Logistics in Real-Time: Inventory Routing Operations Under Stochastic Demand

Ricardo Giesen (PUC & UMD)

Hani S. Mahmassani (UMD)

& Patrick Jaillet (MIT)

Outline

- 1. Introduction
- 2. The On-Line Inventory Routing Problem (OIRP)
- 3. Solution Approach
- 4. Real-Time Strategies
- 5. Simulation Experiments and Results
- 6. Conclusions

Motivation

Motivation

- VMI Agreements and Vertically Integrated
 Distribution Systems
- Extend Dynamic Vehicle Routing Problems to Incorporate Inventory Control
- In all previously studied Inventory Routing
 Problems (IRP) routes are not modified after
 leaving the depot (Baita et al, 1998; Campbell et al, 1998; Kleywegt et al, 2002)

OIRP Instance

Objectives

- Formulate the Online Inventory Routing Problem (OIRP) taking into account explicitly real-time information about state of the system
- Develop efficient operational strategies for coordinating *Transportation* and *Inventory* Control operations under real-time information
- Evaluate the benefits of the proposed strategies and the value of using real-time information

OIRP Definition

- System is composed of:
 - A Depot, i=0, with infinite capacity where the vehicle is refilled
 - Set of Customers, i=1, 2, ..., N
 - Independent and known stochastic demand processes
 - Compound Poisson (with parameters λ_i , θ_i)
 - independent across customers
 - \circ Demand during stock-out is lost with a penalty p_i per unit
 - \circ Stock accrue inventory holding cost h_i per unit per unit of time
 - \circ Fixed Capacity, u_i , maximum inventory level.
 - A Vehicle, that transports the product between facilities
 - Travel Times are deterministic
 - Moves at Constant Speed according to Euclidean metrics
 - \circ Fixed capacity, Υ

OIRP Definition

- System is operated by a Central decision maker who has:
 - Real-time information about the state of the system:
 - Inventory Levels (*l_i*) at each facility
 - Location and load remaining in the vehicle
 - and can update truck plans at any time
 - o if a truck is traveling when a decision to update its plan is taken a *time projection* is used
- The objective is to minimize the expected average operating costs per unit of time
 - Transportation Costs, TC [\$/distance]
 - Inventory Holding Costs, h_i [\$/units-day]
 - Stock-out Costs or Lost Sale Penalties, p_i [\$/units]

Main Decisions in the OIRP

- Truck Plans are specified by
 - Sequence of facilities to be visited
 - Amounts to be delivered to subsequent facilities in the route
 - Departure time from the depot (only facility where the truck can be idle)
- o Main decisions (variables) at any plan update epoch are:
 - Modify the set or the sequence of subsequent customers to be visited
 - Divert a truck from its current destination to visit a different facility
 - Adjust amounts to be delivered to subsequent facilities in the route
 - Modify the amount of time spent at the depot

Solution Approach

- Main difficulty are the effects of short-term decisions on long-run costs
 - since deliveries can be combined on the same route, transportation costs are not fixed
 - → Optimal Policy to serve each customer would depend not only on its inventory level, but also on the complete state of the system
- A Hierarchical Rolling Horizon Approach is Proposed:
 - 1. Optimal Refilling Levels for each facility (long-term impacts)
 - 2. Routing Problem to Update Plans (short-term impacts)

Solution Approach

- Rolling Horizon Strategies are specified by two main definitions:
 - When plans are updated
 - Event driven strategies (ex. at tour completions)
 - o **Time** driven strategies (ex. every hour or period)
 - o Mixed (event and time driven) strategies
 - How plans are updated
 - Fast Local Online Operations (Insertion Heuristics)
 - o Optimization Formulations for Associated Off-Line Problems
 - Stochastic Optimization Formulations

Reorder Quantities in the Off-Line IRP

1. Optimal Refilling Levels (s,S) for each customer

- Assumptions:
 - Truck visits only one customer per route (No pattern of visits)
 - Customers should wait for service, if the truck is serving other facilities
 - Quantities delivered to each customer could be updated upon arrival
- Levels are used as target in (2) to refill in each visit
- Levels are obtain minimizing the total expected cost of the system using a steepest decent numerical procedure

