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We report on cost-effective ITO-free organic solar cells (OSCs) fabricated by a spray deposition method.

All solution-processable layers of solar cells—a highly conductive poly(3,4-ethylenedioxythiophene):-

poly(styrenesulfonate) (PEDOT:PSS) layer and a photoactive layer based on poly(3-hexylthiophene)

(P3HT) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61 (PCBM)—were spray-coated. PEDOT:PSS

anode films with various thicknesses were prepared by controlling the spray deposition time. The

transmittance and sheet resistance of PEDOT:PSS anodes were varied from 89.0% to 67.4% and from 358

to 63.3 O/squares, respectively, corresponding to an increase in film thickness. The best device

exhibited a high power conversion efficiency of 2.17% under 100 mW cm�2 illumination with air mass

(AM) 1. 5 global (G) condition. More importantly, the efficiency of the fully spray-coated OSC with the

PEDOT:PSS anode was comparable to that of conventional ITO-based devices, demonstrating the

feasibility of fabricating all-spray-deposited OSCs without a conventional spin-coating method and the

possibility of replacing the costly vacuum-deposited indium tin oxide (ITO) with highly conductive

polymer films fabricated by inexpensive spray deposition techniques.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Conjugated polymer-based organic solar cells (OSCs) have
received significant attention due to their potential for low-cost
roll-to-roll manufacturing and large-area processability on flex-
ible substrates [1–11]. Among the available polymer solar cell
systems, poly(3-hexylthiophene) (P3HT) and 1-(3-methoxycarbo-
nyl)-propyl-1-phenyl-(6,6)C61 (PCBM) blends show efficiencies of
up to 4–5% [8,9]. In addition, with the aid of novel donor polymer,
the power conversion efficiencies of bulk-heterojunction (BHJ)
solar cells have continuously increased up to �6% [12,13].
Furthermore, various approaches to realize an efficient OSC with
roll-to-roll processing, large-area processability, and excellent
stability on low-cost and flexible substrates have been actively
investigated [14–17]. As a result, the continual development in
efficiency, cost, process, and stability makes polymer-based
organic solar cells more attractive as a cost-effective solution to
today’s energy-shortage problems [1–3].

The realization of low-cost, flexible, and highly efficient OSCs
based on cost-effective roll-to-roll (RTR) processing technologies
ll rights reserved.
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is an obvious goal in this field [18–20]. For this reason, several
research groups have explored various printing or coating
techniques such as screen printing [21], doctor blading [22],
brush painting [23], and inkjet printing [24] to form the
photoactive layer of OSCs. For the same purpose, we recently
introduced spray coating to efficiently deposit the active layer
from solution and demonstrated that the efficiency of OSCs with
spray-coated active layers was comparable with that of devices
with spin-coated active films [25]. Due to the fast processing and
compatibility with roll-to-roll manufacturing, many research
groups have investigated the spray deposition as a cost-effective
coating method for photoactive layers of OSCs [26–30]. In
addition, the spray process was expended to deposit poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)
layers [29–31]. In particular, most recently, fully spray-coated
organic photodiodes and solar cells that include the spray-coated
hole-transporting PEDOT:PSS layer and the spray-coated
P3HT:PCBM layer were reported and demonstrated that the spray
process is a practicable coating technology to deposit all solution
used in organic devices [29,30]. The organic-based hole-trans-
porting and photoactive layers that were created using a simple
and fast solution-based process may be highly desirable for the
realization of low-cost and high-efficiency OSCs. However, until
very recently, only a few approaches for fully spray-coated OSCs
(2010), doi:10.1016/j.solmat.2010.01.003
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have been reported, and fully spray-coated OSCs reported so far
have been generally fabricated on expensive crystalline indium
tin oxide (ITO) electrode prepared at cost-intensive vacuum
processes and high temperatures. Considering the high cost of
indium and limited flexibility of ITO, the ITO electrode cannot be
considered an ideal electrode material for low-cost, flexible, and
high-efficiency OSCs. For this reason, various modified forms
using PEDOT:PSS and metal grids and their introduction to ITO-
free devices are all being actively investigated [32–36].

