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Abstract
Most existing subspace analysis-based tracking algo-

rithms utilize a flattened vector to represent a target, re-
sulting in a high dimensional data learning problem. Re-
cently, subspace analysis is incorporated into the multilin-
ear framework which offline constructs a representation of
image ensembles using high-order tensors. This reduces
spatio-temporal redundancies substantially, whereas the
computational and memory cost is high. In this paper, we
present an effective online tensor subspace learning algo-
rithm which models the appearance changes of a target by
incrementally learning a low-order tensor eigenspace rep-
resentation through adaptively updating the sample mean
and eigenbasis. Tracking then is led by the state inference
within the framework in which a particle filter is used for
propagating sample distributions over the time. A novel
likelihood function, based on the tensor reconstruction er-
ror norm, is developed to measure the similarity between
the test image and the learned tensor subspace model dur-
ing the tracking. Theoretic analysis and experimental eval-
uations against a state-of-the-art method demonstrate the
promise and effectiveness of this algorithm.

1. Introduction
For visual tracking, handling appearance variations of a

target is a fundamental and challenging task. In general,
there are two types of appearance variations: intrinsic and
extrinsic. Pose variation and/or shape deformation of a tar-
get object are considered as the intrinsic appearance varia-
tions while the extrinsic variations are due to the changes re-
sulting from different illumination, camera motion, camera
viewpoint, and occlusion. Consequently, effectively model-
ing such appearance variations plays a critical role in visual
tracking.

In recent years, much work has been done in visual track-
ing based on modeling the appearance of a target. Hager
and Belhumeur [1] propose a tracking algorithm which uses
an extended gradient-based optical flow method to handle
object tracking under varying illumination conditions. They
construct a set of illumination basis for a fixed pose with
illumination change. Black et al. [2] present a subspace

learning based tracking algorithm with the subspace con-
stancy assumption. A pre-trained, view-based eigenbasis
representation is used for modeling appearance variations.
However, the algorithm does not work well in the clutter
with a large lighting change due to the subspace constancy
assumption. In [3], curves or splines are exploited to repre-
sent the appearance of a target to develop the Condensation
algorithm for contour tracking. Due to the simplistic rep-
resentation scheme, the algorithm is unable to handle the
pose or illumination change, resulting in a usually unsuc-
cessful tracking result under a varying lighting condition.
Black et al. [4] employ a mixture model to represent and
recover the appearance changes in consecutive frames. Jep-
son et al. [5] develop a more elaborate mixture model with
an online EM algorithm to explicitly model the appearance
change during tracking. Zhou et al. [6] embed appearance-
adaptive models into a particle filter to achieve a robust vi-
sual tracking. Yu et al. [7] propose a spatial-appearance
model which captures non-rigid appearance variations and
recovers all motion parameters efficiently. Li et al. [8] use
a generalized geometric transform to handle the deforma-
tion, articulation, and occlusion of appearance. Wong et
al. [9] present a robust appearance-based tracking algo-
rithm using an online-updating sparse Bayesian classifier.
Lee and Kriegman [10] present an online learning algorithm
to incrementally learn a generic appearance model from the
video. Lim et al. [11] present a human tracking framework
using robust system dynamics identification and nonlinear
dimensiona reduction techniques. Ho et al. [12] present a
visual tracking algorithm based on linear subspace learning.
Li et al. [13] propose an incremental PCA algorithm for
subspace learning. In [14], a weighted incremental PCA al-
gorithm for subspace learning is presented. Limy et al.[15]
propose a generalized tracking framework based on the in-
cremental image-as-vector subspace learning methods with
a sample mean update. It is noted that all the above tracking
methods are unable to fully exploit the spatial redundancies
within the image ensembles. This is particularly true for
those image-as-vector tracking techniques, as the local spa-
tial information is almost lost. Consequently, the focus has
been made on developing the image-as-matrix learning al-
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gorithms for effective subspace analysis. Yang et al. [16]
develop a 2-dimensional PCA (2DPCA) for image repre-
sentation. Based on the original image matrices, 2DPCA
constructs an image covariance matrix whose eigenvectors
are derived for image feature extraction. Ye et al. [17]
present a learning method called 2-dimensional linear dis-
criminant analysis (2DLDA). In [18], a novel algorithm,
called GLRAM, is proposed for low rank approximations
of a collection of matrices. In [19], Ye et al. present a new
dimension reduction algorithm named GPCA, which con-
structs the matrix representation of images directly,

