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ABSTRACT 
Model composition is a common operation used in many 
software development activities—for example, reconciling 
models developed in parallel by different development teams, or 
merging models of new features with existing model artifacts. 
Unfortunately, both commercial and academic model 
composition tools suffer from the composition conflict problem. 
That is, models to-be-composed may conflict with each other 
and these conflicts must be resolved. In practice, detecting and 
resolving conflicts is a highly-intensive manual activity. In this 
paper, we investigate whether aspect-orientation reduces 
conflict resolution effort as improved modularization may better 
localize conflicts. The main goal of the paper is to conduct an 
exploratory study to analyze the impact of aspects on conflict 
resolution. In particular, model compositions are used to express 
the evolution of architectural models along six releases of a 
software product line. Well-known composition algorithms, 
such as override, merge and union, are applied and compared on 
both AO and non-AO models in terms of their conflict rate and 
effort to solve the identified conflicts. Our findings identify 
specific scenarios where aspect-orientation properties, such as 
obliviousness and quantification, result in a lower (or higher) 
composition effort. 

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics-Product metrics; 
D.2.13 [Software Engineering]: Reusable Software. 
General Terms 
Measurement, Design, Experimentation 

Keywords 
Model Composition, Software Metrics, Empirical Studies, 
Software Architecture, Software Product Lines. 

 

1. INTRODUCTION 
Model composition plays a central role in many software 
engineering activities—e.g., reconciling models developed in 
parallel by different development teams, and evolving models to 
add new features. In collaborative software development, for 
example, separate developer teams may concurrently work on a 
partial model of the overall architecture to allow developers to 
concentrate more effectively on parts of the architecture relevant 
to them. However, at some point, it is necessary to bring these 
models together to generate a “big picture” view of the overall 
architecture.  For this reason, there has been a significant body 
of research into defining model composition algorithms in the 
areas of model versioning control, software product lines [1], 
and aspect-oriented modeling [26]. 

In practice, however, model composition is a highly-intensive 
manual task1

The hypothesis of this paper is that aspect-orientation may 
alleviate the effort of conflict resolution to some extent. The 
intuition is that aspect-orientation brings improved modularity 
and that a more effective modularization may localize conflicts, 
thus making them easier to detect and deal with. However, it is 
by no means obvious that this hypothesis holds. It may be, for 
instance, that conflicts in aspect-oriented models have a 
detrimental effect on conflict resolution effort because aspect 
conflicts may require the modeler to examine all points in the 
model crosscut by the aspect. The goal of this paper, therefore, 
is to report on an exploratory empirical study which aimed to 
provide evidence to support or refute this hypothesis. We only 
study one facet of model composition in this paper: the use of 

 [33]. Models to-be-composed inevitably conflict 
with each other and these conflicts must be detected and 
resolved in order to produce a correctly composed model. It is 
very difficult, if not impossible, to resolve conflicts 
automatically because conflict resolution relies on an 
understanding of what the models actually mean and such 
semantic information is typically not included in any formal 
way in the models. This need has been the key point of 
improvement required in enterprise modeling tools that support 
model composition, such as IBM Rational Software 
Architecture [33]. 

                                                                 
1  Anecdotal evidence from industry contacts suggests that 

model composition and conflict resolution is a full-time job. 
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model composition in adding new features to a set of models for 
an industrial software product line.  

Software product lines (SPLs) commonly involve model 
composition activities and, while we believe the kinds of model 
composition in SPLs are representative of the broader issues, we 
make no claims about the generality of our results beyond SPL 
model composition. We show the results for model 
compositions of six releases of an SPL. In each release, models 
for the new feature are composed with the models for existing 
features. We analyze, for each release, the quantity and nature 
of the composition conflicts. Furthermore, we compare two 
versions of the SPL models—one which uses aspect-oriented 
modeling (AOM) and one which does not.  

Our initial results show that higher conflict rates were observed 
in the presence of aspects when they had higher degree of 
quantification. On the other hand, this problem did not entail 
more effort on conflict resolution. We also found that higher 
degree of obliviousness tended to yield compositions of AO 
composed models that are closer to the intended compositions. 
To the best of our knowledge, our results are the first to 
empirically investigate potential advantages of aspects during 
modeling. Despite a wide variety of technical approaches to 
AOM (e.g., MATA [27], Kompose [28]), to-date there has been 
almost no empirical evaluation of AOM. We therefore see this 
paper as a first step in a more ambitious agenda to empirically 
assess aspect-oriented modeling.   

The remainder of the paper is organized as follows. In Section 2, 
we introduce the main concepts and knowledge that are going to 
be used and discussed throughout the paper. In Section 3, we 
present the methodology. In Section 4, we present the 
composition analysis effort. In Section 5, we contrast our work 
with related work and present the threats to validity in Section 6. 
Finally, in Section 7, we present some concluding remarks and 
future work. 

2. BACKGROUND 
Model composition has been studied for many years in software 
engineering [7] and in other related disciplines. Model 
composition can be applied to different contexts, such as model 
reuse, resolution of stakeholders’ viewpoints, and model 
evolution [21] [22]. For instance, in the context of our 
exploratory study, model composition is exploited to describe 
the evolution of an SPL’s architectural specification. Section 2.1 
defines model composition more precisely and defines how to 
quantify the effort involved in applying model composition. Our 
paper compares model composition in an AO and non-AO 
setting. Section 2.2 describes the aspect-oriented modeling 
notation used in our experiment. Section 2.3 discusses state-of-
practice algorithms for model composition, and Section 2.4 
explains recurring types of model composition conflict.  

2.1 Model Composition  
Model Composition. The term model composition refers to a 
set of activities that should be accomplished to combine two (or 
more) input models, MA and MB, in order to produce an output 
composite model, MAB. A model composition algorithm defines 
the semantics of the model composition relationship and 
specifies how the input models should be manipulated in order 
to compose them. Note that composition algorithms are often 

heuristic because they rely on matching elements in the input 
models, which, in turn, relies on “guessing” the semantics of 
model elements. We will use the terms composed model (MCM) 
and intended model (MAB) to differentiate between the 
composition produced by a composition algorithm and the 
composition that the developer desires. Usually, MCM ≠ MAB 
because the input models conflict in some way. The number of 
conflicts may depend on the choice of algorithm but will 
typically be nonzero if the algorithm is heuristic.  
Composition Effort. There is currently very limited knowledge 
regarding the amount of effort required to apply model 
composition algorithms. Anecdotal evidence from companies 
suggests that the effort is significant but, in this paper, we aim to 
quantify the effort more precisely. The composition effort can 
be calculated using the equation defined in Figure 1. The 
equation gives an overview of how composition effort can be 
measured and what part we focus our study on. The equation 
makes it explicit that the model composition effort includes: (1) 
the effort to apply a model composition algorithm: f(MA,MB); 
(2) the effort to detect undesirable conflicts in the output model: 
diff(MCM,MAB); and (3) the effort to resolve conflicts: g(MCM). 
Once a composed model (MCM) has been produced, the next 
step is to measure the effort to transform MCM into the intended 
model (MAB). If MCM is equal to MAB, then diff(MCM,MAB) = 0 
and g(MCM) = 0. Otherwise, diff(MCM,MAB) > 0 and g(MCM) > 0. 
Our study focuses on assessing the effort to resolve conflicts 
(i.e., g(MCM)). We defer consideration of diff(MCM,MAB) to 
future work. 

