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Abstract

We prove an optimal stability estimate for an inverse Robin boundary
value problem arising in corrosion detection by electrostatic boundary
measurements.

1 Introduction

Consider the following boundary value problem

∆u = 0 in Ω (1.1)
∂u

∂ν
= φ on ΓN (1.2)

∂u

∂ν
+ γu = 0 on Γ (1.3)

u = 0 on ΓD (1.4)

where ΓN , Γ are two open, disjoint portions of ∂Ω, ΓD = ∂Ω\(ΓN ∪Γ) and γ is
a nonnegative coefficient.

This problem has been introduced as a model of an electrostatic conductor,
Ω, in which a part of the boundary Γ is subject to corrosion, [K-S, K-S-V, F-I,
I, C-J], see also [V-X, K-V] for more accurate nonlinear models.

In this model, u represents the electrostatic potential, φ the prescribed cur-
rent density on the accessible part of the boundary ΓN , and the possible presence
of corrosion damage on the inaccessible portion Γ of the boundary is modelled
by the Robin boundary condition (1.3) where γ represents the reciprocal of the
surface impedance.

The inverse problem of corrosion detection consists of the determination of
γ when the available data are: a fixed choice of the current density φ and the
measurement of the corresponding boundary voltage u|ΓN

on the accessible part
of ∂Ω.

In this paper we deal with the stability issue and concentrate on the case
when the space dimension is n = 2. Let us recall that a stability estimate for
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the same inverse problem was obtained by Chaabane and Jaoua, [C-J], under
the assumption that φ ≥ 0. In fact, in [C-J] the same boundary value problem
(1.1)–(1.4) was introduced as a model of stationary heat conduction, and, in
such a context, the assumption of a nonnegative prescribed boundary heat flux
φ is well justified. However, this is not the case in the electrostatic setting where
the simultaneous presence of positive and negative electrodes must be admitted.

In the case when φ has variable sign, additional difficulties occur. In order
to explain this, let us illustrate briefly the underlying ideas for the identification
of γ. If for the harmonic function u in Ω the Cauchy data ∂u

∂ν |ΓN = φ and u|ΓN

are known, then u is uniquely determined in all of Ω. Hence we can use (1.3) to
compute

γ = − 1
u

∂u

∂ν
on Γ. (1.5)

This operation is well justified if u > 0 on Γ, and in fact (by the maximum
principle) this is the case when φ ≥ 0, see [C-J]. If instead φ has variable sign,
then u may vanish somewhere in Ω and on Γ and thus formula (1.5) may be
undetermined or highly unstable. Thus, it is required to have a quantitative
control on the possible vanishing rate of u. This is achieved in Proposition 2.3
below, by assuming that a control on the oscillation character of φ is a priori
given. More precisely, letting Φ =

∫
φ be the antiderivative of φ on Γ, such that∫

ΓN
Φ = 0, and assuming that for a given F > 0 we have that

‖φ‖L2(ΓN )

‖Φ‖L2(ΓN )
≤ F,

we obtain an upper bound, (2.11) and (2.12), on the number and on the order
of the zeroes of u on Γ.

By combining this result with stability estimates for a Cauchy problem,
Propositions 2.4 and 2.5, we obtain a stability estimate of logarithmic type for
the determination of γ, Theorem 2.2.

Some remarks are in order:

1) The method introduced by Mandache, [M], and developed in [DC-R] could be
adapted to the present setting to show by examples that indeed logarithmic
stability is the best possible, and thus the result of Theorem 2.2 is essentially
optimal.

2) The results obtained here, and especially those of Proposition 2.3, are based
on methods of complex analytic function theory and thus are limited to
the two-dimensional setting. A generalization of these results to the higher
dimensional case requires the introduction of different tools. This will be the
object of future research.

3) Results completely analogous to those presented here might also be obtained
for some variations of the boundary value problem (1.1)–(1.4). For instance,
the Dirichlet boundary condition (1.4) might be replaced by a homogeneous
Neumann condition and the (known) conductivity in Ω might be variable
and anisotropic.

The plan of the paper is as follows. In Section 2 we state and prove the
stability result, Theorem 2.2. The main steps of the proof of Theorem 2.2 are
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described in a series of propositions. Proposition 2.3 contains the lower bound
estimate for the solution to the direct problem, whereas Propositions 2.4 and 2.5
concern stability estimates for a Cauchy type problem. In Section 3 the proof of
Proposition 2.3 is developed and in Section 4 we treat the Cauchy type problem
and prove Propositions 2.4 and 2.5.

