2000), when comparing her results to

Perotti’s, finds that the results are not highly sensitive to whether inequality is measured

as the share of the third and fourth quintile or as the Gini coefficient. Another difference

between the current work and Perotti’s is that different vintages of the Barro and Lee

education data are used. Perotti uses Barro and Lee’s (1993) data and focuses on average

years of schooling of those aged 25 and over. In this paper Barro and Lee’s (2000) data

set is used and the data are for the average years of schooling of those aged 15 and over.

                                                
15 Note that Perotti’s dependent variable is the average annual growth rate in income per capita. The dependent

variable in this paper is the growth rate over the period 1960-1990 (measured as the log change in income per
capita). Therefore, the coefficients in this paper need to be divided by 30 to make them comparable with
Perotti’s. However, in the discussion which follows, the focus is on the signs of the coefficients and the level
of statistical significance, rather than on the magnitude of the coefficients.

16 Stokey (1994) and Lorgelly and Owen (1999) argue that the negative coefficient on female schooling is not
robust if Hong Kong, Singapore, Taiwan and South Korea are omitted from the data sample. Knowles,
Lorgelly and Owen (2001) show that in the context of an augmented Mankiw, Romer and Weil model, that
female schooling is negatively correlated with growth if measured in the base period, but positively
correlated with growth if it is averaged over the period 1960-90 (which is consistent with their model).
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Note, however, that Knowles, Lorgelly and Owen (2001) find that, in the context of an

augmented Mankiw, Romer and Weil model, the coefficients on the human capital

variables are not sensitive to using different vintages of the Barro and Lee data set.17

Another difference is that this paper focuses on growth over the period 1960-90, whereas

Perotti was looking at the period 1960-85.

Despite the differences between this study and Perotti’s, it is surprising that in columns

(i) – (iv) that few of the control variables are significant, compared to Perotti’s results.

The most likely explanation for this is that Perotti’s data sample is larger. The countries

included in the current work are listed in Appendix Table One. Note that there are only

two African countries (and only one Sub-Saharan African country) included in the

sample. Perotti’s sample, by contrast, includes six Sub-Saharan African countries.

Schooling levels were typically low in Sub-Saharan Africa in 1960, so it could be that

only having a small number of these countries reduces the natural variation in the data,

hence rendering these variables insignificant.

4.3  The role of influential observations and outliers

The fact that PPPI becomes significant in column (iv), when the sample is reduced, also

suggests that the results are sensitive to the sample of countries used. This raises the

possibility that some of the countries included in columns (i)-(iii) are either influential

observations or outliers.18 To identify potentially influential observations, the

RSTUDENT, or studentised residual, statistic was calculated for each of the observations

for the results presented in column (i). Using the cut-off of an absolute value of 2

suggested by Belsley, Kuh and Welsch (1980) only Taiwan is identified as influential

(Bolivia with a studentised residual of –1.96 is close). Countries identified as having

high leverage, on the basis of the hi statistic (using the cut-off value of 2k/n suggested by

Belsley, Kuh and Welsch) are the USA, Bolivia, and Korea. These four countries are also

                                                
17 Knowles, Lorgelly and Owen compare the Barro and Lee (1996) data set (using data for the population aged 15

and over) with the Barro and Lee (1993) data set (which reports data for the population aged 25 and over).

18 Temple (1998) and Lorgelly and Owen (1999) show that the results from cross-country growth regressions can
be sensitive to the presence of outliers and/or influential observations. By contrast, in the context of growth
regressions including inequality, Perotti and Forbes both find their results are robust when potential outliers
are omitted from the data sample.
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identified as influential observations and/or outliers for the results reported in columns

(ii) and (iii). Of these four countries, two (Taiwan and Korea) do not have data on gross

individual income, so are not included in the results reported in column (iv). For the

results reported in column (iv), Bolivia, Japan and Korea are identified as being

influential, on the basis of the RSTUDENT statistic, and the USA and Korea are

identified as being outliers by the hi statistic.