 
Figure 1. Model composition effort equation. 

2.2 Aspect-Oriented Modeling 
Model composition applies both to development with and 
without aspect-oriented modeling (AOM). In fact, in this paper, 
we compare the model composition effort in both cases. AOM 
languages aim at improving separation of concerns by 
supporting the modular representation of concerns that cut 
across multiple software modules. Crosscutting concerns are 
represented by a new model element, called aspect. The goal of 
AOM is to provide software developers with the means to 
express aspects and crosscutting relationships in their models. 
There are AOM languages for modeling aspects at many levels 
of abstraction, ranging from use cases and architectural design 
to detailed designs. As far as the solution space is concerned, 
aspects are usually first expressed in architectural models.  

Figure 2 is an illustrative example of the architectural AOM 
language [26] used in our study (Section 4). We chose this 
AOM language because: (i) we selected architectural models as 
our focus due to the availability of existing industrial models; 



(ii) the AOM language has been widely used in other contexts 
and is therefore mature [26]. The notation (see Figure 2) 
supports the visual symmetric representation of aspect-oriented 
software architectures. The target modeling approach consists of 
an extension of the UML’s component diagram [19]. In order to 
put the composition in practice, we should consider the 
properties of model elements defined in the UML metamodel 
specification for this diagram. Thus, the properties of the model 
elements considered were: component (name, provided interface 
and required interface), interface (name, operation and 
attribute), operation (name, return type and parameters), 
attribute (name and type), relationship (source and target), 
crosscutting relationship and join-points. Therefore, the 
composition algorithms (Section 2.3) are fine-grained due to 
take into account these properties in each composition. 

The notation provides explicit elements for expressing different 
forms of component-aspect collaborations, which are 
represented by aspectual connectors. Aspectual connectors are 
represented by rectangles in Figure 2 and define which 
components, interfaces or specific operations are affected by a 
component modularizing a crosscutting concern. Aspectual 
connectors are associated with crosscutting relationships   
represented by dashed arrows. The notation also supports the 
visual modeling of specific pointcut designators (e.g., advising 
all the provided interfaces) and sequencing operators (after, 
before, and around). For the sake of simplicity in this paper, 
only aspectual connectors and crosscutting relationships will be 
represented in the models of our case study; all the other visual 
details have been omitted from here on. 

crosscutting roles

<<component>>

<<aspectual connector>>

base roles

around crosscutting
relationship 

<<component>>

before after
 

 Figure 2. AOM Language for Architectural Models 

2.3 Composition Algorithms 
Composition algorithms consist of two key activities: matching 
model elements in the input models, and composing elements. 
This paper focuses on three well-established composition 
algorithms: override, merge and union. These algorithms were 
chosen because they have been applied in a wide range of model 
composition scenarios, such as model evolution, ontology 
merge, and conceptual model composition. In addition, they 
have been recognized as candidate algorithms in aspect-oriented 
model composition (e.g., Theme/UML [6] [13]).  
In the following, we briefly define these three algorithms, where 
we assume two hypothetical input models, MA and MB. We say 
that two elements from MA and MB respectively are 
corresponding if they have been identified as equivalent in the 
matching process. Matching can be achieved using any number 
of standard heuristics, such as match-by-name. 

Override (direction: MA to MB). For all pairs of corresponding 
elements in MA and MB, MA’s elements should override MB’s 
corresponding elements. Elements not involved in the 
correspondence remain unchanged and are inserted into the 
output model.  

Merge. For all corresponding elements in MA and MB, the 
elements should be combined. The combination depends on the 
element type. In this paper, we only consider components and 
interfaces—in this case, the combination adds the operations of 
MA’s elements to those of MB. Elements in MA and MB that are 
not involved in a correspondence match remain unchanged and 
are inserted into the output model directly. 
Union. For all elements in the MA and MB that are 
corresponding elements, they should be manipulated in order to 
preserve their distinguished identification; it means that they 
should coexist in the output models with different identifiers; 
elements in the MA and MB that are not involved in a 
correspondence match remain unchanged and they are inserted 
into the output model, MAB. 

2.4 Syntactic and Semantic Conflicts 
Conflicts arise in an output model when the composed model 
(MCM) does not match the intended model (MAB). For instance, a 
conflict occurs when the functionality of MCM and MAB is 
different. In practice, we can identify two broad categories of 
conflicts: (1) syntactic conflicts, which arise when the 
composition algorithm results in a model not conforming to the 
modeling language’s metamodel2

3. METHODOLOGY  

; and (2) semantic conflicts, 
where the meaning of the composed model does not match that 
of the intended model. It is important to emphasize that, in our 
study, we count only certain categories of conflicts which are 
easy to spot manually. For example, it is impossible to 
automatically count all semantic conflicts. A typical example of 
semantic conflict considered in our investigation was when 
functionality expected in a model element was not found. For 
instance, this is the case when the component does not present 
the expected functionalities defined in a new release or presents 
undesirable functionalities.  

This section describes the running hypotheses for our study 
(Section 3.1), the target application (Section 3.2), the evaluation 
method used for computing model composition effort (Section 
3.3), and the other study procedures (Section 3.4) in our 
exploratory study. 

3.1 Hypotheses 
Aspect-oriented modeling has been a topic of research for at 
least ten years [13]. However, there is currently very limited 
knowledge as to how aspects, when incorporated in input 
models, affect the model composition effort. In particular, there 
is no understanding as to what extent the composition (Section 
2.3) of aspect-oriented models (Section 2.2) affects the 
emergence of conflicts in composed models.  

In this context, the hypotheses of this study can be derived from 
two key research questions:  

                                                                 
2 One might initially think that there should be no syntactic 

conflicts. However, many composition algorithms do in fact 
result in syntactically incorrect models. This is a well-known 
issue with some graph-grammar based compositions. 



• RQ1: Does the composition of AO models produce a higher 
rate of composition conflicts than non-AO models? 

• RQ2: What is the impact of AO modeling on the way 
conflicts propagate in the output model? 

Our first null hypothesis assumes that the composition effort for 
combining AO models is essentially the same or even worse 
than for combining non-AO models (RQ1). Based on the fact 
that aspects crosscut many elements in a model (Section 2.2), 
the alternative hypothesis states that composing AO models 
leads to less conflicts than non-AO models. This would lead to 
the following null and alternative hypotheses, which will be 
analyzed for each conflict type (Section 2.4): 

Null Hypothesis 1, H1-0: There is no difference between the 
conflict rates produced by the composition of either AO or 
non-AO models, or AO models lead to higher conflict rate.  
H1-0: Rate (AO) ≥ Rate (non-AO).  
Alternative Hypothesis 1, H1-1 : Aspect-oriented modeling 
leads to a lower rate of conflicts than non-aspect-oriented 
modeling.  
H1-1: Rate (AO) < Rate (non-AO).  

