
Assessing the Impact of Aspects on
Model Composition Effort

Kleinner Farias, Alessandro Garcia
OPUS Research Group, Department of Informatics,

Pontifical Catholic University of Rio de Janeiro,
Rio de Janeiro - RJ - Brazil

{kfarias, afgarcia}@inf.puc-rio.br

Jon Whittle
Computing Department,

InfoLab21, Lancaster University,
Lancaster, LAI 4AW, UK

whittle@comp.lancs.ac.uk

ABSTRACT
Model composition is a common operation used in many
software development activities—for example, reconciling
models developed in parallel by different development teams, or
merging models of new features with existing model artifacts.
Unfortunately, both commercial and academic model
composition tools suffer from the composition conflict problem.
That is, models to-be-composed may conflict with each other
and these conflicts must be resolved. In practice, detecting and
resolving conflicts is a highly-intensive manual activity. In this
paper, we investigate whether aspect-orientation reduces
conflict resolution effort as improved modularization may better
localize conflicts. The main goal of the paper is to conduct an
exploratory study to analyze the impact of aspects on conflict
resolution. In particular, model compositions are used to express
the evolution of architectural models along six releases of a
software product line. Well-known composition algorithms,
such as override, merge and union, are applied and compared on
both AO and non-AO models in terms of their conflict rate and
effort to solve the identified conflicts. Our findings identify
specific scenarios where aspect-orientation properties, such as
obliviousness and quantification, result in a lower (or higher)
composition effort.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics-Product metrics;
D.2.13 [Software Engineering]: Reusable Software.
General Terms
Measurement, Design, Experimentation

Keywords
Model Composition, Software Metrics, Empirical Studies,
Software Architecture, Software Product Lines.

1. INTRODUCTION
Model composition plays a central role in many software
engineering activities—e.g., reconciling models developed in
parallel by different development teams, and evolving models to
add new features. In collaborative software development, for
example, separate developer teams may concurrently work on a
partial model of the overall architecture to allow developers to
concentrate more effectively on parts of the architecture relevant
to them. However, at some point, it is necessary to bring these
models together to generate a “big picture” view of the overall
architecture. For this reason, there has been a significant body
of research into defining model composition algorithms in the
areas of model versioning control, software product lines [1],
and aspect-oriented modeling [26].

In practice, however, model composition is a highly-intensive
manual task1

The hypothesis of this paper is that aspect-orientation may
alleviate the effort of conflict resolution to some extent. The
intuition is that aspect-orientation brings improved modularity
and that a more effective modularization may localize conflicts,
thus making them easier to detect and deal with. However, it is
by no means obvious that this hypothesis holds. It may be, for
instance, that conflicts in aspect-oriented models have a
detrimental effect on conflict resolution effort because aspect
conflicts may require the modeler to examine all points in the
model crosscut by the aspect. The goal of this paper, therefore,
is to report on an exploratory empirical study which aimed to
provide evidence to support or refute this hypothesis. We only
study one facet of model composition in this paper: the use of

 [33]. Models to-be-composed inevitably conflict
with each other and these conflicts must be detected and
resolved in order to produce a correctly composed model. It is
very difficult, if not impossible, to resolve conflicts
automatically because conflict resolution relies on an
understanding of what the models actually mean and such
semantic information is typically not included in any formal
way in the models. This need has been the key point of
improvement required in enterprise modeling tools that support
model composition, such as IBM Rational Software
Architecture [33].

1 Anecdotal evidence from industry contacts suggests that

model composition and conflict resolution is a full-time job.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AOSD’10, March 15–19, 2010, Rennes and St Malo, France
Copyright 2010 ACM 978-1-60558-958-9/10/03…$10.00.

model composition in adding new features to a set of models for
an industrial software product line.

Software product lines (SPLs) commonly involve model
composition activities and, while we believe the kinds of model
composition in SPLs are representative of the broader issues, we
make no claims about the generality of our results beyond SPL
model composition. We show the results for model
compositions of six releases of an SPL. In each release, models
for the new feature are composed with the models for existing
features. We analyze, for each release, the quantity and nature
of the composition conflicts. Furthermore, we compare two
versions of the SPL models—one which uses aspect-oriented
modeling (AOM) and one which does not.

Our initial results show that higher conflict rates were observed
in the presence of aspects when they had higher degree of
quantification. On the other hand, this problem did not entail
more effort on conflict resolution. We also found that higher
degree of obliviousness tended to yield compositions of AO
composed models that are closer to the intended compositions.
To the best of our knowledge, our results are the first to
empirically investigate potential advantages of aspects during
modeling. Despite a wide variety of technical approaches to
AOM (e.g., MATA [27], Kompose [28]), to-date there has been
almost no empirical evaluation of AOM. We therefore see this
paper as a first step in a more ambitious agenda to empirically
assess aspect-oriented modeling.

The remainder of the paper is organized as follows. In Section 2,
we introduce the main concepts and knowledge that are going to
be used and discussed throughout the paper. In Section 3, we
present the methodology. In Section 4, we present the
composition analysis effort. In Section 5, we contrast our work
with related work and present the threats to validity in Section 6.
Finally, in Section 7, we present some concluding remarks and
future work.

2. BACKGROUND
Model composition has been studied for many years in software
engineering [7] and in other related disciplines. Model
composition can be applied to different contexts, such as model
reuse, resolution of stakeholders’ viewpoints, and model
evolution [21] [22]. For instance, in the context of our
exploratory study, model composition is exploited to describe
the evolution of an SPL’s architectural specification. Section 2.1
defines model composition more precisely and defines how to
quantify the effort involved in applying model composition. Our
paper compares model composition in an AO and non-AO
setting. Section 2.2 describes the aspect-oriented modeling
notation used in our experiment. Section 2.3 discusses state-of-
practice algorithms for model composition, and Section 2.4
explains recurring types of model composition conflict.

2.1 Model Composition
Model Composition. The term model composition refers to a
set of activities that should be accomplished to combine two (or
more) input models, MA and MB, in order to produce an output
composite model, MAB. A model composition algorithm defines
the semantics of the model composition relationship and
specifies how the input models should be manipulated in order
to compose them. Note that composition algorithms are often

heuristic because they rely on matching elements in the input
models, which, in turn, relies on “guessing” the semantics of
model elements. We will use the terms composed model (MCM)
and intended model (MAB) to differentiate between the
composition produced by a composition algorithm and the
composition that the developer desires. Usually, MCM ≠ MAB
because the input models conflict in some way. The number of
conflicts may depend on the choice of algorithm but will
typically be nonzero if the algorithm is heuristic.
Composition Effort. There is currently very limited knowledge
regarding the amount of effort required to apply model
composition algorithms. Anecdotal evidence from companies
suggests that the effort is significant but, in this paper, we aim to
quantify the effort more precisely. The composition effort can
be calculated using the equation defined in Figure 1. The
equation gives an overview of how composition effort can be
measured and what part we focus our study on. The equation
makes it explicit that the model composition effort includes: (1)
the effort to apply a model composition algorithm: f(MA,MB);
(2) the effort to detect undesirable conflicts in the output model:
diff(MCM,MAB); and (3) the effort to resolve conflicts: g(MCM).
Once a composed model (MCM) has been produced, the next
step is to measure the effort to transform MCM into the intended
model (MAB). If MCM is equal to MAB, then diff(MCM,MAB) = 0
and g(MCM) = 0. Otherwise, diff(MCM,MAB) > 0 and g(MCM) > 0.
Our study focuses on assessing the effort to resolve conflicts
(i.e., g(MCM)). We defer consideration of diff(MCM,MAB) to
future work.

