
1-4244-0674-9/06/$20.00 ©2006 IEEE.

Multicriteria Energy Efficient Source Code Compilation for Dependable
Embedded Applications

Naeem Zafar Azeemi†

COMSAT Institute of Information Technology
Plot # 30, Sector H-8, Islamabad

Email: nzafar@nt.tuwien.ac.at

† Currently working with Chritian Doppler Laboratory for Design
Methodology of Signal Processing Algorithms at Inst. Of Comm.
 and Radio Frequency Engg., University of Technology Vienna.

Abstract

The growing trend towards ubiquitous computing at
handheld devices has brought the battery life time issue to
the forefront. Scaling down the integrated circuit
geometry has given rise to other issues e.g., leakage
current and dynamic energy. Systems are software
running on hardware; software directs the hardware
components and is major contributor to the energy
consumption. In this paper, we present compiler directed
technique that take advantage of optimization slacks,
scheduling slacks and linker slacks to optimize the
dynamic energy consumption. Our framework is
implemented in two phase. In first phase, profile of
software application as well as underlying hardware is
captured, followed by the code transformation in second
phase. The optimization search engine is powered by
genetic algorithm. We present results for 10 widely used
multimedia applications, and analyze their behavior for
parallelism, live CPU register usage, anticipated
scheduling, CPU bus activity, processing units utilization
and binary code size. Finally impact of these factors are
studied on objective functions e.g., speedup, energy
saving etc... Our result show that a unified scheme
optimizes embedded source code better than the
conventional multiphase approaches in VLIW processors.

Keywords:

Dependable Embedded Applications, Low Energy, VLIW
(Very Long Instruction Word) Processor, Genetic
Algorithm.

1 Motivation and Context

The demand for handheld multimedia applications has
exploded in the recent years. In the same vein persistent
increase in computer performance has been accompanied

by a commensurate increase in energy dissipation. The
energy efficiency of these systems today depends heavily
on their software design [1, 2, 3]. As a result the efficient
source code and energy consumption optimization has
become the primary requirement of embedded system-
level design methodologies. In energy sensitive scenario
it is vital to research new energy optimization techniques,
which should focus on optimizing energy saving while
keeping performance constraints such as execution cycles
and architectural usage [4, 5, 9, 10].
The tradeoff to consider energy issue at both application
and architecture level includes the offline time of
compilation and optimization [5, 6]. Knowing the fact,
embedded applications are architecture dependable
applications, which has to run for the lifetime of
embedded system, the offline optimization time can be
considered as worth. Though compilers have employed
computation and data reordering to improve locality, this
still requires expert analysis due to the obscured
parallelism and communication patterns in traditional
languages such as embedded C, embedded C++ etc..
The idleness of system components is an important
technique to reduce energy consumption. Different
techniques can be used to exploit the system component
behavior, which is an inevitable outcome of software
execution. Software controls indirectly the dynamic part
of total energy consumption, which is CV2, where V is the
operating voltage of CPU and C is the switching
capacitance [9, 10]. At single core voltage CPU, the
compute data activity gives rise to switching capacitance;
reducing this component down would decrease the energy
consumption of application at its life time.
In VLIW processors, many of the components in the CPU
are not completely utilized during the program execution.
Primary reason for such slack is the poor architecture-

application correlation. This indicate that for an energy
efficient application binary there is a need to gather more
detailed profiles, containing information about system
behavior on various levels (Figure 1.1). The goal of
profiling is to find cause-effect relations between
performance phenomena and finally generating an
architecture efficient code.

Figure 1.1. Application transformation layers and monitors.

In this paper, we make the following contributions:

• Profiling of Application static and runtime
behavior: the main goal of such vertical profiling is
to further improve the understanding of system
behavior through correlation of profile information at
different levels.

• Evaluation of six energy control factors: cache hits,
processing units, anticipated scheduling factor, run
time on chip live registers, CPU bus activity, and
binary code size. These dynamic energy parameters
have been integrated into energy aware framework
built upon the Nexperia PNX 1302 native compiler
environment.

• Integration of iterative compilation engine that
utilize the Nexperia PNX 1302 native compiler
environment into the genetic algorithm. In the latter
case, the proposed technique eventually finds an
optimal code transformation scheme for both cycle
and energy efficiency.

• Mechanism is experimentally compared with the
baseline version of 10 multimedia applications to
their transformed code.