Conflicts have a tendency to propagate in a composed model. 
That is, the introduction of one conflict can often lead to 
multiple other conflicts as a result of a “knock-on” effect. An 
example would be the conflict whereby a composed component 
is missing an important operation. This semantic conflict leads 
to a “knock-on” syntactic conflict if another component requires 
the operation. In the worst case, there may be long chains of 
conflicts all derived from a single conflict. Studying such 
propagation effects is important because propagation directly 
affects the effort in resolving conflicts—e.g., a propagation 
chain of length n may actually be fixed by resolving a single 
conflict rather than the expected n conflicts. Thus, we are 
interested in understanding the possible conflict propagation 
patterns in AO and non-AO models (RQ2). Similarly to the 
previous hypothesis, it is assumed that conflicts equally spread 
through output (non-)AO models. This leads to the second null 
hypothesis and alternative hypothesis as follows:  

Null Hypothesis 2, H2-0: There is no difference in the way 
composition conflicts are propagated in AO and non-AO 
models, or AO models lead to higher propagation. H2-0: Prop 
(AO) ≥ Prop (non-AO).  
Alternative Hypothesis 2, H2-1: The use of aspects leads to 
a lower propagation of composition conflicts.  
H2-1: Prop(AO) < Prop(non-AO).  

In order to test the four hypotheses, a metrics suite was used in 
order to quantify both types of composition conflicts. These 
metrics are presented in Section 3.3. The metrics were applied 
to both non-AO and AO component models of an evolving 
software product line, described in the next section.  

3.2 Case Study: Evolving an SPL 
As previously discussed, model composition can be applied in 
different contexts and with different purposes (Section 2.1). We 
have selected a particular scenario to test our study hypotheses: 
the use of model composition to express the evolution of 
software product line (SPL) architecture. 

 Model Composition for Expressing SPL Evolution. Model 
compositions were defined to generate the new releases of the 
SPL architecture model. That is, the composition algorithms 
(Section 2.3) were used to define how each architecture model 
(MA) of a SPL release and the new model increments (MB) were 
going to be combined in order to generate the new architecture 
SPL release. The first input model, MA, represents the current 
architecture of a SPL release, while the second input model, MB, 
represents the delta capturing the modifications to MA. The 
output model, MAB, generated by the application of the 
composition algorithm, represents the next SPL release.   
MobileMedia: the Target SPL. A product line, called 
MobileMedia [5], of 6 kLOC was selected to be the target case 
of the evaluation. The purpose of MobileMedia is to provide 
support for the manipulation of photos, music, and videos on 
mobile devices. A fine-grained description about its 
characteristics and how the evolution of Mobile Media 
happened can be found at [5][32][30]. The reasons for selecting 
this system in the evaluation are as follows. First, many releases 
of MobileMedia’s architecture design models were produced by 
its developers. Second, two versions of the same product line, 
and the respective architectural models, were available for our 
investigation: an AO version and a non-AO version. This is a 
fundamental requirement to test our hypotheses (Section 3.1). 
Third, the last release of the architectural design has more than 
one hundred modules, and its architectural models are the main 
artifact to reason about change requests and derive new 
products. Fourth, the architectural models were produced by the 
original developers without any of the model composition 
algorithms under assessment in mind, thereby avoiding any bias 
and entailing a more natural software development scenario. 
Fifth, the architectural models (MA) and the increment models 
(MB) were conceived with modularity and changeability as key 
drivers. Sixth, we had available a total of seven fully-
documented evolution scenarios, which could be expressed with 
model compositions (examples are given later). 
Finally, MobileMedia met a number of other equally-important 
requirements, such as: (i) proper documentation of the driving 
requirements; (ii) the system evolved for more than three years, 
and the more recent releases have more than 100 modules; (iii) 
different types of change were realized in each release, 
including refinements of the architecture style employed, (iv) 
the system has been successfully used in other studies involving 
empirical evaluation of OO and AO implementations [5], and 
(v) the original developers were available to help us with the 
production and analysis of the composed models and the 
intended models. As such, all these factors provided a solid 
foundation for our study. 

3.3 Quantifying Conflict Resolution 
Our evaluation is concerned with the most-time consuming 
element of heuristic model composition, i.e. conflict resolution 
(Section 2.1). Therefore, our goal is to quantify: (i) the number 
of conflicts, and (ii) the activities required to modify the output 
model in order to make it reach the intended model. The 
analysis basically relies on a conflict measure, called conflict 
rate (CR), to quantify the amount of composition conflicts 
(Section 2.4) divided by the total number of elements in the 
output model. That is, CR allows computing the density of 
composition conflicts in the output models. This metric makes it 



possible to assess the difference between the conflict rate of 
non-AOM and AOM (H1). It is important to point out that CR is 
defined from multiple conflict metrics, which can be found in 
[30]. 
However, we also quantify the number of operations performed 
to transform the composed model into the intended model. We 
compute the number of creations, removals, and modifications 
needed to produce the intended model. This computation 
represents an estimation of the model recovery effort (RE). 
After we collect the RE measure, we perform an inspection of 
the output model to check if there was any occurrence of 
conflict propagation. This enables us to check if the presence of 
aspects in the input models has any impact on the way 
composition conflicts are propagated (H2).  
In the case study, the metrics above were applied to the 
composed models to analyze the conflicts and their propagation 
in each new MobileMedia release. The collected measures are 
used to assess if the output model has conflicts after the 
composition algorithm is applied (diff(MCM,MAB) > 0). Then, a 
set of removals, updates, and creations were performed to 
resolve the conflicts. In order to come up with a suitable 
characterization of measures and respective releases, we defined 
a basic formalism for the metrics space of composition effort as 
follows. 
A metric space is a set M equipped with a real-valued function 
CE(w,s) defined for all w,s ∈ M. Let M = {Ri,x,y, i = 1,…,n; x = 
override, merge; y = left, right}, where: 

• n is a finite natural number representing the model 
release; 

• left and right represent the direction of the composition 
relationship in the override algorithm.  

For example, R3,merge,right represents the Release 3 that was 
produced by merging: Release 2 +merge Δ(Release 2, Release 3) 
 Release 3. Δ(Release 2, Release 3) represents the model 
elements that should be merged with Release 2 to transform it 
into Release 3. In practical terms, Δ represents the evolution to 
be inserted into the previous release. On the other hand, 
R3,merge,left would be: Δ(Release 2,Release3) +merge Release 2  
Release 3 (the inverse order can also be represented with an 
asterisk). So, the reader should note that the order of override-
based composition can produce different output composite 
models [18]. Each model of a Ri,x,y can be characterized by 
observing its syntactical and semantic properties. If we have a 
high conflict rate (CR) in an evolution scenario, then this 
implies a higher effort to resolve conflicts. 

3.4 Evaluation Procedures 
Once the case study was selected (Section 3.2) and the conflict 
resolution metrics were defined (Section 3.3), we needed to 
undergo a number of specific evaluation procedures. They are 
discussed in the following. 