In this study, we demonstrate on cost-effective ITO-free
organic solar cells fabricated by a spray deposition method. All
solution-processable layers of solar cells—the highly conductive
PEDOT:PSS anode layer and the photoactive P3HT:PCBM layer—

were spray-coated. Here, we investigated a recently developed
PEDOT:PSS formulation, Baytron PH 500 provided by H.C. Starck,
as a polymer anode for fully spray-coated OSCs. This formulation
recently demonstrated a capacity for substitution of the ITO
electrode by PH 500 films modified by the addition of polar
solvents to obtain a conductivity as high as �500 S/cm [37,38].
Fully spray-coated OSCs with PEDOT:PSS anode films present a
high power conversion efficiency that is comparable to that of
ITO-based reference cells, demonstrating the feasibility of fabri-
cating all-spray-deposited OSC without a conventional spin-
coating method and the possibility of replacing the costly
vacuum-deposited ITO with highly conductive polymer films
fabricated by inexpensive spray deposition techniques.
2. Experimental

Fig. 1 shows the fabrication sequence for ITO-free bulk-
heterojunction solar cells with a spray-coated PEDOT:PSS anode
and a spray-coated P3HT:PCBM active layer fabricated using a
simple spray deposition; the chemical structures of materials
used for the fabrication of ITO-free cells are also shown. To
fabricate OSCs without and with ITO, glass (Superior Marienfeld,
Germany) and ITO-coated glass (Samsung Corning Co, Ltd.,
Fig. 1. Schematic representation of the fabrication sequence for ITO-free bulk-heter

P3HT:PCBM active layer fabricated using a simple spray deposition (upper part) and che

Please cite this article as: S.-I. Na, et al., Sol. Energy Mater. Sol. Cells
�10 O/square) substrates were cleaned with a detergent
(Mucasol, Merz) followed by ultrasonication in acetone and
isopropyl alcohol. Each substrate was then treated with UV/
ozone to improve the wettability of PEDOT:PSS. The highly
conductive polymer anode first layer was prepared by addition
of 5% dimethylsulfoxide (DMSO) to an aqueous solution of PH 500
[37]. The modified PH 500 solution was transferred to a handheld
airbrush (Fenghua Bida, BD-130) and sprayed at a pressure of
0.1 MPa and at a distance of 20 cm, nozzle-to-substrate, in air,
followed by drying at 120 1C for 20 min in air, as shown in Fig. 1.
PEDOT:PSS anode films with various thicknesses were prepared
by controlling the spray deposition time. The second layer, a bulk-
heterojunction film composed of interconnected networks of
electron-donor and -acceptor materials, was prepared by spray-
coating a mixture of P3HT (Rieke Metal) and PCBM (Nano C). For
the fabrication of the photoactive layer, a solution of 30 mg of
P3HT and 15 mg of PCBM in 20 ml of chlorobenzene was sprayed
at a pressure of 0.1 MPa and at a distance of 20 cm, nozzle-to-
substrate, for 20 s in air, which formed the active layer with a
thickness of �110 nm [25]. After the active layers were spray-
coated on top of the PEDOT:PSS layer, thermal annealing was
carried out at 110 1C for 10 min on a hot plate in N2. Finally, the
reflective metal cathode consisting of 100 nm Al on top of 20 nm
Ca was thermally evaporated through a shadow mask to produce
an active area of 4.66 mm2 in a vacuum with a pressure of 10–

6 Torr. For comparison, two reference ITO-based solar cells using
spin-coating a standard VPAI 4083 and the modified PH 500
solutions to be used as an interfacial layer in ITO-based cells were
also fabricated using experimental procedures identical to those
used for fabrication of fully spray-coated ITO-free cells. VPAI 4083
and modified PH 500 solutions were spin-coated at 5000 rpm for
40 s and were subsequently annealed at 120 1C for 20 min. The
UV–vis transmission measurements were performed using a
Perkin–Elmer Lambda 12 UV/vis spectrophotometer. The sheet
resistance was measured using a standard four-point-probe
system with a Keithley 2400 current source and HP 34420A
nanovoltmeter. To measure cell performances, the fabricated solar
ojunction solar cells with a spray-coated PEDOT:PSS anode and a spray-coated

mical structures of materials used for the fabrication of ITO-free cells (lower part).
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cells were illuminated under 100 mW/cm2 intensity generated
from a 1 kW Oriel solar simulator with an AM 1.5 G filter in a N2-
filled glove box. The photocurrent density–voltage (J–V)
measurements were performed using a Keithley 4200 source
measurement unit. For accurate measurements, the light intensity
was calibrated with a radiant power meter and a reference silicon
solar cell (PVM188 with a KG5 color-filtered window) certified by
the National Renewable Energy Laboratory (NREL).
3. Results and discussion