Figure 1. Model composition effort equation.

2.2 Aspect-Oriented Modeling
Model composition applies both to development with and
without aspect-oriented modeling (AOM). In fact, in this paper,
we compare the model composition effort in both cases. AOM
languages aim at improving separation of concerns by
supporting the modular representation of concerns that cut
across multiple software modules. Crosscutting concerns are
represented by a new model element, called aspect. The goal of
AOM is to provide software developers with the means to
express aspects and crosscutting relationships in their models.
There are AOM languages for modeling aspects at many levels
of abstraction, ranging from use cases and architectural design
to detailed designs. As far as the solution space is concerned,
aspects are usually first expressed in architectural models.

Figure 2 is an illustrative example of the architectural AOM
language [26] used in our study (Section 4). We chose this
AOM language because: (i) we selected architectural models as
our focus due to the availability of existing industrial models;

(ii) the AOM language has been widely used in other contexts
and is therefore mature [26]. The notation (see Figure 2)
supports the visual symmetric representation of aspect-oriented
software architectures. The target modeling approach consists of
an extension of the UML’s component diagram [19]. In order to
put the composition in practice, we should consider the
properties of model elements defined in the UML metamodel
specification for this diagram. Thus, the properties of the model
elements considered were: component (name, provided interface
and required interface), interface (name, operation and
attribute), operation (name, return type and parameters),
attribute (name and type), relationship (source and target),
crosscutting relationship and join-points. Therefore, the
composition algorithms (Section 2.3) are fine-grained due to
take into account these properties in each composition.

The notation provides explicit elements for expressing different
forms of component-aspect collaborations, which are
represented by aspectual connectors. Aspectual connectors are
represented by rectangles in Figure 2 and define which
components, interfaces or specific operations are affected by a
component modularizing a crosscutting concern. Aspectual
connectors are associated with crosscutting relationships
represented by dashed arrows. The notation also supports the
visual modeling of specific pointcut designators (e.g., advising
all the provided interfaces) and sequencing operators (after,
before, and around). For the sake of simplicity in this paper,
only aspectual connectors and crosscutting relationships will be
represented in the models of our case study; all the other visual
details have been omitted from here on.

crosscutting roles

<<component>>

<<aspectual connector>>

base roles

around crosscutting
relationship

<<component>>

before after

 Figure 2. AOM Language for Architectural Models

2.3 Composition Algorithms
Composition algorithms consist of two key activities: matching
model elements in the input models, and composing elements.
This paper focuses on three well-established composition
algorithms: override, merge and union. These algorithms were
chosen because they have been applied in a wide range of model
composition scenarios, such as model evolution, ontology
merge, and conceptual model composition. In addition, they
have been recognized as candidate algorithms in aspect-oriented
model composition (e.g., Theme/UML [6] [13]).
In the following, we briefly define these three algorithms, where
we assume two hypothetical input models, MA and MB. We say
that two elements from MA and MB respectively are
corresponding if they have been identified as equivalent in the
matching process. Matching can be achieved using any number
of standard heuristics, such as match-by-name.

Override (direction: MA to MB). For all pairs of corresponding
elements in MA and MB, MA’s elements should override MB’s
corresponding elements. Elements not involved in the
correspondence remain unchanged and are inserted into the
output model.

Merge. For all corresponding elements in MA and MB, the
elements should be combined. The combination depends on the
element type. In this paper, we only consider components and
interfaces—in this case, the combination adds the operations of
MA’s elements to those of MB. Elements in MA and MB that are
not involved in a correspondence match remain unchanged and
are inserted into the output model directly.
Union. For all elements in the MA and MB that are
corresponding elements, they should be manipulated in order to
preserve their distinguished identification; it means that they
should coexist in the output models with different identifiers;
elements in the MA and MB that are not involved in a
correspondence match remain unchanged and they are inserted
into the output model, MAB.

2.4 Syntactic and Semantic Conflicts
Conflicts arise in an output model when the composed model
(MCM) does not match the intended model (MAB). For instance, a
conflict occurs when the functionality of MCM and MAB is
different. In practice, we can identify two broad categories of
conflicts: (1) syntactic conflicts, which arise when the
composition algorithm results in a model not conforming to the
modeling language’s metamodel2

3. METHODOLOGY

; and (2) semantic conflicts,
where the meaning of the composed model does not match that
of the intended model. It is important to emphasize that, in our
study, we count only certain categories of conflicts which are
easy to spot manually. For example, it is impossible to
automatically count all semantic conflicts. A typical example of
semantic conflict considered in our investigation was when
functionality expected in a model element was not found. For
instance, this is the case when the component does not present
the expected functionalities defined in a new release or presents
undesirable functionalities.

This section describes the running hypotheses for our study
(Section 3.1), the target application (Section 3.2), the evaluation
method used for computing model composition effort (Section
3.3), and the other study procedures (Section 3.4) in our
exploratory study.

3.1 Hypotheses
Aspect-oriented modeling has been a topic of research for at
least ten years [13]. However, there is currently very limited
knowledge as to how aspects, when incorporated in input
models, affect the model composition effort. In particular, there
is no understanding as to what extent the composition (Section
2.3) of aspect-oriented models (Section 2.2) affects the
emergence of conflicts in composed models.

In this context, the hypotheses of this study can be derived from
two key research questions:

2 One might initially think that there should be no syntactic

conflicts. However, many composition algorithms do in fact
result in syntactically incorrect models. This is a well-known
issue with some graph-grammar based compositions.

• RQ1: Does the composition of AO models produce a higher
rate of composition conflicts than non-AO models?

• RQ2: What is the impact of AO modeling on the way
conflicts propagate in the output model?

Our first null hypothesis assumes that the composition effort for
combining AO models is essentially the same or even worse
than for combining non-AO models (RQ1). Based on the fact
that aspects crosscut many elements in a model (Section 2.2),
the alternative hypothesis states that composing AO models
leads to less conflicts than non-AO models. This would lead to
the following null and alternative hypotheses, which will be
analyzed for each conflict type (Section 2.4):

Null Hypothesis 1, H1-0: There is no difference between the
conflict rates produced by the composition of either AO or
non-AO models, or AO models lead to higher conflict rate.
H1-0: Rate (AO) ≥ Rate (non-AO).
Alternative Hypothesis 1, H1-1 : Aspect-oriented modeling
leads to a lower rate of conflicts than non-aspect-oriented
modeling.
H1-1: Rate (AO) < Rate (non-AO).