Stokey (1994) argues that Hong Kong, Singapore, Taiwan and South Korea are outliers

in Barro-style regressions including base-period male and female education.  Lorgelly

and Owen (1999) have also shown that Barro and Lee’s (1994) empirical results are not

robust to the omission of these four countries. Of these four countries, only Taiwan and

South Korea are included in the sample, and both are identified as either being influential

observations or as outliers. Stokey also suggests that the education data for Bolivia

contain errors, which may explain why Bolivia is consistently identified as an outlier in

the empirical results presented in this paper.19

If observations are influential and/or outliers due to the fact that they contain data errors,

and if those errors can not be easily corrected, then it is sensible to exclude those

observations from the sample. It makes sense, therefore, to omit Bolivia. However, if

particular observations are influential due to natural variation in the data it is not so clear

that they should be omitted. It is informative, however, to know how sensitive the results

are to the exclusion of a small set of countries, particularly where parameter

heterogeneity is of concern. For this reason, the results with the influential observations

and outliers omitted are reported in Table Two. PPI is now significant in all columns; it

was previously only significant in column (iv) of Table One. However, the main point to

note is that income inequality is no longer significant in any of the regressions, once a

small group of countries is omitted from the data sample. This suggests that the

insignificance of income inequality in column (iv) of Table One could be due to sample

                                                
19 In Barro and Lee’s (1993) data set, which applies to the population aged 25 and over, male schooling for those

aged 25 and over in Bolivia was 1.2 in 1960, 1.9 in 1965 and then 1.5 from 1970 to 1980. Stokey (p.53)
argues that this “behaviour is completely implausible for a stock variable describing the entire adult
population”. In the Barro and Lee (2000) data set, which is used in this study, the average years of male
schooling for those aged 15 and over also behaves strangely. Average years of male schooling in Bolivia is
2.309 years in 1960. It then falls steadily over time and is only 1.162 years in 1990. Bolivia is not the only
country for which male average years of secondary schooling is lower in 1990 than 1960: this also happens
for Mozambique, Rwanda, Afghanistan and Austria.
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selection, rather than whether the data are measured consistently or not. Unfortunately it

is not obvious how to discriminate between these two possible explanations, as

reestimating the regressions in columns (i) – (iii) for the same sample as column (iv)

would also mean using only consistently measured income distribution data. The finding

that the results are sensitive to outliers is in contrast to the work of both Perotti and

Forbes, who both find that their results are robust when potential outliers are omitted.
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Table Two: Influential Observations and Outliers Omitted

Dependent Variable: Growth in income per capita: 1960-90

(i) (ii) (iii) (iv)

Constant 1.283** 1.242** 1.343** 7.230

(3.66) (3.55) (3.52) (0.20)

GDP -0.00003 -0.00003 -0.00003 0.00003

(-0.88) (-0.85) (-0.93) (1.03)

MSE 0.531 0.551† 0.521 0.064

(1.60) (1.69) (1.57) (0.27)

FSE -0.424 -0.445 -0.417 -0.031

(-1.19) (-1.27) (-1.17) (-0.11)

PPPI -0.584* -0.599* -0.576* -0.880**

(-2.07) (-2.11) (-2.03) (-3.14)

Ineq -0.007 -0.006 -0.008 -0.003

(-0.92) (-0.79) (-1.01) (-0.17)

N 36 36 36 23

R2 0.278 0.274 0.280 0.443

LM 1.508 1.460 1.601 0.785

RESET(2) 0.196 0.091 0.517 0.492

RESET(3) 1.416 1.129 0.949 5.241*

RESET(4) 1.029 0.783 0.646 3.455*

See notes to Table One.