First, the optical transmission spectra of modified PH 500 films
on glass substrates were investigated, as shown in Fig. 2a; the
transmittances of a glass and a reference anode (ITO/4083) for
conventional OSCs are also shown. The modified PH 500 films
were spray-coated for either 2, 4, or 8 min of spray deposition
time. As shown in Fig. 2a, compared with the reference anode, the
PH 500 anode film sprayed for 2 min shows relatively good
transparency in the full visible range, and as expected, the
transmittance decreased as spray deposition time increased.
Fig. 2b shows transmittance and sheet resistance as functions of
the thickness of the spray-coated PH 500 films. The thicknesses of
PH 500 anodes spray-coated at various deposition times were
�90 nm at 2 min, �180 nm at 4 min, and �340 nm at 8 min,
respectively. The thicknesses of sprayed films were determined
using optical effective thickness obtained from the UV–vis
absorption spectra, because the sprayed films were too rough
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Fig. 2. (a) Optical transmission spectra of PH 500 films on glass substrates. (b)

Transmittance at a wavelength of 500 nm and sheet resistance as a function of the

thickness of the spray-coated PH 500 films.
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(the rms roughness of �30 nm) to accurately measure their film
thicknesses [25,30]. A wavelength range of 400–600 nm and a
wavelength of �500 nm were the main absorption region and the
wavelength of maximum absorption of the photoactive P3HT,
respectively. Thus, the transmittance was plotted for each PH 500
anode at a wavelength of 500 nm. The sheet resistance (Rsheet=1/
s� d, where s is the conductivity, and d is the layer thickness) of
each PEDOT:PSS film was evaluated using four-point-probe
measurements. As shown in Fig. 2, the transmittance and sheet
resistance were varied from 89.0% to 67.4% and from 358 to
63.3 O/squares, respectively, corresponding to an increase in film
thickness. Although compared with the crystalline ITO (�10 O/
square), most polymeric anode films have higher Rsheet and absorb
more incident light, the properties of the spray-coated PH 500
films shown in Fig. 2 are considered to be sufficient for
transparent and conductive electrodes in organic devices [37–39].

To directly evaluate the fully spray-coated OSCs and investi-
gate the effect of the thickness of PH 500 anodes on cell
performance, we fabricated various solar cells comprising differ-
ent PEDOT:PSS films spray-coated for 2, 4, 6, or 8 min and a
subsequent spray-coated P3HT/PCBM layer. The performance of
the fully spray-coated OSCs with different PEDOT:PSS films as
anodes are compared in Fig. 3. As shown in Fig. 3a, fill factor (FF)
values in cells with PEDOT:PSS anodes increased with spray
deposition time. In general, the FF was tightly linked to the series
resistance (Rs), and Rs is the sum of the bulk resistance and the
contact resistance of the materials. Here, because all materials
and processes used to fabricate the OSCs were identical except for
the thickness of the PH 500 anodes, the Rs and FF of the OSCs can
be dependent on the Rsheet of the PEDOT:PSS anodes. Therefore, it
is believed that as spray deposition time increases, the increase in
FF from �34% to �54% is attributed to a decrease in the Rsheet

with increasing anode thickness, as shown in Fig. 2b. Although PH
500 anode film spray-coated for 8 min showed the maximum
value of FF due to a decrease in Rsheet with increasing anode
thickness, OSCs with the PH 500 anode film had the lowest short-
circuit current density (Jsc), as shown in Fig. 3b. Considering that a
thinner PEDOT:PSS film will conduct more incident light inside
the photoactive layer and therefore will create more excitons, it is
believed that the decrease of Jsc was due to the reduction of
transmittance as film thickness increased, as shown in Fig. 2. It
indicates that a trade-off exists between the transmittance and
the series or sheet resistance, and thus, the PEDOT:PSS thickness
should be carefully adjusted to balance them and optimized for
cell efficiency. As a result, the fully spray-coated OSCs with the PH
500 anode that was spray-coated for 6 min showed the highest
efficiency.