2 The stability theorem

Given z ∈ C and r > 0, we denote by Br(z) the open disc with centre z
and radius r. We shall identify complex numbers z = x + iy ∈ C with points
(x, y) ∈ R2, and we shall denote complex derivatives as follows:

∂

∂z
=

1
2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂z
=

1
2

(
∂

∂x
+ i

∂

∂y

)
.

Definition 2.1 Given an integer k = 0, 1, 2, . . . , a number α, 0 < α ≤ 1, and a
simple closed curve γ, we shall say that γ is Ck,α with constants δ,M > 0 if, for
any z ∈ γ, γ ∩ Bδ(z) is given, up to a rigid transformation, by the graph {y =
g(x), x2 + y2 < δ2} of a function g ∈ Ck,α[−δ, δ] such that ‖g‖Ck,α[−δ,δ] ≤ M .
In the special case when k = 0, α = 1, we shall say that γ is a Lipschitz curve.

Prior information on the domain. Let Ω be a bounded, simply connected domain
in R2, whose boundary ∂Ω is a simple closed curve which is Lipschitz with
positive constants δ, M , and whose diameter is bounded by L. Furthermore
we decompose ∂Ω into four closed subarcs, each of length at least δ, which are
pairwise internally disjoint. Following the counterclockwise orientation of ∂Ω, we
call these subarcs Γ, Γ1

D, ΓN , Γ2
D respectively. We shall denote ΓD = Γ1

D ∪ Γ2
D.

About Γ we further assume that for a given constant α, 0 < α ≤ 1, the following
holds:

for any z0 ∈ Γ, we have that, up to a rigid change of coordinates,
Γ ∩Bδ(z0) ⊆ {z = x + iy : y = g(x)}
and Ω ∩Bδ(z0) ⊆ {z = x + iy : y < g(x)}, where
g : [−δ, δ] → R is a C1,α function satisfying ‖g‖C,α[−δ,δ] ≤ M.

(2.1)

Prior information on the boundary data. The current flux φ is a prescribed
function in L2(ΓN ) such that, for a given constant H1 > 0, we have

‖φ‖L2(ΓN ) ≤ H1. (2.2)

We define the antiderivative along ΓN of φ as

Φ =
∫

φ(s)ds,

where the indefinite integral is taken with respect to the arclength on ΓN ori-
ented in the counterclockwise direction. We suppose that, for a given constant
H2 > 0, we have

‖Φ− ΦΓN
‖L2(ΓN ) ≥ H2, (2.3)

where ΦΓN denotes the average of Φ over ΓN .
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Prior information on the Robin coefficient. We assume that the Robin coefficient
γ belongs to Cβ(Γ), 0 < β ≤ 1, and that γ ≥ 0 on Γ. More precisely, we assume
that, for a given constant H3 > 0, we have

‖γ‖Cβ(Γ) = sup
z∈Γ

|γ(z)|+ |γ|Cβ(Γ) ≤ H3, (2.4)

where

|γ|Cβ(Γ) = sup
z0,z1∈Γ
z0 6=z1

|γ(z0)− γ(z1)|
|z0 − z1|β .

The set of constants δ, M , L, α, H1, H2, H3 and β will be referred to as the
a priori data.

We consider the boundary value problem (1.1)–(1.4). A weak solution to this
problem is a function u ∈ H1(Ω), such that u|ΓD

= 0, which satisfies
∫

Ω

∇u · ∇ρ =
∫

ΓN

φρ−
∫

Γ

γuρ, for every ρ ∈ H1(Ω): ρ|ΓD = 0. (2.5)

Here and in the following we denote by u|ΓD the trace of a function u ∈ H1(Ω)
on ΓD.

Existence and uniqueness of a weak solution to (1.1)–(1.4) derive from stan-
dard theory of boundary value problems for Laplace’s equation. Moreover, from
the weak formulation of problem (1.1)–(1.4) and a Poincaré type inequality we
infer that

‖u‖H1(Ω) + ‖u‖L2(∂Ω) ≤ K̃‖φ‖L2(ΓN ), (2.6)

where K̃ > 0 depends on the a priori data only.
We shall denote, for any d > 0,

(ΩΓ)d = {z ∈ Ω : dist(z, ∂Ω\Γ) > d}, (2.7)

and
Γd = ∂(ΩΓ)d ∩ Γ. (2.8)

The main result is the following theorem.

