
Operating System Controlled Processor–Memory Bus Encryption

Xi Chen, Robert P. Dick, and Alok Choudhary
Electrical Engineering and Computer Science Department

Northwestern University
2145 Sheridan Road

Evanston, Illinois 60208

Abstract—Unencrypted data appearing on the processor–
memory bus can result in security violations, e.g., allowing
attackers to gather keys to financial accounts and personal
data. Although on-chip bus encryption hardware can solve this
problem, it requires hardware redesign or increases processor
cost. Application redesign to prevent sensitive data from ap-
pearing on the processor–memory bus is extremely difficult.
We propose and evaluate a processor–memory bus encryption
technique for embedded systems that requires no changes to
applications or hardware. This technique exploits cache locking
or scratchpad memory, features present in many embedded
processors, permitting the operating system (OS) virtual memory
infrastructure to automatically encrypt data belonging to pro-
tected processes as they are written to off-chip memory. Pages
belonging to unprotected processes are stored unencrypted to
prevent performance and energy consumption penalties.

We evaluate the proposed bus encryption technique using full
system simulation. Experimental results indicate that it is possible
to prevent the working data sets of processes from appearing on
the processor–memory bus in plaintext, without using dedicated
hardware and without changing applications. The OS based
technique results in 1.37× slowdown for protected processes
for processors with 512 KB of L2 cache and 1.78× slowdown
for processors with 256 KB of L2 cache. There are negligible
performance penalties for unprotected processes.

I. INTRODUCTION

Most embedded systems exchange data between processor
and external memory in plaintext. These data may be confiden-
tial, e.g., keys protecting account information or commercial
transaction information. An adversary can access them by
observing bus signals using a logic analyzer or inexpensive
FPGA-based monitoring hardware [1, 2]. We refer to this
as a bus snooping attack. Although some embedded system
manufacturers add security features to their products, few
protect the processor–memory bus; it is one of the most
vulnerable points in an embedded system.

As a result of the increasing use of embedded systems
for high-security applications such as electronic commerce,
the importance of protecting the processor–memory bus is
increasing. Achieving this by rewriting existing applications is
difficult; explicit control of all processor–memory transactions
of protected processors would be necessary. To address this
problem, Best [3] proposed a technique called bus encryp-
tion, in which the processor encrypts data before transfer
to external memory and decrypts data after fetching them.
This technique has previously required the use of application-
specific encryption hardware that is either slow or imposes
high area overhead, limiting commercial use. We propose
a novel software-based technique that encrypts data on the
processor–memory bus without the addition of bus encryption
hardware and without changes to applications.

This work was supported in part by AFOSR award FA9550-06-1-0152 and
in part by NSF awards ITR-CCR-0325207 and CNS-0347941.

II. PAST WORK AND CONTRIBUTIONS

Since the idea of bus encryption appeared 27 years ago,
there have been numerous academic evaluations and industrial
implementations [4]. However, all have been implemented
with and rely on additional special-purpose hardware.

A number of hardware-based bus encryption patents exist.
Takahashi et al. [5] proposed embedding a secure direct
memory access (DMA) controller in the same chip with a
microprocessor core, an internal memory, and an encryp-
tion/decryption logic. The secure DMA controller manages
all CPU external requests, while data transmission between
external and internal memory uses the encryption/decryption
engine. Candelore et al. [6] proposed a hardware-based method
to transfer program information encrypted using cipher block
chaining between external memory and a secure circuit, e.g., a
cryptographic integrated circuit with bus encryption hardware.
The DS5240 and DS5250 [7] produced by Dallas Semicon-
ductor integrate block cipher engines to encrypt data on the
processor–memory bus using DES or triple-DES encryption.
Bus encryption hardware is used in applications such as
pay-television control and credit cards. In-package encryp-
tion/decryption coprocessors [8] have also been proposed for
bus encryption in embedded systems.