Conflicts have a tendency to propagate in a composed model.
That is, the introduction of one conflict can often lead to
multiple other conflicts as a result of a “knock-on” effect. An
example would be the conflict whereby a composed component
is missing an important operation. This semantic conflict leads
to a “knock-on” syntactic conflict if another component requires
the operation. In the worst case, there may be long chains of
conflicts all derived from a single conflict. Studying such
propagation effects is important because propagation directly
affects the effort in resolving conflicts—e.g., a propagation
chain of length n may actually be fixed by resolving a single
conflict rather than the expected n conflicts. Thus, we are
interested in understanding the possible conflict propagation
patterns in AO and non-AO models (RQ2). Similarly to the
previous hypothesis, it is assumed that conflicts equally spread
through output (non-)AO models. This leads to the second null
hypothesis and alternative hypothesis as follows:

Null Hypothesis 2, H2-0: There is no difference in the way
composition conflicts are propagated in AO and non-AO
models, or AO models lead to higher propagation. H2-0: Prop
(AO) ≥ Prop (non-AO).
Alternative Hypothesis 2, H2-1: The use of aspects leads to
a lower propagation of composition conflicts.
H2-1: Prop(AO) < Prop(non-AO).

In order to test the four hypotheses, a metrics suite was used in
order to quantify both types of composition conflicts. These
metrics are presented in Section 3.3. The metrics were applied
to both non-AO and AO component models of an evolving
software product line, described in the next section.

3.2 Case Study: Evolving an SPL
As previously discussed, model composition can be applied in
different contexts and with different purposes (Section 2.1). We
have selected a particular scenario to test our study hypotheses:
the use of model composition to express the evolution of
software product line (SPL) architecture.

 Model Composition for Expressing SPL Evolution. Model
compositions were defined to generate the new releases of the
SPL architecture model. That is, the composition algorithms
(Section 2.3) were used to define how each architecture model
(MA) of a SPL release and the new model increments (MB) were
going to be combined in order to generate the new architecture
SPL release. The first input model, MA, represents the current
architecture of a SPL release, while the second input model, MB,
represents the delta capturing the modifications to MA. The
output model, MAB, generated by the application of the
composition algorithm, represents the next SPL release.
MobileMedia: the Target SPL. A product line, called
MobileMedia [5], of 6 kLOC was selected to be the target case
of the evaluation. The purpose of MobileMedia is to provide
support for the manipulation of photos, music, and videos on
mobile devices. A fine-grained description about its
characteristics and how the evolution of Mobile Media
happened can be found at [5][32][30]. The reasons for selecting
this system in the evaluation are as follows. First, many releases
of MobileMedia’s architecture design models were produced by
its developers. Second, two versions of the same product line,
and the respective architectural models, were available for our
investigation: an AO version and a non-AO version. This is a
fundamental requirement to test our hypotheses (Section 3.1).
Third, the last release of the architectural design has more than
one hundred modules, and its architectural models are the main
artifact to reason about change requests and derive new
products. Fourth, the architectural models were produced by the
original developers without any of the model composition
algorithms under assessment in mind, thereby avoiding any bias
and entailing a more natural software development scenario.
Fifth, the architectural models (MA) and the increment models
(MB) were conceived with modularity and changeability as key
drivers. Sixth, we had available a total of seven fully-
documented evolution scenarios, which could be expressed with
model compositions (examples are given later).
Finally, MobileMedia met a number of other equally-important
requirements, such as: (i) proper documentation of the driving
requirements; (ii) the system evolved for more than three years,
and the more recent releases have more than 100 modules; (iii)
different types of change were realized in each release,
including refinements of the architecture style employed, (iv)
the system has been successfully used in other studies involving
empirical evaluation of OO and AO implementations [5], and
(v) the original developers were available to help us with the
production and analysis of the composed models and the
intended models. As such, all these factors provided a solid
foundation for our study.

3.3 Quantifying Conflict Resolution
Our evaluation is concerned with the most-time consuming
element of heuristic model composition, i.e. conflict resolution
(Section 2.1). Therefore, our goal is to quantify: (i) the number
of conflicts, and (ii) the activities required to modify the output
model in order to make it reach the intended model. The
analysis basically relies on a conflict measure, called conflict
rate (CR), to quantify the amount of composition conflicts
(Section 2.4) divided by the total number of elements in the
output model. That is, CR allows computing the density of
composition conflicts in the output models. This metric makes it

possible to assess the difference between the conflict rate of
non-AOM and AOM (H1). It is important to point out that CR is
defined from multiple conflict metrics, which can be found in
[30].
However, we also quantify the number of operations performed
to transform the composed model into the intended model. We
compute the number of creations, removals, and modifications
needed to produce the intended model. This computation
represents an estimation of the model recovery effort (RE).
After we collect the RE measure, we perform an inspection of
the output model to check if there was any occurrence of
conflict propagation. This enables us to check if the presence of
aspects in the input models has any impact on the way
composition conflicts are propagated (H2).
In the case study, the metrics above were applied to the
composed models to analyze the conflicts and their propagation
in each new MobileMedia release. The collected measures are
used to assess if the output model has conflicts after the
composition algorithm is applied (diff(MCM,MAB) > 0). Then, a
set of removals, updates, and creations were performed to
resolve the conflicts. In order to come up with a suitable
characterization of measures and respective releases, we defined
a basic formalism for the metrics space of composition effort as
follows.
A metric space is a set M equipped with a real-valued function
CE(w,s) defined for all w,s ∈ M. Let M = {Ri,x,y, i = 1,…,n; x =
override, merge; y = left, right}, where:

• n is a finite natural number representing the model
release;

• left and right represent the direction of the composition
relationship in the override algorithm.

For example, R3,merge,right represents the Release 3 that was
produced by merging: Release 2 +merge Δ(Release 2, Release 3)
 Release 3. Δ(Release 2, Release 3) represents the model
elements that should be merged with Release 2 to transform it
into Release 3. In practical terms, Δ represents the evolution to
be inserted into the previous release. On the other hand,
R3,merge,left would be: Δ(Release 2,Release3) +merge Release 2 
Release 3 (the inverse order can also be represented with an
asterisk). So, the reader should note that the order of override-
based composition can produce different output composite
models [18]. Each model of a Ri,x,y can be characterized by
observing its syntactical and semantic properties. If we have a
high conflict rate (CR) in an evolution scenario, then this
implies a higher effort to resolve conflicts.

3.4 Evaluation Procedures
Once the case study was selected (Section 3.2) and the conflict
resolution metrics were defined (Section 3.3), we needed to
undergo a number of specific evaluation procedures. They are
discussed in the following.

