A NOTE ON FUZZY SEMI-IRRESOLUTE AND STRONGLY IRRESOLUTE FUNCTIONS

Seong Hoon Cho and Jae Keun Park

Abstract

In this paper, we have some characterizations of fuzzy semi-irresolute and strongly irresolute functions.

1. Introduction

In 1989, M. N. Mukherjee and S. P. Sinha [12] introduced the notion of fuzzy irresolute function and investigated some of its properties. Since then, modified fuzzy continuous functions has been extensively studied.
S. Malaker [10] introduced the concepts of fuzzy semi-irresolute function and fuzzy strongly irresolute function, and obtained several characterizations of these functions.

The purpose of this paper is to give several characterizations of fuzzy semi-irresolute and fuzzy strongly irresolute functions. We obtain some of these characterizations through the introduction of type of convergences for fuzzy nets that we call $R N$-convergence and $S N$-convergence. Moreover, we obtain a characterization of $R N$-convergence through the concept of fuzzy regular semi-open sets, and then we obtain a characterization of fuzzy semi-irresolute functions.

2. Preliminaries

For an ordinary set X and the closed unit interval $I=[0,1]$ of the real line, a fuzzy set A of X is a mapping from X into I. Throughout the paper, by (X, T) and $\left(Y, T^{*}\right)$ (or simply X and Y) we shall mean fuzzy topological spaces in Chang's sense [2].

A fuzzy singleton [13] with support x and value α, where $0<\alpha \leq 1$, is denoted by x_{α}. A fuzzy singleton x_{α} is said to belong to a fuzzy set A (written $x_{\alpha} \in A$) if $\alpha \leq A(x)$. By 0_{X} and 1_{X} we will mean the constant fuzzy sets taking on respectively the values 0 and 1 on X.

For fuzzy sets A and B in X, we say that B includes A (written $A \leq B)$ if $A(x) \leq B(x)$ for each $x \in X$. For a fuzzy set A in X, the notations $C l(A), \operatorname{Int}(A)$ and $1_{X}-A$ will respectively stand for the fuzzy closure, fuzzy interior and complement of A. For fuzzy sets A and B in X, we write $A q B$ to mean that A is quasi-coincident [13] with $B . B$ is a quasi-neighborhood [13](simply, q-nbd) of A if there exists a fuzzy open set U such that $A q U \leq B$.

A fuzzy set A in X is called fuzzy semi-open set [1] if there exists a fuzzy open set B such that $B \leq A \leq C l(B)$, or equivalentely $A \leq$ $C l(\operatorname{Int}(A))$. The complement of a fuzzy semi-open set is called a fuzzy closed set. The intersection of all fuzzy semi-closed sets containing A is called the fuzzy semi-closure [7] of A and is denoted by ${ }_{s} C l(A)$. The union of all fuzzy semi-open sets contained in a fuzzy set A in X is called the fuzzy semi-interior of A and is denoted by ${ }_{s} \operatorname{Int}(A)$.

A fuzzy set A is fuzzy semi-closed if and only if $A={ }_{s} C l(A)$ and is fuzzy semi-open if and only if $A={ }_{s} \operatorname{Int}(A)$.

A fuzzy set A in X is called a semi-q-nbd [7] of a fuzzy singleton x_{α} in X if there exists a fuzzy semi-open set V in X such that $x_{\alpha} q V \leq A$. It is well know that [7] the semi-closure ${ }_{s} C l(A)$ of a fuzzy set A in X is the union of all fuzzy singleton x_{α} such that every fuzzy semi-open semi-q-nbd of x_{α} is q-coincident with A. A fuzzy singleton x_{α} is said to be a fuzzy semi- θ-cluster point [14] of a fuzzy set A in X if the fuzzy semi-closure of every fuzzy semi-open semi-q-nbd of x_{α} is q-coincident with A. The union of all fuzzy semi- θ-cluster points of A is called the semi- θ-closure [14] of A and is denoted by ${ }_{s} C l_{\theta}(A)$. A fuzzy set A in X is called fuzzy semi- θ-closed [14] if $A={ }_{s} C l_{\theta}(A)$, and complement of a fuzzy semi- θ-closed set is fuzzy semi- θ-open set.

For a fuzzy set A in $X, A \leq{ }_{s} C l(A) \leq{ }_{s} C l_{\theta}(A)$ and hence each fuzzy semi- θ-closed set is a fuzzy semi-closed.

A fuzzy set A in X is called fuzzy regular semi-open [11] if there exists a fuzzy regular open set U such that $U \leq A \leq C l(U)$. It is clear that every fuzzy regular semi-open set is a fuzzy semi-open set.

In the following, we provide some Lemmas which are going to be used in the sequel.

Lemma 2.1. For a fuzzy set A in X, we have that
(1) ${ }_{s} \operatorname{Int}_{\theta}\left(1_{X}-A\right)=1_{X}-{ }_{s} C l_{\theta} A$,
(2) ${ }_{s} C l_{\theta}\left(1_{X}-A\right)=1_{X}-{ }_{s}$ Int $_{\theta} A$.