Researchers have proposed architectural advances to support
bus encryption. Guilmont et al. [9] proposed an improved
memory management unit, called an SMU, as a hardware
solution to several security problems. The SMU includes a
pipelined block cipher unit. DES and 3-DES are used for
encryption. The XOM project [10] proposes the hardware
implementation of execute-only memory that is divided into
different compartments to protect secure processes from in-
secure ones. A symmetric cipher, such as AES, is used
for hardware bus encryption. AEGIS is an architecture for
building computing systems that are secure against physical
and software attacks [11]. The cryptographic engine achieves
reasonable performance at a relatively high hardware cost (see
Section V for additional details).

In summary, hardware-based approaches may counter bus
snooping attacks in embedded systems. However, they require
additional hardware components and impose significant over-
head. Therefore, their use increases the design time and cost
of embedded systems.

The proposed OS controlled software-based processor–
memory encryption technique has the following characteris-
tics:

1) Unlike existing techniques, it requires no hardware mod-
ification and therefore no system redesign;

2) It requires no changes to applications;
3) It maintains moderate performance for protected pro-

cesses and unchanged performance for normal processes; and
4) With the exception of a few low-level cache control rou-

tines, much of the design is portable among architectures that
support cache locking or using cache as scratchpad memory,
i.e., most embedded processors as well as other processors
frequently used in real-time applications.

The proposed bus encryption technique can be used to
enhance security in many applications. For example, it can
prevent an attacker from gathering information revealed on
the bus (e.g., biometric authentication data); it can prevent a
malicious user from using bus snooping to obtain data for other
users of a multi-user system; and it can protect bank customers
from dishonest bank employees attempting to obtaining PINs
via bus snooping. The proposed bus encryption technique
prevents these, and other attacks relying on reading unpro-
tected data appearing on the processor–memory bus, since data
transmitted on the processor–memory bus are encrypted.

III. OPERATING SYSTEM CONTROLLED

PROCESSOR–MEMORY BUS ENCRYPTION

In this section, we give an overview of the proposed
software bus encryption technique and explain some notable
design requirements in more detail. The proposed technique
is designed for systems with on-chip caches, memory man-
agement units (MMUs), and external memory. We make the
following assumptions:

1) Environment: The processor is trusted and everything
outside the processor is prone to monitoring. Depackaging and
reverse engineering the processor are difficult; we assume that
attackers do not have access to cache data.

2) Cache: The cache supports locked mode, i.e., lines may
be explicitly locked into the cache or it may be used as
scratchpad memory, i.e., a portion of the cache may be used
as addressable memory. In either case, the OS controls the
transfer of data between cache and memory. Many off-the-
shelf processors used in consumer electronics, e.g., processors
in the Intel XScale family [12], support these features.

3) Initialization Vector: A 32-bit vector is randomly gen-
erated during each page encryption. We use “/dev/urandom”
as our random pool. The vector is then padded with zeros to
128 bits and used as the initialization vector for AES, which
is described in Section III-B. After each page is encrypted, the
vector is stored along with the encrypted page in the off-chip
memory. This approach is similar to that described by Suh et
al. [11]. The memory overhead for the random vector is 0.4%
in the worst case, i.e., when the page size is 1 KB.

4) Key: A single encryption key is generated each time the
system resets. This poses no special problems: no encrypted
data pages need to be maintained from boot to boot. The
key is stored on-chip and is only known to the OS. Note
that every secure page in off-chip RAM is encrypted. Since
the attacker is unable to learn either the plaintext or the
secret key, every secure page can be safely encrypted using a
randomly-generated initialization vector described in (3) and
a key that is randomly generated on system startup. Although
many hardware-based bus encryption techniques assume the
secret key is stored in on-chip non-volatile memory, this is
not a requirement in our technique.

5) Attacker: We assume attackers belong to Class I (clever
outsiders) in the IBM taxonomy [13]. They have physical
access to the device and are able to monitor the bus. However,
they are unable to tamper with the contents of memory,

or modify the kernel, which will often reside in read-only
nonvolatile memory soldered to the printed circuit board.

Figure 1 gives an overview of a system in which the
proposed bus encryption technique is used. The cache dynam-
ically switches between locked and unlocked mode depending
on whether the currently-running process is protected. The data
memory pages of protected applications are stored in off-chip
RAM only in encrypted form. Every time a secure page, i.e.,
a page belonging to a protected process, is brought into off-
chip RAM from the swap device, it is decrypted by the OS and
mapped into the cache, i.e., the data for protected processes
are stored in plaintext only when in cache. Pages belonging
to unprotected processes are stored unencrypted to minimize
performance degradation. Note that our technique requires no
additional hardware. It does require MMU and cache locking
or cache-as-memory functionality. Some embedded processors
only allow part of the cache to be used in locked mode. For
such processors, only the portion of cache supporting explicit
management can be considered secure.