To further explore the possibility that sample selection is behind the lack of significance

of the inequality coefficient in column (iv) of Table One, compared to the results in

columns (i) – (iii), it is worth analysing which countries are omitted once the distribution

of income is measured consistently (column (iv)). If these countries have something in

common, other than how inequality is measured, then this may help explain the

insignificance of the inequality variable in column (iv) of Table One. Appendix Table

One provides information on how the distribution of income/expenditure is measured for

each of the 40 countries included in columns (i) – (iv). Note that in the results reported in
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column (iv) an additional three countries have data on gross individual income.20 It is not

obvious that the countries omitted from column (iv) have anything in common that

should markedly change the results. However, it is worth noting that the Latin American

countries, which typically have high Gini coefficients, tend to have individual gross

income distribution data, the very data that we would expect to give the highest Gini

coefficient. This may exaggerate the degree of income inequality in these countries,

relative to countries where inequality is measured differently. This is an interesting point,

as it has become somewhat of a stylised fact that income inequality is high in Latin

America.

4.4  The implications of omitting education

The results obtained so far include both male and female schooling as explanatory

variables. However, one of the standard arguments as to why income inequality will

reduce growth is that high income inequality is associated with low educational

attainment. Income inequality may, therefore, still affect growth indirectly through it’s

effect on education. Including education as a control variable means that this indirect

effect will not be picked up. It is therefore informative to check how sensitive the results

are to the omission of the education variables.21 Table Three gives the results, without

excluding influential observations, when male and female education are omitted from the

data sample. The main point to note is that the t-statistics on the income inequality

variable are higher in columns (i) – (iii) than when the education variables were included

(Table One). However, once income inequality is measured consistently in terms of gross

individual income distribution data, income inequality again becomes insignificant.

Note, however, that the Lagrange multiplier test suggests that the errors may not be

normally distributed, making inference problematic.

                                                
20 These three countries (Pakistan, Korea and Norway) all have data for gross individual income in the 1960s.

However, they also have data for another category of income/expenditure for a year closer to 1960, meaning
this data (and not the gross individual income distribution data) were used for the results reported in Table
One. This was due to the desire to use data for as close as possible to 1960.

21 Deininger and Squire (1998) also omit education from their regression equation for the same reason.
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Table Three: Income Inequality and Economic Growth: Education Variables
Omitted
Dependent Variable: Growth in income per capita: 1960-90

(i) (ii) (iii) (iv)

Constant 1.879** 1.842** 1.989** 23.349**

(4.44) (4.32) (4.42) (0.54)

GDP -0.00003 -0.00003 -0.00004 0.00002

(-1.36) (-1.34) (-1.55) (1.37)

PPPI -0.286 -0.289 -0.259 -0.710**

(-1.38) (-1.36) (-1.16) (-4.79)

Ineq -0.020** -0.019* -0.022** -0.011

(-2.63) (-2.49) (-2.65) (-0.52)

N 43 43 43 29

R2 0.242 0.226 0.248 0.332

LM 0.715 0.722 0.957 6.229**

RESET(2) 0.360 0.439 0.157 0.509

RESET(3) 0.221 0.251 0.114 0.415

RESET(4) 0.460 0.673 0.120 0.685

See notes to Table One.

As previously discussed, the main results reported in Table One were not robust when a

small group of outliers and/or influential observations were omitted from the data

sample. In particular, income inequality became insignificant. It therefore seems

important to check how robust the results in Table Three are to the exclusion of

influential observations and/or outliers. The results obtained when the relevant

countries22 are omitted from the sample are reported in Table Four.

                                                
22 For the results in column (i) Madagascar, Japan and Korea were found to be influential observations on the

basis of the RSTUDENT statistic and Egypt, Madagascar and the USA were found to have high leverage. For
the results in column (ii) Madagascar and Taiwan were found to be influential and Egypt, Madagascar and
the USA were found to have high leverage. For the results in column (iii) Egypt, Madagascar and Taiwan



22

Table Four: Income Inequality and Economic Growth: Education Variables and
Influential Observations and/or Outliers Omitted

Dependent Variable: Growth in income per capita: 1960-90
(i) (ii) (iii) (iv)

Constant 1.357** 1.433** 1.581** 29.164

(3.98) (4.04) (4.10) (0.78)

GDP -0.00001 -0.00001 -0.00002 0.00003

(-0.50) (-0.61) (-0.85) (1.64)