Lemma 2.2 [10]. For a fuzzy semi-open set A in $X,{ }_{s} C l(A)={ }_{s} C l_{\theta}(A)$.
Lemma 2.3 [3]. For a fuzzy set A in X, the following statements are equivalent:
(1) A is fuzzy regular semi-open;
(2) $1_{X}-A$ is fuzzy regular semi-open;
(3) $A={ }_{s} C l\left({ }_{s} \operatorname{Int}(A)\right)$;
(4) A is fuzzy semi-clopen;
(5) there exists a fuzzy regular open set U in X such that $U \leq A \leq$ $C l(U)$.

From Lemma 2.1, 2.2 and 2.3, we get the following result.
Lemma 2.4. A fuzzy set A in X is a fuzzy regular semi-open set if and only if A is a fuzzy semi- θ-clopen set in X.

Lemma 2.5 [3]. For a fuzzy semi-open set A in X, the fuzzy set ${ }_{s} C l(A)$ is a fuzzy regular semi-open set in X.

3. Characterizations

Definition 3.1 [10]. A function $f: X \rightarrow Y$ is said to be fuzzy semi-irresolute(resp. fuzzy strongly irresolute) if for any fuzzy singleton x_{α} in X and each fuzzy semi-open set V containing $f\left(x_{\alpha}\right)$, there exists a fuzzy semi-open set U containing x_{α} such that $f(U) \leq{ }_{s} C l(V)$ (resp. $\left.f\left({ }_{s} C l(U)\right) \leq V\right)$.

In this section, we obtain several characterizations of fuzzy semiirresolute and fuzzy strongly irresolute functions.

Theorem 3.1. For a function $f: X \rightarrow Y$, the following statements are equivalent:
(1) f is fuzzy semi-irresolute;
(2) for each fuzzy singleton $x_{\alpha} \in X$ and each fuzzy regular semi-open set V containing $f\left(x_{\alpha}\right)$, there exists a fuzzy regular semi-open set U containing x_{α} such that $f(U) \leq V$;
(3) for each fuzzy singleton $x_{\alpha} \in X$ and each fuzzy regular semi-open set V containing $f\left(x_{\alpha}\right)$, there exists a fuzzy semi-open set U containing x_{α} such that $f\left({ }_{s} C l(U)\right) \leq V$.

Proof. (1) $\Longrightarrow(2)$. Let x_{α} be a fuzzy singleton in X and V be a fuzzy regular semi-open V containing $f\left(x_{\alpha}\right)$. Then V is a fuzzy semiopen set. By Theorem 2.9 [10], there exists fuzzy semi-open set G containing x_{α} such that $f\left({ }_{s} C l(G)\right) \leq{ }_{s} C l(V)=V$. Then $U={ }_{s} C l(G)$ is a fuzzy regular semi-open set and $f(U) \leq V$.
$(2) \Longrightarrow(3)$. Let x_{α} be a fuzzy singleton in X and V be a fuzzy regular semi-open set in Y containing $f\left(x_{\alpha}\right)$. By (2), there exists a regular semiopen set U containing x_{α} such that $f(U) \leq V$. Then U is a fuzzy semi-clopen set and $f\left({ }_{s} C l(U)\right) \leq V$.
$(3) \Longrightarrow(1)$. Let x_{α} be a fuzzy singleton in X and V be a fuzzy semiopen set V containing $f\left(x_{\alpha}\right)$. Then ${ }_{s} C l(V)$ is a fuzzy regular semi-open set containing $f\left(x_{\alpha}\right)$, and so there is a fuzzy semi-open set U containing x_{α} such that $f\left({ }_{s} C l(U)\right) \leq{ }_{s} C l(V)$. From Theorem 2.9 [10], f is semiirresolute.

Theorem 3.2. For a function $f: X \rightarrow Y$, the following statements are equivalent:
(1) f is fuzzy semi-irresolute;
(2) for each fuzzy singleton x_{α} in X and each fuzzy semi- θ-clopen set V containing $f\left(x_{\alpha}\right)$, there exists a fuzzy semi- θ-clopen set U containing x_{α} such that $f(U) \leq V$;
(3) $f^{-1}(V)$ is fuzzy regular semi-open for every fuzzy regular semi-open set V in Y;
(4) $f^{-1}(V) \leq{ }_{s} \operatorname{Int}_{\theta}\left(f^{-1}\left({ }_{s} C l_{\theta}(V)\right)\right)$ for every fuzzy semi-open set V in Y;
(5) ${ }_{s} C l_{\theta}\left(f^{-1}\left({ }_{s} \operatorname{Int}_{\theta}(V)\right)\right) \leq f^{-1}(V)$ for any fuzzy semi-closed set V in Y;
(6) ${ }_{s} C l_{\theta}\left(f^{-1}(V)\right) \leq f^{-1}\left({ }_{s} C l_{\theta}(V)\right)$ for any fuzzy semi-open set V in Y.

