
Context-aware Service Discovery in Mobile
Heterogeneous Environments

N. Blefari-Melazzi†, E. Casalicchio∗, S. Salsano†
∗ Dip. Informatica Sistemi e Produzione, Universita di Roma ”Tor Vergata”, Italy

† Dip. Ingegneria Elettronica, Universita di Roma ”Tor Vergata”, Italy
Email:emiliano.casalicchio@uniroma2.it

Abstract— To date, mobile services have failed to match the
explosive growth of the Web. This, we argue, is because current
mobile services are difficult to find, to use, to trust, to design and
deploy. The IST SMS (Simple Mobile Services) project takes up
the challenge of creating innovative tools addressing the specific
needs of mobile users and making it easier for individuals and
small businesses to become providers of Simple Mobile Services.
In this paper, we focus on the first requirement of SMS: how to
find a mobile service matching the user needs and appropriate
for the user context. The contribution of this paper is twofold:
first we formulate the context-aware service discovery problem
in a heterogeneous mobile environment; then we propose a novel
solution that provides mechanisms to discover services at every
level of the service stack, from infrastructure services to end-
user services. We propose a hybrid solution that combines the
advantages of a directory-based solution and of a peer-to-peer
fully distributed solution. The advantage of a fully distributed
solution is the increase of efficiency in a local area. The advantage
of a directory-based solution, exploiting an XML-based service
discovery protocol and using a hierarchical organization of the
directories, is that it allows obtaining a scalable and fault-tolerant
system, which can be used both in a local and in a wide-area
network.

I. INTRODUCTION

Mobile services have not matched the success of the Web.
There are many reasons: users cannot find the services they
need, many services are difficult to use, users do not trust
them, services are difficult to design and deploy (especially
for ”small” service providers, e.g. SMEs, local government
departments, NGOs, individuals).

The goal of the IST SMS project [6] and [12] is to create
innovative tools enabling a new class of services, addressing
the specific needs of mobile users and enabling individuals
and small businesses to become service providers. We call
these services Simple Mobile Services (SMS). Unlike current
universal services, each Simple Mobile Service will have a
scope, it will target specific environments of interest to specific
classes of mobile user performing specific activities. This
means that SMS services will be easy to find. SMS services
will be easy to use: automatic authentication and configuration;
automatic content and interface adaptation. SMS services will
be terminal and network independent, working with a broad
range of mobile devices and network infrastructures. SMS
services will be trust-worthy, providing end-to-end standard-
based mechanisms for positive user identification, authenti-
cation, and data encryption (both on terminals and during

transmission). Last, but not least, SMS services will be easy
to design and deploy.

In this paper we face the problem of how to find a service
matching the user needs and appropriate for the current user
context. This is a well known problem in the literature, and
it is referred to as context-aware service discovery (we may
say that SMS services are a sub-class in the broader family of
context-sensitive services). Current approaches to this problem
may be classified according to the type of service, to the
technology, or to the the applications that one may consider.

In [8] the authors propose a context-aware service discov-
ery and selection mechanism. The proposed solution uses a
centralized architecture, where a dedicated server manages
the context processing. In [3] the authors propose a context-
aware service discovery architecture and related protocols,
addressing the discovery problem in many of its aspects. Their
solution aims to discover a pre-defined set of services, such
set has to be configured by the user, both in the local or in
a foreign network. On the other hand, our goal is to discover
available services matching context and user profile, without
having any prior knowledge of the services themselves.

The novelties of our proposed solution are: (i) it is designed
to find services that are indeed useful to the users, without
being known in advance by the users themselves; (ii) it is
designed from the beginning having in mind context-aware
mobile services, rather then proposing a mobility support or
an extension of an existing architecture devised for wired
solutions. (iii) it can support multimodal services and aspect-
oriented components. Furthermore, our solution combines the
advantages of a directory-based architecture and of a peer-
to-peer fully distributed solution. The advantage of a fully
distributed solution is the increase of efficiency in a local
area, which allows also a p2p exchange of services. The
advantage of a directory-based solution, exploiting an XML-
based service discovery protocol and using a hierarchical
organization of the directories, is that it allows obtaining a
scalable and fault-tolerant system, which can be used both in
a local and in a wide-area network.

The paper is organized as in the following. In Section 2
we introduce the problem of context-aware service discovery
in heterogeneous networks and we define the requirements
of the SMS service discovery infrastructure. Section 3 deals
with service description aspects. Section 4 faces the context
modeling problem. In Section 5 we present our porposals for



Physical resource/
Infrastructure service

component
Software

application/service

End−user

Infrastructure

service
Application

discovery

Component
service

discovery

service
discovery

C
o

n
te

xt

Fig. 1. Context-aware service discovery stack

context-aware mobile service discovery protocols and for the
for the service infrastructure. In Section 6 we make some final
remarks.

