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Abstract. We propose microwave-controlled rotations for qubits realized as Majorana bound
states. To this end we study an inhomogeneous Kitaev chain in a microwave cavity. The chain
consists of two topologically nontrivial regions separated by a topologically trivial, gapped
region. The Majorana bound states at the interfaces between the left (right) regions and the
central region are coupled, and their energies are split by virtual cotunneling processes. The
amplitude for these cotunneling processes decreases exponentially in the number of sites of
the gapped region, and the decay length diverges as the gap of the topologically trivial region
closes. We demonstrate that microwave radiation can exponentially enhance the coupling
between the Majorana bound states, both for classical and quantized electric fields. By
solving the appropriate Liouville equation numerically we show that microwaves can drive
Rabi oscillations in the Majorana sector. Our model emerges as an effective description for a
topological semiconducting nanowire in a microwave cavity. Thus, our proposal provides an
experimentally feasible way to obtain full single-qubit control necessary for universal quantum
computation with Majorana qubits.
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1. Introduction

Majorana bound states (MBS) [1] are currently a strong focus of research in the condensed-
matter community [2, 3, 4]. Semiconductor nanowires with strong Rashba spin-orbit coupling
have emerged as a promising platform to host MBS. Following theoretical proposals [5, 6, 7]
first experimental signatures of MBS have recently been reported [8, 9, 10, 11].

On the one hand, MBS are fascinating quantum systems in their own right. On the other
hand, MBS could become useful for quantum computing as braiding leads to topologically-
protected quantum gates which are immune against certain types of noise [12]. However, these
braiding operations do not form a universal set of gates needed for quantum computation,
so they have to be supplemented by other gates which are not topologically protected. The
circuit quantum-electrodynamics (circuit-QED) architecture [13] offers a controlled and well-
developed toolbox in the microwave domain and is thus an ideal candidate to complement the
topologically-protected braiding operations. Coupling MBS of a Kitaev chain to a microwave
strip-line resonator has recently been studied by Trif and Tserkovnyak [14].

We propose to use microwaves to control the coupling between two MBS which is
potentially relevant in the context of quantum computation. In Ref. [15], we investigated
the essential features of the proposed coupling scheme in a simplified effective model
using perturbation theory in the electron-photon coupling. Here, we confirm and extend
those results by numerically solving the Kitaev Hamiltonian in the presence of microwave
radiation. The remainder of this paper is organized as follows. In Section 2 we introduce the
Hamiltonian for an inhomogeneous Kitaev chain consisting of two topologically nontrivial
regions separated by a topologically trivial, gapped region. In this situation it it is well-
known that MBS form at the interface between the topologically different regions [1]. We
demonstrate that virtual cotunneling processes mediated by the gapped region couple the MBS
and split their energies. The amplitude for these processes decreases exponentially in the
length of the gapped region, and the decay length diverges as the gap in the topologically
trivial region closes. The Kitaev model is known to be an effective description for a
topological nanowire [16]. In Section 3 we study its coupling to the microwave field inside a
cavity. We find that the cavity field gives rise to a modulation of the hopping matrix element
between neighbouring lattice sites. This enables us to control the properties of the chain with
the microwave field. In Section 4 we then discuss a Kitaev model coupled to a microwave
field. We assume that the cavity field can be described classically before solving the full
quantum master equation for a damped, driven as well as quantized photon field. In both cases
we find that the microwaves can induce Rabi oscillations in the Majorana sector. They can
thus supplement topologically-protected braiding operations to gain full single-qubit control
which is a necessary step toward a universal set of quantum gates for Majorana qubits.

2. Inhomogeneous Kitaev chain

To describe a one-dimensional wire which can be brought to either a topologically trivial or
topologically nontrivial phase by tuning the system parameters, we shall use the Hamiltonian
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of the Kitaev chain [1]. This model captures qualitatively many features of more realistic 1D
models [6, 7], while remaining exactly solvable. This makes it very useful for investigating
the properties of MBS. In fact, it has been shown that there exists an approximate mapping
between realistic models and the Kitaev chain Hamiltonian, so their low-energy degrees of
freedom are identical [16]. We shall extend this mapping to incorporate electron-photon
coupling in Sec. 3.

We start with a brief review of some essential properties of an inhomogeneous Kitaev
chain, containing two topologically nontrivial regions, separated by a short topologically
trivial, gapped region. On a very general level, this system can be modeled as a Kitaev chain
consisting of N sites with position-dependent parameters,

HK = −
N∑
n=1

µnc
†
ncn −

1

2

N−1∑
n=1

(
tnc
†
ncn+1 + ∆ncncn+1 + h.c.