PPPI -0.289 -0.270 -0.242 -0.650*

(-1.10) (-1.03) (-0.91) (-2.49)

Ineq -0.014 -0.012† -0.015* -0.014

(-1.55) (-1.70) (-1.97) (-0.76)

N 38 39 39 25

R2 0.131 0.122 0.146 0.261

LM 1.183 0.615 0.880 0.597

RESET(2) 0.057 0.207 0.030 4.767*

RESET(3) 1.035 1.255 1.429 3.222†

RESET(4) 1.890 1.619 0.927 4.346*

See notes to Table One.

In contrast to the results reported in Table Two, we no longer find that income inequality

is always insignificant once countries suspected of being influential observations and/or

outliers are omitted from the data sample. When the Perotti transformation is applied

(column (ii)), income inequality becomes significant at the ten percent level. When the

Deininger and Squire transformation is applied to the data (column (iii)) income

                                                                                                                                          
were found to be influential and Egypt, Madagascar and the USA were found to have high leverage. For the
results in column (iv) Japan and Korea were influential and Madagascar and the USA were found to have
high leverage.
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inequality is significant at the five percent level (although only just). However, once only

consistently measured data are used (column (iv)), income inequality again becomes

insignificant. It should be noted, however, that the RESET tests suggest that model mis-

specification is a potential problem in column (iv). With this caveat in mind, the results

presented in Table Four confirm that it does make a difference how the distribution of

income is measured, even once influential observations and/or outliers are omitted from

the data sample. This suggests that empirical work which combines different

income/expenditure classifications has to be interpreted with some caution. The problem

is not resolved by transforming the data in either the manner of Perotti or Deininger and

Squire. Performing the Deininger and Squire transformation is meant to transform

expenditure data into gross income data. When this transformation is performed, it

appears that there is a significant correlation between income inequality and growth.

However, when consistently measured gross income data are used, there is no evidence

of a significant correlation at all. This calls the validity of the Deininger and Squire

transformation into question.  A similar argument can be made with regard to the Perotti

transformation.

4.5  The implications of using consistently measured expenditure data

The results obtained to date suggest that the negative relationship between income

inequality and economic growth often found in cross-country studies is not particularly

robust. The correlation has been shown to be insignificant once a small set of influential

observations and/or outliers are omitted from the data sample. Although income

inequality has been shown to be significant once the education variables are omitted

from the regression equation, this correlation becomes insignificant once the distribution

of income is measured in a consistent manner. However, the finding that inequality of

gross income is not significantly correlated with economic growth does not necessarily

mean that inequality of net income or expenditure will not be correlated with growth. Of

the four hypotheses discussed in Section Two, only one relates to the distribution of

gross income: the argument that an unequal distribution of income will lead to pressure

for redistribution to take place.23 To test the other three hypotheses, data on either net

                                                
23 Perotti (1996) tests each hypothesis individually by estimating the effect of inequality on redistribution, socio-

political instability, education and fertility respectively. Perotti finds no evidence that countries with an
unequal distribution of income had higher levels of redistribution, via progressive taxation or transfer
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income or expenditure are required. The WIID data set contains data for very few

countries of “reliable” quality for the distribution of net income. However, it does

contain data for a reasonable number of countries on the distribution of expenditure.

Data on the distribution of personal expenditure are available for a sample of 30

countries, for which data for all other variables are also available, if data are taken from

the period 1980-95. This is not ideal, as some of these data do not even correspond to the

time period that growth is measured over, but ignoring the years 1991-95 significantly

reduces the sample size.24 The results obtained when the expenditure data are used are

given in column (i) of Table Five. Male and female schooling are both significant, with

the same signs obtained by Barro and Lee (1994) and Perotti (1996). Income inequality is

significant at the ten percent level, suggesting that when the distribution of income is

measured consistently and using data which take redistribution into account that higher

levels of inequality are correlated with lower levels of economic growth.

                                                                                                                                          
payments.