Reorder Quantities in the Off-Line IRP

Min
$$\sum_{i} AC_{i} \approx \text{Min} \sum_{i} \begin{cases} FTC_{i} + h_{i} \left(\frac{S_{i} - S_{i}}{\mu_{i}} + L_{i} \right) \left((s_{i} - L_{i}\mu_{i}) + \frac{1}{2}(S_{i} - s_{i} + L_{i}\mu_{i}) \right) + p_{i} \cdot \sigma_{i} \sqrt{L_{i}} \cdot G\left(\frac{s_{i} - L_{i}\mu_{i}}{\sigma_{i} \sqrt{L_{i}}} \right) \\ AC_{i} \approx \begin{cases} AC_{i} \approx \frac{s_{i} - L_{i}\mu_{i}}{\mu_{i}} + L_{i} \end{cases} \\ \text{Inventory holding cost,} \\ \text{S.t.} \quad L_{i} = T + d_{io} + W_{i} \end{cases}$$

$$V_{i} = \sum_{j \neq i} \begin{cases} Pr\{\text{cust. } j \text{ is in service}\} \cdot \left(d_{oj}\right) + Pr\{\text{cust. } j \text{ is waiting for service}\} \cdot \left(2d_{oj}\right) \end{cases}$$

Waiting time
$$\beta_{j} = \frac{2d_{0j}}{\left(\frac{S_{j} - S_{j}}{\mu_{j}}\right) + L_{j}} \quad \text{and} \quad \gamma_{j} = \frac{W_{j}}{\left(\frac{S_{j} - S_{j}}{\mu_{j}}\right) + L_{j}}$$

$$\rho = \sum_{i} (\mu_i / Q_i) \cdot (2d_{0i}) < 1$$

where: the total demand during L is approximated as $N(L\mu, L\sigma^2)$ G() is the loss function

2. Off-Line IRP used to Update Plans

O Variables: t_i : Arrival time at facility i, for $i \in \mathfrak{I}$

 q_i : Delivery size at facility i, for $i \in \mathfrak{I}$

- o Problem:
 - Minimize the sum of:
 - Total Transportation Costs
 - Total distance required to visit all customers
 - Incremental Transportation Costs (ITC): additional distance due to refills lower than S_i
 - Expected Lost Sale Penalties (LSP)
 - Subject to:
 - All customers should be visited once during the planning horizon
 - After a delivery, inventory levels at each facility should exceed s_i and not exceed S_i

Incremental Transportation Costs (ITC)

Additional distance associated with refills lower than S

$$ITC(q_i, t_i / l_i) = TC \cdot 2d_{0i} \cdot \left(1 - \frac{q_i}{S_i}\right)$$

where:
$$(s-\iota+\mu\cdot t) \le q \le \max\{S, (S-\iota+\mu\cdot t)\}$$

Expected Lost Sale Penalty (*LSP***)**

$$LSP(t/t) = p \cdot \int_{t}^{\infty} (u - t) f_{D(t)}(u) du = p \cdot \sigma \sqrt{t} \cdot G\left(\frac{t - t\mu}{\sigma \sqrt{t}}\right)$$

, where:

the total demand during t is approximated as $N(t\mu, t\sigma^2)$ $G(\cdot)$ is the loss function

Min.
$$TC \cdot \sum_{i,j \neq i} d_{ij} \cdot \left(\sum_{r} x_{ij}^{r}\right) + \sum_{i=1}^{N} \sum_{r} ITC_{i}(q_{i}^{r}, t_{i} / t_{i}) \cdot y_{i}^{r} + \sum_{i=1}^{N} LSP_{i}(t_{i} / t_{i})$$

s.t.