More recent work on modeling the appearance of a tar-
get focuses on using high-order tensors to construct a better
representation of the target’s appearance. In this case, the
problem of modeling the appearance of a target is reduced
to how to make tensor decomposition more accurate and
efficient. Wang and Ahuja [20] propose a novel rank-R ten-
sor approximation approach, which is designed to capture
the spatio-temporal redundancies of tensors. In [21], an al-
gorithm named Discriminant Analysis with Tensor Repre-
sentation (DATER) is proposed. DATER is tensorized from
the popular vector-based LDA algorithm. In [22, 23], the N-
mode SVD, multilinear subspace analysis, is applied to con-
structing a compact representation of facial image ensem-
bles factorized by different faces, expressions, viewpoints,
and illuminations. He et al. [24] present a learning algo-
rithm called Tensor Subspace Analysis (TSA), which learns
a lower dimensional tensor subspace to characterize the in-
trinsic local geometric structure of the tensor space. In [25],
Wang et al. give a convergent solution for general tensor-
based subspace learning. Sun et al. [26] mine higher-order
data streams using dynamic and streaming tensor analysis.
Also in [27], Sun et.al present a window-based tensor analy-
sis method for representing data streams over the time. All
of these tensor-based algorithms share the same problem
that they are not allowed for incremental subspace analysis
for adaptively updating the sample mean and eigenbasis.

In this paper, we develop a tracking framework based on
an incremental tensor subspace learning. The main contri-
butions of the framework are as follows. First, the proposed
framework does not need to know any prior knowledge of
the object. A low dimensional eigenspace representation is
learned online, and is updated incrementally over the time.
The framework only assumes that the initialization of the
object region is provided. Second, while the Condensation
algorithm [3] is used for propagating the sample distribu-
tions over the time, we develop an effective probabilistic
likelihood function based on the learned tensor eigenspace
model. Third, while R-SVD [15, 28] is applied to update
both the sample mean and eigenbasis online as new data
arrive, an incremental multilinear subspace analysis is en-
abled to capture the appearance characteristics of the object
during the tracking.

Figure 1. The architecture of the proposed tracking framework

2. The framework for visual tracking
2.1. Overview of the framework

The tracking framework includes two stages: (a) ten-
sor subspace learning; and (b) Bayesian inference for vi-
sual tracking. In the first stage, a low dimensional tensor
eigenspace model is learned online. The model uses the
proposed incremental rank-(R1, R2, R3) tensor subspace
analysis (thus called IRTSA) to find the dominant projection
subspaces of the 3-order tensors (image ensembles). In the
second stage, the target locations in consecutive frames are
estimated by the Bayesian state inference within the frame-
work in which a particle filter is applied to propagate sample
distributions over the time. These two stages are executed
repeatedly as time progresses. Moreover, the framework
has a strong adaptability in the sense that when new image
data arrive, the tensor eigenspace model follows the updat-
ing online. The architecture of the framework is shown in
Figure 1.

2.2. Dynamic tensor subspace analysis
Before we present the proposed online tensor subspace

learning method, we first give a brief review of the related
background as well as the introduction to the notations and
symbols we use.

2.2.1 Multilinear algebra

The mathematical foundation of multilinear analysis is
the tensor algebra. A tensor can be regarded as a mul-
tidimensional matrix. We denote an N -order tensor as
A ∈ RI1×I2×...×IN , each element of which is represented
as ai1···in···iN for 1 ≤ in ≤ In. In the tensor terminology,
each dimension of a tensor is associated with a “mode”.
The mode-n unfolding matrix A(n) ∈ RIn×(