)
. (1)

Here, µn denotes the onsite energies, tn are the hopping amplitudes, and ∆n are the p-wave
pairing strengths. The operator cn (c†n) annihilates (creates) a spinless fermion at lattice site
n. This bilinear Hamiltonian can be diagonalized exactly for arbitrary parameters and will
be used below for numerical results. To obtain simple analytical expressions, it is convenient
to select the simplest parameter constellation which generates the desired topological phases.
We therefore assume Eq. (1) to be of the form

HK = HL +HC +HR +HLC +HRC , (2)

where the N -site chain is split into three parts: HL and HR describe the left (n ≤ m1) and
right (n ≥ m2) parts of the chain, and HC the NC = m2 − m1 − 1 sites in the central part
(m1 + 1 ≤ n ≤ m2− 1). The sections are coupled by HLC that connects sites m1 and m1 + 1,
and HRC that connects sites m2 − 1 and m2.

The left and right regions are supposed to be in the topologically nontrivial phase, i.e.,
we assume µn = 0 and constant ∆n = tn =: t > 0. Then, the Hamiltonians HL,R become
diagonal in a basis of nonlocal Dirac fermions, dn = Im cn+1 + iRe cn,

HL = t

m1−1∑
n=1

d†ndn, HR = t
N−1∑
n=m2

d†ndn. (3)

In the central part of the chain, we choose the parameters as µn = µC , tn = t, and ∆n = 0.
Without loss of generality, we assume µC > 0. Since this parameter choice makes the central
region topologically trivial, we retain the basis of local Dirac fermions cn,

HC = −µC
m2−1∑

n=m1+1

c†ncn −
t

2

m2−2∑
n=m1+1

(
c†ncn+1 + h.c.

)
. (4)

To diagonalize HC , it is convenient to extend the central region to a large number of sites
N∞ � NC and then impose periodic boundary conditions. We shall discuss the quality
of this approximation by comparing it to numerical results below. Hence, we introduce the
operators c̃n, where c̃n = c̃n+N∞ . They are defined to coincide with the original operators cn
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Figure 1. Band structure of the inhomogeneous Kitaev chain in the gapped regime: the left and
right chain segments are in the topologically nontrivial phase and host Majorana bound states
(MBSs) at their edges. The central region is topologically trivial. Stars denote the positions of
zero-energy MBSs.

in the central region: c̃n = cn for m1 + 1 ≤ n ≤ m2 − 1. Then, we can diagonalize HC in
momentum space,

HC =
∑
k

ε(k)c̃†kc̃k, (5)

where ε(k) = −µC − t cos(a0k). We introduced the lattice spacing a0, and the momentum k

is in the first Brillouin zone, k ∈ [−π/a0, π/a0], and is quantized in units of 2π/(a0N∞). The
operators in momentum space are defined by c̃k = N

−1/2
∞

∑N∞
n=1 e

−ika0nc̃n.
If the three segments are not coupled (HLC = HRC = 0), our choice of parameters

entails that the left and right segments are gapped due to the superconducting pairing and the
width of the gap is 2∆ = 2t. Moreover, the left chain contains at its edges the free zero-energy
MBSs γ1 and γm1 , and the right chain contains γm2 and γN . In terms of the electron operators,
these are given by,

γ1 = 2Im c1 = −i(c1 − c†1),

γm1 = 2Re cm1 = cm1 + c†m1
,

γm2 = 2Im cm2 = −i(cm2 − c†m2
),

γN = 2Re cN = cN + c†N . (6)

Now, we introduce tunneling between the side chains and the central chain. Because there are
no terms beyond nearest-neighbor terms in Eq. (1), only the Majorana states γm1 and γm2 are
coupled to the central chain [17],

HLC = −tLC
2
γm1(c̃m1+1 − c̃†m1+1),

HRC = −itRC
2

(c̃m2−1 + c̃†m2−1)γm2 . (7)

Note that for our choice of parameters the Dirac fermions dn of the left and right chains are
not coupled to the remaining system. Therefore, we can discard the operators HL,R in the
following discussion and use

H0 = HC +HLC +HRC . (8)

The Hamiltonian (8) can easily be solved exactly. We are particularly interested in the
coupling between γm1 and γm2 , mediated by the central chain. For µC < t, the central
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Figure 2. Splitting of the MBSs as a function of chemical potential µC and the number of
lattice sites NC of the central region. The crosses indicate the numerically exact solution of
the inhomogeneous Kitaev chain. The solid line represents the splitting calculated numerically
using periodic boundary conditions. The dashed line shows the approximation Eq. (9).

chain becomes gapless and real electrons and holes can tunnel to and from the MBS. In this
regime, the overlap of the MBSs turns out to be very sensitive to system parameters, and the
boundary conditions of the central region become important. The MBS self-energy acquires
an imaginary part, indicating a level broadening and thus a finite lifetime of the MBS. In the
continuum limit, the effect of the metallic central region thus resembles that of a fermionic
bath which has been investigated in detail in Ref. [18].