3.4.1 Target Model Versions and Releases   
We have used both non-AO and AO versions of the 
MobileMedia models in order to test the study hypotheses 
(Section 3.1). These two model versions of the same system 
enabled us to identify if the presence of aspects in the input 

models had positive or negative effects on the quality of the 
output model.  
Deriving AO and non-AO Model Releases. For each release of 
MobileMedia, we have applied each of the composition 
algorithms described in Section 2.3. That is, we have used the 
merge algorithm to compose two input AO models in order to 
produce a new AO release model; similarly, we applied the 
merge strategy to compose two input non-AO models in order to 
produce the next non-AO release model. We performed similar 
compositions with override and union algorithms. The goal was 
to identify if the outcomes, in terms of conflict rate and 
propagation (hypotheses), were the same or different. All the 
releases of the non-AO and AO versions realized exactly the 
same SPL features and variability points. They also underwent 
the same evolution scenarios, ranging from changes in 
heterogeneous mobile platforms and additions of many 
alternative and optional features [5]. Non-AO models were 
represented with conventional UML component models, while 
AO models were represented using the AOM language 
described in Section 2.2.  
In fact, AOM (Section 2.2) is used in this work to represent the 
aspect-oriented model releases of the SPL under study. For 
example, in Figure 3, in addition to have interfaces (e.g., 
PersistPhoto), components (e.g., ImageAcessor and 
AlbumData), we also have aspectual components, such as the 
ExceptionHandling aspect. Moreover, we can also have some 
relationships: realization (e.g., between the components 
BaseController and ControlPhoto), dependency (e.g., 
between the component NewAlbumScreen and the interface 
ControlPhoto), and crosscutting (e.g., between the aspectual 
component ExceptionHandling and the component 
PersistPhoto, in which the service loadAlbums(): void is 
woven into the ImageAcessor component). The notation used 
in this work to express the architectural models has been used in 
other works [5] [26] and has shown to be effective for its 
purpose. 
Model Releases and Composition Specification. We 
considered six releases of MobileMedia [5] in this study. They 
were selected because they were the ones where the changes 
implied visible modifications in the architectural design. For 
each new release, the previous release was modified in order to 
accommodate the features to be modified, inserted or removed. 
To implement a new evolution scenario, a model composition 
specification can remove, add, derive, or modify the entities 
present in the previous release. During the design of all releases, 
a main concern was to follow good practices of modeling.  

3.4.2 Execution and Assessment Phases 
The execution and assessment of the study were structured in 
three main steps, which are described in the following. 
Model Refactoring Phase. The model refactoring is a pivotal 
activity to define the input models and, hence, to express the 
model evolution as an explicit model composition relationship. 
For this, MobileMedia’s architectural models were initially 
refactored to specify the delta itself and to represent the change 
scenarios as composition relationships. To create the delta 
model it is necessary to identify the differences between the 
releases models and then gather them into the input model. To 
go about this, we took into account an evolution description 



created by the original modelers involved in a previous study 
[5]. These descriptions specify in-depth the modifications 
needed to realize each evolution scenario (from one release to 
another). They allowed us to identify how the model elements 
were changed. For example, in the second evolution description, 
the Delta(R2,R3) were based on the description such as: the 
interface ControlPhoto—realized by BaseController—had 
the method edilLabel(): void added (see Figure 3). 
Another example would be the change concerning the name of 
the interface ManageLabel to ManageAlbum. Thus, all model 
elements of the Delta(R2,R3) are derived from one evolution 
description, which ensures that the input model specification is 
free of bias. All input models and model evolution descriptions 
can be found at the study site [30]. 
Composition and Measurement Phase. From one release to 
another, 6 compositions were produced: 3 compositions 
following override, merge, and union from the current release to 

Δ, and 3 compositions in the inverse direction. We considered 5 
evolution scenarios for the non-AO version as well as the AO 
version of the Mobile Media, totaling 60 compositions. The 
result of this phase was a document of composition descriptions, 
including the gathered data from the application of our metrics 
suite. Figure 3 presents partial input models being used in one of 
the releases, while Figures 4 (both sides) and 5 (right side) 
represent examples of composition based on merge, override 
and union, respectively. Figure 5 (left side) is the intended result 
of the composition (or mental model). 
As well-validated metrics for model composition are not 
available yet, we used a suite of conflict metrics defined in our 
previous work [22]. The conflicts (and their effects) were 
identified manually using such conflict metrics. The 
identification of the conflicts was performed in 5 review cycles 
in order to avoid false positives/negatives. We also consulted 
the MobileMedia developers (Section 3.2) when needed, such 

   
Figure 3. The input models: the base model (left) and delta model (right). 

  

 
 Figure 3. Output models produced by override (left) and merge (right) algorithms. 

 



as: checking and confirming specific cases of semantic conflicts. 
Even though the metrics have not been extensively validated, 
their feasibility and efficacy was also observed in a previous 
work involving other target applications [22].  
Effort Assessment Phase. The goal of the third phase was to 
assess the effort to resolve the conflicts using the metrics 
described in Section 3.3. The composition algorithms were used 
to generate the evolved models, so that we could assess the 
impact of aspects on the model composition effort. In order to 
support a detailed data analysis, the assessment phase was 
further decomposed in two main stages. The first stage (Section 
4.1) is concerned with pinpointing the conflict rates produced by 
composition of either non-AO or AO (H1). The second stage 
aims at assessing the effort to resolve a set of previous identified 
conflicts and if the use of aspect has a higher impact on the way 
composition conflicts are propagated (H2). We analyzed how 
conflict rate differs across the releases in order to detect 
potential benefits and drawbacks of using AOM in the input 
models. We have decided to focus the discussions on the merge 
and override algorithms, because the union algorithm did not 
present any additional interesting insights. However, all 
measurement results and the raw data are available at [30]. 

4. COMPOSITION EFFORT ANALYSIS 
This section presents the results of applying the conflict 
resolution metrics (Section 3.3) to both the AO and non-AO 
output models realizing each SPL release (Section 3.4.1). 
Histograms are used to provide an overview of the data gathered 
in the measurement process. These histograms allow us to 
analyze the impact of aspects on model composition effort. Each 
histogram focuses on the application of a particular composition 
algorithm (Section 2.3). The Y-axis presents the values gathered 
for a particular metrics. The X-axis specifies the evolution 
scenarios.  

Note that each pair of bars is attached to a pair of values, with 
the first capturing the performance of the AO version and the 
second capturing the non-AO one. Lower the value, the better is 
the performance of the modeling approach used. It is important 

to highlight that the results shown in the histograms were 
gathered with respect to the entire model. Based on the conflicts 
identified by the conflict rate (CR) metric, Section 4.1 discusses 
the findings related to the first hypothesis (H1). Section 4.2 
relies on the metric for quantifying model recovery effort in 
order to support the analysis of the second hypothesis (H2). 

4.1 H1: Aspects and Conflict Rate 
Figure 6 illustrates the results for the CR metric obtained 
following the override algorithm. Figure 7 shows the results of 
the same metric for the merge algorithm. The first observation 
allows us to conclude that the conflict rate measures have 
favored aspect-orientation in both merge and override cases and 
for most of the evolution scenarios. This implies that the tally of 
conflicts to some extent is decreased whenever aspects are 
present in the models to-be-composed. The presence of aspects 
in the input models produced lower conflict rate than aspect-free 
models when the override algorithm is applied in both directions 
(right and left (represented by the *-columns)). For example, the 
conflict rate decreases from 1.72 (non-AO version) to 1.33 (AO 
version) in Scenario 2, which represents a reduction of 22.6% in 
favor of aspect-orientation. Similarly, the conflict rate decreases 
from 0.59 to 0.41 when the composition is performed in the left 
direction, which represents a reduction of 30%.  