Figure 2 illustrates the operation of the proposed OS-based
processor–memory bus encryption technique. The CPU inter-
acts with the cache, which in turn communicates with external
memory through the memory controller. Data transmitted on
the processor–memory bus are encrypted if they belong to
protected processes. When the CPU generates a page access
request, virtual address translation, cache line replacement,
OS-controlled encryption/decryption, memory read/write, and
OS-controlled swapping may be required. Among these, cache
line replacement due to conflict misses contributes most to
performance penalties.

To explain the proposed technique more clearly, we trace the
events that occur during a page access request (see Figure 2).
When the current process issues a page access request, the
virtual address generated by the CPU first uses the MMU
for address translation. If the virtual address is invalid, the
MMU generates an exception and traps to the OS error handler.
Otherwise, the legal virtual address is translated to a physical
address that is used to access data in the cache. Unprotected
processes are thus prevented from accessing secure pages.
Page contents are fetched from cache to CPU immediately
on a cache hit; on a cache miss, the required page must be
read from external RAM.

When the target page is in off-chip memory, a page fault
occurs when the active process is a secure process. The OS
checks whether it is a secure page and, if so, decrypts it. The
OS page handler then moves the referenced page into the
cache from off-chip memory. The cache operates normally
when unprotected processes are active, i.e., no encryption,
decryption, or cache locking is used. When a secure page
is evicted from the cache, the OS encrypts the page before
sending it to off-chip memory. The general idea of mapping
swapped data back to a special region of memory instead
of backing store is somewhat counterintuitive but has been
validated via a complete implementation [14].

As we can see from Figure 2, unprotected processes are
unable to access secure pages. The data of secure processes are
encrypted before transfer to off-chip memory thereby prevent-
ing plaintext information from appearing on the processor–
memory bus. Unprotected processes are able to execute nor-
mally without additional overhead.

Main Memory

Processor

Kernel reserved

CPU Core Cache
Memory

Controller

Process 2

(unprotected)

...

 MMU

Physical address

Processor--Memory Bus

Current

process

Virtual address

Cache hit

 Process 3

 (protected)

 Process n

 (protected)

Cache miss

Secure page

Process 1

(unprotected)
Cache miss

Insecure page

Swap device

Swap out

Swap in

Operating system

page handler

Encryption

Decryption

Figure 1. System architecture.

...

Secure page

Insecure page

Kernel reserved

Secure page

On-chip cache

(switch between

locked mode

and

unlocked mode)

OS-controlled

encryption/

decryption

Read page request

Decryption result

Encryption result

Plaintext

Secure page?

No

Yes

Page fault?

Read page on request

No

Swap in

Swap out

Swap device

Swap done
Yes

Insecure page

Main memory

Secure page

Operating system

page handler

Hardware on

cache miss

Current process

CPU

Illegal access?

Page access request

(virtual address)

MMU

No

Memory protection

Yes

Operating system

error handler

Virtual address

to

physical address

Physical address

Cache hit?Yes NoPage content

Evict page request

Store to external memory

Store to on-chip cache Processor-memory bus

Figure 2. Operation of the OS-controlled processor–memory bus encryption technique.

III.A. Operating System Changes

The major changes to the OS kernel involve page handling
and control of cache status.

Modifications to the virtual memory infrastructure will
result in special handling for page mapping and page faults
in protected applications. The OS is responsible for correct
page mapping between virtual memory and physical memory.
An additional Boolean variable is added to each process
descriptor, which resides in kernel address space, to indicate
whether the corresponding process is protected. Once a process
is created, the OS sets the variable depending on application
initialization information securely stored in the system. Unpro-
tected processes can access only unprotected pages, to prevent
plaintext information leakage. Protected processes may access
both secure and unprotected pages within their address spaces.