3.4.1 Target Model Versions and Releases
We have used both non-AO and AO versions of the
MobileMedia models in order to test the study hypotheses
(Section 3.1). These two model versions of the same system
enabled us to identify if the presence of aspects in the input

models had positive or negative effects on the quality of the
output model.
Deriving AO and non-AO Model Releases. For each release of
MobileMedia, we have applied each of the composition
algorithms described in Section 2.3. That is, we have used the
merge algorithm to compose two input AO models in order to
produce a new AO release model; similarly, we applied the
merge strategy to compose two input non-AO models in order to
produce the next non-AO release model. We performed similar
compositions with override and union algorithms. The goal was
to identify if the outcomes, in terms of conflict rate and
propagation (hypotheses), were the same or different. All the
releases of the non-AO and AO versions realized exactly the
same SPL features and variability points. They also underwent
the same evolution scenarios, ranging from changes in
heterogeneous mobile platforms and additions of many
alternative and optional features [5]. Non-AO models were
represented with conventional UML component models, while
AO models were represented using the AOM language
described in Section 2.2.
In fact, AOM (Section 2.2) is used in this work to represent the
aspect-oriented model releases of the SPL under study. For
example, in Figure 3, in addition to have interfaces (e.g.,
PersistPhoto), components (e.g., ImageAcessor and
AlbumData), we also have aspectual components, such as the
ExceptionHandling aspect. Moreover, we can also have some
relationships: realization (e.g., between the components
BaseController and ControlPhoto), dependency (e.g.,
between the component NewAlbumScreen and the interface
ControlPhoto), and crosscutting (e.g., between the aspectual
component ExceptionHandling and the component
PersistPhoto, in which the service loadAlbums(): void is
woven into the ImageAcessor component). The notation used
in this work to express the architectural models has been used in
other works [5] [26] and has shown to be effective for its
purpose.
Model Releases and Composition Specification. We
considered six releases of MobileMedia [5] in this study. They
were selected because they were the ones where the changes
implied visible modifications in the architectural design. For
each new release, the previous release was modified in order to
accommodate the features to be modified, inserted or removed.
To implement a new evolution scenario, a model composition
specification can remove, add, derive, or modify the entities
present in the previous release. During the design of all releases,
a main concern was to follow good practices of modeling.

3.4.2 Execution and Assessment Phases
The execution and assessment of the study were structured in
three main steps, which are described in the following.
Model Refactoring Phase. The model refactoring is a pivotal
activity to define the input models and, hence, to express the
model evolution as an explicit model composition relationship.
For this, MobileMedia’s architectural models were initially
refactored to specify the delta itself and to represent the change
scenarios as composition relationships. To create the delta
model it is necessary to identify the differences between the
releases models and then gather them into the input model. To
go about this, we took into account an evolution description

created by the original modelers involved in a previous study
[5]. These descriptions specify in-depth the modifications
needed to realize each evolution scenario (from one release to
another). They allowed us to identify how the model elements
were changed. For example, in the second evolution description,
the Delta(R2,R3) were based on the description such as: the
interface ControlPhoto—realized by BaseController—had
the method edilLabel(): void added (see Figure 3).
Another example would be the change concerning the name of
the interface ManageLabel to ManageAlbum. Thus, all model
elements of the Delta(R2,R3) are derived from one evolution
description, which ensures that the input model specification is
free of bias. All input models and model evolution descriptions
can be found at the study site [30].
Composition and Measurement Phase. From one release to
another, 6 compositions were produced: 3 compositions
following override, merge, and union from the current release to

Δ, and 3 compositions in the inverse direction. We considered 5
evolution scenarios for the non-AO version as well as the AO
version of the Mobile Media, totaling 60 compositions. The
result of this phase was a document of composition descriptions,
including the gathered data from the application of our metrics
suite. Figure 3 presents partial input models being used in one of
the releases, while Figures 4 (both sides) and 5 (right side)
represent examples of composition based on merge, override
and union, respectively. Figure 5 (left side) is the intended result
of the composition (or mental model).
As well-validated metrics for model composition are not
available yet, we used a suite of conflict metrics defined in our
previous work [22]. The conflicts (and their effects) were
identified manually using such conflict metrics. The
identification of the conflicts was performed in 5 review cycles
in order to avoid false positives/negatives. We also consulted
the MobileMedia developers (Section 3.2) when needed, such

Figure 3. The input models: the base model (left) and delta model (right).

 Figure 3. Output models produced by override (left) and merge (right) algorithms.

as: checking and confirming specific cases of semantic conflicts.
Even though the metrics have not been extensively validated,
their feasibility and efficacy was also observed in a previous
work involving other target applications [22].
Effort Assessment Phase. The goal of the third phase was to
assess the effort to resolve the conflicts using the metrics
described in Section 3.3. The composition algorithms were used
to generate the evolved models, so that we could assess the
impact of aspects on the model composition effort. In order to
support a detailed data analysis, the assessment phase was
further decomposed in two main stages. The first stage (Section
4.1) is concerned with pinpointing the conflict rates produced by
composition of either non-AO or AO (H1). The second stage
aims at assessing the effort to resolve a set of previous identified
conflicts and if the use of aspect has a higher impact on the way
composition conflicts are propagated (H2). We analyzed how
conflict rate differs across the releases in order to detect
potential benefits and drawbacks of using AOM in the input
models. We have decided to focus the discussions on the merge
and override algorithms, because the union algorithm did not
present any additional interesting insights. However, all
measurement results and the raw data are available at [30].

4. COMPOSITION EFFORT ANALYSIS
This section presents the results of applying the conflict
resolution metrics (Section 3.3) to both the AO and non-AO
output models realizing each SPL release (Section 3.4.1).
Histograms are used to provide an overview of the data gathered
in the measurement process. These histograms allow us to
analyze the impact of aspects on model composition effort. Each
histogram focuses on the application of a particular composition
algorithm (Section 2.3). The Y-axis presents the values gathered
for a particular metrics. The X-axis specifies the evolution
scenarios.

Note that each pair of bars is attached to a pair of values, with
the first capturing the performance of the AO version and the
second capturing the non-AO one. Lower the value, the better is
the performance of the modeling approach used. It is important

to highlight that the results shown in the histograms were
gathered with respect to the entire model. Based on the conflicts
identified by the conflict rate (CR) metric, Section 4.1 discusses
the findings related to the first hypothesis (H1). Section 4.2
relies on the metric for quantifying model recovery effort in
order to support the analysis of the second hypothesis (H2).