Q
i�=n Ii) of

A consists of the In−dimensional mode-n vectors obtained
by varying the nth-mode index in while keeping the other
mode indices fixed. Namely, the column vectors of A(n) are
just the mode-n vectors. For a better understanding of the
tensor unfolding, we take advantage of Figure 2 to explain
the process of the unfolding. The inverse operation of the
mode-n unfolding is the mode-n folding, which can restore
the original tensor A from the mode-n unfolding matrix
A(n). The mode-n product ofA and a matrix U∈ RJn×In is
denoted as A×nU ∈ RI1×...×In−1×Jn×In−1×...×IN whose
entries are as follows:

(A×n U)i1···in−1jnin+1···iN =
∑
in

ai1...in...iN ujnin (1)



Figure 2. Illustration of unfolding a (3-order) tensor.

Given a tensor A ∈ RI1×I2×...×IN and the matrices C ∈
RJn×In , D ∈ RKn×Jn , E ∈ RJm×Im(n �= m), the mode-
n product has the following properties:

1. (A×nC) ×m E = (A×mE) ×n C = A×nC×mE

2. (A×nC)×nD= A×n (D·C)

The scalar product of two tensors A,B is defined as:

〈A,B〉 =
∑
i1

∑
i2

· · ·
∑
iN

ai1...iN bi1...iN (2)

The Frobenius norm of A ∈ RI1×I2×···×IN is defined
as: ‖A‖ =

√〈A,A〉. The mode-n rank Rn of A is defined
as the dimension of the space generated by the mode-n vec-
tors: Rn = rank(A(n)). More details of the tensor algebra
are given in [29].

2.2.2 Tensor decomposition
The Higher-Order Singular Value Decomposition

(HOSVD) [22] is a generalized form of the conventional
matrix singular value decomposition (SVD). An N -order
tensor A is an N -dimensional matrix composed of N vec-
tor spaces. HOSVD seeks for N orthonormal matrices
U(1), . . . , U(N) which span these N spaces, respectively.
Consequently, the tensor A can be decomposed as the fol-
lowing form:

A = B ×1 U(1) ×2 U(2) · · · ×N U(N) (3)

where B = A×1 U(1)T ×2 U(2)T · · · ×N U(N)T

which de-
notes the core tensor controlling the interaction among the
mode matrices U(1), . . . , U(N). The orthonormal column
vectors of U(n) span the column space of the mode-n un-
folding matrix A(n) (1 ≤ n ≤ N). In this way, we have the
N -mode HOSVD algorithm [22] illustrated in Table 1.

In real applications, dimension reduction is necessary for
a compact representation of tensors. In [29], Lathauwer et
al. propose the best rank-(R1, R2, . . . , RN ) approximation
algorithm for dimension reduction. The algorithm applies
the Alternative Least Squares (ALS) to find the dominant
projection subspaces. However, its computational cost is
very expensive.

for n=1 to N

1. Compute the SVD of the mode-n unfolding matrix

A(n) = Ũn ·D̃n ·ṼT

n .

2. Set the mode matrix U(n) as the orthonormal matrix
Ũn.

end

Compute the core tensor as:

B = A×1 U(1)T

. . . ×n U(n)T

. . . ×N U(N)T

Table 1. The N -mode HOSVD algorithm
In the next two sections (2.2.3 and 2.2.4), we will discuss

the proposed incremental rank-(R1, R2, R3) tensor sub-
space analysis (IRTSA) method for 3-order tensors. IRTSA
applies the online learning technique (R-SVD [15, 28]) to
find the dominant projection subspaces of 3-order tensors.
2.2.3 Introduction to R-SVD

The classic R-SVD algorithm [28] efficiently computes
the SVD of a dynamic matrix with newly added columns or
rows, based on the existing SVD. Unfortunately, the R-SVD
algorithm [28] is based on the zero mean assumption, lead-
ing to the failure of tracking subspace variabilities. Based
on [28], [15] extends the R-SVD algorithm to compute the
eigenbasis of a scatter matrix with the mean update. The
details are described as follows.