II. CONTEXT-AWARE SERVICE DISCOVERY

The service discovery is typically defined as the process
to automatically discover devices (e.g. sensors, printers, data
storages unit, etc), software components and/or distributed
applications which are available in a network. If the discovery
process is driven by context information or user specific
requirements we deal with context-aware service discovery.

In our vision, the service discovery process is organized
in three layers (see fig. 1): Infrastructure service discovery,
Component service discovery, ”Application-level” or ”End-
user” service discovery. The context is an intra-layer concept,
as observed in [3]. Starting from the lower level, infrastructure
service discovery is concerned with the discovery of physical
resources or network services (e.g. authorization or location
services, or physical devices like a printer). At this level,
services are typically accessed only by knowing low level
information (or raw information) such as the IP address and
port number of the node providing the service. The way in
which the terminal can find out service locations depends on
the service discovery protocol (SDP) used. Directory-based
SDPs (e.g. JINI, IETF-SLP or DNS-based service discovery
[2]) periodically broadcasted the address of a lookup service
(or a service proxy), so that it can be caught by the mobile
terminal. Then, services are announced and discovered trough
the lookup service. In peer-to-peer based SDPs, e.g. UPnP, the
infrastructure services periodically broadcast their announce-
ments.

Moving to the upper level, let us consider the end-user
service discovery. A end-user service typically returns to the
user some type of contents: information about its position, a
route to a given destination, the set of attractions near a given
location or in a given area, the set of restaurants matching the
user profile, and so on. All these information are correlated
with the user profile and context. Then, the problem to discover
end-user services has things in common with the matching
problem in publish/subscribe systems: a user first specify its
interests and performance requirements in a user profile and
then receives notifications of services that match his profile
and that are appropriate for the actual context. A proposal of
a matching algorithm for SMS is presented in [4].

In order to understand the functionality of the intermediate
level, i.e., the component service discovery, we have to make

an assumption on how the end-user services are realized. We
assume that end-user services are provided by means of a set of
applications running on the network and interacting with each
other. Such applications could run both at the terminal side or
at the server side and are referred to here as ”components”.
Therefore end-user services can be realized by putting together
software components. Note that the composition can be made
either in a static or in a dynamic way. In the former case, the
component service discovery is needed during the authoring
phase of the end-user service, so that the application will know
where the software components will be, at the execution time.
In the latter case the binding of the components is dynamic: a
component will need to discover, at run time, where are other
components that allow satisfying the requirements of the end-
user service.

Following the approach of the SMS project, in this paper
we will mainly focus on component and end-user service
discovery, while for the infrastructure service discovery we
assume to rely on existing solutions.

A. Requirements for context-aware service discovery

There are some general requirements that the context-
aware mobile service discovery architecture should satisfy,
independently from the level. Scalability, fault tolerance, plat-
form independence, and high expressiveness for service and
context description are among these general requirements.
The service discovery infrastructure should scale with the
number of nodes, with the number of networks and with the
number of services and users. The SDP should consume as
less resources as possible, both in terms of bandwidth and in
terms of CPU cycles and memory. The SDP should also be
platform independent (both at terminals and at server side).
The chosen services and context description model should
have an high expressiveness, allowing a detailed description
of the service semantic, functionality and requirements. The
service description model should also be independent from the
service technology and the service implementation.

Coming to the requirements that depend on the specific
level of the service discovery stack, we only mention some
requirements of the infrastructure service discovery. It should
be automatic and transparent to the end-user and service de-
veloper. Possibly, a terminal (if enabled) should automatically
detect available SMS services.

At the component level, first of all the infrastructure should
preserve the compatibility with existing service discovery pro-
tocols, which today are typically dependent on the technology
used to implement the service itself (e.g. JINI, Web services,
IETF-SLP or DNS-based service discovery). Moreover, both
static and dynamic component service discovery should be
supported. If we use a static component service discovery, i.e.
performed during the component service authoring phase, then
it is possible to have a very efficient service selection process.
However, in this case, it could be complex or impossible to
implement features like context awareness and multimodality.
If we use dynamic service discovery, then components are
able to select other components to bind with at run time. Run



time binding allows realizing an ”abstract” service definition,
to be executed in any SMS-enabled network that provides an
implementation for the specified service. The dynamic service
discovery offers a good support for service multimodality and
aspect oriented components.