On the other hand, for µC > t, the central chain has a gap of width 2(µC − t). The
corresponding band structure (for weakly coupled chains) is shown in Fig. 1. In this regime,
electron cotunneling is the only process leading to a nonzero overlap of the Majorana levels
γm1 and γm2 . This overlap causes a finite level splitting of the MBS, which for µC � t

becomes

ε = tLCtRC
e−(NC−1)arccosh(µC/t)

t
√

(µC/t)2 − 1
. (9)

As expected, this splitting decays exponentially with increasing length NC of the central
region. The corresponding decay length ξ = a0/arccosh(µC/t) diverges as (µC/t − 1)−1/2

for µC → t. The level splitting (9) can also be found from the exact numerical solution of the
full Hamiltonian (1). A comparison between the exact numerical result and the approximation
(9) is shown in Fig. 2.

In Ref. [15], we calculated the level splitting for a minimal model containing two MBS
coupled via a gapped region with quadratic spectrum ε(k) = k2/(2M)− µ0. To compare the
energy splitting (9) with that model, we need to take the continuum limit of the Kitaev chain
by sending the lattice constant a0 → 0, while keeping the total length LC = NCa0 constant.
Let us assume that |µC | & t. Near the bottom of the band the spectrum of the uncoupled
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central Kitaev chain is quadratic with effective mass M = 1/(a2
0t) and chemical potential

µ0 = −|µC |+ t. Then, one finds for small |µ0| � t,

ε ≈ a0tLCtRC
e−LC/ξ

2|µ0|ξ
(10)

where ξ = (2M |µ0|)−1/2 is the decay length of the MBS into the gapped system.
If we focus on the gapped regime (µC > t), we can derive a simple effective low-energy

theory of the coupled Majorana modes γm1 and γm2 by integrating out the central region. This
leads to an effective retarded interaction between γm1 and γm2 . In the low-energy (long-time)
limit at energy scales small compared to (µ2

C − t2)/µC , we can neglect the retardation and
obtain the effective low-energy Hamiltonian

Heff =
iε

2
γm1γm2 . (11)

In Ref. [15], we pointed out the benefits of such a coupling: if the MBS (6) are used to encode
a single qubit represented by the Pauli matrix σz, then braiding the qubits γ1 and γm1 will
allow qubit rotations eiπσz/4 [12]. Braiding the MBS γm1 and γm2 corresponds to the operator
eiπσx/4. The set of these topologically protected operations is insufficient to reach arbitrary
points on the Bloch sphere. In contrast, the Hamiltonian (11) with a tunable energy ε allows
qubit rotations of the form Uε(t) = exp (−iεtσx/2). By combining these operations with
braiding, it is possible to realize arbitrary single-qubit rotations.

In the following, we shall demonstrate that this coupling Hamiltonian can be engineered
by using the interaction of the Kitaev chain with a microwave cavity field.

3. Coupling of Majorana bound states to photons

In the proposed solid-state devices [5, 6, 7], MBS exist as quasiparticles consisting of an
equal-weight superposition of a particle and a hole. Therefore, they may interact with photons
despite the fact that they are on average chargeless. In order to gain further insight into this
coupling, we shall use the Hamiltonian of Ref. [7], and couple it to an electric field using the
minimal coupling substitution ~p → ~p − e ~A, where e is the elementary charge and ~A is the
vector potential.

The model Hamiltonian for a semiconductor nanowire along the y-axis reads

Hnw =

∫
dy

{ ∑
σ=↑,↓

ψ†σ(y)

[
− 1

2M

∂2

∂y2
− µ0 − iuσ

∂

∂y

]
ψσ(y)

+
∑
σ=↑,↓

Bψ†σ(y)ψ−σ(y) +
[
∆0ψ

†
↑(y)ψ†↓(y) + h.c.