To investigate the feasibility of the fully spray-coated OSCs,
ITO-free organic solar cell (IFOSC) with the PH 500 anode that was
spray-coated for 6 min and two reference ITO-based OSCs using
spin-coating a standard VPAI 4083 and the modified PH 500
solutions to be used as an interfacial layer in ITO-based cells were
fabricated and compared. Performance characteristics of the three
cells were obtained under 100 mW cm�2 illumination with AM
1.5G conditions and under the dark condition, respectively. As
shown in Fig. 4, the performance characteristics of the IFOSC with
the PH 500 anode were as follows: FF was 53.7%; open-circuit
voltage (Voc) was 0.61 V; Jsc was 6.62 mA/cm2; and, the power
conversion efficiency (PCE) was 2.17%. On the other hand, the
performance characteristics of the two reference cells were
obtained as follows: FF, 56.7% and 59.8%; Voc, 0.59 and 0.59 V;
Jsc, 7.98 and 8.06 mA/cm2; and, PCE, 2.67% and 2.86%. These values
are comparable with previous reports of devices with spray-
coated photoactive layers [25,26]. Here, the slightly enhanced cell
performance in the ITO-based cell with modified PH 500 as an
interfacial layer was attributed to higher conductivity of the
(2010), doi:10.1016/j.solmat.2010.01.003
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modified PH 500 film than that of the VPAI 4083, which can
reduce the series resistance in the ITO-based cells [40,41].

More importantly, as demonstrated in Fig. 4, the primary
difference between the device with the PH 500 anode and those
constructed with ITO is in FF and Jsc. Compared with the ITO-
based cells, the decrease in FF and Jsc is believed to come from a
higher series resistance in the IFOSC and a lower transmittance
when using the PH 500 anode, which is confirmed by the dark
curves shown in Fig. 4 and by the transmittance of the spray-
coated PH 500 films shown in Fig. 2. Nevertheless, the overall
photovoltaic characteristics of the cell with the spray-coated PH
500 anode were comparable to those of the ITO-based reference
Please cite this article as: S.-I. Na, et al., Sol. Energy Mater. Sol. Cells
cell, indicating that the polymeric film has a similar function
in the solar cell as ITO. In addition, the qualitative similarity of
the photovoltaic characteristics shown in Fig. 4 indicates the
feasibility of achieving all-spray-deposited OSCs without the
conventional spin-coating method and the possibility of replacing
the costly vacuum-deposited indium tin oxide (ITO) with highly
conductive polymer films fabricated by inexpensive spray
deposition techniques.
4. Conclusion

In conclusion, highly cost-effective ITO-free organic solar cells
fabricated using a simple spray deposition method were demon-
strated. All solution-processable layers of solar cells, highly
conductive PEDOT:PSS anode films and photoactive P3HT:PCBM
films, were spray-coated. PEDOT:PSS anode films with various
thicknesses were prepared by controlling the spray deposition
time. The transmittance and sheet resistance of PEDOT:PSS
anodes were varied from 89.0% to 67.4% and from 358 to
63.3 O/squares, respectively, corresponding to an increase in film
thickness. Fully spray-coated OSCs, including the spray-coated
PEDOT:PSS anode layer and the spray-coated photoactive layer,
presented a high power conversion efficiency of 2.17%. More
importantly, the overall photovoltaic characteristics of fully
spray-coated ITO-free OSCs were comparable to those of the
ITO-based reference cell, demonstrating the feasibility of achiev-
ing all-spray-deposited OSCs without having to resort to use of
the conventional spin-coating method. Furthermore, these results
suggest the possibility of replacing ITO—prepared using cost-
intensive vacuum processes and high temperatures—with highly
conductive polymeric material prepared using simple spray
deposition techniques. This fully spray-coated, ITO-free OSC will
advance the realization of low-cost and high-efficiency polymer
solar cells based on high-throughput roll-to-roll manufacturing.
(2010), doi:10.1016/j.solmat.2010.01.003
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