As regards multimodality, in this paper we define a service
as multimodal if it can be implemented in different ways, and
the implementation is selected as a function of the user profile
or context. An example is a payment service. The payment
could be done by using a credit card, a transaction authoriza-
tion code stored in a RFID, a cell phone credit, etc. When more
then one implementation of a service exist, this characteristic
should be specified in the service description, and, depending
on the user profile and user context, a particular component
service implementation should be used. Another advantage of
the dynamic service discovery is the possibility to use service
a selection policy, with the goal to optimize some system
performance metrics (e.g., cost, response time, reputation) [9].

Coming to the end-user service discovery, it should basically
consist of a matching algorithm that associates users with
services that best match their current context. In other words,
given a user profile (describing user characteristics and pref-
erences), a user context and a list of service profiles (defining
the target for each service) the SMS machinery has to be able
to rank service profiles in terms of their match to the user.

III. CONTEXT-AWARE SERVICE DESCRIPTION MODEL

We claim that a common service description model can
be used for service discovery at the component level and at
the end-user level. Note that at the component and end-user
level, we should allow both users and processes to search
for available services. In order to achieve this, the service
description must be available both in human and machine un-
derstandable language. The usage of an XML based language
will help achieving this goal. In particular, it is possible to add
more intelligence to the system by representing the service
description as RDF.

The component service description model should allow:
an abstract description of the service semantic and API;
an abstract description of the minimal performance require-
ment to run the service (service requestors could be able to
support/execute only a limited set of services, could have
limitation in content visualization or could have particular
security/performance - QoS - requirements); an abstract de-
scription of multimodality features. Given the diversity of the
information that should be represented, It could be useful to
employ a set of XML documents (WSDL, Topic map, etc.)
rather than a simple one.

The expressiveness of the end-user service description
model should allow an abstract description of the service
semantic, functionality and available level of service quality.
The service description fields should be compatible with the
user profile and context description so as to facilitate the
matching of user preferences.

A context-aware service descriptor involves, at least, three
distinct parts (see fig. 2). The service semantic and APIs are

Fig. 2. An XML representation of the service descriptor.

described by means of the functional requirement tag. The
nonfunctional requirements tagis, for example, for security
and QoS service specifications. The security tag contains
security-related information, such as security policies applying
on the service or restrictions to user’s access. The qos tag
describes quality of service related aspects regarding the
service requirements for different quality levels. All the service
specific characteristics and the concepts that the service deals
with are represented into the pseudo-requirements part. For
instance, this part is concerned with: explicit multimodality
capability, configuration requirements of the software compo-
nent or of the service requestor’s device, requirements for a
specific communication protocol or execution platform.

IV. CONTEXT MODELING

Context modeling is one of the main building blocks of
the SMS project. Deliverable [4] describes the SMS project
context modeling approach and includes in appendix an ex-
tensive state of the art analysis on the subject. The context
modeling approach is derived from ContextUML [5], which
is an UML-based model for the specification and model-
driven development of Context-aware Web Services. The SMS
context model information includes information about the
user, the devices, the services, the networks. The schemas for
modeling these information are largely derived from the work
of the IST Simplicity project ([7] and [13])

The user profile contains personal (non technical) and
human sensitive preferences (e.g. food preferences, favorite
attraction, favorite shopping, friends’ white and black list, etc).

The device-related information describes the capability
and technical characteristicsof the terminal device (e.g. the
processing capability, the storage and memory capacity, the
display resolution, the connectivity capacity, the operating
systems version, etc). Moreover, there is a section that describe
user preferences related to the usage of the device. The service
profile contains information about the service provided. For
example, a restaurant would like to publish a reservation



Service 
discovery
stack

Service
Profile

Personal
User Profile

Infrastructure
Service

Discovery

Component service discovery

Application service
discovery

Context
Device
Profile

Fig. 3. Relationship among the Context model and service discovery layers

service and information such as average price, opening hours,
smoking or non smoking area availability, etc.

Being the context orthogonal to the service discovery layers,
theservice discovery process will use context information
depending on the service level (see fig. 3): the device profile
is used in the infrastructure service discovery; device and user
profile are used in the component service discovery; the end-
user service discovery will use the personal user profile and
the service profile.

An open issue is how smart one has to make the context
processing in order to enable end-user service discovery. In
this regard, different techniques could be used to process the
context and to match it with the user profile, for examplearti-
ficial neural networks [8], or semantic indexing methods [10].