Theorem 2.2 Let Ω, φ ∈ L2(ΓN ) and γi ∈ Cβ(Γ), i = 1, 2, satisfy the prior
assumptions described above. Let ui ∈ H1(Ω), i = 1, 2, be the weak solution to
the problem (1.1)–(1.4) when γ is replaced by γi, respectively.

Moreover, let ψi = ui|ΓN
, i = 1, 2. Suppose that, given ε > 0, we have

‖ψ1 − ψ2‖L∞(ΓN ) ≤ ε. (2.9)

Then for any d > 0 we have

‖γ1 − γ2‖L∞(Γd) ≤ ω(ε),

where ω(ε) is a positive increasing function defined on (0, +∞) that satisfies

ω(ε) ≤ K| log ε|−σ, for every ε, 0 < ε ≤ 1/e, (2.10)

where K > 0 and σ, 0 < σ < 1, depend on the a priori data and on d only.
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The proof of this theorem is obtained from the following propositions.

Proposition 2.3 Let Ω, φ ∈ L2(ΓN ) and γ ∈ Cβ(Γ) satisfy the prior assump-
tions above. Let u ∈ H1(Ω) be the weak solution to (1.1)–(1.4). There exists
d0 > 0, depending on the a priori data only, such that for any d, 0 < d ≤ d0,
there exists a finite number K of points z1, . . . , zK ∈ Ω ∪ Γ such that

|u(z)| ≥ c(d)
K∏

k=1

( |z − zk|
C̃

)bk/α̃

, for any z ∈ Γd, (2.11)

where b1, . . . , bK are positive integers satisfying

K∑

k=1

bk ≤ C(d), (2.12)

where C̃ > 0 and α̃, 0 < α̃ < 1, depend on the a priori data only, and c(d) > 0
and C(d) depend on the a priori data and on d only.

Proposition 2.4 Under the same assumptions as in Theorem 2.2, we have

‖u1 − u2‖L∞(Γ) ≤ η(ε),

where η(ε) is a positive function satisfying (2.10) with constants R > 0 and θ,
0 < θ < 1, depending on the a priori data only.

Proposition 2.5 Under the same assumptions as in Theorem 2.2, we have
∥∥∥∥

∂u1

∂ν
− ∂u2

∂ν

∥∥∥∥
L∞(Γd)

≤ η̃(ε),

where η̃(ε) is a positive function satisfying (2.10) with constants R̃ > 0 and θ̃,
0 < θ̃ < θ, depending on the a priori data and on d only.

We postpone the proof of Proposition 2.3 to Section 3 and those of Proposi-
tions 2.4 and 2.5 to Section 4. Using these results we conclude the proof of the
stability theorem.
Proof of Theorem 2.2. Since ∂ui

∂ν + γiui = 0 on Γ, i = 1, 2, we obtain

γ1 − γ2 =
−∂u1

∂ν
u1

−
−∂u2

∂ν
u2

=
∂u1

∂ν

(u1 − u2)
u1u2

+
1
u2

(
∂u2

∂ν
− ∂u1

∂ν

)
.

Using again that ∂u1
∂ν + γ1u1 = 0 on Γ

γ1 − γ2 = −γ1
(u1 − u2)

u2
+

1
u2

(
∂u2

∂ν
− ∂u1

∂ν

)
. (2.13)

We note that there exists d̃ > 0, depending on δ, M , L and α only, so that
for any d, 0 < d ≤ d̃, we can find positive constants δ̃, M̃ and M1, 0 < M1 < 1,
depending on δ, M , L, α and d only, so that the following conditions are satisfied.
Let (ΩΓ)d be defined as in (2.7) and Γd be defined as in (2.8). Then there exists
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Ω̂d so that ∂Ω̂d is a simple closed curve which is C1,α with constants δ̃, M̃ and
(ΩΓ)d ⊂ Ω̂d ⊂ (ΩΓ)M1d. Furthermore ∂Ω̂d ∩ Γ = Γ̂d is a subarc of Γ of length
at least δ/2 so that Γd ⊂ Γ̂d ⊂ {z ∈ Γ : dist(z, ∂Ω\Γ) ≥ M1d}.

Let us fix d > 0 so that d ≤ min{d̃, d0}, and let Γ̂d be the subarc of Γ of
length at least δ/2 so that Γd ⊂ Γ̂d ⊂ ΓM1d.