Given a matrix H = {K1, K2, . . . , Kg} and its column
mean K, we let CVD(H) denote the SVD of the matrix
{K1 − K, K2 − K, . . . , Kg − K}. Given the column mean
Lp of the existing data matrix Hp = {L1, L2, . . . , Ln},
CVD(Hp) = UpΣpV

T
p , the column mean Lq of the new

data matrix F = {Ln+1, Ln+2, . . . , Ln+m}, and the col-
umn mean Le of the entire data matrix He = (Hp | F ),
CVD(He) = UeΣeV

T
e can be determined as:

1. Compute Le = n
m+nLp + m

m+nLq;

2. Compute F̃ =
(
F − Lq�1×m |

√
mn

m+n (Lp − Lq)
)

,

where �1×m is (

m︷ ︸︸ ︷
1, 1, . . . , 1 );

3. Apply the classic R-SVD algorithm [28] with
UpΣpV

T
p and the new data matrix F̃ to obtain

UeΣeV
T
e .

In order to fit the data streams well, the forgetting factor
is introduced by [15] to weight the data streams. Typically,
recent observations are given more weights than historical
ones. For example, the weighted data matrix H

′
e of He may

be formulated as: H
′
e = (λHp | F ) =

(
Up(λΣp)V T

p | F
)

where λ is the forgetting factor. The analytical proof of R-
SVD is given in [15, 28].
2.2.4 Incremental rank-(R1, R2, R3) tensor subspace

analysis
Based on HOSVD [22], IRTSA presented below effi-

ciently identifies the dominant projection subspaces of 3-
order tensors, and is capable of incrementally updating



Figure 3. Illustration of the incremental rank-(R1, R2, R3) ten-
sor subspace learning of a 3-order tensor.

these subspaces when new data arrive. Given the CVD of
the mode-k unfolding matrix A(k)(1 ≤ k ≤ 3) for a 3-order
tensorA ∈ RI1×I2×I3 , IRTSA is able to efficiently compute
the CVD of the mode-i unfolding matrix A∗

(i)(1 ≤ i ≤ 3)

for A∗ = (A | F) ∈ RI1×I2×I∗
3 where F ∈ RI1×I2×I

′
3

is a new 3-order subtensor and I∗3 = I3 + I
′
3. To facilitate

the description, Figure 3 is used for illustration. In the left
half of Figure 3, three identical tensors are unfolded in three
different modes. For each tensor, the white regions repre-
sent the original subtensor while the dark regions denote the
newly added subtensor. The three unfolding matrices corre-
sponding to the three different modes are shown in the right
half of Figure 3, where the dark regions represent the un-
folding matrices of the newly added subtensor F . With the
emergence of the new data subtensors, the column spaces
of A∗

(1) and A∗
(2) are extended at the same time when the

row space of A∗
(3) is extended. Consequently, IRTSA needs

to track the changes of these three unfolding spaces, and
needs to identify the dominant projection subspaces for a
compact representation of the tensor. It is noted that A∗

(2)

can be decomposed as: A∗
(2) =

(
A(2) | F(2)

) · P = B · P,
where B =

(
A(2) | F(2)

)
and P is an orthonormal matrix

obtained by column exchange and transpose operations on
an (I1·I∗3 )-order identity matrix G. Let

G = (

I3︷︸︸︷
E1 |

I
′
3︷︸︸︷

Q1 |
I3︷︸︸︷
E2 |

I
′
3︷︸︸︷

Q2 | · · · | · · · |
I3︷︸︸︷

EI1 |
I
′
3︷︸︸︷

QI1 )

which is generated by partitioning G into 2I1 blocks in the
column dimension. Consequently, the orthonormal matrix
P is formulated as:

P = (E1|E2|| · · · | EI1 |Q1|Q2| · · · |QI1)
T . (4)

In this way, A∗
(2)’s CVD is efficiently computed on the basis

of P and B’s CVD obtained by applying R-SVD to B. Fur-
thermore, A∗

(1)’s CVD is efficiently obtained by performing
R-SVD on the matrix

(
A(1) | F(1)

)
. Similarly, A∗

(3)’s CVD
is efficiently obtained by performing R-SVD on the matrix

Input:
CVD of the mode-k unfolding matrix A(k), i.e.