24 Deininger and Squire (1998) note that there is little variation in the Gini coefficient over time. For the 44
countries in their data set that have four or more observations over time the average coefficient of variation is
only 0.03.
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Table Five: Inequality and Economic Growth: Results Using Expenditure Data

Dependent Variable: Growth in income per capita: 1960-90

(i) (ii) (iii) (iv)

Constant 1.071* 1.070* 1.383** 1.619

(2.31) (2.32) (3.21) (3.91)

GDP -0.00006 0.00007 -0.0001 -0.0002

(-0.54) (-0.59) (-0.89) (-1.00)

MSE 0.953* 0.960*

(2.14) (2.18)

FSE -1.28* -1.228†

(-2.15) (-1.93)

PPPI -0.124 -0.136 -0.209 -0.292†

(-0.64) (-0.66) (-1.12) (-1.80)

Ineq -0.135† -0.013† -0.153* -0.018**

(-1.78) (-1.73) (-2.09) (-2.58)

N 30 29 35 32

R2 0.159 0.159 0.106 0.174

LM 0.362 0.400 0.797 0.546

RESET(2) 0.176 0.199 0.621 3.194†

RESET(3) 1.192 1.118 0.385 1.706

RESET(4) 0.913 0.850 0.489 1.304

See notes to Table One.

The countries included in the data sample for the results reported in Table Five are listed

in Appendix Table Two. Note that this sample of countries is very different than that

included in Table One. The most obvious feature is that Portugal is the only

industrialised country with data on the distribution of expenditure. There are also many

more African countries and very few Latin American countries. Even though only three

Latin American countries are included in the sample (Bolivia, Guyana and Peru) it is

interesting to note that, when consistently measured expenditure data are used, the Latin

American countries no longer stand out as having particularly high Gini coefficients,
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relative to other geographic regions. Several African countries, for example, have higher

Gini coefficients. The inclusion of more African countries (that typically have low levels

of education in 1960, thus providing more natural variation in the data) may help explain

why both education variables are significant for this sample of countries. It is also worth

noting that the significant negative coefficient on female schooling holds, even though

none of the Asian Newly Industrialised Countires (NICs) are included in the data

sample.25 The fact that only one industrialised country is included in the sample means

that these results should only be interpreted as applying to developing countries. This is

particularly important in the light of Barro’s finding that there is a negative correlation

between inequality and growth for poor countries, but a positive correlation for rich

countries.

No observations are identified as influential for the Table Five results on the basis of

RSTUDENT. On the basis of hi, only Bolivia is identified as being an outlier. The results

obtained when Bolivia is omitted are reported in column (ii) of Table Five. Income

inequality is still significant at the ten percent level, although the point estimate is

somewhat reduced. The results obtained when education is omitted from the sample are

given in column (iii) of Table Five. Income inequality is now significant at the five

percent level. The Seychelles is identified as an influential observation on the basis of

the RSTUDENT statistic and Mauritius and Iran were identified as having high leverage.

The results obtained when these three countries are omitted are reported in column (iv).

PPI becomes significant at the ten percent level and income inequality is now significant

at the one percent level, although the point estimate of the coefficient is substantially

reduced. These results suggest that there is a negative correlation between inequality and

economic growth when consistently measured expenditure data, which take

redistribution of income into account, are used. This result is robust when influential

observations and outliers are omitted from the data sample. The correlation becomes

more significant once education is omitted, in order to allow for the indirect effect of

inequality on growth, via education.

The finding that there is only a significant correlation between inequality and growth

once data that take the redistribution of income into account are utilised is an important

                                                
25 Recall that Lorgelly and Owen (1999) found that female schooling became insignificant once the four NICs
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one. The results obtained using gross income data suggest that there is no evidence to

support the hypothesis that an unequal pre-tax distribution of income leads to pressure

for distortionary transfers from the rich to the poor, which will in turn reduce the rate of

growth. However, the results obtained using expenditure data do support the various

hypotheses, summarised in Section 2, which suggest that inequality, measured after

redistribution has taken place, will have a negative effect on the rate of economic

growth. If these results are taken at face value, it would seem that, in the long run, high

levels of inequality are associated with low levels of economic growth.