Proof. (1) $\Longleftrightarrow(2)$. It follows from Lemma 2.4 and Theorem 3.1.
$(2) \Longrightarrow(3)$. Let V be a fuzzy regular semi-open set in Y. By Theorem $2.6[10],{ }_{s} C l\left(f^{-1}(V)\right) \leq f^{-1}\left({ }_{s} C l_{\theta}(V)\right)=f^{-1}\left({ }_{s} C l(V)\right)=f^{-1}(V)$ and hence $f^{-1}(V)$ is fuzzy semi-closed. Since $1_{Y}-V$ is fuzzy regular semiopen, $1_{X}-f^{-1}(V)=f^{-1}\left(1_{Y}-V\right)$ is also fuzzy semi-closed. Therefore, $f^{-1}(V)$ is a fuzzy regular semi-open set.
$(3) \Longrightarrow(4)$. Let V be a fuzzy semi-open set in Y. Then ${ }_{s} C l_{\theta}(V)$ is fuzzy regular semi-open set, and so $f^{-1}\left({ }_{s} C l_{\theta}(V)\right)$ is a fuzzy regular semi-open set and fuzzy semi- θ-open set. Since $f^{-1}(V) \leq f^{-1}\left({ }_{s} C l_{\theta}(V)\right)$, $f^{-1}(V) \leq{ }_{s} \operatorname{Int}_{\theta} f^{-1}\left({ }_{s} C l_{\theta}(V)\right)$.
$(4) \Longrightarrow(5)$. Let V be a fuzzy semi-closed set in Y. Then $1_{Y}-V$ is
fuzzy semi-open set in Y. By (4) and Lemma 2.1, we have that

$$
\begin{aligned}
& 1_{X}-f^{-1}(V) \\
= & f^{-1}\left(1_{Y}-V\right) \\
\leq & { }_{s} \operatorname{Int}_{\theta}\left(f^{-1}\left({ }_{s} \operatorname{Cl}_{\theta}\left(1_{Y}-V\right)\right)\right) \\
= & { }_{s} \operatorname{Int}_{\theta}\left(f^{-1}\left(1_{Y}-{ }_{s} \operatorname{Int} t_{\theta}(V)\right)\right) \\
= & { }_{s} \operatorname{Int}_{\theta}\left(1_{X}-f^{-1}\left({ }_{s} \operatorname{Int} t_{\theta}(V)\right)\right) \\
= & 1_{X}-{ }_{s} \operatorname{Cl}_{\theta}\left(f^{-1}\left({ }_{s} \operatorname{Int} t_{\theta}(V)\right)\right) .
\end{aligned}
$$

Therefore, ${ }_{s} C l_{\theta}\left(f^{-1}\left({ }_{s} \operatorname{Int}_{\theta}(V)\right)\right) \leq f^{-1}(V)$.
$(5) \Longrightarrow(6)$. Let V be a fuzzy semi-open set in Y. Then ${ }_{s} C l(V)$ is fuzzy regular semi-open and so ${ }_{s} C l(V)$ is semi- θ-clopen. By (5),

$$
\begin{gathered}
{ }_{s} C l_{\theta}\left(f^{-1}(V)\right) \leq{ }_{s} C l_{\theta}\left(f^{-1}\left({ }_{s} C l(V)\right)\right. \\
={ }_{s} C l_{\theta}\left(f^{-1}\left({ }_{s} \operatorname{Int}_{\theta}\left({ }_{s} C l(V)\right)\right)\right) \leq f^{-1}\left({ }_{s} C l(V)\right)=f^{-1}\left({ }_{s} C l_{\theta}(V)\right) .
\end{gathered}
$$

$(6) \Longrightarrow(3)$. Let V be a fuzzy regular semi-open set in Y. Then V is fuzzy semi-clopen. By (6), ${ }_{s} C l_{\theta}\left(f^{-1}(V)\right) \leq f^{-1}\left({ }_{s} C l_{\theta}(V)\right)=$ $f^{-1}\left({ }_{s} C l(V)\right)=f^{-1}(V)$. So $f^{-1}(V)={ }_{s} C l_{\theta}\left(f^{-1}(V)\right)$ and $f^{-1}(V)$ is a semi- θ-closed set. Since V is a fuzzy regular semi-open set, $1_{Y}-V$ is a fuzzy regular semi-open set. Thus $f^{-1}\left(1_{Y}-V\right)=1_{X}-f^{-1}(V)$ is a semi- θ-closed set, and hence $f^{-1}(V)$ is a semi- θ-open set. Therefore, $f^{-1}(V)$ is a semi- θ-clopen set, and hence regular semi-open set.
$(3) \Longrightarrow(1)$. This implication immediately follows from Theorem 2.9 [10], Lemma 2.3 and 2.4.

From Lemma 2.2, 2.4, 2.5 and Theorem 2.9 [10], we get the following result.

Corollary 3.1. A function $f: X \rightarrow Y$ is semi-irresolute if and only if for each singleton x_{α} in X and each semi-open set V containing $f\left(x_{\alpha}\right)$, there exists a fuzzy semi- θ-open set U containing x_{α} such that $f\left({ }_{s} C l_{\theta}(U)\right) \leq{ }_{s} C l(V)$.