By (2.13), from (2.4) and Propositions 2.4 and 2.5, we infer that for any
z ∈ Γ̂d and every ε, 0 < ε ≤ 1/e,

|γ1(z)− γ2(z)| ≤ 1
|u2(z)|

(
H3R| log ε|−θ + R̃| log ε|−θ̃

)
≤ R̂

| log ε|−θ̃

|u2(z)| , (2.14)

where R̂ = H3R + R̃ > 0, and θ̃, 0 < θ̃ < θ, depend on the a priori data and
on d only.

In order to estimate γ1 − γ2 also on the points where u2 vanishes or is close
to zero, we apply Proposition 2.3 to u = u2, and we use the notation introduced
there.

Then, we consider the following subset of Γ̂d, obtained by possibly removing
from Γ̂d a finite number of discs where u2 is close to zero. We denote, for any
p, 0 < p ≤ 2C̃,

Γ̂p
d = {z ∈ Γ̂d : |z − zk| ≥ p/2, for any zk, k = 1, . . . , K}.

So we obtain

|u2(z)| ≥ c(d)
K∏

k=1

(
p

2C̃

)bk/α̃

≥ c(d)
(

p

2C̃

)C(d)/α̃

, for any z ∈ Γ̂p
d.

Then from (2.14), for any p, 0 < p ≤ 2C̃, we have

|γ1(z)− γ2(z)| ≤ R̂
| log ε|−θ̃

c(d)

(
2C̃

p

)C(d)/α̃

, for any z ∈ Γ̂p
d. (2.15)

We have that there exist p0, 0 < p0 ≤ 2C̃, and C1 > 0, depending on the
a priori data and on d only, so that for every p, 0 < p ≤ p0, the following
property holds true. For every z ∈ Bp/2(zk) ∩ Γ̂d there exists z′ ∈ Γ̂p

d so that
|z − z′| ≤ C1p. Since we have supposed ‖γi‖Cβ(Γ) ≤ H3, i = 1, 2, we have

|γi(z)− γi(z′)| ≤ H3|z − z′|β ≤ H3C
β
1 pβ , i = 1, 2,

and then

|γ1(z)− γ2(z)| ≤ |γ1(z)− γ1(z′)|+ |γ1(z′)− γ2(z′)|+ |γ2(z′)− γ2(z)| ≤

≤ 2H3C
β
1 pβ + |γ1(z′)− γ2(z′)|.

Since z′ ∈ Γ̂p
d, by (2.15), the following estimate holds for every ε, 0 < ε ≤

1/e,

|γ1(z)−γ2(z)| ≤

≤ 2H3C
β
1 pβ + R̂

| log ε|−θ̃

c(d)

(
2C̃

p

)C(d)/α̃

, for any z ∈ Γ̂d.
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It follows that, for every p, 0 < p ≤ p0, and every ε, 0 < ε ≤ 1/e,

‖γ1 − γ2‖L∞(Γd) ≤ T1p
β + T2| log ε|−θ̃p−θ1 ,

where T1, T2 and θ1 > 0 depend on the a priori data and on d only. By a
standard minimization argument the conclusion follows. ¤

3 Proof of Proposition 2.3

We remark that the prior assumptions on the domain Ω imply that Γ is a C1,α

curve with constants δ, M , and we can find a domain Ω′ so that Ω ⊂ Ω′ and
Γ ⊂ ∂Ω′ satisfying the following properties. First, the diameter of Ω′ is bounded
by L′; second its boundary ∂Ω′ is a simple closed curve which is C1,α with
constants δ′, M ′, where δ′, M ′ and L′ depend on δ, M , L and α only.

Proposition 3.1 Let U ∈ H1(Ω′) be the weak solution to the following problem:




∆U = 0 in Ω′,
U = 1 on ∂Ω′\Γ,
∂U

∂ν
+ γU = 0 on Γ.

(3.1)

We have
0 < h ≤ U(z) ≤ 1, almost everywhere in Ω′, (3.2)

where h > 0 depends on the a priori data only.

Proof. First of all we recall that a weak solution to (3.1) is a function U ∈
H1(Ω′), such that U |∂Ω′\Γ = 1, which satisfies

∫

Ω′
∇U · ∇ρ = −

∫

Γ

γUρ, for every ρ ∈ H1(Ω′): ρ|∂Ω′\Γ = 0.