V. THE SERVICE DISCOVERY PROTOCOLS

Service discovery protocols could be directory-based or
peer-to-peer based. The peer-to-peer approach is appropriate
for small networks with a limited number of services and
nodes, because of the huge traffic produced by the multicasting
of service advertisements or discovery messages. The advan-
tage of this solution is that it avoids the setup and maintenance
of registries. The directory-based approach has the advantage
to reduce the bandwidth consumption, it moves the intelligence
into the network and the directories could be hierarchically
connected, so as to cover a wide area network. The drawback
is obviously the setup and maintenance of registries. Our
proposal in an hybrid one, which combines the advantages
these two approaches.

Our idea is that each node in the network could provide
end-user and component services and it should be capable
to advertise the offered services or to acknowledge service
requests. Then, each node in the network, at a given instant,
could became an SMS service provider (SMSsp). Two main
solutions can be envisaged for the user to access SMS services.
A first solution is that users launch their SMS application
or SMS enabled browser and get back a list of services
that satisfy its profile. A different approach is that users are
automatically notified of existing SMS services, every time
that a new one is available.

Whatever is the solution used to access the list of available
SMS services, the user terminal will use the infrastructure
service discovery protocol (iSDP) to discover SMSsp and then
it will use the end-user service discovery protocol (euSDP) to
ask to the SMS servers the services that match the user profile
and context (see fig. 4). Obviously, this solution requires that
the iSDP uses broadcasts and that every SMSsp is capable to

matching
algorithm

SMS
service
provider

SMS
end−user
registry

User
terminal

iSDP.req

iSDP.ack

euSDP.req(profile)

euSDP.ack(url)

Fig. 4. Infrastructure service discovery protocols and end-user service
discovery protocols messaging. In case of a p2p solution the iSDP.req
is broadcasted in the network.

SMS
Component
Registry

SMS
Service
ProviderSMS Appl. SMS-proxy

NativeComp.req(sd)

NativeCompo.ack(sd)

native component interaction

cSDP.req(SMSsd)

cSDP.ack(SMSsd)

sd
2S

M
S

sd
S

M
S

sd
2s

d

Fig. 5. Component service discovery protocol messaging.

match the user profile with the service profile. To avoid such
overhead, a possibility is to introduce the end-user service
registry, a specialized server, which stores service descriptors
and executes the end-user service matching algorithm.

When the SMS application is executed (on the the user’s
terminal, on the SMS server node or on both of them), the busi-
ness logic could require the invocation ofexternal components.
The application logic will generate a native component request
(e.g. uddi, RMI or JXTA), depending on the technology used
in the implementation. On the SMS node that executes the
application there is an SMS-proxy that receives the native
component request and creates a cSDP request, which contains
in its body the native request (see fig. 5). The cSDP request
is then sent to the component service registry, which will
search for the matching components and will reply with the
component service descriptor. The SMS-proxy will extract
the native service descriptor from the cSDP message and
will deliver it to the application. The address of the more
appropriate component service registry could be automatically
configured by using the iSDP every time the mobile terminal
enters an SMS network.

A. The service registries

The use of an end-user service registry allows a more
complex service matching algorithm and reduces the traffic



generated by a broadcast of service discovery requests. The
main drawback of using registries is their setup and mainte-
nance.

At component level, the use of a registry will speed up the
dynamic binding process. As a matter of fact, an SMS node
needs to discover the address of the service registry only one
time.

Because the service descriptor is an XML document (as the
context descriptor), the registry could be easily implemented
by an XML database (e.g. eXist [11]) and queried by an XML
querying language (e.g. the W3C XMLQuery).

If the hybrid solution is used, each SMSsp does not need
to implement a XML database to store the service descriptor,
but it can simply implement the matching rules between the
user/service profile and the service descriptor.

B. The hierarchical registry organization

To cover a wide area network and to realize an efficient
and recursive service discovery, the component and end-
user service registries could be organized into a hierarchy.
This architecture satisfies the scalability requirement and it
is also fault-tolerant. Each SMS network has its own local
Service Registry, both for component services and for end-
user services. To realize a fault-tolerant system, and also to
increase the performance in crowded networks, one or more
secondary local service registry could be introduced. ”‘near”’
SMS networks have a common, i-th level, global registry.
Analogously, ”‘near”’, i-th level, global registries have a
common (i-1)-th level global registry, and so on, until the 1th
level (or root) global registry is reached. The ”near” network
could be identified by using different proximity metrics, for
example the physical distance, the latency, the number of hops,
etc.

With a hierarchical architecture, when a user’s terminal
searches for available end-user services, first it queries the
local registry; then the query goes up in the hierarchy of reg-
istries, in a recursive way. It is reasonable that the probability
to find a context/profile compliant service in a far network
is very low, but this depends on the context and on the user
profile.