Special actions are required during page faults, as shown
in Figure 3. The proposed technique supports a swap device,
but does not require one. When a secure page is swapped in,
it will always be mapped to a physical page in the cache and
decrypted by the kernel. Similarly, when a page belonging to a
secure process is evicted, either as a result of the requirement
to free space in secure memory such as on-chip cache or as
the result of a context switch from a protected process, the
secure page is encrypted and swapped out. Therefore, the page

Page fault.

Enter kernel.

First fault

in context

Secure page?

Secure page

available?

No

No

No

Yes

Yes

Yes

Initialize cache

Regular page

fault handling

Select victim

 page

Retrieve needed

page from swap

Decrypt needed

page

Continue executing.

Exit kernel.

Encrypt page

Update page

table
Write to swap

Update page

table

Continue executing.

Exit kernel.

Figure 3. Page fault handling flowchart.

handler in the proposed technique uses kernel cryptographic
routines to encrypt and decrypt pages.

When a context switch to a protected process occurs, the

OS places the cache in locked mode, i.e., a region of the cache
is locked to a region of external memory and placed in write-
back mode to prevent protected data from leaking. As a result,
the locked region of the cache is used as secure memory; the
OS determines when the contents stored in this region of cache
are written back to RAM. Therefore, we can prevent sensitive
data in protected processes from ever appearing on the bus in
plaintext. The locked region holds encryption/decryption code
variables and several pages of data for secure applications.

On context switches from protected processes to other
processes, the OS invalidates or zero-fills the cache to prevent
data in the protected region from being written back to external
memory. Recall that the main memory address range associ-
ated with the locked region of cache is not used for normal
data storage. The cache operates normally for unprotected
processes, enabling them to execute with full performance.

III.B. Encryption Algorithm

We considered a number of symmetric and asymmetric key
encryption algorithms [15] for use in the proposed technique.
We selected AES in cipher block chaining (CBC) mode
because it is generally believed to achieve high security and
has adequate performance for this application. Note that one
can trade off security for performance, e.g., by using AES in
counter mode. We evaluated the performance of AES in CBC
mode on a 1 GHz AMD processor using OpenSSL 0.9.8d [16].
Experimental results indicate that encrypting a 1,024 B block
and a 4,096 B block require 10,620 and 42,118 cycles, respec-
tively. Decrypting an input block requires approximately the
same number of cycles as encrypting the block, since the same
routine is used for encryption and decryption.

III.C. Importance of Page Size

The MMU plays a critical role in separating protected
processes from unprotected processes in virtual-to-physical
address translation. Its settings also determine the page size
of the system. The encrypted data of protected processes
are exchanged between off-chip memory and secure cache in
page-sized units. In other words, the line size in the software-
managed cache is equal to the page size. Therefore, the size
of a page has great impact on the performance overhead of
the proposed technique because it determines the line size
and total number of cache lines when the cache is in locked
mode. The page size is determined by the OS and MMU. The
Intel XScale processor family implements the ARM Version
5TE instruction set architecture. Therefore, XScale processors
support page sizes ranging from 1 KB to 1 MB [12]. Linux
has been ported to the ARM platform [17]. This port supports
2 KB to 32 KB page sizes, although the kernel sources might
need patching to support smaller page sizes such as 1 KB. Al-
though small page sizes, e.g., 1 KB, may increase the overhead
associated with page management, this overhead is low in most
embedded systems, which commonly have limited physical
memory ranging from 16 MB to 64 MB, with a corresponding
memory overhead ranging from 64 KB to 256 KB given a
two-level paging scheme. This 0.4% overhead is negligible
compared to physical RAM size. In addition, the first-level
and second-level page tables need not be present in memory at
the same time, thus further reducing the memory management
overhead. Many embedded processors, e.g,. PowerPC 400
family processors [18], support a small page size such as 1 KB.