 
Figure 5. Conflict rate produced by the override algorithm 

 

 
Figure 4. The intended model from the composition defined in Figure 3 (left).  

The output model produced following the union algorithm (right).  
 



Moreover, it is well known that the greater the number of model 
elements that take part in compositions, the greater the 
likelihood of conflicts being generated. Nevertheless, the AO 
versions still had lower absolute measures of conflicts. For 
example, the absolute measure decrease from 38 (non-AO 
version) to 36 (AO version) in Scenario 2, which represents a 
reduction of 5.2% in favor of aspect-orientation. Similarly, the 
conflict rate decreases from 13 to 11 in the inverse order, which 
represents a reduction of 15.3%.  The only case where aspect-
free models led to a close CR was the application of the merge 
algorithm in the second release (Figure 7); this special case is 
discussed in Section 4.1.1.  

The main reason for the superiority of the AO models is that 
changes, reified by the Δ model (Section 3.3), tend to be 
confined in fewer modules due to the superior modularization of 
crosscutting features in AO models. The confinement of 
modifications to aspects, in turn, leads to a better localization of 
both syntactic and semantic conflicts, thereby making them 
easier to detect and address in the output models. Therefore, we 
refute the null hypothesis H1-0 and confirmed the alternative 
hypothesis H1-1.  

We have noticed that the decrease of conflicts observed in the 
AO models is potentially influenced by two factors:  (i) 
quantification—the higher the quantification of aspects in input 
models, the higher the CR measures, and (ii) obliviousness—the 
higher the degree of obliviousness, the lower the CR measures 
in the output models (Section 4.1.1). Another predominant 
factor on the emergence of high conflict rates was the nature of 
the change. Independently of the degree of obliviousness and 
quantification in AO models, the nature of the change directly 
affected the conflict rate observed in the output models (Section 
4.1.2). In the following, we elaborate these issues further and 
discuss examples that support each of these findings. 

  
 Figure 6. Conflict rate produced by the merge algorithm 

4.1.1 Obliviousness and Quantification  
We have observed that quantification influenced the CR 
measures. The presence of aspects with lower quantification (in 
the input models) led to fewer syntactic and semantic conflicts 
in the output models. When aspects were being used, for 
example, to encapsulate domain–specific features, a lower rate 
of conflicts manifested in the output models. On the other hand, 
we also observed that when a conflict arises in aspects with 
higher quantification (in the input models), higher rates of 
syntactic and semantic conflicts occurred in the output models. 

Therefore, the quantification mechanism may (or may not) 
improve CR results. 

This category of aspects is the case where the aspects work as 
glue between a few elements in the base model and the changes 
realized by the Δ model. Aspects with a higher degree of 
quantification, such as exception handling (Figures 3, 4 and 5), 
affect the input base model in many places (join points). This 
was exactly the case in Scenario 2, where the non-AO version 
(CR = 0.82) has a measure close to the AO version (CR = 0.78) 
(Figure 7). Higher quantification increases the aspect scope and, 
therefore, the likelihood of aspects interfering with each other. 
When the merge algorithm was applied, the exception handling 
aspect (Figure 7) led to undesired superimpositions with other 
aspectual behaviors advising the same join points.  

The overall rate of conflicts (CR measure) was usually lower in 
the AO version because most of the aspects were not affecting 
more than three elements. By overall rate, we mean the average 
of conflicts considering all the model elements. However, a 
careful analysis of the number of conflicts in individual model 
elements (e.g., a particular component) reveals some interesting 
information. The composition output of AO models consistently 
caused an increase on the number of conflicts for some specific 
model elements. For example, this can be observed in Scenario 
4, when the highest number of conflicts emerged in both non-
AO and AO versions. Despite the significant CR difference 
favoring the AO version, the component BaseController 
presented an increase (CR = 38) in relation to 
BaseController of the non-AO version (CR = 24). We noted 
that this problem occurred in situations where the components 
were affected by two aspects or more in the Δ model. In other 
words, when a base component had a high density of join points 
shared by multiple aspects, it generated a higher number of 
conflicts.    

An additional interesting finding was that the composition of 
AO models tended to manifest fewer conflicts when the 
obliviousness degree of the base elements was higher. We have 
noted that the creation of new aspects (via the Δ model) for 
encapsulating new features implies that the modules in the input 
base model are more oblivious to the modification being 
implemented in the release. This observation holds for both 
mandatory and varying (optional or alternative) features. As a 
consequence, the combination of the AO modules tended to 
ripple fewer conflicts in the output models.  

This finding implies that the presence of obliviousness is a good 
indicator that the model composition at hand will better adhere 
to the Open-Closed principle [31]. This principle states that 
“software should be open for extensions, but closed for 
modification”. AO modeling conformed more closely to this 
principle in scenarios where the behavior in the new aspect (part 
of the Δ model) is more independent of the affected elements in 
the base model. This finding is illustrated, for instance, by 
Release 3. For instance, the AlbumData component demanded 
modifications in the non-AO version of Release 3 in order to 
include the feature of sorting photos by highest viewing 
frequency. On the other hand, the AO counterpart required no 
modification in this component. The reason was that the feature 
was modularly implemented by new components and the 
PhotoSorting aspect in the Δ model.  



The open-closed principle was more closely adhered by the 
composition of AO models than non-AO models. However, this 
observation did not occur in all the cases. In general, this 
principle was fully achieved only when the Δ model was 
basically adding new elements to the base models. The other 
types of changes realized by the Δ model exerted more specific 
implications in the rate of conflicts detected in the output 
models. This issue is discussed in the following section. 

4.1.2 The Effect of the Change Category  
A careful analysis of the results has pointed out that the conflict 
rate is strictly affected by the category of changes to be applied 
to the base model. We identified four types of changes 
throughout our target SPL study:  

• Addition: new model elements are inserted into base model; 
for instance, the new method getFormType() is inserted 
into the provided interface, named ManageLabel, of the 
component NewLabelScreen (Figure 4). 

• Removal: a model element in the base model is removed; for 
example, the required interface ControlPhoto of the 
component AlbumListScreen is removed in the fourth 
MobileMedia release;  

• Modification: a model element has some properties 
modified; for instance, the component NewAlbumScreen 
(Release 1) has its name modified to NewLabelScreen in 
Release 2 (Figure 4). 

• Derivation: model elements are refined and/or move to 
accommodate the changes; for example, the provided 
interface ControlPhoto (with 14 methods) of the 
component BaseController (Release 3) has some 
methods moved to the provided interface ControlPhoto of 
the component PhotoController (Release 4).  

Additions. As previously discussed (Section 4.1.1), the use of 
aspects has contributed to produce output model with much 
lower conflict rate when the evolution scenarios where 
dominated by additions. This finding is supported by the low 
conflict rate in Scenarios 3 and 5. The main reason is that the 
created aspects (in the Δ model) modularize the changes and 
insert them into the target model elements, without requiring 
their modifications. In these cases, we also observed that lower 
CR measures were observed in the AO models when the 
override algorithm is used and performed in the left direction. 
For all the other compositions, the conflict rate of the AO 
releases was equal or lower than the non-AO releases. 