In the same way, when an application searches the compo-
nent services to bind, first it queries the local registry and then
the request is propagated up in the hierarchy.

VI. CONCLUDING REMARKS

In this paper, we specified how to perform service discovery
in a particular environment, that defined in the framework
of the SMS project. However, we also proposed possible
solutions for service discovery protocols at different levels.

During our study, we soon realized the need for new service
discovery protocols allowing context awareness at every level
of the stack, from infrastructure service discovery to end-
user service discovery. We gave a possible answer to this
need by introducing and detailing three service discovery
protocols: infrastructure SDP, component SDP and end-user

SDP. Our proposed solution: i) faces the problem of end-
user service discovery in local area by giving the possibility
to use or not a central registry; ii) allows an easy way to
advertise custom services in local area and the creation of
small community exchanging services; iii) enables also wide
area service discovery, allowing the use of centralized registry;
at component level, we encourage the use of centralized
directories; as a matter of fact, component registries could be
hierarchically organized toobtain a scalable and fault tolerant
system, usable both in local and in wide-area networks.

As for future work, we are currently engaged in imple-
menting our solution, so as to test and evaluate the it in real
environments. Also simulation studies will be performed to
compare the performances of a centralized or fully distributed
solutions.

ACKNOWLEDGMENT

This work has been performed in the framework of the European
Union co-funded project SMS. The authors would like to acknowl-
edge the contributions of their colleagues from the SMS consortium.
The Community is not liable for any use that may be made of the
information contained therein.

REFERENCES

[1] A.Friday, N.Davies, N.Wallbank, E.Catterall, and S.Pink. Supporting
service discovery, querying and interaction in ubiquitous computing
environments. ACM Baltzer Wireless Networks (WINET) Special Issue
on Pervasive Computing and Communications, 10(6):631-641, November
2004.

[2] S.Cheshire, M.Krochmal. DNS-Based Service Discovery Internet-Draft.
http://files.dns-sd.org/draft-cheshire-dnsext-dns-sd.txt. August 2006.

[3] Choonhwa Lee, Sumi Helal. A Multi-tier Ubiquitous Service Discovery
Protocol for Mobile Clients. 2003 International Symposium on Perfor-
mance Evaluation of Computer and Telecommunication Systems.

[4] S.Salsano (ed.) D3.1: Initial system architecture specification. IST-
SMS Project deliverable, Dec. 2006, available at http://www.ist-
sms.org/server/deliverables.php

[5] Q. Z. Sheng, and B. Benatallah, ContextUML: A UML-Based Modeling
Language for Model-Driven Development of Context-Aware Web Services,
The 4th International Conference on Mobile Business (ICMB’05), IEEE
Computer Society. July 11-13 2005, Sydney, Australia

[6] G. Bartolomeo, N. Blefari Melazzi, G. Cortese, A. Friday, G. Prezerakos,
S. Salsano, R. Walker. SMS: Simplifying Mobile Services - for Users
and Service Providers, International Conference on Internet and Web
Applications and Services, ICIW’06, Feb. 2006, Guadeloupe, French
Caribbean.

[7] G. Bartolomeo, N. Blefari Melazzi, F. Martire , S. Salsano, Defining and
Using Profiles to Personalize and Manage Reconfigurable Services, 15th
IST Mobile&Wireless Communications Summit 2006, June 4-8 2006,
Myconos, Greece.

[8] Al-Masri, E. and Mahmoud, Q. H. A context-aware mobile service
discovery and selection mechanism using artificial neural networks. In
Proceedings of the 8th international Conference on Electronic Commerce
Fredericton, New Brunswick, Canada, August 2006. ACM Press, New
York, NY,

[9] Cardellini, V.; Casalicchio, E.; Grassi, V.; Mirandola, R., A Framework
for Optimal Service Selection in Broker-Based Architectures with Multiple
QoS Classes. Services Computing Workshops, 2006. SCW ’06. IEEE ,
vol., no.pp.105-112, Sept. 2006

[10] Skouteli, C., Samaras, G., and Pitoura, E. Concept-based discovery of
mobile services. In Proceedings of the 6th international Conference on
Mobile Data Management. Ayia Napa, Cyprus, May 2005. MDM ’05.
ACM Press, New York, NY

[11] Akmal B. Chaudri, Awais Rashid, Roberto Zicari (Eds.): XML Data
Management: Native XML and XML-Enabled Database Systems. ISBN:
0-201-84452-4. Published by Addison Wesley Professional, March, 2003.

[12] IST SMS Project www.ist-sms.org.
[13] IST Simplicity Project www.ist-simplicity.org.