IV. EVALUATION

In this section, we present performance data for applications
running on a simulated 800 MHz Pentium 4 processor with
and without protection using the proposed bus encryption
technique. The proposed technique degrades the performance
of protected threads due to an increase in conflict misses re-
sulting from the larger effective cache line size due to software
cache management. The proposed technique is appropriate
in cases where embedded systems designers can tolerate a
significant performance overhead for protected processes. This
overhead is offset by other special advantages, i.e., prevention
of bus snooping for data sets used by protected processes,
requiring no changes to hardware, and requiring no changes
to applications. In this section we indicate the performance
penalties of using the proposed technique under different
circumstances, e.g., different page sizes and different cache
sizes. Our simulation results indicate that it is possible to
protect the data accessed by a process from appearing on
the processor–memory bus without dedicated hardware and
without changes to applications. For processors supporting
1 KB page size, the proposed technique results in 1.37×
slowdown for protected processes given 512 KB of L2 cache
and 1.78× slowdown given 256 KB of L2 cache.

IV.A. Simulation and Evaluation Environment

We use Simics [19] for system-level instruction set simula-
tion. Our goal is to determine whether the relative overhead of
the proposed technique is low enough to permit practical use.
The simulated system has separate instruction and data caches
at level 1 backed by a unified level 2 cache. Although the
proposed technique will be used with embedded processors,
e.g., ARM processors, we connect this cache hierarchy to an
800 MHz Pentium 4 processor because it is better supported
by Simics. The relative overhead is likely to be similar for
ARM and x86 processors because they have similar memory
hierarchies and relative memory access timing characteristics.

Characteristics of level 1 and level 2 cache are listed in
Table I. In addition, dynamic RAM (DRAM) usually has an
access time ranging from 5 ns to 70 ns. Therefore, we set the
main memory access time to 100 processor cycles.

Our analysis shows that the performance impact of context
switches on unprotected processes. We multiply the number
of L2 cache lines by the time to refill each line to calculate
the time to flush the L2 cache on context switches from
protected processes. The flush time is approximately 0.5 ms
for a 256 KB L2 cache, which is small compared to the
average timeslice of 210 ms for a running task assigned by
the Linux 2.4 scheduler [20]. Therefore, cache effects triggered
by context switches from protected processes to unprotected
processes have little impact on the performance of unprotected
processes.

IV.B. Simulation Process

To model the cache hierarchy of commonly-available ARM-
based embedded systems using the proposed bus encryption
technique, we have changed the L2 cache as follows:

1) During the execution of a secure process, the L2 cache is
used as scratchpad memory to minimize the performance im-
pact of encrypting/decrypting secure pages. Although normally
only part of the cache, e.g., 7/8, may be used as scratchpad
memory in Intel XScale processors [21], Simics supports only

TABLE I
L1 & L2 CACHE CHARACTERISTICS

Name
L1 Instruction L1 Data L2

Cache Cache Cache

Default Cache Size (KB) 16 8 512

Line Number 256 128 8192

Line Size (B) 64 64 64

Writing Method Write-through Write-through Write-back

Mapping Mechanism 8-way 4-way 8-way

Replacement Mechanism LRU LRU LRU

Cycles on read-hit 1 2 7

Cycles on write-hit 1 2 7

cache sizes that are powers of two. Therefore, we use the
whole cache as scratchpad memory for the convenience of
simulation. This has little impact on the results because access
time reduction permitted by the extra 1/8 cache as scratchpad
memory is similar to that by using it as normal cache.

2) To determine the relationship between performance and
cache configuration, we considered cache sizes of 64 KB,
128 KB, 256 KB, and 512 KB.

3) The read miss and write miss penalties were increased in
order to compensate for the increased line size. These penalties
were then added to the number of cycles required to generate
a 32-bit random vector and encrypt or decrypt a page in order
to determine the cost of encryption or decryption.

4) The cache line size is set to the page size, i.e., 1 KB and
4 KB. Therefore, a cache line replacement results in a page-
sized data transmission on the processor–memory bus. Note
that a cache miss suffers from the performance penalty for
encrypting/decrypting a page as indicated above (3). This im-
plies that secure pages are encrypted before being transferred
to external memory and decrypted when transferred into the
secure cache region.

5) The cache is set to fully-associative because its contents
are managed by the OS.