The remainder of this paper is organized as follows:
Target architecture and framework introduction is
reviewed in Section 2. Iterative compilation and
optimization strategy for our approach is presented in
Section 3. The experimental setup and benchmark
applications are explained in Section 4. Case studies

showing the significance of our methodology are given in
Section 5. Finally, conclusions are given in Section 6.

2 Iterative Compilation Methodology

Here we present our energy aware framework flow [6],
which aims to automate most parts of embedded system
software optimization for a given VLIW processor. The
embedded application development life cycle starts with
high level implementation of algorithm implementation as
shown in Figure 1.1. Followed by is the DSP compiler for
target platform. Though mostly optimization is done at the
compilation level, but traditional compiler generates poor
binary code, both in term of energy-cycle performance
and good architectural usage. The idea in iterative
compilation is to compile an application with different
optimization strategies and then select the best result
among these. We demonstrate that it is necessary to use an
application dynamic profile at all layers to understand
existing performance problems such as poor architecture
usage, increased execution time, and high energy
consumption. Unlike in [8], we use an entirely distinct
approach to prune the optimization space. We consider
this problem as a single task, where all desired aims have
to be taken into account simultaneously. In contrast to
[13], the objective function is maximized by using the
genetic algorithm (GA) [11, 12]. The fitness function of a
genetic algorithm represents the objective function of the
underlying optimization problem and thus has an essential
impact on the optimization progress of the genetic
algorithm. Our energy-aware framework [6] embodies a
series of profiling stages that enable the optimization
process.

2.1 Application Performance Monitors
The accuracy of transformed code is checked against the
performance of original code at target platform. The
profiling stages described in Figure 1.1, detects if binary
is an efficient energy application, then if needed code
blocks can be restructured or transformed with
transformation engine using optimal transformation
scheme suggested by genetic algorithm. Followed by,
basic blocks of energy-cycle critical code are located, and
when necessary, converted using conventional loop
optimization schemes, such as loop unrolling, loop fusion,
decision tree grafting. Detail of this scheme is mentioned
in [8].

2.2 Code Restructuring
Profiling is typically used to converge to optimal CPU and
cache usage. In proposed framework, the impact of code
transformations is fed back to transformation engine to
identify performance critical bottlenecks. This mechanism
requires extensive program execution analysis to get a

good code. In [6], intermediate trace files are generated
during the code processing flow to produce performance
monitors, E.g., code size, execution time, number of cache
miss, scheduling factor, and slot utilization et.. After
simulation, these parameters are used to compute
transformation control factors such as unrolling factor,
grafting depth and blocking metrics (explained in [6]).
Successively, after each cycle, each of these parameters is
computed again and is compared to constraints mentioned
in the user constraint file. This file contains user
constraints, to be used in maximizing objective function.

3 Optimization Algorithm

We formulate the optimization problem as the multiple
objective optimization of:
1. Energy saving
2. Operations per cycle (OPC)2
The individual candidate points in transformation space
are chosen with a uniform probability distribution. They
are profiled later by evaluating the application profile at
the target architecture. The selected individual
transformations are updated based on their success, i.e.
OPC and energy saving factor of the sequence as a whole.
Transformations contributing to better performance are
rewarded while those resulting in performance losses are
penalized. Thus, future sample points are more likely to
include previously successful transformations more
frequently and search their neighborhood more
intensively. We incorporate the model already published
in [6].

4 Experimental Methods
To validate our results, we present three different
optimizations metrics e.g., static, compile time and, run
time. These metrics are shown in Section 5. Section 4.1
describes our benchmarks for framework evaluation.

4.1 Benchmark Codes
To evaluate the effectiveness of our scheme, we used a
suite of 10 multimedia applications from different
benchmark sets. The important characteristics of these
codes are given in [6, 8]. Multimedia applications use
DSP algorithms and streaming data schemes to compute
and later to produce high throughput for real time video or
audio applications. The quality of throughput depends on
the application domain, e.g., bandwidth and frame rate for
a typical MPEG-2 application is different at mobile device

2 Operation per cycle is obtained from number of executed operations

and execution cycle.

and set-top box. We chose the applications for their
importance in real systems and to be representative
enough to make the inferences in this study. This
application set contains MPEG-1 transcodec, MPEG-2
transcode, G-728 transcodec and generic DSP algorithms
(iir, fir, dct, idct etc..). We obtained codes for these
applications form various public domains sources.