From Theorem 2.2 and 2.9 of [10], we have the following result.
Proposition 3.3. A function $f: X \rightarrow Y$ is semi-irresolute if and only if for each singleton x_{α} in X and each semi- $q-n b d V$ of $f\left(x_{\alpha}\right)$, there exists a fuzzy semi-q-nbd U of x_{α} in X such that $f\left({ }_{s} C l(U)\right) \leq{ }_{s} C l(V)$.

Theorem 3.4. For a function $f: X \rightarrow Y$, the following statements are equivalent:
(1) f is fuzzy semi-irrsolute;
(2) ${ }_{s} C l_{\theta}\left(f^{-1}(B)\right) \leq f^{-1}\left({ }_{s} C l_{\theta}(B)\right)$ for any fuzzy set B in Y;
(3) $f\left({ }_{s} C l_{\theta}(A)\right) \leq{ }_{s} C l_{\theta}(f(A))$ for any fuzzy set A in X;
(4) $f^{-1}(F)$ is fuzzy semi- θ-closed for every fuzzy semi- θ-closed F in Y;
(5) $f^{-1}(V)$ is fuzzy semi- θ-open for every fuzzy semi- θ-open V in Y.

Proof. (1) $\Longrightarrow(2)$. Let B be any fuzzy set in Y and $x_{\alpha} \notin$ $f^{-1}\left({ }_{s} C l_{\theta}(B)\right)$. Then $f\left(x_{\alpha}\right) \notin{ }_{s} C l_{\theta}(B)$, and so there is a fuzzy semiopen semi-q-nbd V of $f\left(x_{\alpha}\right)$ such that ${ }_{s} C l(V) \not q B$. By Proposition 3.3, there exists a semi-q-nbd U of x_{α} such that $f\left({ }_{s} C l(U)\right) \leq{ }_{s} C l(V)$. Thus $f\left({ }_{s} C l(U)\right) \not q B$, and so $f\left({ }_{s} C l(U)\right) \leq 1_{Y}-B$ and ${ }_{s} C l(U) \leq f^{-1}\left(1_{Y}-B\right)$. Therefore, ${ }_{s} C l(U) \not q f^{-1}(B)$ and $x_{\alpha} \notin{ }_{s} C l_{\theta}\left(f^{-1}(B)\right)$.
$(2) \Longrightarrow(3)$. Let A be a fuzzy set in X. Then ${ }_{s} C l_{\theta}(A) \leq{ }_{s} C l_{\theta}\left(f^{-1}\right.$ $(f(A)))$. By $(2),{ }_{s} C l_{\theta}\left(f^{-1}(f(A))\right) \leq f^{-1}\left({ }_{s} C l_{\theta}(f(A))\right)$. Thus $f\left({ }_{s} C l_{\theta}(A)\right)$ $\leq f\left(f^{-1}\left({ }_{s} C l_{\theta}(f(A))\right)\right) \leq{ }_{s} C l_{\theta}(f(A))$.
$(3) \Longrightarrow(4)$. Let F be a fuzzy semi- θ-closed set in Y. Then

$$
f\left({ }_{s} C l_{\theta}\left(f^{-1}(F)\right)\right) \leq{ }_{s} C l_{\theta}\left(f\left(f^{-1}(F)\right)\right) \leq{ }_{s} C l_{\theta}(F)=F .
$$

Thus ${ }_{s} C l_{\theta}\left(f^{-1}(F)\right) \leq f^{-1}(F)$ and $f^{-1}(F)$ is a fuzzy semi- θ-closed set in X.
$(4) \Longrightarrow(5)$. This implication is obvious.
$(5) \Longrightarrow(1)$. It follows from Theorem 2.6 [10], because each semi- θ open set is a semi-open set.

Theorem 3.5. A function $f: X \rightarrow Y$ is fuzzy strongly irresolute if and only if for each fuzzy singleton x_{α} in X and each fuzzy semi-open set V containing $f\left(x_{\alpha}\right)$, there exists a fuzzy regular semi-open set U containing x_{α} such that $f(U) \leq V$.

Proof. It follows immediately from Lemma 2.3 and 2.5 .
Definition 3.2 [9]. Let (D, \geq) be a directed set. A fuzzy net in a fuzzy space X is a map $\phi: D \rightarrow \mathcal{B}_{F}(X)$, where $\mathcal{B}_{F}(X)$ is the collection of all fuzzy singletons in X. We also denote ϕ by $\{\phi(d): d \in D\}$ or $(\phi(d))$.

Definition 3.3. A fuzzy net $(\phi(d))$ in a fuzzy space X is said to θN - converges to a fuzzy singleton x_{α} in X if for each fuzzy open set U containing x_{α}, there exists d_{0} such that $\phi(d) \in C l(U)$ for all $d \geq d_{0}$.

Definition 3.4. A fuzzy net $(\phi(d))$ in a fuzzy space X is said to $R N$-converges to a fuzzy singleton x_{α} in X if for each fuzzy semi-open set U containing x_{α}, there exists d_{0} such that $\phi(d) \in{ }_{s} C l(U)$ for all $d \geq d_{0}$.