A concrete example of the superiority of the AO version was the 
decrease of the conflict rate from 3.8 to 2.24 in Scenario 1. This 
was due to the aspectual component, included in this release (via 
the Δ model), which advises 9 methods: (i) three of them in the 
interface ManagePhotoInfo of the component AlbumData; 
and (ii) 6 of them in the interface PersistPhoto of the 
ImageAcessor. This led to a CR decrease in the interface 
PersistPhoto from 11 (non-AO version) to 4 (AO version). In 
the same way, the ManagePhotoInfo had its conflict rate 
decreased from 9 to 6.  

Modifications, Removals and Derivations. We could not find 
a recurring CR pattern (in favor of AO or non-AO versions) 
when modification was being realized. The AO version 

performed better in certain cases, while the non-AO version was 
better in others. On the other hand, the conflict rate was slightly 
higher in non-AO models when removals and derivations were 
applied. We also observed that a very high conflict rate occurred 
simultaneously in both AO and non-AO models when the 
change scenario was complex. This was the case when the 
change scenario involved a blend of modifications, removals 
and derivations. More specifically, this occurred in Scenario 4, 
when there is a significant architectural change: a single 
controller, for instance, was restructured as a set of specialized 
controllers.  

Therefore, the heuristic composition algorithms were inefficient 
in widely-scoped architecture evolution, such as the refinement 
of the MVC (Model-View-Controller) architecture style of 
MobileMedia. This is also due in part to the name-based model 
comparison, which is not able to recognize more intricate 
equivalence relationships between the model elements. This 
comparison strategy is very restrictive whenever there is a 1:N 
correspondence relationship between elements in the two input 
models. An example of the 1:N relationship category 
encompassed the required interface ControlPhoto (Release 3) 
of the AlbumListScreen component. This interface was 
decomposed into two new required interfaces ControlAlbum 
and ControlPhotoList (Release 4), thereby characterizing a 
1:2 relationship. For this particular case, the name-based model 
comparison should be able to “recognize” that ControlAlbum 
and ControlPhotoList are equivalent to ControlPhoto. 
However, in the output model (Release 4), the 
AlbumListScreen component provides duplicated services to 
the environment giving arise to an inconsistency. However, 
even in these cases the aspect orientation presented a lower 
conflict rate (e.g., see Scenario 4 in Figures 6 and 7). 

It is known that a higher number of model elements may lead to 
a higher conflict rate when the composition is put in practice. 
But this was not the case with aspect-orientation. For instance, 
let’s consider the fourth scenario. Although fewer composed 
elements (25) were observed in the non-AO version, the latter 
presents a higher CR measure (2.59). On the other hand, the AO 
version has a higher number of compositions (27), but the 
conflict rate is lower (CR = 1.97).  A real example would be the 
PhotoViewScreen component, which decreased the number of 
conflicts from 3 (non-AO version) to 1 (AO version).  

4.2 H2: Aspects and Conflict Propagation 
We focus our discussion about conflict propagation on the 
analysis of model recovery effort, the RE measure (Section 3.3). 
This RE measure is a useful indicator to support the analysis of 
the presence (or absence) of conflict propagation (H2) in both 
AO and non-AO models. The higher the effort for recovering 
the output model (towards the intended composed model), the 
higher the chance of conflict propagation being observed in the 
output model.  Figure 8 depicts the recovery effort measures to 
transform the output model produced by the override algorithm 
into the intended model. Similarly, Figure 9 shows the results of 
the same metric for the merge algorithm. The structure of the 
histograms follows those in the previous section.  

We have concluded that aspects indeed affect the way conflicts 
flow throughout the output models. We identified a number of 
recurring conflicts in the AO models, which did not occur in the 



non-AO models. In general, these conflicts specific to aspect 
orientation were caused by a conflict (or several) arising at a 
single aspect and spreading through all the affected elements in 
the base model. Therefore, we have found that there is a sensible 
difference on the way composition conflicts are propagated in 
non-AO and AO models. Therefore, we refute the null 
hypothesis H2-0 and confirm the alternative hypothesis H2-1.  

 
Figure 7. Conflict resolution effort to recover the output 

model produced by override algorithm. 

4.2.1 Quantification and Model Recovery Effort  
According to previous discussion (Section 4.1.1), aspects with 
higher quantification contribute to higher conflict rates in AO 
models. An inspection of the output models, however, pointed 
out that this problem occurred because these aspects led to 
higher conflict propagation manifesting during the model 
composition process. Surprisingly, the higher rate of conflicts in 
such AO models does not reflect in more effort to recover the 
output models and produce the intended composed model. In 
other words, an interesting finding is that a high degree of 
quantification does not lead to more effort to recover the output 
model. The RE measure often tends to be similar in AO and 
non-AO models. 
This phenomenon can be illustrated, for example, in Scenario 2 
(Figure 7), where the AO version presents a higher conflict rate 
(CR = 1.37) than the non-AO version (CR = 0.82). However, the 
model recovery effort is equal to 9 for both AO and non-AO 
versions (Figure 9). This was the case of conflicts arising at a 
reusable exception handling aspect (modified by the Δ model). 
When conflicts arose in such an aspect, they rippled through all 
the model elements directly advised by the aspect. During the 
model recovery process, there was a need to fix only the conflict 
in the specification of the exception handling aspect.  

 
Figure 8. Composition effort to recover the output model 

produced by merge algorithm 

Therefore, although AO and non-AO versions present different 
conflict rates in certain evolution scenarios (e.g., Scenario 1 in 

Figure 7), the effort to recover the output model from the 
conflicts in both versions is similar. The effort directly depends 
on how instances of conflicts are interrelated. Propagation 
channels of conflicts were more common in AO models as 
discussed above. For example, despite aspect orientation 
exhibiting a conflict rate close to the non-AO conflict rate in 
Scenario 2 (Figure 7), the conflict resolution effort is similar to 
non-AO models. Thus, when the conflict that is responsible for 
propagation is identified and resolved, all conflicts are indirectly 
resolved as well. 