5 Results and Discussion
The benchmarks were compiled for the Nexperia DSP
PNX1302 platform on 200MHz board running pSoS
operating system, using the TriMedi C compiler cc and
the optimization level –O3 –G. The output file sizes were
selected to yield at least several tens of billions of
instruction executions for all of our computational biology
benchmarks. For our benchmark codes, we skipped the
first 100 million instructions and collected data for the
next 1 billion instructions or until completion. All
analyzed benchmarks were validated against precompiled
binaries provided in the original distributions of the
benchmark suites. We use the TriMedia sim [7] simulator
v2.2.2 of tcs2.0007 to run the benchmarks and collected
data. The benchmark profiles were obtained using the
TriMedia tmprof profiling simulator, and the performance
data was collected using our framework [8].

5.1 Impact of Anticipated Scheduling
We obtain scheduling factor by the ratio of execution of
code at an infinite resource machine to the finite resource
machine. For our target platform we compared it with 5-
issue slot machine with instruction level parallel operation
constraints as mentioned in [7]. Figure 5.1(a) shows the
percentage improvement in each benchmark application to
the base line code. Inherently due to highly branch
oriented coding Viterbi decoder and MP3 has higher
scheduling factor i.e. 17% and 20% respectively. Image
compression codec JPEG2000 is dominated with deep
nesting, an implicit feature of its wavelet algorithms, those
results into low scheduling factor (2%). Whereas video
transcodecs reflects moderately for the scheduling factor,
e.g., MPEG2 (11%), H263 (11%).

5.2 Impact of On-chip Units
Our hardware architecture offers high degree of
parallelism, a favorite choice for applications pertaining
higher temporal and spatial data independence. MPEG4,
MPEG2 and JPEG2000 reflect such behavior in Figure
5.1(b). Despite being highly localized, native compiler is
inefficient to utilize on-chip register to reduce down the
off-chip traffic and give rise to energy consumption as
well as cycle count. E.g., for generic DSP algorithm idct
(inverse direction cosine transform), the low cache hit
(12%), causes low bus activity (1%), entailed by low
anticipated scheduling factor (1%), eventually leads to
small improvement in energy saving (12%) and reduction

(a)

0%

5%

10%

15%

20%

25%

Vite
rbi MP3

IDCT
AC

3

MPE
G4

G72
8

MPE
G1

H26
3

JP
EG

20
00

MPE
G2

A
n

ti
ci

p
at

ed
 S

ch
ed

u
lin

g

(c)

0%

2%

4%

6%

8%

10%

12%

14%

Viter
bi

MP3 IDCT
AC

3

MPE
G4

G72
8

MPE
G1

H26
3

JP
EG

20
00

MPE
G2

L
iv

e
o

n
-C

h
ip

 R
eg

is
te

rs

(e)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Viter
bi

MP3 IDCT
AC

3

MPE
G4

G72
8

MPE
G1

H26
3

JP
EG

20
00

MPE
G2

B
in

ar
y

S
iz

e

in execution cycles (24%). A careful consideration to
Figure 5.1 (a-f) reveals the fact that VLIW architecture is
well suited for video transcodecs e.g., MPEG2. The
implicit spatial and temporal parallelism in MPEG2
algorithm let it to exploit CPU 5-issue slots upto 79%,
raising bus activity to 22%, leading to an energy as well as
speed efficient application.

5.3 Performance Evaluation
Primary objective of this work was two fold. First to find
architecture pro applications both in term of optimization
and algorithmic implementation. Second the degree of

(b)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Viter
bi

MP3 IDCT
AC

3

MPE
G4

G72
8

MPE
G1

H26
3

JP
EG

20
00

MPE
G2

N
o.

 o
f

P
ro

ce
ss

in
g

U
ni

ts

(d)

0%

10%

20%

30%

40%

50%

60%

Viter
bi

MP3 IDCT
AC

3

MPE
G4

G72
8

MPE
G1

H26
3

JP
EG

20
00

MPE
G2

C
ac

he
 H

its

(f)

0%

5%

10%

15%

20%

25%

Viter
bi

MP3 IDCT
AC

3

MPE
G4

G72
8

MPE
G1

H26
3

JP
EG

20
00

MPE
G2

C
P

U
 B

us
 U

til
ity

optimality that architecture provides to a candidate
application for energy and cycle efficiency.

5.3.1 Speedup Efficiency
Applications runtime profile in Figure 5.1, clearly
conclude to the fact that there is strong correlation
between the scheduling factor, cache miss, processing unit
usage and speedup factor. The average cycle efficiency of
video transcodecs MPEG2, MPEG1 and MPEG4 is higher
than the other algorithms due to higher spatial and
temporal code execution locality. While Viterbi decoder
and speech codec e.g., G-728 are not suitable applications
for our hardware Figure 5.2 (a).