4.1 H1: Aspects and Conflict Rate
Figure 6 illustrates the results for the CR metric obtained
following the override algorithm. Figure 7 shows the results of
the same metric for the merge algorithm. The first observation
allows us to conclude that the conflict rate measures have
favored aspect-orientation in both merge and override cases and
for most of the evolution scenarios. This implies that the tally of
conflicts to some extent is decreased whenever aspects are
present in the models to-be-composed. The presence of aspects
in the input models produced lower conflict rate than aspect-free
models when the override algorithm is applied in both directions
(right and left (represented by the *-columns)). For example, the
conflict rate decreases from 1.72 (non-AO version) to 1.33 (AO
version) in Scenario 2, which represents a reduction of 22.6% in
favor of aspect-orientation. Similarly, the conflict rate decreases
from 0.59 to 0.41 when the composition is performed in the left
direction, which represents a reduction of 30%.

Figure 5. Conflict rate produced by the override algorithm

Figure 4. The intended model from the composition defined in Figure 3 (left).

The output model produced following the union algorithm (right).

Moreover, it is well known that the greater the number of model
elements that take part in compositions, the greater the
likelihood of conflicts being generated. Nevertheless, the AO
versions still had lower absolute measures of conflicts. For
example, the absolute measure decrease from 38 (non-AO
version) to 36 (AO version) in Scenario 2, which represents a
reduction of 5.2% in favor of aspect-orientation. Similarly, the
conflict rate decreases from 13 to 11 in the inverse order, which
represents a reduction of 15.3%. The only case where aspect-
free models led to a close CR was the application of the merge
algorithm in the second release (Figure 7); this special case is
discussed in Section 4.1.1.

The main reason for the superiority of the AO models is that
changes, reified by the Δ model (Section 3.3), tend to be
confined in fewer modules due to the superior modularization of
crosscutting features in AO models. The confinement of
modifications to aspects, in turn, leads to a better localization of
both syntactic and semantic conflicts, thereby making them
easier to detect and address in the output models. Therefore, we
refute the null hypothesis H1-0 and confirmed the alternative
hypothesis H1-1.

We have noticed that the decrease of conflicts observed in the
AO models is potentially influenced by two factors: (i)
quantification—the higher the quantification of aspects in input
models, the higher the CR measures, and (ii) obliviousness—the
higher the degree of obliviousness, the lower the CR measures
in the output models (Section 4.1.1). Another predominant
factor on the emergence of high conflict rates was the nature of
the change. Independently of the degree of obliviousness and
quantification in AO models, the nature of the change directly
affected the conflict rate observed in the output models (Section
4.1.2). In the following, we elaborate these issues further and
discuss examples that support each of these findings.

 Figure 6. Conflict rate produced by the merge algorithm

4.1.1 Obliviousness and Quantification
We have observed that quantification influenced the CR
measures. The presence of aspects with lower quantification (in
the input models) led to fewer syntactic and semantic conflicts
in the output models. When aspects were being used, for
example, to encapsulate domain–specific features, a lower rate
of conflicts manifested in the output models. On the other hand,
we also observed that when a conflict arises in aspects with
higher quantification (in the input models), higher rates of
syntactic and semantic conflicts occurred in the output models.

Therefore, the quantification mechanism may (or may not)
improve CR results.

This category of aspects is the case where the aspects work as
glue between a few elements in the base model and the changes
realized by the Δ model. Aspects with a higher degree of
quantification, such as exception handling (Figures 3, 4 and 5),
affect the input base model in many places (join points). This
was exactly the case in Scenario 2, where the non-AO version
(CR = 0.82) has a measure close to the AO version (CR = 0.78)
(Figure 7). Higher quantification increases the aspect scope and,
therefore, the likelihood of aspects interfering with each other.
When the merge algorithm was applied, the exception handling
aspect (Figure 7) led to undesired superimpositions with other
aspectual behaviors advising the same join points.

The overall rate of conflicts (CR measure) was usually lower in
the AO version because most of the aspects were not affecting
more than three elements. By overall rate, we mean the average
of conflicts considering all the model elements. However, a
careful analysis of the number of conflicts in individual model
elements (e.g., a particular component) reveals some interesting
information. The composition output of AO models consistently
caused an increase on the number of conflicts for some specific
model elements. For example, this can be observed in Scenario
4, when the highest number of conflicts emerged in both non-
AO and AO versions. Despite the significant CR difference
favoring the AO version, the component BaseController
presented an increase (CR = 38) in relation to
BaseController of the non-AO version (CR = 24). We noted
that this problem occurred in situations where the components
were affected by two aspects or more in the Δ model. In other
words, when a base component had a high density of join points
shared by multiple aspects, it generated a higher number of
conflicts.

An additional interesting finding was that the composition of
AO models tended to manifest fewer conflicts when the
obliviousness degree of the base elements was higher. We have
noted that the creation of new aspects (via the Δ model) for
encapsulating new features implies that the modules in the input
base model are more oblivious to the modification being
implemented in the release. This observation holds for both
mandatory and varying (optional or alternative) features. As a
consequence, the combination of the AO modules tended to
ripple fewer conflicts in the output models.

This finding implies that the presence of obliviousness is a good
indicator that the model composition at hand will better adhere
to the Open-Closed principle [31]. This principle states that
“software should be open for extensions, but closed for
modification”. AO modeling conformed more closely to this
principle in scenarios where the behavior in the new aspect (part
of the Δ model) is more independent of the affected elements in
the base model. This finding is illustrated, for instance, by
Release 3. For instance, the AlbumData component demanded
modifications in the non-AO version of Release 3 in order to
include the feature of sorting photos by highest viewing
frequency. On the other hand, the AO counterpart required no
modification in this component. The reason was that the feature
was modularly implemented by new components and the
PhotoSorting aspect in the Δ model.

The open-closed principle was more closely adhered by the
composition of AO models than non-AO models. However, this
observation did not occur in all the cases. In general, this
principle was fully achieved only when the Δ model was
basically adding new elements to the base models. The other
types of changes realized by the Δ model exerted more specific
implications in the rate of conflicts detected in the output
models. This issue is discussed in the following section.

4.1.2 The Effect of the Change Category
A careful analysis of the results has pointed out that the conflict
rate is strictly affected by the category of changes to be applied
to the base model. We identified four types of changes
throughout our target SPL study:

• Addition: new model elements are inserted into base model;
for instance, the new method getFormType() is inserted
into the provided interface, named ManageLabel, of the
component NewLabelScreen (Figure 4).

• Removal: a model element in the base model is removed; for
example, the required interface ControlPhoto of the
component AlbumListScreen is removed in the fourth
MobileMedia release;

• Modification: a model element has some properties
modified; for instance, the component NewAlbumScreen
(Release 1) has its name modified to NewLabelScreen in
Release 2 (Figure 4).

• Derivation: model elements are refined and/or move to
accommodate the changes; for example, the provided
interface ControlPhoto (with 14 methods) of the
component BaseController (Release 3) has some
methods moved to the provided interface ControlPhoto of
the component PhotoController (Release 4).