U(k)D(k)V(k)T

(1 ≤ k ≤ 3) of an original tensor

A ∈ RI1×I2×I3 , newly-added tensor F ∈ RI1×I2×I
′
3

, column mean L̄(1) of A(1), column mean L̄(2) of A(2),
row mean L̄(3) of A(3) and R1, R2, R3.
Output:
CVD of the mode-i unfolding matrix A∗

(i), i.e.

Û
(i)

D̂
(i)

V̂
(i)T

(1 ≤ i ≤ 3) of A∗=(A | F) ∈ RI1×I2×I∗
3

where I∗3 = I3+I
′
3 , column mean L̄(1)∗ of A∗

(1), column

mean L̄(2)∗ of A∗
(2) and row mean L̄(3)∗ of A∗

(3).
Algorithm:

1. A∗
(1)=

(
A(1) |F(1)

)
;

2. A∗
(2)=

(
A(2) |F(2)

)·P = B·P, where P is defined in (4);

3. A∗
(3)=

(
A(3)

F(3)

)
;

4. [Û
(1)

, D̂
(1)

, V̂
(1)

, L̄(1)∗ ]=R-SVD(A∗
(1), L̄

(1), R1);

5. [Û
(2)

, D̂
(2)

, Ṽ2, L̄
(2)∗ ]=R-SVD(B, L̄(2), R2);

6. V̂
(2)

= PT ·Ṽ2;

7. [Ũ3, D̃3, Ṽ3, L̃3]=R-SVD((A∗
(3))

T, (L̄(3))T, R3);

8. Û
(3)

= Ṽ3, D̂
(3)

= (D̃3)T , V̂
(3)

= Ũ3, L̄(3)∗=(L̃3)T .

Table 2. The incremental rank-(R1, R2, R3) tensor subspace
analysis algorithm (IRTSA). R-SVD((C | E), L, R) represents
that the first R dominant eigenvectors are used in R-SVD [15]
for the matrix (C|E) with C’s column mean being L.(

A(3)

F(3)

)T

. The specific procedure of IRTSA is listed in Ta-

ble 2.
In real tracking applications, it is necessary for a sub-

space analysis-based algorithm to evaluate the likelihood of
the test sample and the learned subspace. In IRTSA, the cri-
teria for the likelihood evaluation are given as follows.

Given I3 existing images represented as A ∈ RI1×I2×I3 ,
a test image denoted as J ∈ RI1×I2×1 and the mode-i
column projection matrices U (i) ∈ RIi×Ri(1 ≤ i ≤ 2) and
the mode-3 row projection matrix V (3) ∈ R(I1·I2)×R3 of the
learned subspaces of A, the likelihood can be determined
by the sum of the reconstruction error norms of the three
modes:

RE =
2∑

i=1

‖(J−Mi)−(J−Mi)
2∏

j=1

×j(U (j)· U (j)T

)‖2

+‖(J(3)−M3)−(J(3)−M3) · (V (3)·V (3)T

)‖2 (5)

where J(i) is the mode-i unfolding matrix of J ,∏K
k=1×kDk =×1D1×2D2 . . .×KDK , M3 = L̄(3) which is

the row mean of the mode-3 unfolding matrix A(3), M1

and M2 are defined as:



Figure 4. The tracking results of IRTSA and IAVSL, respectively, under the disturbance of a strong noise. Row 1 is the reference
tracking result with no noise. Rows 2 and 3 correspond to the tracking results of IRTSA and IAVSL, respectively.

M1 = (

I2︷ ︸︸ ︷
L̄(1), . . . , L̄(1) ) ∈ RI1×I2×1

M2 = ( L̄(2), . . . , L̄(2)︸ ︷︷ ︸
I1

)T ∈ RI1×I2×1
(6)

where L̄(1) and L̄(2) are the column means of the mode-
(1, 2) unfolding matrices A(1) and A(2), respectively. The
smaller the RE, the larger the likelihood.