Figure 5.1. (a-f) Sensitivity of architectural features to benchmark codes

5.3.2 Energy Efficiency
Figure 5.2(b) gives the energy saving over the baseline
code for all benchmark applications. Note that MPEG1
(36%), MPEG2 (45%), MPEG4 (40%), JPEG2000 (23%)
appeared as highly energy efficient application as
compared to other applications in benchmark. This
improvement is result of architectural utilization and we
have already discussed them above.

(a)

-20% 0% 20% 40% 60% 80% 100%

Viterbi

MP3

IDCT

AC3

MPEG4

G728

MPEG1

H263

JPEG2000

MPEG2

% Speedup (Execution)

(b)

0% 10% 20% 30% 40% 50%

Viterbi

MP3

IDCT

AC3

MPEG4

G728

MPEG1

H263

JPEG2000

MPEG2

% Energy Saving

Figure 5.2. Benchmark evaluation for speedup (a) and energy
saving (b) after transformations.

6 Conclusions

This work presents a novel approach to optimize energy
consumption of dependent multimedia applications for
VLIW architecture. The basic idea is to profile application
at static, compile time, and run time. Based on the
measured profile, optimization space is searched using
genetic algorithm for a good solution. Scheme is
evaluated for widely used multimedia applications. We
present results for 10 widely used multimedia
applications, and analyze their behavior for parallelism,
live CPU register usage, anticipated scheduling, CPU bus
activity, processing units utilization and binary code size.
Our result show that the unified scheme optimizes
embedded source code better than the conventional
multiphase compilation, linking, scheduling for VLIW
processors.

References

[1] M. Lee, V. Tiwari, S. Malik, M. Fujita, ’’Power
Analysis and Minimization Techniques for Embedded
DSP Software,’’ Proc. of the IEEE Trans on VLSI
Design, pp.123-135, March 1997.

[2] C. Gebotys, R. Gebotys, S. Wiratunga, “Power
minimization derived from architectural-usage of
VLIW processors,” Proc. of the Annual ACM IEEE
Design Automation Conference, pp. 308-311, June
2000.

[3] C. Gebotys, R. Gebotys, ”Statistically based
prediction of power dissipation for complex
embedded DSP processors,” Micro-processors and
Microsystems Journal, vol. 23, pp. 135-144, 1999.

[4] G. Fursin, M. O’Boyle, P. Knijnenburg, “Evaluating
iterative compilation,” Proc. of Languages and
Compilers for Parallel Computers (LCPC’02), College
Park, MD, USA, 2002.

[5] V. Tiwari, S. Malik, A. Wolfe, “Compilation
techniques for low energy,” Proc. of the ISLPED, Oct
1994.

[6] N. Z. Azeemi, M. Rupp, “Muticriteria Low Energy
Source Level Optimization of Embedded Programs,”
Proc. of the IEEE Informationstagung Mikroelektronik
2006, pp. 150-158, Oct. 2006.

[7] TM1300 Data Book, Philips Electronic, North
America Corporation, pp. 3.1-3.16, Oct 1999.

[8] N. Zafar, M. Rupp, “Energy-aware source-to-source
transformations for a VLIW DSP processor,” Proc. of
the IEEE 17th ICM 2005, pp. 133-138, Dec. 2005.

[9] N. Zafar Azeemi, “Power Aware Framework for
Dense Matrix Operations in Multimedia Processors,”
Proc. of the IEEE 9th International Multi-topic
Conference, Dec. 2005.

[10] Parameswaran, S. “Code placement in
hardware/software co-synthesis to improve
performance and reduce cost,” Proc. of the
Conference on Design, Automation and Test., pp 626-
632, 2001.

[11] S. Bashford and R. Leupers, ”Constraint driven Code
Selection for Fixed-Point DSPs,” Proc. of the 36th
Design Automation Conference (DAC), Nov. 1999.

[12] T. Baeck. Evolutionary Algorithms in Theory and
Practice. Oxford University Press, 1996

[13] N. Zafar Azeemi, “A Framework for Architecture
Based Energy-Aware Code Transformations in VLIW
Processors," Proc. of the IEEE International
Symposium on Telecommunications (IST 2005)
pp.393-398. Sep. 2005.