Additions. As previously discussed (Section 4.1.1), the use of
aspects has contributed to produce output model with much
lower conflict rate when the evolution scenarios where
dominated by additions. This finding is supported by the low
conflict rate in Scenarios 3 and 5. The main reason is that the
created aspects (in the Δ model) modularize the changes and
insert them into the target model elements, without requiring
their modifications. In these cases, we also observed that lower
CR measures were observed in the AO models when the
override algorithm is used and performed in the left direction.
For all the other compositions, the conflict rate of the AO
releases was equal or lower than the non-AO releases.

A concrete example of the superiority of the AO version was the
decrease of the conflict rate from 3.8 to 2.24 in Scenario 1. This
was due to the aspectual component, included in this release (via
the Δ model), which advises 9 methods: (i) three of them in the
interface ManagePhotoInfo of the component AlbumData;
and (ii) 6 of them in the interface PersistPhoto of the
ImageAcessor. This led to a CR decrease in the interface
PersistPhoto from 11 (non-AO version) to 4 (AO version). In
the same way, the ManagePhotoInfo had its conflict rate
decreased from 9 to 6.

Modifications, Removals and Derivations. We could not find
a recurring CR pattern (in favor of AO or non-AO versions)
when modification was being realized. The AO version

performed better in certain cases, while the non-AO version was
better in others. On the other hand, the conflict rate was slightly
higher in non-AO models when removals and derivations were
applied. We also observed that a very high conflict rate occurred
simultaneously in both AO and non-AO models when the
change scenario was complex. This was the case when the
change scenario involved a blend of modifications, removals
and derivations. More specifically, this occurred in Scenario 4,
when there is a significant architectural change: a single
controller, for instance, was restructured as a set of specialized
controllers.

Therefore, the heuristic composition algorithms were inefficient
in widely-scoped architecture evolution, such as the refinement
of the MVC (Model-View-Controller) architecture style of
MobileMedia. This is also due in part to the name-based model
comparison, which is not able to recognize more intricate
equivalence relationships between the model elements. This
comparison strategy is very restrictive whenever there is a 1:N
correspondence relationship between elements in the two input
models. An example of the 1:N relationship category
encompassed the required interface ControlPhoto (Release 3)
of the AlbumListScreen component. This interface was
decomposed into two new required interfaces ControlAlbum
and ControlPhotoList (Release 4), thereby characterizing a
1:2 relationship. For this particular case, the name-based model
comparison should be able to “recognize” that ControlAlbum
and ControlPhotoList are equivalent to ControlPhoto.
However, in the output model (Release 4), the
AlbumListScreen component provides duplicated services to
the environment giving arise to an inconsistency. However,
even in these cases the aspect orientation presented a lower
conflict rate (e.g., see Scenario 4 in Figures 6 and 7).

It is known that a higher number of model elements may lead to
a higher conflict rate when the composition is put in practice.
But this was not the case with aspect-orientation. For instance,
let’s consider the fourth scenario. Although fewer composed
elements (25) were observed in the non-AO version, the latter
presents a higher CR measure (2.59). On the other hand, the AO
version has a higher number of compositions (27), but the
conflict rate is lower (CR = 1.97). A real example would be the
PhotoViewScreen component, which decreased the number of
conflicts from 3 (non-AO version) to 1 (AO version).

4.2 H2: Aspects and Conflict Propagation
We focus our discussion about conflict propagation on the
analysis of model recovery effort, the RE measure (Section 3.3).
This RE measure is a useful indicator to support the analysis of
the presence (or absence) of conflict propagation (H2) in both
AO and non-AO models. The higher the effort for recovering
the output model (towards the intended composed model), the
higher the chance of conflict propagation being observed in the
output model. Figure 8 depicts the recovery effort measures to
transform the output model produced by the override algorithm
into the intended model. Similarly, Figure 9 shows the results of
the same metric for the merge algorithm. The structure of the
histograms follows those in the previous section.

We have concluded that aspects indeed affect the way conflicts
flow throughout the output models. We identified a number of
recurring conflicts in the AO models, which did not occur in the

non-AO models. In general, these conflicts specific to aspect
orientation were caused by a conflict (or several) arising at a
single aspect and spreading through all the affected elements in
the base model. Therefore, we have found that there is a sensible
difference on the way composition conflicts are propagated in
non-AO and AO models. Therefore, we refute the null
hypothesis H2-0 and confirm the alternative hypothesis H2-1.

Figure 7. Conflict resolution effort to recover the output

model produced by override algorithm.

4.2.1 Quantification and Model Recovery Effort
According to previous discussion (Section 4.1.1), aspects with
higher quantification contribute to higher conflict rates in AO
models. An inspection of the output models, however, pointed
out that this problem occurred because these aspects led to
higher conflict propagation manifesting during the model
composition process. Surprisingly, the higher rate of conflicts in
such AO models does not reflect in more effort to recover the
output models and produce the intended composed model. In
other words, an interesting finding is that a high degree of
quantification does not lead to more effort to recover the output
model. The RE measure often tends to be similar in AO and
non-AO models.
This phenomenon can be illustrated, for example, in Scenario 2
(Figure 7), where the AO version presents a higher conflict rate
(CR = 1.37) than the non-AO version (CR = 0.82). However, the
model recovery effort is equal to 9 for both AO and non-AO
versions (Figure 9). This was the case of conflicts arising at a
reusable exception handling aspect (modified by the Δ model).
When conflicts arose in such an aspect, they rippled through all
the model elements directly advised by the aspect. During the
model recovery process, there was a need to fix only the conflict
in the specification of the exception handling aspect.

Figure 8. Composition effort to recover the output model

produced by merge algorithm

Therefore, although AO and non-AO versions present different
conflict rates in certain evolution scenarios (e.g., Scenario 1 in

Figure 7), the effort to recover the output model from the
conflicts in both versions is similar. The effort directly depends
on how instances of conflicts are interrelated. Propagation
channels of conflicts were more common in AO models as
discussed above. For example, despite aspect orientation
exhibiting a conflict rate close to the non-AO conflict rate in
Scenario 2 (Figure 7), the conflict resolution effort is similar to
non-AO models. Thus, when the conflict that is responsible for
propagation is identified and resolved, all conflicts are indirectly
resolved as well.