2.3. Bayesian inference for visual tracking
For visual tracking, a Markov model with a hidden state

variable is generally used for motion estimation. In this
model, the target motion between two consecutive frames
is usually assumed to be an affine motion. Let Xt denote
the state variable describing the affine motion parameters
(the location) of a target at time t. Given a set of observed
images Ot = {O1, . . . , Ot}, the posterior probability is for-
mulated by Bayes’ theorem as:

p(Xt|Ot)∝p(Ot|Xt)
∫
p(Xt|Xt−1)p(Xt−1|Ot−1)dXt−1 (7)

where p(Ot | Xt) denotes the likelihood function, and
p(Xt |Xt−1) represents the dynamic model. p(Ot |Xt) and
p(Xt |Xt−1) decide the entire tracking process. A particle
filter [3] is used for approximating the distribution over the
location of the target using a set of weighted samples.

In the tracking framework, we apply an affine image
warping to model the target motion of two consecutive
frames. The six parameters of the affine transform are used
to model p(Xt | Xt−1) of a tracked target. Let Xt =
(xt, yt, ηt, st, βt, φt) where xt, yt, ηt, st, βt, φt denote the
x, y translations, the rotation angle, the scale, the aspect
ratio, and the skew direction at time t, respectively. We
employ a Gaussian distribution to model the state transi-
tion distribution p(Xt |Xt−1). Also the six parameters of
the affine transform are assumed to be independent. Conse-
quently, p(Xt|Xt−1) is formulated as:

p(Xt|Xt−1) = N (Xt; Xt−1, Σ) (8)

where Σ denotes a diagonal covariance matrix whose diag-
onal elements are σ2

x, σ2
y , σ2

η, σ2
s , σ2

β , σ2
φ, respectively. The

observation model p(Ot |Xt) reflects the probability that a
sample is generated from the subspace. In this paper, RE,
defined in (5), is used to measure the distance from the sam-
ple to the center of the subspace. Consequently, p(Ot |Xt)
is formulated as:

p(Ot|Xt) ∝ exp(−RE) (9)

For MAP estimate, we just use the affinely warped image
region associated with the highest weighted hypothesis to
update the tensor-based eigensapace model.

3. Experiments
In order to evaluate the performance of the proposed

tracking framework, four videos are used in the experi-
ments. Videos 1 and 4 are captured indoor while videos
2 and 3 are recorded outdoor. Furthermore, videos 1 and
3 are taken from moving cameras in different scenes while
videos 2 and 4 are recorded by stationary cameras. Each
frame in these videos is a 8-bit gray scale image. In video
1, a man walks in a room changing his pose and facial ex-
pression over the time with varying lighting conditions. In
video 2, a pedestrian as a small target moves down a road
in a dark and blurry scene. In video 3, a man walks from
left to right in a bright road scene; his body pose varies over
the time, with a drastic motion and pose change (bowing
down to reach the ground and standing up back again) in
the middle of the video stream. Video 4 consists of dark
and motion-blurring gray scale images, where many mo-
tion events take place, including wearing and taking off the
glasses, head shaking, and hands occluding the face from
time to time. For the tensor eigenspace representation, the
size of each target region is normalized to 20 × 20 pixels.
The settings of the ranks R1, R2 and R3 in IRTSA are ob-
tained from the experiments. The forgetting factor λ in R-
SVD is set as 0.99. The tensor subspace is updated every
three frames. For the particle filtering in the visual tracking,



Figure 5. The tracking results of IRTSA and IAVSL, respectively, in the scenarios of small target and blurring scenes. Rows 1 and 2
correspond to IRTSA and IAVSL, respectively.

the number of particles is set to be 300. The six diagonal el-
ements (σ2

x, σ2
y , σ2

η, σ2
s , σ2

β , σ2
φ) of the covariance matrix Σ

in (8) are assigned as (52, 52, 0.032, 0.032, 0.0052, 0.0012),
respectively.

Four experiments are conducted to demonstrate the
claimed contributions of the proposed IRTSA. These four
experiments are to compare tracking results of IRTSA with
those of a state-of-the-art image-as-vector subspace learn-
ing based tracking algorithm [15], referred as IAVSL in this
paper, in different scenarios including noise disturbance,
scene blurring, small target tracking, target pose varia-
tion, and occlusion. IAVSL is a representative image-as-
vector linear subspace learning algorithm which incremen-
tally learns a low dimensional eigenspace representation of
the target appearance by online PCA. Compared with most
existing tracking algorithms, based on constructing an in-
variant target appearance representation, IAVSL is able to
online track appearance changes of the target, resulting in a
better tracking result. In contrast to image-as-vector IAVSL,
our proposed IRTSA relies on image-as-matrix tensor sub-
space analysis to reflect the appearance changes of a target.
Consequently, it is very significant to make a comparison
between IAVSL and IRTSA.