5.  CONCLUSIONS

This paper has argued that treating inequality data based on gross income, net income,

expenditure, and also individuals and households, as comparable is a mistake. However,

this is precisely what past researchers have been forced to do due to a lack of comparable

data. It has been shown that such empirical work is sensitive to whether the distribution

data are measured consistently or not, and that transforming the data in the ways

suggested by Perotti and Deininger and Squire does not adequately deal with the

problem. This suggests that the existing empirical work needs to be interpreted with

caution.

When consistently measured data on gross income are included in a cross-country

growth regression there is no evidence of a significant correlation between inequality and

economic growth. However, this should perhaps be of little surprise, as most of the

arguments as to why inequality will affect growth relate to the distribution of income

after redistribution, which can be measured by either net income or expenditure. When

consistently measured expenditure data are used, there is evidence of a significant

negative correlation between inequality and growth. Taking these results at face value,

suggests that there is only a significant correlation between inequality and growth, once

redistribution of income is taken into account.

Another point highlighted by the empirical work in this paper is that the estimates

obtained in cross-country empirical work on economic growth are highly sensitive to the

                                                                                                                                          
were omitted from the data sample.
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sample of countries included. It is therefore important in such work to report how

sensitive the results are to the omission of influential observations and/or outliers.

The empirical relationship between inequality and economic growth has received much

attention over the last decade. Many studies have found evidence of a negative

correlation between these two variables. However, these studies have used data that have

not been measured in a consistent manner. This paper confirms that there is a negative

correlation between inequality and growth across countries, but only when the focus is

on inequality after redistribution has taken place. No evidence is found of a significant

correlation between gross income and economic growth.
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Appendix Table One: Countries Included in Results Reported in Tables One and
Three

Countries included in Table One Gini GI GH NH EI
Senegal 56 *
Tunisia 42.3 *
Costa Rica 50 *
El Salvador 53 *
Honduras 61.88 *
Mexico 53 *
Panama 48 *
USA 34 *
Argentina 42 *
Bolivia 53 *
Brazil 54 *
Chile 44 *
Colombia 62 *
Ecuador 38 *
Peru 61 *
Venezuela 42 *
Bangladesh 36.875 *
India 32.59 *
Indonesia 33.3 *
Iran 41.88 *
Japan 39 *
Korea 34.34 *
Malaysia 48.3 *
Pakistan 36.675 *
Philippines 48 *
Sri Lanka 44 *
Taiwan 32.08 *
Thailand 41.34 *
Denmark 37 *
Finland 46 *
France 50 *
Italy 40 *
Netherlands 42 *
Norway 37.52 *
Spain 31.99 *
Sweden 39 *
Turkey 56 *
UK 38 *
Australia 32 *
Fiji 46 *

GI denotes data for gross individual income, GH denotes data for gross household income, NH denotes data for
net household income and EI denotes data for individual expenditure.
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Appendix Table Two: Countries Included in Table Five

Countries included in
column (i)

Gini Additional countries included
in column (iii)

Gini

Algeria 38.73 Madagascar 43.44
Cameroon 49 Mauritania 42.53
Central African Rep 55 Morocco 39.2
Gambia 39 Nigeria 38.55
Ghana 35.54 Seychelles 47
Guinea-Bissau 56.12
Kenya 54.39
Lesotho 56.02
Malawi 62
Mauritius 38.16
Rwanda 28.9
Senegal 54.12
Tunisia 42.13
Uganda 40.78
Zambia 47.46
Zimbabwe 56.83
Jamaica 40.37
 Bolivia 42.04
Guyana 46.11
Peru 41.59
Bangladesh 28.85
India 31.42
Indonesia 32.71
Iran 42.9
Jordan 38.04
Pakistan 31.15
Philippines 40.86
Sri Lanka 34.45
Thailand 43.81
Portugal 32.53
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