4.2.2 Shared Join Points and Cyclic Propagation
We have noticed that when a conflict emerged in a highly-
coupled base module (e.g., a controller in MobileMedia), it led
to a higher degree of conflict propagation in the AO versions
than the non-AO versions. This problem was particularly
observed when the highly-coupled base module was the source
of join point shadows shared by multiple aspects. For instance,
we have analyzed the conflict channels triggered by a conflict
arising in the BaseController, a central model element in
the Mobile Media architecture. We observed that the conflict
propagation affected four components in the non-AO version,
namely AlbumListScreen, PhotoListScreen,
PhotoView Screen, and AddPhotoToAlbumScreen.
However, the propagation affected three additional modules
(aspects) in the AO version.
The HandleExceptions interface had a method signature
modified from String[] getImages(String record-
Name) to ImageData[] getImages(String record-
Name). However, the R1.HandleExceptions incorrectly
overrides Δ(R1,R2).HandleExceptions. As a result, this
method was incorrectly present into the output model, which
gives arise to some functionality conflicts. This propagation was
spread through the component AlbumData, because the aspect
is no longer able to introduce the expected method
ImageData[] getImages(String record Name) into the
provided interface ManagePhotoInfo of AlbumData. As a
consequence, AlbumData does not provide some expected
services to the environment. Hence, conflicts are propagated
through the component BaseController and ImageAcessor.
It is interesting to note that ImageAcessor is also affected by a
conflict that emerged from AlbumData. As ImageAcessor
requires the service (ImageData[] getImages(…)) provided
by the interface ManagePhotoInterface, it is not able to
correctly provide the all services defined in the provided
interface PersistPhoto. Hence, the AlbumData is also re-
affected by a conflict that previously arose from it. This
phenomenon represents cyclic conflict propagation. On the
other hand, this propagation is solved in the composition
R2,overide,left due to the Δ(R1,R2).HandleExceptions override
the R1.HandleExceptions, decreasing the conflict rate from
1.3 in R2,overide,right to 0.41 in R2,overide,left.

5. RELATED WORK
Model composition is a very active research field in many
domains, including database integration [3], composition of web
services [15], merging of statecharts [2], model composition in
product lines [1], composition of UML models [18][19][10]
[12], aspect-oriented modeling [13][11][14], and AO
composition of models [8]. However, there is little related work

focusing on the quantitative and qualitative assessment of AOM.
In general, most of the research on the interplay of AOM and
model composition rest on subjective assessment criteria. Even
worse, they lead to dependence on experts who have built up an
arsenal of mentally-held indicators to evaluate the growing
complexity of models in general [7][16][17]. As a consequence,
the truth is that modelers ultimately rely on feedback from
experts to determine “how good” the input models and their
compositions are. According to [5], the state of the practice in
assessing model quality provides evidence that modeling is still
in the craftsmanship era and when we assess model composition
this problem is accentuated.
More specifically, to the best of our knowledge, researchers
have neglected the assessment of how aspects impact model
composition effort. The need for assessing models during a
model composition process has neither been pointed out nor
proposed by current model composition techniques [9][2][8]
[18]. For example, the UML built-in composition mechanism,
namely package merge [18][19], does not define metrics or
criteria to assess the merged UML models. Moreover, it has
been found to be incomplete, ambiguous and inconsistent [19].

The lack of quantitative and qualitative indicators for model
compositions hinder the understanding of side effects peculiar to
certain model composition strategies (in the presence of aspects
or not). Many different types of metrics have been developed
during the past few decades for different UML models. These
metrics have certainly helped designers analyze their UML
models to an extent. However, as researchers’ focus has shifted
to the activities related to model management (such as model
composition, evolution and transformation), the shortcomings
and limitation of UML model metrics have become more
apparent. Some authors [1][12][13][14][15][16][17][18] have
proposed a set of metrics that consider UML models’ properties.
These works have shown that their measures satisfy some
properties expected for good measures of design models.
However, these metrics cannot be employed to assess problems
that may arise in a model composition process such as semantic
conflicts.

There are some specific metrics available in the literature for
supporting the evaluation of model composition specifications.
For instance, Chitchyan and colleagues [20] have defined some
metrics to quantify the effort to specific compositions between
two or more requirements models, such as scaffolding and
mobility. However, their metrics are targeted at evaluating the
reusability and stability of explicit model composition
specifications. Boucké and colleagues [25] also propose a
number of metrics for evaluating the complexity and reuse of
architectural model compositions. However, in this paper, we
have focused on the evaluation of heuristic composition
algorithms, such as merge and override, where explicit model
compositions are not provided upfront. In addition, we have
focused on analyzing the impact of aspects on the effort to
resolve emerging conflicts in output models. Therefore, existing
metrics (such as those described in [20][25][23]) cannot be
directly applied to our context.

6. THREATS TO VALIDITY
Our exploratory study obviously has a number of threats to
validity that range from: (i) the use of single target application

and a single AOM language, to (ii) the use of specific metrics to
compute the conflict resolution effort. Obviously, more
investigations involving other case studies with compositions of
larger UML models are required. We observed that the number
of properties and details (i.e., granularity) of the model elements
taken into consideration throughout the compositions affect
directly the composition results. Consequently, it is necessary to
observe that, to generalize our findings, other types of model
with different levels of abstraction are needed to make further
investigation.

Further empirical evaluations are indeed fundamental to confirm
or refute our findings in other real-world design settings
involving UML model compositions. However, it was never our
goal to conduct a controlled study. Our investigation represents
a first stepping stone, where a number of initial findings can be
used to drive the experimental designs of more controlled
studies in the future.

7. CONCLUSIONS AND FUTURE WORK
Model composition is one of the pillars of AOM, and it is an
operation intended to be used in many software development
activities. Hence, software designers naturally become
concerned about the quality of the composed models. This paper
represents a first exploratory study to assess the potential
advantage of aspect-orientation in reducing conflict resolution
effort. In our study, model composition was used to express the
evolution of architectural models along six releases of a
software product line. Three canonical algorithms for heuristic
model composition have been applied, and two of them were
discussed in detail in this paper.

As expected, we found that the presence of aspects in input
models improved modularization and, therefore, tended to better
localize conflicts. We have also observed: (i) a higher degree of
obliviousness between base models and aspects led to a
significant decrease of conflicts when compared with the non-
AO model counterparts, and (ii) aspects with higher
quantification were the cause of higher conflict rates in AO
models. Another interesting finding was that, even in scenarios
where conflict rate of AO models was close to (or higher than)
the conflict rate of non-AO models, conflict resolution effort
was similar in AO and non-AO models. This means that the
time spent for recovering output AO models from emerging
conflicts is, at least, similar to non-AO models. All these
findings were independent of the specific composition
algorithms being assessed. These results provide some initial
indication that aspect-orientation may alleviate conflict
resolution effort.

We should point out that assessing the added value of AOM in
model composition is in its initial stage and there is very little
experience that can be used to determine the feasibility of
current approaches. This study represents a first exploratory
study that investigates the impact of aspects on conflict
resolution effort. However, further empirical studies are still
required to evaluate the impact of AO modeling on model
composition in real-world settings. We also need to better
understand if aspect orientation provides some gain or not: (i)
when applied to other composition algorithms, and (ii) with
respect to the time spent to identify the conflicts rather than the
effort to resolving them. We hope that the issues outlined

throughout the paper encourage researchers to replicate our
study in future under different circumstances.
Acknowledgments: this work was funded by Faperj –
distinguished scientist grant (number E-26/102.211/2009); by
CNPq – productivity grant (number 305526/2009-0), Universal
project (grant number 483882/2009-7), and PhD scholarship
(number 142857/2009-2); and by PUC-Rio – productivity grant.