Definition 3.5. A fuzzy net $(\phi(d))$ in a fuzzy space X is said to $S N$ converges(resp. $S^{\prime} N$-converges) to a fuzzy singleton x_{α} in X if for each fuzzy semi-open(resp. semi- θ-open) set U containing x_{α}, there exists d_{0} such that $\phi(d) \in U\left(\right.$ resp. $\left.\phi(d) \in{ }_{s} C l_{\theta}(U)\right)$ or all $d \geq d_{0}$.

It is easy to see that the following Lemma holds.
Lemma 3.1. For a fuzzy net $(\phi(d))$ in a fuzzy space X, (1) if $(\phi(d)) R N$-converges to x_{α}, then $(\phi(d)) \theta N$-converges to x_{α}.
(2) if $(\phi(d)) S N$-converges to x_{α}, then $(\phi(d)) S^{\prime} N$-converges to x_{α}.
(3) if $(\phi(d)) S^{\prime} N$-converges to x_{α}, then $(\phi(d)) R N$-converges to x_{α}.

THEOREM 3.6. For a function $f: X \rightarrow Y$, the following statements are equivalent:
(1) f is fuzzy semi-irresolute;
(2) for each fuzzy singleton x_{α} in X and each fuzzy net $(\phi(d))$ in X which $R N$-converges to x_{α}, the net $(f(\phi(d))) R N$-converges to $f\left(x_{\alpha}\right)$;
(3) for each fuzzy singleton x_{α} in X and each fuzzy net $(\phi(d))$ in X which $S^{\prime} N$-converges to x_{α}, the net $(f(\phi(d))) R N$-converges to $f\left(x_{\alpha}\right)$.

Proof. (1) $\Longrightarrow(2)$. Let x_{α} be a fuzzy singleton in X and $\operatorname{let}(\phi(d))$ be a fuzzy net in X such that $(\phi(d)) R N$-converges to x_{α}. Let V be a fuzzy semi-open set containing $f\left(x_{\alpha}\right)$. Since f is semi-irresolute, there exists a fuzzy semi-open set U containing x_{α} such that $f\left({ }_{s} C l(U)\right) \leq$ ${ }_{s} C l(V)$. Since $(\phi(d)) R N$-converges to x_{α}, there exists d_{0} such that $\phi(d) \in{ }_{s} C l(U)$ for all $d \geq d_{0}$. Hence $f(\phi(d)) \in{ }_{s} C l(V)$ for all $d \geq d_{0}$. Thus $(f(\phi(d))) R N$-converges to $f\left(x_{\alpha}\right)$.
$(2) \Longrightarrow(3)$. Let x_{α} be a fuzzy singleton in X and let $(\phi(d))$ be a fuzzy net in X such that $(\phi(d)) S^{\prime} N$-converges to x_{α}. By Lemma 3.1, $(\phi(d))$ $R N$-converges to x_{α}. By (2), (f($\left.\left.\phi(d)\right)\right) R N$-converges to $f\left(x_{\alpha}\right)$.
$(3) \Longrightarrow(1)$. Suppose that f is not fuzzy semi-irresolute. Then there exist a fuzzy singleton x_{α} in X and a fuzzy semi-open set V containing $f\left(x_{\alpha}\right)$ such that $f(U) \not Z{ }_{s} C l(V)$ for all fuzzy semi- θ-clopen sets U containing x_{α}. Thus there exists a fuzzy singleton $x_{\alpha_{U}} \in U$ such that $f\left(x_{\alpha_{U}}\right) \notin{ }_{s} C l(V)$. Then the fuzzy net $\left(x_{\alpha_{U}}\right) S^{\prime} N$-converges to x_{α} but $\left(f\left(x_{\alpha_{U}}\right)\right)$ does not $R N$-converges to $f\left(x_{\alpha}\right)$.

By Lemma 3.1 and Theorem 3.6, we get the following results.

Corollary 3.2. If a function $f: X \rightarrow Y$ is fuzzy semi-irresolute, then for each fuzzy singleton x_{α} in X and each fuzzy net $(\phi(d))$ in X which $S N$-converges to x_{α}, the fuzzy net $(f(\phi(d))) \theta N$-converges to $f\left(x_{\alpha}\right)$.

Proposition 3.7. A fuzzy net $(\phi(d))$ in a fuzzy space $X R N$-converg -es to x_{α} if and only if for each fuzzy regular semi-open set U containing x_{α}, there exists d_{0} such that $\phi(d) \in U$ for all $d \geq d_{0}$.

Proof. It follows from Lemma 2.5 and Definition.
By Theorem 3.6 and Proposition 3.7, we have the following Corollary.
Corollary 3.3. For a function $f: X \rightarrow Y$, the following statements are equivalent:
(1) f is semi-irresolute;
(2) If, for each fuzzy singleton x_{α} in X, a fuzzy net $(\phi(d))$ in $X R N$ converges to x_{α}, then for each fuzzy regular semi-open set V containing $f\left(x_{\alpha}\right)$, there exists d_{0} such that $f(\phi(d)) \in V$ for all $d \geq d_{0}$;
(3) If, for each fuzzy singleton x_{α} in X, a fuzzy net $(\phi(d))$ in $X S^{\prime} N$ converges to x_{α}, then for each fuzzy regular semi-open set V containing $f\left(x_{\alpha}\right)$, there exists d_{0} such that $f(\phi(d)) \in V$ for all $d \geq d_{0}$.