Then we observe that 0 < U < 1 almost everywhere in Ω′. In fact, let
ρ = [U ]−, where [·]− denotes the negative part; then ρ ∈ H1(Ω′) and ρ|∂Ω′\Γ = 0.
Hence

0 ≥ −
∫

{U<0}
|∇U |2 = −

∫

Γ

γU [U ]− =
∫

Γ

γ([U ]−)2 ≥ 0.

Therefore [U ]−|Γ = 0, then U ≥ 0 almost everywhere in Ω′, and, by the strong
maximum principle, U > 0 almost everywhere in Ω′. In an analogous way, we
can show that U < 1 almost everywhere in Ω′.

Let us also fix a domain Ω0 ⊂ {z = x + iy ∈ C : −1/2 < x ≤ 0, π/4 <
y < 3π/4}, so that ∂Ω0 is a closed curve which is C1,α with constants δ and M .
We further assume that Γ0 = {z = x + iy ∈ C : x = 0, π/3 < y < 2π/3} is
contained in ∂Ω0. Let F : Ω′ −→ Ω0 be a conformal mapping so that F (Γ) = Γ0.
By boundary regularity estimates for conformal mappings, see for instance [P,
Chapter 3], we infer that F and its inverse F−1 are C1 up to the boundary and
there exists a constant K1, depending on the a priori data only, so that

‖F‖C1(Ω′) ≤ K1; ‖F−1‖C1(Ω0)
≤ K1. (3.3)
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Let us define Ũ = U ◦ F−1. We know that Ũ ∈ H1(Ω0) and Ũ |∂Ω0\Γ0 = 1,
and that Ũ is a weak solution to the following problem:





∆Ũ = 0 in Ω0,

Ũ = 1 on ∂Ω0\Γ0,

∂Ũ

∂ν
+ γ̃Ũ = 0 on Γ0,

where

γ̃ =
γ ◦ F−1

| detJF | ,

and JF denotes the Jacobian matrix of F . By (3.3) and the prior information
on γ, we have

0 ≤ γ̃ ≤ k,

where k depends on the a priori data only.
We introduce the following barrier function

U1(z) =
(

1− k

1 + k
ex + e−x

)
sin y.

We have that ∆U1 = 0 on the whole plane, ∂U1
∂x +kU1 = 0 on x = 0, and U1 > 0

for 0 < y < π and x < 0. Moreover, we notice that max∂Ω0\Γ0 U1 < Q, where
Q = 1−k

1+k + e1/2 > 0, and min∂Ω0 U1 > q, where q > 0 is a constant depending
on k only.

Let us denote W = Ũ − 1
QU1. Hence W ∈ H1(Ω0), and it satisfies





∆W = 0 in Ω0,
W > 0 on ∂Ω0\Γ0,
∂W

∂ν
+ γ̃W = (k − γ̃)

1
Q

U1 ≥ 0 on Γ0,

and consequently, from the maximum principle, with an argument analogous to
the one used at the beginning of this proof, we obtain that W > 0 in Ω0. Thus
Ũ > 1

QU1, and, choosing h = q/Q, (3.2) follows. ¤
Now, we write the weak solution to (1.1)–(1.4) as u = Uv, where U is the

weak solution to (3.1). As a consequence the function v ∈ H1(Ω) is a weak
solution to the following problem:





div(U2∇v) = 0 in Ω,
v = 0 on ΓD,

U2 ∂v

∂ν
= Uφ− u

∂U

∂ν
on ΓN ,

U2 ∂v

∂ν
= 0 on Γ.

(3.4)

We observe that the function φ̃ given by φ̃ = Uφ− u∂U
∂ν belongs to L2(ΓN )

and
‖φ̃‖L2(ΓN ) ≤ K2H1, (3.5)

where K2 > 0 depends on the a priori data only. This follows from (2.6) and
from the fact that if U ∈ H1(Ω′) is a weak solution to the problem (3.1), we have
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that |U | ≤ 1 on ΓN and, by standard regularity estimates up to the boundary,
|∂U

∂ν | is uniformly bounded on ΓN by a constant depending on the a priori data
only.

Since Ω is simply connected, there exists a function w ∈ H1(Ω) that satisfies

∇w =
(

0 −1
1 0

)
U2∇v, almost everywhere in Ω, (3.6)

see [A-M, Theorem 2.1]. The function w is called the stream function associated
with v, a notion which generalizes the one of harmonic conjugate. We have that
w is a weak solution to the following problem, for some constant c,





div(
1

U2
∇w) = 0 in Ω,

∂w

∂ν
= 0 on ΓD,

w = Φ̃ on ΓN ,
w = c on Γ,

(3.7)

where Φ̃ =
∫

φ̃(s)ds.