The first experiment is performed to evaluate the per-
formances of the two subspace analysis based tracking
techniques—IAVSL and IRTSA on investigating their track-
ing performances under the disturbance of strong noise.
The video used in this experiment is obtained by man-
ually adding Gaussian random noise to Video 1. The
process of adding the noise is formulated as: I ′(x, y) =
G (I(x, y)+s ·Z), where I(x, y) denotes the original pixel
value, I ′(x, y) represents the pixel value after adding noise,
Z follows the standard normal distribution N (0, 1), s is a
scaling factor controlling the amplitude of the noise, and the
function G(·) is defined as:

G(x) =




0 x < 0
255 x > 255
[x] 0 ≤ x ≤ 255

(10)

where [x] stands for the floor of the element x. In this exper-
iment, s is set as 200. R1, R2 and R3 in IRTSA are assigned
as 3,3 and 5, respectively. For IAVSL, 5 eigenvectors are

maintained during the tracking, and the remaining eigen-
vectors are discarded at each subspace updating. The final
tracking results of IRTSA and IAVSL are shown in Figure 4.
For a better visualization, we just show the tracking results
of six representative frames 11,21,30,41,54 and 72. In Fig-
ure 4, the first row corresponds to the tracking results of the
reference frames without noise using IRTSA. The remaining
two rows are for the tracking results of IRTSA and IAVSL,
respectively, under the disturbance of the noise. From Fig-
ure 4, we see that the proposed tracking algorithm exhibits
a robust tracking result while IAVSL fails to track the face
under the disturbance of strong noise. This is due to the
fact that since the spatial correlation information is ignored
in IAVSL, the noise disturbance substantially changes the
vector eigenspace representation of the target’s appearance.
In comparison, IRTSA relies on a robust tensor eigenspace
model which makes a full use of the spatio-temporal dis-
tribution information of the image ensembles in the three
modes. Consequently, IRTSA has a strong error-tolerating
capability. (Please see the supplementary video “Experi-
ment1.mpg” for the first experiment.)

The second experiment aims to compare the tracking
performance of IRTSA with that of IAVSL in handling scene
blurring and small target scenarios using Video 2. R1, R2

and R3 in IRTSA are set as 5,5 and 8, respectively. For
IAVSL, 16 eigenvectors are maintained during the track-
ing, and the remaining eigenvectors are discarded at each
subspace updating. We show the final tracking results
for IRTSA and IAVSL in Figure 5, where the first and
the second rows correspond to the performances of IRTSA
and IAVSL, respectively, in which six representative frames
(236,314,334,336,345 and 360) of the video stream are
shown. Clearly, IRTSA succeeds in tracking while IAVSL
fails. The reasons are explained as follows. IRTSA takes
an image as a matrix, in comparison with the image-as-
vector representation in IAVSL. Consequently, IRTSA makes
a more compact target representation capable of reduc-
ing potentially substantial spatio-temporal redundancy of
the image ensembles while IAVSL must solve for a high-
dimensional data learning problem. This becomes particu-
larly true for tracking a small target and/or with a blurring



Figure 6. The tracking results of IRTSA and IAVSL in the scenarios of drastic pose change. Rows 1 and 2 correspond to IRTSA and
IAVSL, respectively.

scene; here the spatial correlation information of the tar-
get’s appearance is critical. Due to this loss of the spatial
correlation information, IAVSL fails to track the target in
these scenarios. (Please see the supplementary video “Ex-
periment2.mpg” for the second experiment.)