Theorem 3.8. For a function $f: X \rightarrow Y$, the following statements are equivalent:
(1) f is fuzzy strongly irresolute;
(2) for each fuzzy singleton x_{α} in X and each fuzzy net $(\phi(d))$ in X which $R N$-converges to x_{α}, the fuzzy net $(f(\phi(d))) S N$-converges to $f\left(x_{\alpha}\right)$;
(3) for each fuzzy singleton x_{α} in X and each fuzzy net $(\phi(d))$ in X which $S^{\prime} N$-converges to x_{α}, the fuzzy net $(f(\phi(d))) S N$-converges to $f\left(x_{\alpha}\right)$.

Proof. The proof is similar to that of Theorem 3.6.
Corollary 3.4. If a function $f: X \rightarrow Y$ is fuzzy strongly irresolute, then for each fuzzy singleton x_{α} in X and each fuzzy net $(\phi(d))$ in X which $S N$-converges to x_{α}, the fuzzy net $(f(\phi(d))) R N$-converges to $f\left(x_{\alpha}\right)$.

Therefore, $(f(\phi(d))) \theta N$-converges to $f\left(x_{\alpha}\right)$.

4. Some properties

Definition 4.1. A function $f: X \rightarrow Y$ is said to be fuzzy semi- θ open if for each fuzzy semi- θ-open set U in $X, f(U)$ is fuzzy semi- θ-open in Y.

Definition 4.2. A fuzzy space X is said to be semi- $\theta-T_{2}$ if for each fuzzy singleton x_{α} and y_{β} in X with different support, there exist two fuzzy semi-open semi-q-neighborhoods U and V of x_{α} and y_{β}, respectively such that ${ }_{s} C l(U) \bigwedge_{s} C l(V)=0_{X}$.

Theorem 4.1. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions. (a) If f is fuzzy semi- θ-open surjection and $g \circ f$ is fuzzy semi-irresolute, then g is fuzzy semi-irresolute.
(b) f is fuzzy strongly irresolute and g is fuzzy semi-irresolute, then $g \circ f$ is fuzzy semi-irresolute.

Proof. (a) Let V be a fuzzy semi- θ-open set in Z. Since $g \circ f$ is fuzzy semi-irresolute, $(g \circ f)^{-1}(V)=f^{-1}\left(g^{-1}(V)\right)$ is fuzzy semi- θ open in X by Theorem 3.4. Since f is semi- θ-open and surjection, $f\left(f^{-1}\left(g^{-1}(V)\right)\right)=g^{-1}(V)$ is fuzzy semi- θ-open in Y. By Theorem 3.4, g is fuzzy semi-irresolute.
(b) Let x_{α} be a fuzzy singleton in X and $y_{\alpha}=f\left(x_{\alpha}\right)$. Let V be a fuzzy regular semi-open in Z containing $g\left(y_{\alpha}\right)=g\left(f\left(x_{\alpha}\right)\right)$. Since g is fuzzy semi-irresolute, there exists a fuzzy regular semi-open set U containing y_{α} such that $g(U) \leq V$. Since f is fuzzy strongly irresolute, there exists a fuzzy semi-open set G containing x_{α} such that $f\left({ }_{s} C l(G)\right) \leq U$. Hence $(g \circ f)\left({ }_{s} C l(G)\right)=g\left(f\left({ }_{s} C l(G)\right)\right) \leq g(U) \leq V$. By Theorem 3.1, $g \circ f$ is fuzzy semi-irresolute.

Theorem 4.2. If $f: X \rightarrow Y$ is fuzzy semi-irresolute injection and Y is fuzzy semi- $\theta-T_{2}$, then X is fuzzy semi- $\theta-T_{2}$.

Proof. Let x_{α} and y_{β} be a pair of fuzzy singletons in X with different support. Since f is injection, $f\left(x_{\alpha}\right) \neq f\left(y_{\beta}\right)$. Then there exist two fuzzy semi-open semi-q-nbds U and V of $f\left(x_{\alpha}\right)$ and $f\left(y_{\beta}\right)$ such that ${ }_{s} C l(U) \bigwedge_{s} C l(V)=0_{Y}$. Since ${ }_{s} C l(U)$ and ${ }_{s} C l(V)$ are fuzzy regular semi-open, $f^{-1}\left({ }_{s} C l(U)\right)$ and $f^{-1}\left({ }_{s} C l(V)\right)$ are fuzzy regular semi-open in X by Theorem 3.2. Moreover, $f^{-1}\left({ }_{s} C l(U)\right)$ and $f^{-1}\left({ }_{s} C l(V)\right)$ are semiopen semi-q-nbds of x_{α} and y_{β}, respectively and $f^{-1}\left({ }_{s} C l(U)\right) \wedge f^{-1}$ $\left({ }_{s} C l(V)\right)=0_{X}$. Therefore, X is fuzzy semi- $\theta-T_{2}$.