- each customer is visited
- continuity of flows
- Consistency between arrival times at each facility and travel times between them and the initial conditions
- truck capacity is not exceeded
- quantities delivered by current route cannot exceed the load remaining in the vehicle
- inventory level should be greater than R_i after refilling,
 - except at current facility if the load remaining in the truck is insufficient

Outline

- 1. Introduction
- 2. On-Line Inventory Routing Problem (OIRP) under Real-Time Information
- 3. Solution Approach
- 4. Real-Time Strategies
- 5. Simulation Experiments and Results
- 6. Extensions

Operational Strategies with Real-Time Information

1) BENCH: Benchmark

- each retailer manages his own inventory, placing orders to a central supplier that schedules deliveries for previous day orders once a day
 - Each Customer follows an optimal (s, S) policy to control his inventory
 - the supplier creates routes solving a vehicle routing problem
 (VRP) based on the orders received at the end of each day

2) RTC: Re-plan at Tour Completions

- off-line IRP is solved each time the truck returns to the depot
- Implement only the 1st tour of the current solution of the off-line IRP

RTC: Re-plan at Tour Completions

Operational Strategies with Real-Time Information

3) RDE: Re-plan at Delivery Epochs

- Solve off-line IRP when truck arrives to a facility, and
- the solution implemented until the next delivery epoch
 - the amount specified by the solution is delivered at the current facility
 - o truck is sent to the next facility specified by the solution
- 4) RDE+div: RDE + Plans are updated when demand disruptions occur. In this strategy, the truck could be diverted
 - RDE+
 - inventory levels are continuously monitored while the vehicle is traveling

div: En-Route Diversion

Demand Disruption Occurs
 Plan is updated based on projected state of the system

Outline

- 1. Introduction
- 2. On-Line Inventory Routing Problem (OIRP) under Real-Time Information
- 3. Solution Approach
- 4. Real-Time Strategies
- 5. Simulations and Results
- 6. Conclusions

Simulations

Set of parameters fixed used in the simulations:

- N = 5 (number of customers considered)
- Vehicle Capacity = 400 [units]
- \bar{t} = 100 [hrs] = 5 [days] length of the planning horizon (off-line problem)
- h = 5 [\$/unit-day] customers
- p = 50 [\$/unit] customers

5 Cases of Facility Locations

- o Distribution Center (DC) is located at the center for all cases
- o Case 0: Symmetric with all customers at 1.5 hrs. from the DC
- o Cases 1-4: Customers randomly located in a square region of 5X5 hrs

Simulations

Parameter Set	<i>TC</i> [\$/ hr]	λ [arrivals/day]	Θ [units]	Approx. $N(\mu, \sigma^2)$
1	50	50	1	N(50,10 ²)
2	10	50	1	N(50,10 ²)
3	150	50	1	N(50,10 ²)
4	50	10.5	4.8	N(50,17 ²)
5	50	4.35	11.5	N(50,25 ²)
6	50	2.4	20.8	N(50,33 ²)

Results: Parameters Set 1 (TC=50) $D \sim N(50,10^2)$

Average Weekly Cost (95% C. I.)

Results: Cost Reductions (%)

Results: Cost Reductions (%)

Results Summary (for scenarios studied)

- On-Line Strategies RDE and RDE+div :
 - Decrease Average Total Cost by 21% vs. BENCH
 - Decrease Variability in Average Cost
 - Benefits tend to be higher when clusters of customers are close to each other and/or near to the depot (case 3)
- Benefits of dynamic strategies tend to increase :
 - with higher inventory costs
 - slightly with greater demand variability
- The possibility of diversion does not show significant benefits in these experiments; However lost sales tend to be smaller

Extensions

- Design of A Priori Strategies
- Incorporate uncertainty in travel times
 - City Logistics, travel times between 2 points varies significantly depending on time of the day affecting the system performance
 - Incidents such as network congestion and accidents
- Design strategies for larger size problems
 - Larger number of customers
 - Multiple Vehicles
 - Multiple Distribution Center
 - => Design of simple heuristics that achieve competitive results to the re-planning strategies presented

Logistics in Real-Time: Inventory Routing Operations Under Stochastic Demand