4.2.2 Shared Join Points and Cyclic Propagation  
We have noticed that when a conflict emerged in a highly-
coupled base module (e.g., a controller in MobileMedia), it led 
to a higher degree of conflict propagation in the AO versions 
than the non-AO versions. This problem was particularly 
observed when the highly-coupled base module was the source 
of join point shadows shared by multiple aspects. For instance, 
we have analyzed the conflict channels triggered by a conflict 
arising in the BaseController, a central model element in 
the Mobile Media architecture. We observed that the conflict 
propagation affected four components in the non-AO version, 
namely AlbumListScreen, PhotoListScreen, 
PhotoView Screen, and AddPhotoToAlbumScreen. 
However, the propagation affected three additional modules 
(aspects) in the AO version. 
The HandleExceptions interface had a method signature 
modified from String[] getImages(String record-
Name) to ImageData[] getImages(String record-
Name). However, the R1.HandleExceptions incorrectly 
overrides Δ(R1,R2).HandleExceptions. As a result, this 
method was incorrectly present into the output model, which 
gives arise to some functionality conflicts. This propagation was 
spread through the component AlbumData, because the aspect 
is no longer able to introduce the expected method 
ImageData[] getImages(String record Name) into the 
provided interface ManagePhotoInfo of AlbumData. As a 
consequence, AlbumData does not provide some expected 
services to the environment. Hence, conflicts are propagated 
through the component BaseController and ImageAcessor.  
It is interesting to note that ImageAcessor is also affected by a 
conflict that emerged from AlbumData. As ImageAcessor 
requires the service (ImageData[] getImages(…)) provided 
by the interface ManagePhotoInterface, it is not able to 
correctly provide the all services defined in the provided 
interface PersistPhoto. Hence, the AlbumData is also re-
affected by a conflict that previously arose from it. This 
phenomenon represents cyclic conflict propagation. On the 
other hand, this propagation is solved in the composition 
R2,overide,left due to the Δ(R1,R2).HandleExceptions override 
the R1.HandleExceptions, decreasing the conflict rate from 
1.3 in  R2,overide,right to 0.41 in R2,overide,left. 

5. RELATED WORK  
Model composition is a very active research field in many 
domains, including database integration [3], composition of web 
services [15], merging of statecharts [2], model composition in 
product lines [1], composition of UML models [18][19][10] 
[12], aspect-oriented modeling [13][11][14], and AO 
composition of models [8]. However, there is little related work 



focusing on the quantitative and qualitative assessment of AOM. 
In general, most of the research on the interplay of AOM and 
model composition rest on subjective assessment criteria. Even 
worse, they lead to dependence on experts who have built up an 
arsenal of mentally-held indicators to evaluate the growing 
complexity of models in general [7][16][17]. As a consequence, 
the truth is that modelers ultimately rely on feedback from 
experts to determine “how good” the input models and their 
compositions are. According to [5], the state of the practice in 
assessing model quality provides evidence that modeling is still 
in the craftsmanship era and when we assess model composition 
this problem is accentuated.  
More specifically, to the best of our knowledge, researchers 
have neglected the assessment of how aspects impact model 
composition effort. The need for assessing models during a 
model composition process has neither been pointed out nor 
proposed by current model composition techniques [9][2][8] 
[18]. For example, the UML built-in composition mechanism, 
namely package merge [18][19], does not define metrics or 
criteria to assess the merged UML models. Moreover, it has 
been found to be incomplete, ambiguous and inconsistent [19].  

The lack of quantitative and qualitative indicators for model 
compositions hinder the understanding of side effects peculiar to 
certain model composition strategies (in the presence of aspects 
or not). Many different types of metrics have been developed 
during the past few decades for different UML models. These 
metrics have certainly helped designers analyze their UML 
models to an extent. However, as researchers’ focus has shifted 
to the activities related to model management (such as model 
composition, evolution and transformation), the shortcomings 
and limitation of UML model metrics have become more 
apparent. Some authors [1][12][13][14][15][16][17][18] have 
proposed a set of metrics that consider UML models’ properties. 
These works have shown that their measures satisfy some 
properties expected for good measures of design models. 
However, these metrics cannot be employed to assess problems 
that may arise in a model composition process such as semantic 
conflicts. 

There are some specific metrics available in the literature for 
supporting the evaluation of model composition specifications. 
For instance, Chitchyan and colleagues [20] have defined some 
metrics to quantify the effort to specific compositions between 
two or more requirements models, such as scaffolding and 
mobility. However, their metrics are targeted at evaluating the 
reusability and stability of explicit model composition 
specifications. Boucké and colleagues [25] also propose a 
number of metrics for evaluating the complexity and reuse of 
architectural model compositions. However, in this paper, we 
have focused on the evaluation of heuristic composition 
algorithms, such as merge and override, where explicit model 
compositions are not provided upfront. In addition, we have 
focused on analyzing the impact of aspects on the effort to 
resolve emerging conflicts in output models. Therefore, existing 
metrics (such as those described in [20][25][23]) cannot be 
directly applied to our context. 

6. THREATS TO VALIDITY 
Our exploratory study obviously has a number of threats to 
validity that range from: (i) the use of single target application 

and a single AOM language, to (ii) the use of specific metrics to 
compute the conflict resolution effort. Obviously, more 
investigations involving other case studies with compositions of 
larger UML models are required. We observed that the number 
of properties and details (i.e., granularity) of the model elements 
taken into consideration throughout the compositions affect 
directly the composition results. Consequently, it is necessary to 
observe that, to generalize our findings, other types of model 
with different levels of abstraction are needed to make further 
investigation.  

Further empirical evaluations are indeed fundamental to confirm 
or refute our findings in other real-world design settings 
involving UML model compositions. However, it was never our 
goal to conduct a controlled study. Our investigation represents 
a first stepping stone, where a number of initial findings can be 
used to drive the experimental designs of more controlled 
studies in the future.  

7. CONCLUSIONS AND FUTURE WORK 
Model composition is one of the pillars of AOM, and it is an 
operation intended to be used in many software development 
activities. Hence, software designers naturally become 
concerned about the quality of the composed models. This paper 
represents a first exploratory study to assess the potential 
advantage of aspect-orientation in reducing conflict resolution 
effort. In our study, model composition was used to express the 
evolution of architectural models along six releases of a 
software product line. Three canonical algorithms for heuristic 
model composition have been applied, and two of them were 
discussed in detail in this paper.  

As expected, we found that the presence of aspects in input 
models improved modularization and, therefore, tended to better 
localize conflicts. We have also observed: (i) a higher degree of 
obliviousness between base models and aspects led to a 
significant decrease of conflicts when compared with the non-
AO model counterparts, and (ii) aspects with higher 
quantification were the cause of higher conflict rates in AO 
models. Another interesting finding was that, even in scenarios 
where conflict rate of AO models was close to (or higher than) 
the conflict rate of non-AO models, conflict resolution effort 
was similar in AO and non-AO models. This means that the 
time spent for recovering output AO models from emerging 
conflicts is, at least, similar to non-AO models. All these 
findings were independent of the specific composition 
algorithms being assessed. These results provide some initial 
indication that aspect-orientation may alleviate conflict 
resolution effort. 

We should point out that assessing the added value of AOM in 
model composition is in its initial stage and there is very little 
experience that can be used to determine the feasibility of 
current approaches. This study represents a first exploratory 
study that investigates the impact of aspects on conflict 
resolution effort. However, further empirical studies are still 
required to evaluate the impact of AO modeling on model 
composition in real-world settings. We also need to better 
understand if aspect orientation provides some gain or not: (i) 
when applied to other composition algorithms, and (ii) with 
respect to the time spent to identify the conflicts rather than the 
effort to resolving them. We hope that the issues outlined 



throughout the paper encourage researchers to replicate our 
study in future under different circumstances. 
Acknowledgments: this work was funded by Faperj –
distinguished scientist grant (number E-26/102.211/2009); by 
CNPq – productivity grant (number 305526/2009-0), Universal 
project (grant number 483882/2009-7), and PhD scholarship 
(number 142857/2009-2); and by PUC-Rio – productivity grant. 