We use programs from Mediabench [22] to determine the
performance impact of the proposed technique on a number
of simulated memory organizations. We choose AES as our
encryption algorithm for the reasons indicated in Section III-B.
We evaluated all the benchmarks that were compatible with
the libraries on the default Simics filesystem image, which
runs the 2.4.18 Linux kernel. Table II shows the experimental
results for 1 KB and 4 KB pages. Each row shows the results
for an application in Mediabench given different cache sizes
and page sizes. The normal column specifies the execution
time when the application is unprotected, while the protected
column shows the execution time when the application is
protected. We used stalling simulation mode because it is fast
and maintains reasonable accuracy.

IV.C. Analysis

This section explains the impact of page size and cache size
on the performance of the proposed technique.

IV.C.1) Influence of Page Size: Figure 4 illustrates the
influence of page size on the performance overhead of the
proposed technique. We compare the average performance
overhead using 1 KB and 4 KB pages. When 1 KB pages are
used, our technique results in a 1.37× slowdown of protected
processes for a 512 KB L2 cache and a 1.78× slowdown
for a 256 KB L2 cache. When 4 KB pages are used, our
technique results in 1.74× slowdown of protected processes
also for a 512 KB L2 cache and a 2.53× slowdown for a

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

51225612864

A
v
e

ra
g

e
 p

e
rf

o
rm

a
n

c
e

 s
lo

w
d

o
w

n

Different cache sizes (KB)

1KB page size
4KB page size

Figure 4. Influence of page and cache sizes on performance overhead.

256 KB L2 cache. For 64 KB L2 caches, the performance
penalty is 2.44× and 8.50× slowdown for 1 KB and 4 KB page
sizes, respectively. The results indicate that the performance
overhead is lower with a smaller page size. This can be
explained as follows. Reducing the page size increases the
number of pages, thereby reducing conflicts due to accessing
portions of pages.

IV.C.2) Influence of Cache Size: Figure 4 also shows
the influence of cache size on the performance overhead of
the proposed technique. We choose L2 caches with different
sizes, e.g., 64 KB, 128 KB, 256 KB, and 512 KB for evalua-
tion. As we can see from the figure, when the L2 cache is
relatively small, e.g., 64 KB, the simulated system suffers a
high performance degradation with both 1 KB and 4 KB page
sizes. As cache size increases, the performance overhead of
the proposed technique decreases. Specifically, for 1 KB page
size, when the cache size grows from 64 KB to 128 KB, the
penalty decreases from an average of 2.44× to an average
of 2.07×. Therefore, we conclude that the average slowdown
decreases as the L2 cache size increases due to more cache
hits and thus less time spent on decryption, encryption, and
accessing memory. The overhead of the proposed technique is
lowest for smaller page sizes and larger caches.

V. COMPARISON WITH HARDWARE IMPLEMENTATION

OF ENCRYPTION ALGORITHMS

Designing bus encryption hardware for symmetric encryp-
tion/decryption algorithms such as AES in CBC mode is
challenging. High data rates are required for the processor–
memory bus. CBC is generally used for high-security ap-
plications. However, pipelining it to permit high data rates
is very difficult. To the best of our knowledge, there are
no commercial hardware encryption engines in embedded
systems that implement AES in cipher block chaining mode
at a high enough data rate for use in processor–memory bus
encryption. The DS5240 and DS5250 produced by Dallas
Semiconductor [7] only implement DES and triple-DES with a
low maximum frequency, i.e., 25 MHz. The Intel IXP422 and
IXP425 processors have additional network processor engines
that support AES in CBC mode. However, the encryption
speed of 70 Mb/s is far less than the processor–memory bus
data rate of 4,256 Mb/s, given a 32-bit, 133 MHz bus. This
makes the network encryption engines inappropriate for bus
encryption [23, 24].

TABLE II
EXPERIMENTAL RESULTS FOR SYSTEMS WITH 1 KB AND 4 KB PAGES

cache size 64 KB 128 KB 256 KB 512 KB

normal
protected (s) slowdown (×)

normal
protected (s) slowdown (×)

normal
protected (s) slowdown (×)

normal
protected (s) slowdown (×)

penalty
(s)