Lemma 3.2 The function Φ̃ satisfies

‖Φ̃− Φ̃ΓN
‖L2(ΓN ) ≥ K3,

where K3 > 0 depends on the a priori data only.

Proof. By an interpolation inequality and Poincaré inequality, we have that

‖Φ̃− Φ̃ΓN
‖

H
1
2 (ΓN )

≤ N1‖Φ̃− Φ̃ΓN
‖

1
2
L2(ΓN )‖φ̃‖

1
2
L2(ΓN ),

where N1 > 0 depends on the a priori data only. By (3.5), we obtain

‖Φ̃− Φ̃ΓN
‖L2(ΓN ) ≥

‖Φ̃− Φ̃ΓN ‖2
H

1
2 (ΓN )

N2
1 ‖φ̃‖L2(ΓN )

≥
‖Φ̃− Φ̃ΓN ‖2

H
1
2 (ΓN )

N2
1 K2H1

. (3.8)

We have that there exists a positive constant N2, depending on the a priori
data only, so that

‖Φ̃− Φ̃ΓN
‖2

H
1
2 (ΓN )

≥ N2 min
ρ∈H1(Ω)

ρ|ΓN
=Φ̃−Φ̃ΓN

ρ|Γ=const.

∫

Ω

1
U2
∇ρ · ∇ρ = N2

∫

Ω

1
U2
∇w · ∇w

and from (3.6), (3.2) and a Poincaré type inequality
∫

Ω

1
U2
∇w · ∇w =

∫

Ω

U2∇v · ∇v ≥ h2N3‖v‖2L2(ΓN ),

where N3 > 0 depends on the a priori data only. Therefore from v = u/U and
(3.2) again, we obtain

‖v‖L2(ΓN ) ≥ ‖u‖L2(ΓN ).
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The solution u to (2.5) trivially satisfies
∫

Ω

|∇u|2 ≤ ‖φ‖L2(ΓN )‖u‖L2(ΓN ),

and hence

‖Φ̃− Φ̃ΓN
‖

H
1
2 (ΓN )

≥ h
√

N2N3

H1

∫

Ω

|∇u|2 =
h
√

N2N3

H1

∫

Ω

|∇ũ|2, (3.9)

where ũ is a harmonic conjugate of u; by a Poincaré type inequality and a trace
inequality we infer that:

‖Φ− ΦΓN
‖L2(ΓN ) = ‖ũ− ũΓN

‖L2(ΓN ) ≤ N4‖∇ũ‖L2(Ω),

where N4 > 0 depends on the a priori data only. Then the conclusion follows
by using (2.3) and coupling this last equation with (3.8) and (3.9). ¤

Let us denote f = v + iw; f is a complex valued function, defined in Ω, that
satisfies

fz = µfz + νfz almost everywhere in Ω, (3.10)

where µ and ν are bounded, measurable, complex valued coefficients, satisfying

|µ|+ |ν| ≤ k < 1 almost everywhere in Ω, (3.11)

with k depending on h only (see [A-M] and also [A-R1, Proposition 3.1]).
We recall that, for any k, 0 ≤ k < 1, a function f is called k-quasiregular in

a domain D if it is an H1 solution to (3.10), (3.11), see for instance [L, B-J-S].
We observe that Φ̃ is Hölder continuous on ΓN , with constants depending on

the a priori data only. We also recall that ∂Ω is Lipschitz. Using these facts and
a reflection argument along ΓD, from standard regularity estimates for elliptic
equations we have that w, weak solution to (3.7), satisfies the following Hölder
condition on Ω

|w(z0)− w(z1)| ≤ K4|z0 − z1|α1 , for any z0, z1 ∈ Ω, (3.12)

where K4 > 0, α1, 0 < α1 < 1, depend on the a priori data only.
Since w is the stream function of v, that is the weak solution to (3.4), we

have that also v satisfies a Hölder condition on Ω

|v(z0)− v(z1)| ≤ K5|z0 − z1|α2 , for any z0, z1 ∈ Ω, (3.13)

where K5 > 0, α2, 0 < α2 < 1, depend on the a priori data only. This is a
rather straightforward consequence of the representation theorem for quasireg-
ular mappings ([B-N, p. 116]) and of Privaloff’s theorem ([B-J-S, Part II, Chap-
ter 6, Theorem 5]).