The third experiment is for a comparison between IRTSA
and IAVSL in the scenarios of pose variation using Video
3. In this experiment, R1, R2 and R3 are assigned as 8,8
and 10, respectively. For IAVSL, 16 eigenvectors are main-
tained during the tracking, and the remaining eigenvectors
are discarded at each subspace updating. The final tracking
results are demonstrated in Figure 6, where rows 1 and 2
correspond to IRTSA and IAVSL, respectively, in which six
representative frames (145, 150, 166, 182, 192 and 208) of
the video stream are shown. From Figure 6, it is clear that
IRTSA is capable of tracking the target successfully even
with a drastic pose and motion change while IAVSL gets
lost in tracking the target after this drastic pose and mo-
tion change. (Please see the supplementary video “Experi-
ment3.mpg” for the third experiment.)

The fourth experiment is to compare the performances of
the two methods IRTSA and IAVSL in handling partial oc-
clusions using Video 4. In this experiment, R1, R2 and R3

are set as 3,3 and 5, respectively. For IAVSL, 10 eigenvec-
tors are maintained during the tracking, and the remaining
eigenvectors are discarded at each subspace updating. The
final tracking results are demonstrated in Figure 7, where
rows 1 and 2 are the performance results of IRTSA and
IAVSL, respectively, in which six representative frames (92,
102, 119, 132, 148 and 174) of the video stream are shown.
From Figure 7, we see that IRTSA is capable of tracking
the target all the time even though the target is occluded
partially from time to time in a poor lighting condition.
On the other hand, IAVSL gets completely lost in tracking
the target. (Please see the supplementary video “Experi-
ment4.mpg” for the fourth experiment.)

From the results in the third and the fourth experiments,
we note that IRTSA is robust to pose variation and occlu-
sion. The reason is that the dominant subspace informa-
tion of the three modes is incorporated into IRTSA. Even
if the subspace information of some modes is partially lost

��������Method
Exp

Exp 1 Exp 2 Exp 3 Exp 4

IRTSA 5.12 2.54 3.26 2.52
IAVSL 31.71 28.65 77.19 28.61

Table 3. Comparison between IRTSA and IAVSL in the track-
ing mean localization deviation with the ground truth. Exp k
corresponds to experiment k (1 ≤ k ≤ 4), and the localization
deviation is measured in pixels. It is clear that the proposed
IRTSA performs much better than IAVSL.

or drastically varies, IRTSA is capable of recovering the in-
formation using the cues of the subspace information from
other modes.

Since there are no benchmark databases in the experi-
ments, we have to provide a quantitative comparison be-
tween IRTSA and IAVSL using some representative frames.
The object center locations in the representative frames used
by the above four experiments are labeled manually as the
ground truth. In this way, we can quantitatively evaluate
the tracking performances of IRTSA and IAVSL by comput-
ing their corresponding pixel-based mean localization devi-
ations between tracking results and the ground truth. The
less the deviation, the higher the localization accuracy. The
final comparing results are listed in Table 3. From Table
3, we see that the target localization accuracy of IRTSA is
much higher than that of IAVSL.

In summary, we observe that IRTSA outperforms IAVSL
in the scenarios of noise disturbance, blurring scenes, small
targets, drastic target pose change, and occlusions. Conse-
quently, IRTSA is an effective online tensor subspace learn-
ing algorithm which performs well in modeling appearance
changes of a target in many complex scenarios.

4. Conclusion
In this paper, we have developed a visual tracking frame-

work based on the incremental tensor subspace learning.
The main contribution of this framework is two-fold. (1)
A novel online tensor subspace learning algorithm, which
enables subspace analysis within a multilinear framework,
is proposed to reflect the appearance changes of a target. (2)
A novel likelihood function, based on the tensor reconstruc-
tion error norm, is developed to measure the similarity be-
tween the test image and the learned tensor subspace model



Figure 7. The tracking results of IRTSA and IAVSL in the scenarios of partial occlusions. Rows 1 and 2 show the tracking results of
IRTSA and IAVSL, respectively.

during the tracking. Compared with the image-as-vector
tracking methods in the literature, our proposed image-as-
matrix tracking method is more robust to noise or low qual-
ity images, occlusion, scene blurring, small target, and tar-
get pose variation. Experimental results have demonstrated
the robustness and promise of the proposed framework.
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