]}
. (12)

Here, µ0 denotes the chemical potential, and u is the strength of the Rashba spin-orbit coupling
pointing in the z direction. B is a perpendicular magnetic field in the x direction. Finally, the
induced s-wave pairing strength is denoted by ∆0. It has been shown that for B > ∆0, this
model exhibits MBS at the edges for |µ0| <

√
B2 −∆2

0, whereas it is in the topologically
trivial phase for |µ0| >

√
B2 + ∆2

0.
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Figure 3. Single-particle spectrum corresponding to Eq. (12) for ∆0 = 0. Blue (dark grey)
lines are for the topologically nontrivial phase (µ0 = 0, B = 2Mu2), green (light gray) lines
are for the trivial phase (µ0 = −2.3Mu2, B = 2Mu2). For the mapping onto a spinless
Kitaev chain, the higher-energy parts of the spectrum (dashed lines) are neglected.

Mapping Eq. (12) on a Kitaev chain becomes most transparent in the regime B �
∆0,Mu2. The band structures in the topologically trivial (nontrivial) phases are depicted
in Fig. 3. In the nontrivial regime, we can choose µ0 = 0 and the band gap is proportional to
the pairing potential ∆0. In the trivial regime, on the other hand, we choose −µ0 & B and
the band gap is |µ0| − B. One obtains a low-energy theory by retaining the lower branches
ψ−(p) of both spectra. In the nontrivial region, the result is a spinless p-wave superconductor,
whereas the trivial region becomes a spin-polarized electron system. Both systems may be
described by Kitaev chains in the respective topological phases. For a fixed lattice spacing a0,
the parameters of the homogeneous Kitaev chain

HK = −
N∑
n=1

µc†ncn −
1

2

N−1∑
n=1

(tc†ncn+1 + ∆cncn+1 + h.c.) (13)

are related to those of the model Hamiltonian Hnw as follows,

µ = µ0 +B − 1

Ma2
0

, t =
1

Ma2
0

, ∆ =
2∆0u

Ba0

. (14)

For our proposed coupling scheme, the band gap has to be larger in the nontrivial region than
in the trivial regions, so we will assume that |µ0|, B � ∆0, whereas |µ0| −B � ∆0.

The coupling to a weak vector potential ~A(~r) in a microwave cavity can now be
investigated using the minimal coupling substitution −i∂/∂~r → −i∂/∂~r − e ~A(~r) in the
Hamiltonian (12). We assume that the cavity electric field ~E = −d ~A/dt is oriented
along the wire (y) axis, i.e., the wire axis is perpendicular to the cavity axis. Moreover,
we assume that ~E(~r) is spatially constant along the length of the wire, which is a good
approximation for current experimental setups [8] and typical microwave wavelengths. In
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that case, Ay = Erms(a + a†), where Erms is the root mean square of the cavity electric field,
and a (a†) is the annihilation (creation) operator for the cavity mode. Since Ay is position-
independent, it commutes with the momentum operator, so the electron-photon coupling
Hamiltonian becomes

Hel−ph = −ieAy
M

∫
dyψ†−(y)∂yψ−(y). (15)

We can again discretize the spatial integral. For a lattice spacing a0, the result reads

Hel−ph =
eAy

2Ma0

∑
n

(
ic†ncn+1 + h.c.

)
∝ (a+ a†)

∑
n

c†ncn+1 + h.c. (16)

In conclusion, an electric field gives rise to a change in the hopping matrix element
between neighboring lattice sites. The expression (16) holds in both the topological trivial
and nontrivial regimes. We expect the same type of coupling also at interfaces between
different phases, although the coupling constant will then depend on the overlap between
the wavefunctions in both regions and on their spin structure.

4. Inhomogeneous Kitaev chain in a microwave cavity

Let us assume that the inhomogeneous Kitaev chain is brought into a driven microwave cavity
[14]. We consider one cavity mode with frequency Ω and assume that the cavity is driven with
a frequency ΩL,

Hcav(τ) = Ωa†a+ aϕeiΩLτ + a†ϕ∗e−iΩLτ +Hcav,d, (17)

where τ is the time, a is the bosonic operator of the cavity mode, ϕ represents amplitude and
phase of the drive, and Hcav,d contains damping terms, which produce a nonzero line width κ.

We assume that the wavelength of the field λ = c/Ω is much longer than the Kitaev chain,
so we can treat the field as constant along the Kitaev chain. The cavity field E ∝ a + a† acts
on the electrons forming the Kitaev chain. Thus, we use the Hamiltonian (1) and supplement
it by electron-photon coupling terms (16).