8. REFERENCES
[1] P. Jayaraman, J. Whittle, A. Elkhodary, and H. Gomaa.

Model Composition in Product Lines and Feature
Interaction Detection using Critical Pair Analysis. In
MODELS’07, pages 151–165, 2007.

[2] S. Nejati et al. Matching and Merging of Statecharts
Specifications. In: ICSE’07, pages 54–64, 2007.

[3] P. Bernstein and S. Melnik. Model Management 2.0:
Manipulating Richer Mappings. In: SIGMOD’07, pages 1–
12, ACM Press, 2007.

[4] V. Basili et. al. The Goal Question Metric Paradigm. In:
The Encyclopedia of Software Engineering, Vol. 2, pp.
528–532, John Wiley and Sons, 1994.

[5] E. Figueiredo et al. Evolving Software Product Lines with
Aspects: An Empirical Study on Design Stability. In:
ICSE’08, pages 261–270, 2008

[6] S. Clarke and R. Walker. Composition Patterns: an
Approach to Designing Reusable Aspects. In: ICSE’01,
pages 5–14, 2001.

[7] R. France and B. Rumpe. Model-Driven Development of
Complex Software: A Research Roadmap. In: Future of
Software Engineering at ICSE’07, pages 37–54, 2007.

[8] Y. Reddy et al. Directives for Composing Aspect-Oriented
Design Class Models. LNCS Transactions on Aspect-
Oriented Software Development, 1(1):75–105, 2006.

[9] T. Cottenier, A. Berg, and T. Elrad. The Motorola
WEAVR: Model Weaving in a Large Industrial Context,
In: AOSD’07, 2007.

[10] R. France, D. Kim, S. Ghosh, and E. Song. A UML-Based
Pattern Specification Technique. IEEE Trans. Software
Eng., 30(3):193–206, 2004.

[11] R. France, I. Ray, G. Georg, and S. Ghosh. Aspect-
Oriented Approach to Early Design Modeling. IEE
Proceedings: Software, 151(4):173–185, 2004.

[12] R. France, S. Ghosh, and T. Trong. Model Driven
Development Using UML 2.0: Promises and Pitfalls,
Computer, 39(2):59–66, 2006.

[13] S. Clarke and E. Banaissad. Aspect-Oriented Analysis and
Design: The Theme Approach. Addison-Wesley, Upper
Saddle River, 2005.

[14] E. Tempero and R. Biddle. Simulating Multiple Inheritance
in Java. Journal of Syst. and Soft., 55(1):87–100, 2000.

[15] N. Milanovic and M. Malek. Current Solutions for Web
Service Composition. IEEE Internet Computing, 8(6):51–
59, December 2004.

[16] C. Lange and M. Chaudron, Effects of Defects in UML
Models: An Experimental Investigation. In: ICSE’06,
pages 401–411, 2006.

[17] C. Lange, B. DuBois, M. Chaudron, and S. Demeyer. An
Experimental Investigation of UML Modeling
Conventions. In: MoDELS’06, pages 27–41, 2006.

[18] J. Dingel, Z. Diskin, and A. Zito, Understanding and
Improving UML Package Merge. Journal of Software and
Systems Modeling, 7(4):443–467, 2008.

[19] OMG. Unified Modeling Language: Infrastructure version
2.2. Object Management Group, February 2008.

[20] R. Chitchyan et al. Semantic vs. Syntactic Compositions in
Aspect-Oriented Requirements Engineering: An Empirical
Study. In: AOSD’09, pages 36–48, 2009.

[21] K. Farias, A. Garcia, and C. Lucena. On the Comparative
Evaluation of Aspect-Oriented Model Composition
Techniques. In: Proc. of the III LA-WASP’09, 2009.

[22] K. Oliveira, A. Garcia, and J. Whittle. On the Quantitative
Assessment of Class Model Compositions: An Exploratory
Study. In: 1st Wkshp. on ESMDE at MODELS’08, 2008.

[23] J. Conejero, E. Figueiredo, A. Garcia, J. Hernández, and E.
Jurado. Early Crosscutting Metrics as Predictors of
Software Instability. In: TOOLS-Europe’09, pages 136 –
156, 2009.

[24] A. Molesini, A. Garcia, C. Chavez, and T. Batista. Stability
Assessment of Aspect-Oriented Software Architectures: A
Quantitative Study. Journal of Systems and Software, 2009.

[25] N. Boucké, D. Weyns, and T. Holvoet: Experiences with
Theme/UML for Architectural Design in Multiagent
Systems. In: MASSA’06, pages 87–110, 2006.

[26] A. Garcia et al. Representing Architectural Aspects with a
Symmetric Approach. In: EA’09 held at AOSD’09, 2009.

[27] T. Cotternier, A. van den Berg, and T. Elrad. Modeling
Aspect-Oriented Composition. In: Int. Workshop on AOM
at MODELS’05, 2005.

[28] J. Whittle and P. Jayaraman, MATA: A Tool for Aspect-
Oriented Modeling Based on Graph Transformation. In:
Int. Workshop on AOM MoDELS, pages 16–27, 2007.

[29] Kompose: A Generic Model Composition Tool.
http://www.kermeta.org/kompose, 2009.

[30] Assessing the Impact of Aspect on Model Composition
Effort, http://www.inf.puc-rio.br/~kfarias/aosd10

[31] B. Meyer. Object-Oriented Software Construction, 1st ed.
Prentice-Meyer, Hall, Englewood Cliffs, 1988.

[32] Evolving Software Product Lines with Aspects.
http://www.lancs.ac.uk/postgrad/figueire/spl/icse08/

[33] N. Norris and K. Letkeman. Governing and managing
enterprise models: Part 1. Introduction and concepts, IBM
Developer Works, http://www.ibm.com/developerworks/
rational/library/09/0113_letkeman-norris

http://www.springerlink.com/content/109378/?p=8e4a2d1bb5d64b52a1cf88528c107963&pi=0�
http://www.springerlink.com/content/109378/?p=8e4a2d1bb5d64b52a1cf88528c107963&pi=0�
http://www.kermeta.org/kompose�
http://www-di.inf.puc-rio.br/~afgarcia/�
http://www.lancs.ac.uk/postgrad/figueire/spl/icse08/�

	INTRODUCTION
	BACKGROUND
	Model Composition
	Aspect-Oriented Modeling
	Composition Algorithms
	Syntactic and Semantic Conflicts

	METHODOLOGY
	Hypotheses
	Case Study: Evolving an SPL
	Quantifying Conflict Resolution
	Evaluation Procedures
	3.4.1 Target Model Versions and Releases
	3.4.2 Execution and Assessment Phases

	COMPOSITION EFFORT ANALYSIS
	H1: Aspects and Conflict Rate
	Obliviousness and Quantification
	The Effect of the Change Category

	H2: Aspects and Conflict Propagation
	Quantification and Model Recovery Effort
	Shared Join Points and Cyclic Propagation

	RELATED WORK
	THREATS TO VALIDITY
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