We say that a mapping χ is bi-Lipschitz if it is a homeomorphism such that
χ and its inverse are Lipschitz continuous.

By locally deforming ∂Ω, we can construct a bi-Lipschitz, orientation pre-
serving mapping χ1 from Ω onto the square Ω1 = [−1, 0] × [0, 1], such that
the four subarcs decomposing ∂Ω are sent onto the four sides of the square,
respectively. We denote Γ̃ = χ1(Γ) = {z = x + iy ∈ C : x = 0, 0 < y < 1}.
From the prior assumptions on Ω, we can find such χ1 so that ‖χ1‖C0,1(Ω) and
‖χ−1

1 ‖C0,1(Ω1) are bounded by a constant depending on δ, M and L only.
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Let us reflect Ω1 in Γ̃ and consider the so obtained rectangle Ω̃ = [−1, 1] ×
[0, 1]. On Ω̃, we define the complex valued function f̃ = ṽ + iw̃ as follows

f̃(x, y) =
{

f ◦ χ−1
1 (x, y) if − 1 < x ≤ 0,

f ◦ χ−1
1 (−x, y) + 2ci if 0 < x < 1.

We have that f̃ satisfies f̃z = µ̃f̃z + ν̃f̃z almost everywhere in Ω̃, where µ̃ and
ν̃ are bounded, measurable, complex valued coefficients, satisfying |µ̃| + |ν̃| ≤
k̃ < 1 almost everywhere in Ω̃, with k̃ depending on the a priori data only.
From (3.12) and (3.13) we also obtain that f̃ is Hölder continuous on Ω̃.

Now, let us denote, for any d > 0,

Ω̃d = {z ∈ Ω̃ : dist(z, ∂Ω̃) > d} and Γ̃d = Ω̃d ∩ Γ̃.

We prove an estimate from below for |f̃ | on Γ̃d.

Proposition 3.3 Under the previous assumptions, there exists a constant d0 >

0, depending on the a priori data only, such that for any z0 ∈ Ω̃ and for any d,
0 < d ≤ d0, there exists a finite number K of points z1, . . . , zK ∈ Ω̃ such that

|f̃(z)− f̃(z0)| ≥ c′(d)
K∏

k=1

( |z − zk|
C ′

)bk/α′

, for any z ∈ Ω̃d, (3.14)

where b1, . . . , bK are positive integers such that

K∑

k=1

bk ≤ C ′(d), (3.15)

and where C ′ > 0 and α′, 0 < α′ < 1, depend on the a priori data only, and
c′(d) > 0 and C ′(d) depend on the a priori data and on d only.

Proof. One can verify that log |f̃ − f̃(z0)| is a solution to an elliptic equation
with isolated singularities at the points z1, . . . , zK . The estimates (3.14), (3.15)
are then obtained by the use of Harnack’s inequality, the maximum principle
and Lemma 3.2. See for details the proof of Theorem 3.3 in [A-R2]. ¤

Now we have what we need to prove the estimate from below for |u| on Γd.
Proof of Proposition 2.3. Let u ∈ H1(Ω) be the weak solution to (1.1)–
(1.4), and f̃ the function constructed above. Take z0 = 0; clearly z0 ∈ Γ̃ and
then, by Proposition 3.3, since w̃|Γ̃ = c for some constant c, and ṽ(0) = 0, we
obtain that for any d, 0 < d ≤ d0, there exists a finite number K of points
z1, . . . , zK ∈ Ω̃ such that

|ṽ(z)| ≥ c′(d)
K∏

k=1

( |z − zk|
C ′

)bk/α′

, for any z ∈ Γ̃d, (3.16)

where b1, . . . , bK are positive integers such that
∑K

k=1 bk ≤ C ′(d). Here the
constants used are equal to the ones appearing in Proposition 3.3.