For the numerical solution of the system, we represent the Kitaev Hamiltonian (1) as
HK = 1

2
A†HKA, where A† = (c†1, . . . , c

†
N , c1, . . . , cN) and HK is a complex 2N × 2N

matrix. In the absence of coupling between the three regions, the matrix HK has a fourfold
degenerate eigenvalue at zero energy reflecting the four MBS (6). The corresponding basis of
the zero-energy eigenspace is,

|ψ1〉 =
i√
2

(|1〉 − |1 +N〉) , |ψm1〉 =
1√
2

(|m1〉+ |m1 +N〉)

|ψN〉 =
1√
2

(|N〉+ |2N〉) , |ψm2〉 =
i√
2

(|m2〉 − |m2 +N〉) (18)

where |n〉 is the vector with components |n〉j = δnj for n ∈ {1, . . . , 2N}. For the numerical
simulation, we shall assume that the system is initially prepared in the state |ψm1〉. At time
τ = 0, the microwave field is switched on. The time evolution |ψm1(τ)〉 = e−iHKτ |ψm1〉 then
leads to Rabi oscillations between the states |ψm1〉 and |ψm2〉.
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To apply the proposed coupling mechanism for qubit rotations, the gap in the
topologically nontrivial left and right regions should exceed the gap in the topologically trivial
central region, as shown in Fig. 1. Moreover, the photon frequency Ω should be slightly below
the gap in the central region, and the left and right regions much longer than the central region.
This choice of parameters ensures that the two MBS in the left region (γ1 and γm1) and the
right region (γm2 and γN ) remain unaffected by the photon field, whereas γm1 and γm2 will
be coupled. In our numerical simulations, we choose µL = µR = 0. In this case, the MBS
within the left and right regions are mutually uncoupled, so it is sufficient to consider small
lengths NL,R.

4.1. Classical microwave field

Let us now first consider the case where the microwave field can be treated classically. Then,
our Hamiltonian reads

H = HK − β
√
nph cos(ΩLτ)

N∑
n=1

(
c†ncn+1 + h.c.

)
, (19)

where β is the effective electron-photon coupling amplitude and nph is the number of photons
in the cavity. Transforming the Hamiltonian into the frame rotating at the drive frequency ΩL

and performing a rotating-wave approximation, we obtain the time-independent Hamiltonian

HRWA = − (µC − ΩL)

m2−1∑
n=m1+1

c†ncn −
t

2

m2−2∑
n=m1+1

(
c†ncn+1 + h.c.

)
−
β
√
nph

2

[
γm1

(
cm1+1 − c†m1+1

)
+ iγm2

(
c†m2+1 + cm2+1

)]
. (20)

Within this approximation, the effective chemical potential of the central region is shifted to
a new value µC → µC − ΩL. Therefore, the effective gap of the central region can be tuned
by changing the microwave frequency ΩL. The coupling between MBS and the central region
can be controlled by the drive strength which determines nph.

In Fig. 4, we plot Rabi oscillations of the MBS γm1 as a function of time, and compare the
full numerical solution of the classically driven Hamiltonian (19) to the corresponding result
of Eq. (20). We find that for t� ΩL < µC , both results are in excellent agreement. Moreover,
the oscillation frequency qualitatively agrees with the approximation (9). The deviations
from the exact numerical result are of the same order as the deviations shown in Fig. 2 and
are mostly due to the fact that the analytical result (9) assumed µC � t. The agreement
between rotating wave approximation and the exact solution decreases for ΩL < t. In that
case, counter-rotating terms can no longer be neglected and lead to pronounced oscillations
visible in the exact solution, see Fig. 5.

4.2. Liouville equation in the quantum regime

The inhomogeneous Kitaev chain coupled to a damped photon mode can be solved
numerically if we truncate the photon Hilbert space to a finite maximum photon number qc.
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Figure 4. Comparison between rotating-wave approximation (green line), see Eq. (20), and
the numerically exact classically driven time evolution (blue line), see Eq. (19). Here, τ is
the time, and t the hopping amplitude. We choose parameters ΩL = 3.95t and β = 0.1t,
NL = NR = 2, NC = 4, µL = µR = 0, µC = 5t, ∆L = ∆R = t, ∆C = 0.
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Figure 5. The rotating-wave approximation (green line) deteriorates for ΩL < t. We choose
parameters ΩL = 0.45t, µC = 1.55t. The remaining parameters are the same as in Fig. 4.