Definition 4.3. A fuzzy space X is said to be semi- θ-disconnected if there exist two fuzzy semi-open sets V_{1} and V_{2} with $V_{1} \neq 0_{X}$ and $V_{2} \neq$ 0_{X} such that ${ }_{s} C l\left(V_{1}\right) \bigwedge_{s} C l\left(V_{2}\right)=0_{X}$ and $1_{X}={ }_{s} C l\left(V_{1}\right) \bigvee{ }_{s} C l\left(V_{2}\right)$. A fuzzy space X is called semi- θ-connected if it is not semi- θ-disconnected.

Theorem 4.3. If $f: X \rightarrow Y$ is fuzzy semi-irresolute surjection and X is fuzzy semi- θ-connected, then Y is fuzzy semi- θ-connected.

Proof. Suppose that Y is not fuzzy semi- θ-connected. Then there exist two fuzzy semi-open sets V_{1} and V_{2} in Y with $V_{1} \neq 0_{Y}$ and $V_{2} \neq 0_{Y}$ such that

$$
{ }_{s} C l\left(V_{1}\right) \bigwedge{ }_{s} C l\left(V_{2}\right)=0_{Y} \quad \text { and } \quad 1_{Y}={ }_{s} C l\left(V_{1}\right) \bigvee{ }_{s} C l\left(V_{2}\right)
$$

Since ${ }_{s} C l\left(V_{1}\right) \neq 0_{Y}$ and ${ }_{s} C l\left(V_{2}\right) \neq 0_{Y}, f^{-1}\left({ }_{s} C l\left(V_{1}\right) \neq 0_{X}\right.$ and f^{-1} $\left({ }_{s} C l\left(V_{2}\right)\right) \neq 0_{X}$. Since ${ }_{s} C l\left(V_{1}\right)$ and ${ }_{s} C l\left(V_{2}\right)$ are fuzzy regular semi-open, $f^{-1}\left({ }_{s} C l\left(V_{1}\right)\right)$ and $f^{-1}\left({ }_{s} C l\left(V_{2}\right)\right)$ are fuzzy semi- θ-clopen. Moreover,

$$
{ }_{s} C l\left(f^{-1}\left({ }_{s} C l\left(V_{2}\right)\right)\right) \bigwedge{ }_{s} C l\left(f^{-1}\left({ }_{s} C l\left(V_{2}\right)\right)\right)=0_{X}
$$

and

$$
1_{X}={ }_{s} C l\left(f^{-1}\left({ }_{s} C l\left(V_{1}\right)\right)\right) \bigvee{ }_{s} C l\left(f^{-1}\left({ }_{s} C l\left(V_{2}\right)\right)\right)
$$

Therefore, X is not fuzzy semi- θ-connected.
Definition 4.4. A fuzzy space X is said to be S^{*}-closed [14] (resp. S-closed [11]) if for each fuzzy semi-open cover $\left\{V_{\alpha} \mid \alpha \in \Delta\right\}$ of X, there exists a finite subset Δ_{0} of Δ such that $1_{X}=\bigvee_{\alpha_{\in} \Delta_{0}} C l\left(V_{\alpha}\right)\left(\right.$ resp. $1_{X}=$ $\left.\bigvee_{\alpha_{\in} \Delta_{0}} C l\left(V_{\alpha}\right)\right)$.

THEOREM 4.4. If $f: X \rightarrow Y$ is fuzzy semi-irresolute surjection and X is S^{*}-closed, then Y is S^{*}-closed.

Proof. Let $\left\{V_{\alpha} \mid \alpha \in \Delta\right\}$ be a fuzzy semi-open cover of Y. Then $\left\{{ }_{s} C l\left(V_{\alpha}\right) \mid \alpha \in \Delta\right\}$ is fuzzy regular semi-open cover of Y. By Theorem 3.2, $\left\{f^{-1}\left({ }_{s} C l\left(V_{\alpha}\right)\right) \mid \alpha \in \Delta\right\}$ is fuzzy regular semi-open cover of X, and hence semi-open cover of X. Since X is S^{*}-closed, there exists a finite subset Δ_{0} of Δ such that $1_{X}=\bigvee_{\alpha_{\in} \Delta_{0}}{ }_{s} C l\left(f^{-1}\left({ }_{s} C l\left(V_{\alpha}\right)\right)\right)$. Since each $f^{-1}\left({ }_{s} C l\left(V_{\alpha}\right)\right)$ is fuzzy semi- θ-clopen by Theorem 3.2 and Lemma 2.4, ${ }_{s} C l\left(f^{-1}\left({ }_{s} C l\left(V_{\alpha}\right)\right)\right)={ }_{s} C l_{\theta}\left(f^{-1}\left({ }_{s} C l\left(V_{\alpha}\right)\right)\right)=f^{-1}\left({ }_{s} C l\left(V_{\alpha}\right)\right)$. Thus $1_{X}=\bigvee_{\alpha \in \Delta_{0}} f^{-1}\left({ }_{s} C l\left(V_{\alpha}\right)\right)$. Since f is surjection, $1_{Y}=f\left(1_{X}\right)=$ $\bigvee_{\alpha \in \Delta_{0}} C l\left(V_{\alpha}\right)$. Therefore, Y is S^{*}-closed.