8. REFERENCES 
[1] P. Jayaraman, J. Whittle, A. Elkhodary, and H. Gomaa. 

Model Composition in Product Lines and Feature 
Interaction Detection using Critical Pair Analysis. In 
MODELS’07, pages 151–165, 2007. 

[2] S. Nejati et al. Matching and Merging of Statecharts 
Specifications. In: ICSE’07, pages 54–64, 2007. 

[3] P. Bernstein and S. Melnik. Model Management 2.0: 
Manipulating Richer Mappings. In: SIGMOD’07, pages 1–
12, ACM Press, 2007. 

[4] V. Basili et. al. The Goal Question Metric Paradigm. In: 
The Encyclopedia of Software Engineering, Vol. 2, pp. 
528–532, John Wiley and Sons, 1994. 

[5] E. Figueiredo et al. Evolving Software Product Lines with 
Aspects: An Empirical Study on Design Stability. In: 
ICSE’08, pages 261–270, 2008 

[6] S. Clarke and R. Walker. Composition Patterns: an 
Approach to Designing Reusable Aspects. In: ICSE’01, 
pages 5–14, 2001. 

[7] R. France and B. Rumpe. Model-Driven Development of 
Complex Software: A Research Roadmap. In: Future of 
Software Engineering at ICSE’07, pages 37–54, 2007. 

[8] Y. Reddy et al. Directives for Composing Aspect-Oriented 
Design Class Models. LNCS Transactions on Aspect-
Oriented Software Development, 1(1):75–105, 2006. 

[9] T. Cottenier, A. Berg, and T.  Elrad. The Motorola 
WEAVR: Model Weaving in a Large Industrial Context, 
In: AOSD’07, 2007. 

[10] R. France, D. Kim, S. Ghosh, and E. Song. A UML-Based 
Pattern Specification Technique. IEEE Trans. Software 
Eng., 30(3):193–206, 2004. 

[11] R. France, I. Ray, G. Georg, and S. Ghosh. Aspect-
Oriented Approach to Early Design Modeling. IEE 
Proceedings: Software, 151(4):173–185, 2004. 

[12] R. France, S. Ghosh, and T.  Trong. Model Driven 
Development Using UML 2.0: Promises and Pitfalls, 
Computer, 39(2):59–66, 2006. 

[13] S. Clarke and E. Banaissad. Aspect-Oriented Analysis and 
Design: The Theme Approach. Addison-Wesley, Upper 
Saddle River, 2005. 

[14] E. Tempero and R. Biddle. Simulating Multiple Inheritance 
in Java. Journal of Syst. and Soft., 55(1):87–100, 2000. 

[15] N. Milanovic and M. Malek. Current Solutions for Web 
Service Composition. IEEE Internet Computing, 8(6):51–
59, December 2004. 

[16] C. Lange and M. Chaudron, Effects of Defects in UML 
Models: An Experimental Investigation. In:  ICSE’06, 
pages 401–411, 2006. 

[17] C. Lange, B. DuBois, M. Chaudron, and S. Demeyer. An 
Experimental Investigation of UML Modeling 
Conventions. In: MoDELS’06, pages 27–41, 2006. 

[18] J. Dingel, Z. Diskin, and A. Zito, Understanding and 
Improving UML Package Merge. Journal of Software and 
Systems Modeling, 7(4):443–467, 2008. 

[19] OMG. Unified Modeling Language: Infrastructure version 
2.2. Object Management Group, February 2008. 

[20] R. Chitchyan et al. Semantic vs. Syntactic Compositions in 
Aspect-Oriented Requirements Engineering: An Empirical 
Study. In: AOSD’09, pages 36–48, 2009. 

[21] K. Farias, A. Garcia, and C. Lucena. On the Comparative 
Evaluation of Aspect-Oriented Model Composition 
Techniques. In: Proc. of the III LA-WASP’09, 2009. 

[22] K. Oliveira, A. Garcia, and J. Whittle. On the Quantitative 
Assessment of Class Model Compositions: An Exploratory 
Study. In: 1st Wkshp. on ESMDE at MODELS’08, 2008.  

[23] J. Conejero, E. Figueiredo, A. Garcia, J. Hernández, and E. 
Jurado. Early Crosscutting Metrics as Predictors of 
Software Instability. In: TOOLS-Europe’09, pages 136 –
156, 2009. 

[24] A. Molesini, A. Garcia, C. Chavez, and T. Batista. Stability 
Assessment of Aspect-Oriented Software Architectures: A 
Quantitative Study. Journal of Systems and Software, 2009.  

[25] N. Boucké, D. Weyns, and T. Holvoet: Experiences with 
Theme/UML for Architectural Design in Multiagent 
Systems. In: MASSA’06, pages 87–110, 2006. 

[26] A. Garcia et al. Representing Architectural Aspects with a 
Symmetric Approach. In: EA’09 held at AOSD’09, 2009.  

[27] T. Cotternier, A. van den Berg, and T. Elrad. Modeling 
Aspect-Oriented Composition. In: Int. Workshop on AOM 
at MODELS’05, 2005. 

[28] J. Whittle and P. Jayaraman, MATA: A Tool for Aspect-
Oriented Modeling Based on Graph Transformation. In: 
Int. Workshop on AOM MoDELS, pages 16–27, 2007. 

[29] Kompose: A Generic Model Composition Tool. 
http://www.kermeta.org/kompose, 2009. 

[30] Assessing the Impact of Aspect on Model Composition 
Effort, http://www.inf.puc-rio.br/~kfarias/aosd10 

[31] B. Meyer. Object-Oriented Software Construction, 1st ed. 
Prentice-Meyer, Hall, Englewood Cliffs, 1988. 

[32] Evolving Software Product Lines with Aspects. 
http://www.lancs.ac.uk/postgrad/figueire/spl/icse08/ 

[33] N. Norris and K. Letkeman. Governing and managing 
enterprise models: Part 1. Introduction and concepts, IBM 
Developer Works, http://www.ibm.com/developerworks/ 
rational/library/09/0113_letkeman-norris 

http://www.springerlink.com/content/109378/?p=8e4a2d1bb5d64b52a1cf88528c107963&pi=0�
http://www.springerlink.com/content/109378/?p=8e4a2d1bb5d64b52a1cf88528c107963&pi=0�
http://www.kermeta.org/kompose�
http://www-di.inf.puc-rio.br/~afgarcia/�
http://www.lancs.ac.uk/postgrad/figueire/spl/icse08/�

	INTRODUCTION
	BACKGROUND
	Model Composition
	Aspect-Oriented Modeling
	Composition Algorithms
	Syntactic and Semantic Conflicts

	METHODOLOGY
	Hypotheses
	Case Study: Evolving an SPL
	Quantifying Conflict Resolution
	Evaluation Procedures
	3.4.1 Target Model Versions and Releases
	3.4.2 Execution and Assessment Phases


	COMPOSITION EFFORT ANALYSIS
	H1: Aspects and Conflict Rate
	Obliviousness and Quantification
	The Effect of the Change Category

	H2: Aspects and Conflict Propagation
	Quantification and Model Recovery Effort
	Shared Join Points and Cyclic Propagation


	RELATED WORK
	THREATS TO VALIDITY
	CONCLUSIONS AND FUTURE WORK
	REFERENCES