1 KB 4 KB 1 KB 4 KB
(s)

1 KB 4 KB 1 KB 4 KB
(s)

1 KB 4 KB 1 KB 4 KB
(s)

1 KB 4 KB 1 KB 4 KB
page page page page page page page page page page page page page page page page

adpcmenc 0.03 0.11 0.67 3.67 22.33 0.03 0.08 0.21 2.67 7.00 0.03 0.07 0.12 2.33 4.00 0.03 0.06 0.09 2.00 3.00

adpcmdec 0.03 0.11 0.70 3.67 23.33 0.03 0.08 0.21 2.67 7.00 0.03 0.07 0.12 2.33 4.00 0.03 0.05 0.08 1.67 2.67

epic 0.17 0.56 0.96 3.29 5.65 0.16 0.49 0.64 3.06 4.00 0.16 0.43 0.49 2.69 3.06 0.16 0.22 0.28 1.38 1.75

unepic 0.05 0.24 0.49 4.80 9.80 0.04 0.20 0.33 5.00 8.25 0.04 0.17 0.22 4.25 5.50 0.04 0.08 0.11 2.00 2.75

g721enc 0.73 0.83 1.35 1.14 1.85 0.73 0.78 1.06 1.07 1.45 0.73 0.78 0.80 1.07 1.10 0.73 0.75 0.78 1.03 1.07

g721dec 0.69 0.79 1.31 1.14 1.90 0.69 0.75 1.03 1.09 1.49 0.69 0.73 0.81 1.06 1.17 0.69 0.72 0.74 1.04 1.07

gs 3.65 6.11 17.62 1.67 4.83 3.63 4.90 10.85 1.35 2.99 3.63 4.49 5.67 1.24 1.56 3.63 4.20 4.42 1.16 1.22

gsmenc 0.39 0.50 1.06 1.28 2.72 0.39 0.44 0.68 1.13 1.74 0.39 0.43 0.47 1.10 1.21 0.39 0.42 0.44 1.08 1.13

gsmdec 0.19 0.27 0.71 1.42 3.74 0.19 0.24 0.43 1.26 2.26 0.19 0.23 0.28 1.21 1.47 0.19 0.22 0.24 1.16 1.26

jpegenc 0.07 0.18 0.49 2.57 7.00 0.07 0.14 0.29 2.00 4.14 0.07 0.11 0.17 1.57 2.43 0.07 0.09 0.12 1.29 1.71

jpegdec 0.03 0.10 0.39 3.33 13.00 0.03 0.08 0.21 2.67 7.00 0.03 0.06 0.11 2.00 3.67 0.03 0.05 0.08 1.67 2.67

mipmap 0.46 0.80 2.98 1.74 6.48 0.46 0.69 1.28 1.50 2.78 0.46 0.66 0.79 1.43 1.72 0.46 0.63 0.67 1.37 1.46

osdemo 0.24 0.82 2.38 3.42 9.92 0.24 0.64 1.46 2.67 6.08 0.24 0.51 0.85 2.13 3.54 0.24 0.36 0.50 1.50 2.08
texgen 0.60 1.86 9.66 3.10 16.1 0.60 1.49 3.68 2.48 6.13 0.60 1.01 2.05 1.68 3.42 0.60 0.82 1.02 1.37 1.70

mpeg2enc 3.12 3.91 7.06 1.25 2.26 3.10 3.60 4.71 1.16 1.52 3.10 3.50 3.77 1.13 1.22 3.10 3.35 3.45 1.08 1.11

mpeg2dec 0.48 0.73 2.41 1.52 5.02 0.48 0.62 1.02 1.29 2.13 0.48 0.58 0.69 1.21 1.44 0.48 0.54 0.60 1.13 1.25

average 2.44 8.50 2.07 4.12 1.78 2.53 1.37 1.74

Some researchers have proposed hardware implementations
of AES in cipher block chaining mode. In AEGIS [11], a
fully parallel AES implementation encrypts/decrypts a 64 B
cache line in 10 processor cycles with an area cost of 300,000
gates. The performance overhead induced by the cryptographic
engine is estimated to be as low as 25%. Therefore, the
hardware-based approach is 1.42× faster than our software-
based method, given 1 KB page size and 256 KB cache size, at
the expense of 300,000 additional gates, almost four times the
size of an ARM7EJ-S processor core. In summary, there are
many applications in which the reduced design complexity and
low cost of software-based processor–memory bus encryption
may make it an attractive alternative to a hardware-based
solution. This is the first article to propose a software-based
solution.