In that case, we can express the system Hamiltonian in the basis |q, n〉, where q ∈ {0, . . . , qc}
denotes the number of photons, and the single-fermion states |n〉 for n ∈ {1, . . . , 2N}
were defined in Eq. (18). The Hamiltonian matrix thus has dimension 2Nqc. To find Rabi
oscillations numerically, we solve the Liouville equation governing the time evolution of the
system density matrix ρ(τ),

d

dτ
ρ(τ) = Lρ(τ). (21)
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The Liouville superoperator L consists of terms describing the Kitaev chain, the photon field,
the electron-photon coupling, and the damping, respectively,

Lρ = −i[HK , ρ]− i[Hph, ρ]− i[Hel,ph, ρ] + Ldampingρ. (22)

The Hamiltonian HK for the Kitaev chain is given in Eq. (1). We use a constant tn = t, and
measure all energies relative to t. We again separate the Kitaev chain into three segments, with
boundaries at 1 ≤ m1 < m2 ≤ N , and choose the parameters in such a way that the outer
segments are in the topologically nontrivial phase, whereas the central chain is topologically
trivial. Within each of the segments, the parameters µn and ∆n are constant.

The coherently driven cavity mode with resonance frequency Ω is described by the
Hamiltonian Hph, which contains the photon operators a and a†, and a damping term of
Lindblad form,

Hph(τ) = Ωa†a+ aϕ(τ)eiΩLτ + a†ϕ∗(τ)e−iΩLτ ,

Ldampingρ =
κ

2
(2aρa† − a†aρ− ρa†a). (23)

Here, ϕ(τ) encodes the (slowly varying) amplitude and phase of the external drive, ΩL is the
drive frequency, and κ is the photon damping rate. Last but not least, the electron-photon
coupling Hamiltonian has the form derived in Eq. (16),

Hel−ph = −β
2

(a+ a†)
N−1∑
n=1

(
c†ncn+1 + h.c.

)
(24)

which has been used before in Ref. [14]. We solve the Liouville equation by representing
the density matrix as a vector with (2Nqc)

2 components, and the Liouville superoperator as
a (2Nqc)

2 × (2Nqc)
2 matrix acting on this vector. The number of matrix entries scales with

the fourth power of the Hilbert space dimension, but the matrix is sparse and thus remains
amenable to a numerical solution.

We proceed to solve the Liouville equation in real time using a fourth-order Runge-
Kutta solver. We start with an initial fermionic state |ψm1〉, and assume that the initial
state contains one photon. Therefore, according to Eq. (18), the full system state is
|ψi〉 = 1√

2
(|1,m1〉+ |1,m1 +N〉) and the initial density matrix corresponds to the pure state

ρi = |ψi〉 〈ψi|. To observe Rabi oscillations of MBS, we plot in Fig. 6 the time-dependent
fidelities of the two fermionic states

Fm1,2(τ) = Tr
[
ρ(τ)

(
Iph ⊗

∣∣ψm1,2

〉 〈
ψm1,2

∣∣)] , (25)

where Iph denotes the identity operator in the photon system. The solution of the Liouville
equation reveals damped Rabi oscillations with a damping rate proportional to κ. For weak
damping, the oscillation frequency agrees qualitatively with the results for classical driving in
Sec. 4.1.

5. Conclusions

In conclusion, we have studied an inhomogeneous Kitaev chain consisting of two
topologically nontrivial regions separated by a trivial, gapped region. Integrating out the
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Figure 6. Damped Rabi oscillations of the Majorana bound state for a strongly damped
quantized photon field (κ = 2 × 10−4t). The solution was determined from the Liouville
equation (21). Parameters: Ω = 0.45t, β = 0.1t, NL = NR = 2, NC = 4, µL = µR = 0,
µC = 1.5t, ∆L = ∆R = t, ∆C = 0.

central gapped region leads to an effective coupling between the two Majorana bound states
at the interface between the left region (right region) and the central region. The coupling
constant decays exponentially with the length of the central region; the decay length depends
on the chemical potential of the central region and diverges if the gap closes. Embedding the
chain into a microwave cavity makes this decay length tunable. If the microwave frequency
approaches the band gap of the topologically trivial region, the coupling between Majorana
bound states adjacent to the central region can be exponentially enhanced. Since this coupling
is controllable, it can be used to implement rotations of a qubit encoded in Majorana bound
states. The qubit rotations achievable using this coupling, combined with braiding operations,
are general enough to allow arbitrary single-qubit gates.
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