Corollary 4.1. If $f: X \rightarrow Y$ is fuzzy semi-irresolute surjection and X is S^{*}-closed, then Y is S-closed.

Definition 4.5. A fuzzy space X is s-regular if for each fuzzy singleton x_{α} in X and each fuzzy semi-open set V containing x_{α}, there exists a fuzzy open set U containing x_{α} such that ${ }_{s} C l(U) \leq V$.

Theorem 4.5. If $f: X \rightarrow Y$ is fuzzy semi-irresolute and Y is fuzzy s-regular, then f is strongly irresolute.

Proof. Let x_{α} be a fuzzy singleton in X and let V be a fuzzy semi-open set containing $f\left(x_{\alpha}\right)$. Then there exists a fuzzy open set G containing $f\left(x_{\alpha}\right)$ such that $f\left(x_{\alpha}\right) \in G \leq{ }_{s} C l(G) \leq V$. By Theorem 2.9 [10], there exists a fuzzy semi-open U containing x_{α} such that $f\left({ }_{s} C l(U)\right) \leq{ }_{s} C l(G)$. Thus $f\left({ }_{s} C l(U)\right) \leq V$ and f is fuzzy strongly irresolute.

Definition 4.6. A function $f: X \rightarrow Y$ is said to be fuzzy semicontinuous [1](resp. fuzzy irresolute [12]) if $f^{-1}(V)$ is fuzzy semi-open in X for each fuzzy open(resp. fuzzy semi-open) set V in Y.

Theorem 4.6. If $f: X \rightarrow Y$ is fuzzy semi-continuous and Y is fuzzy s-regular, then f is fuzzy irresolute.

Proof. Let x_{α} be a fuzzy singleton in X and let V be a fuzzy semiopen set containing $f\left(x_{\alpha}\right)$. Then there is a fuzzy open set G containing $f\left(x_{\alpha}\right)$ such that ${ }_{s} C l(G) \leq V$. Since f is semi-continuous, $U=f^{-1}(G)$ is fuzzy semi-open in X and $x_{\alpha} \in U$. Thus $f(U) \leq V$ and f is fuzzy irresolute.

By Remark 3.1 [10], Theorem 4.5 and Theorem 4.6, we get the following result.

Corollary 4.2. If $f: X \rightarrow Y$ is a function and Y is fuzzy s-regular, then the following statements are equivalent:
(1) f is fuzzy strongly irresolute;
(2) f is fuzzy irresolute;
(3) f is fuzzy semi-irresolute;
(4) f is fuzzy semi-continuous.

References

[1] K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
[2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
[3] S. H. Cho, A note on regular semiopen sets and S^{*}-closed sets in L-fuzzy topological spaces(preprint).
[4] S. G. Crossley and S. K. Hildebrand, Semi-closure, Texas J. Sci. 22 (1971), 99-112.
[5] , Semi-topological properties, Fund. Math. 74 (1972), 233-254.
[6] G. L. Garg and D. Sivaraj, Presemi-open and irresolute functions, Soochow J. Math. 14 (1988), no. 1, 51-55.
[7] B. Ghosh, Semi-continuous and semi-closed mappings and semi-connectedness in fuzzy setting, Fuzzy sets and Systems 35 (1990), 345-355.
[8] F. H. Khedr and T. Noiri, On θ-irresolute functions, Indian J. Math. 28 (1986), no. 3, 211-217.
[9] M. Macho Stadler and M. A. de Prada Vicente, On N-convergence of fuzzy nets, Fuzzy sets and Systems 51 (1992), 203-217.
[10] S. Malakar, On fuzzy semi-irresolute and strongly irresolute functions, Fuzzy sets and Systems 45 (1992), 239-244.
[11] M. N. Mukherjee and B. Ghosh, On fuzzy S-closed spaces and FSC sets, Bull. Malaysian Math. Sco. 12 (1989), 1-14.
[12] M. N. Mukherjee and S. P. Sinha, Irresolute and almost open functions between fuzzy topological spases, Fuzzy sets and Systems 29 (1989), 381-388.
[13] Pao-Ming Pu and Ying-Ming Liu, Fuzzy topology I. Neighborhood structure of a fuzzy point and Moore-Smith Convergence, J. Math. Anal. Appl. 76 (1980), 571-599.
[14] S. P. Sinha, On S^{*}-closedness in fuzzy setting, preprint.
[15] L. A. Zadeh, Fuzzy sets, Inform. and Control 8 (1965), 338-353.
Department of Mathematics
Hanseo University
Chungnam 356-820, Korea
E-mail: shcho@hanseo.ac.kr
jkpark@hanseo.ac.kr