VI. CONCLUSIONS

In this paper, we have presented a software-based bus
encryption technique for use in embedded systems. This
technique requires no changes to hardware or applications.
This is a substantial advantage in terms of design complexity
and integrated circuit area overhead. Our technique has been
evaluated via full system simulation with a set of applications
from Mediabench [22]. Experimental results indicate that the
performance overhead for protected processes is 1.78× in
systems with 256 KB L2 cache and 1.37× in systems with
512 KB L2 cache. Unprotected processes experience negligible
overhead. Therefore, the approach appears to be applicable
on embedded systems in which unprotected processes account
for the majority of computational demand and for embedded
systems with large caches and/or small page sizes that run
computationally-intensive protected processes.

REFERENCES

[1] L. Whetsel, “An IEEE 1149.1 based logic/signature analyzer in a chip,”
in Proc. Int. Test Conf., Oct. 1991, pp. 869–878.

[2] “I2C bus monitor,” http://www.jupiteri.com.

[3] R. M. Best, “Microprocessor for executing enciphered programs,” US
Patent No. 4,168,396, Sept. 1979.

[4] R. Elbaz, et al., “Hardware engines for bus encryption: a survey of
existing techniques,” in Proc. Design, Automation & Test in Europe
Conf., Mar. 2005, pp. 40–45.

[5] R. Takahashi and D. N. Heer, “Secure memory management unit
for microprocessor,” U.S. Patent (from VLSI Technology, Inc.) No.
5,825,878, Oct. 1998.

[6] B. Candelore and E. Spunk, “Secure processor with external memory
using block chaining and block reordering,” U.S. Patent (from General
Instrument Corporation) No. 6,061,449, May 2000.

[7] DS5240 and DS5250. Dallas Semiconductor (Maxim). http://www.
maxim-ic.com/Microcontrollers.cfm.

[8] The IBM PCI Cryptographic Coprocessor. IBM Corporation. http://
www.ibm.com/security/cryptocards.

[9] T. Gilmont, J.-D. Legat, and J.-J. Quisquater, “Enhancing security in
the memory management unit,” in Proc. Euromicro Conf., Sept. 1999,
pp. 449–456.

[10] D. Lie, et al., “Architectural support for copy and tamper resistant
software,” in Proc. Int. Conf. Architectural Support for Programming
Languages and Operating Systems, Nov. 2000.

[11] G. E. Suh, et al., “AEGIS: Architecture for tamper-evident and tamper-
resistant processing,” in Proc. Int. Conf. Supercomputing, June 2003,
pp. 160–171.

[12] Intel XScale Core Developer’s Manual. Intel Corporation. http://
download.intel.com/design/intelxscale/27347302.pdf.

[13] D. G. Abraham, et al., “Transaction security system,” IBM Systems,
vol. 30, no. 2, pp. 206–229, 1991.

[14] L. Yang, et al., “On-Line Memory Compression for Embedded Sys-
tems,” ACM Trans. Embedded Computing Systems, to appear.

[15] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996.

[16] “OpenSSL Release 0.9.8d,” http://www.openssl.org.

[17] “ARM Linux Project,” http://www.arm.linux.org.uk.

[18] PowerPC Processors. IBM Corporation. http://www-03.ibm.com/chips/
power/powerpc/newsletter/pdf/oct2000.pdf.

[19] “Simics,” http://www.virtutech.com.

[20] D. P. Bovet and M. Cesati, Understanding the Linux Kernel, 2nd ed.
O’Reilly & Associates, Inc., Dec. 2002.

[21] Intel XScale Technology. Intel Corporation. http://www.intel.com/
design/intelxscale.

[22] C. Lee, M. Potkonjak, and W. H. M. Smith, “Mediabench: A tool for
evaluating and synthesizing multimedia and communications systems,”
http://cares.icsl.ucla.edu/MediaBench.

[23] Intel IXP42X Processors Datasheet. Intel Corporation. http://download.
intel.com/design/network/datashts/25247906.pdf.

[24] Intel IXP42X Processors Manual. Intel Corporation. http://download.
intel.com/design/network/manuals/25248005.pdf.