Then the proof immediately follows from (3.16) by noticing that v = ṽ ◦ χ1,
where χ1 is a bi-Lipschitz mapping, and u = Uv, with U ≥ h > 0. ¤
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4 Stability for the Cauchy problem

Under the assumptions of Theorem 2.2, let ui ∈ H1(Ω) be the weak solution to
(1.1)–(1.4), with data φ ∈ L2(ΓN ), γ = γi ∈ Cβ(Γ), and ψi = ui|ΓN

, i = 1, 2.
Let ũi ∈ H1(Ω), i = 1, 2, be a harmonic conjugate of ui. We have that ũi,

i = 1, 2, is a weak solution to the following problem:




∆ũi = 0 in Ω,
∂ũi

∂ν
= 0 on ΓD,

ũi = Φ on ΓN ,
ũi = Ψi on Γ,

(4.1)

where Φ =
∫

φ(s)ds and Ψi = − ∫
γi(s)ui(s)ds, i = 1, 2. We recall that ũi,

i = 1, 2, is defined up to an additive constant.
Now, let us denote F = u1 − u2 + i(ũ1 − ũ2); F is a holomorphic function,

defined on Ω, and we choose the additive constants of ũ1 and ũ2 so that =F = 0
on ΓN and thus, from (2.9), we have that

sup
ΓN

|F | ≤ ε.

We are interested in the following Cauchy problem:
{

Fz = 0 almost everywhere in Ω,
|F | ≤ ε on ΓN .

(4.2)

By recalling the prior assumptions and (2.6), we have that Φ and Ψi, i = 1, 2,
are Hölder continuous, hence by arguments already used to prove (3.12) and
(3.13), we obtain that ui and ũi, i = 1, 2, are Hölder continuous on Ω, with
constants depending on the a priori data only. So we have that F satisfies

|F (z0)− F (z1)| ≤ R1|z0 − z1|β1 , for any z0, z1 ∈ Ω, (4.3)

where R1 > 0 and β1, 0 < β1 < 1, depend on the a priori data only. Then it
is easy to infer that there exists a constant R2 > 0, depending on the a priori
data only, such that

sup
Ω

|F | = R2. (4.4)

Proof of Proposition 2.4. The stability of the Cauchy type problem (4.2),
with the a priori bounds (4.3), (4.4), can be derived by the method of harmonic
measure (see for example [L-R-S]). Use is also made of the fact that Ω satisfies
a uniform interior cone condition. This property of Ω is an easy consequence
of the fact that its boundary is Lipschitz with constants δ, M . Details can be
found, for instance, in [A]. ¤

Lemma 4.1 Let u ∈ H1(Ω) solve (1.1)–(1.4) and let d be a positive constant.
Then ∇u is Hölder continuous on (ΩΓ)d

|∇u(z0)−∇u(z1)| ≤ R3|z0 − z1|β2 , for any z0, z1 ∈ (ΩΓ)d, (4.5)

where R3 > 0, β2, 0 < β2 < 1, depend on the a priori data and on d only.

12



Proof. From the fact that u is Hölder continuous in Ω, γ ∈ Cβ(Γ), and from the
condition ∂u

∂ν = −γu on Γ, it follows that ∂u
∂ν is Hölder continuous on Γ. Then,

since Γ is a C1,α curve, we have that ũ, the harmonic conjugate of u, belongs to
C1,β3 on Γ, where β3, 0 < β3 < 1, depends on the a priori data only. So (4.5)
follows from standard boundary regularity results for the Dirichlet problem. ¤
Proof of Proposition 2.5. We recall the notations introduced in the proof
of Theorem 2.2, page 5. We assume, without loss of generality, that d is so that
0 < d ≤ d̃ and we consider the C1,α domain Ω̂d so that (ΩΓ)d ⊂ Ω̂d ⊂ (ΩΓ)M1d,
0 < M1 < 1 depending on the a priori data and on d only.

From Lemma 4.1 we can find constants R4 > 0 and β4, 0 < β4 < 1, depend-
ing on the a priori data and on d only, such that

|∇(u1 − u2)|Cβ4 (Ω̂d)
≤ R4. (4.6)

We apply the following interpolation inequality (see for related inequalities
[G-T, Section 6.8])

‖∇(u1 − u2)‖L∞(Ω̂d) ≤ R5

(
|∇(u1 − u2)|

1
1+β4

Cβ4 (Ω̂d)
‖u1 − u2‖

β4
1+β4

L∞(Ω̂d)
+

+ ‖u1 − u2‖L∞(Ω̂d)

)
, (4.7)

where R5 depends on the a priori data and on d only.
Since

∥∥∂u1
∂ν − ∂u2

∂ν

∥∥
L∞(Γd)

≤ ‖∇u1 − ∇u2‖L∞(Γ̂d), where Γ̂d = ∂Ω̂d ∩ Γ, the
proof can be concluded by inserting (4.6) into (4.7) and by using Proposition 2.4
to estimate ‖u1 − u2‖L∞(Ω). ¤
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