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ABSTRACT

A number of highly-threaded, many-core architectures hide memory-access latency by low-overhead
context switching among a large number of threads. The speedup of a program on these machines depends
on how well the latency is hidden. If the number of threads were infinite, theoretically, these machines
could provide the performance predicted by the PRAM analysis of these programs. However, the number
of threads per processor is not infinite, and is constrained by both hardware and algorithmic limits. In
this paper, we introduce the Threaded Many-core Memory (TMM) model which is meant to capture the
important characteristics of these highly-threaded, many-core machines. Since we model some important
machine parameters of these machines, we expect analysis under this model to provide a more fine-
grained and accurate performance prediction than the PRAM analysis. We analyze 4 algorithms for the
classic all pairs shortest paths problem under this model. We find that even when two algorithms have
the same PRAM performance, our model predicts different performance for some settings of machine
parameters. For example, for dense graphs, the dynamic programming algorithm and Johnson’s algorithm
have the same performance in the PRAM model. However, our model predicts different performance
for large enough memory-access latency and validates the intuition that the dynamic programming
algorithm performs better on these machines. We validate several predictions made by our model
using empirical measurements on an instantiation of a highly-threaded, many-core machine, namely the
NVIDIA GTX 480.

© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

between them,; this fast context-switch mechanism is used to hide
the memory access latency of transferring data from slow large

Highly-threaded, many-core devices such as GPUs have gained
popularity in the last decade; both NVIDIA and AMD manufac-
ture general purpose GPUs that fall in this category. The important
distinction between these machines and traditional multi-core
machines is that these devices provide a large number of low-
overhead hardware threads with low-overhead context switching
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(and often global) memory to fast, small (and typically local) mem-
ory. Researchers have designed algorithms to solve many inter-
esting problems for these devices, such as GPU sorting or hashing
[1-4], linear algebra [5-7], dynamic programming [8,9], graph al-
gorithms [ 10-13], and many other classic algorithms [ 14,15]. These
projects generally report impressive gains in performance. These
devices appear to be here to stay. While there is a lot of folk wis-
dom on how to design good algorithms for these highly-threaded
machines, in addition to a significant body of work on performance
analysis [ 16-20], there are no systematic theoretical models to an-
alyze the performance of programs on these machines. We are
interested in analyzing and characterizing performance of algo-
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rithms on these highly-threaded, many-core machines in a more
abstract, algorithmic, and systematic manner.

Theoretical analysis relies upon models that represent under-
lying assumptions; if a model does not capture the important as-
pects of target machines and programs, then the analysis is not
predictive of real performance. Over the years, computer scientists
have designed various models to capture important aspects of the
machines that we use. The most fundamental model that is used
to analyze sequential algorithms is the Random Access Machine
(RAM) model [21], which we teach undergraduates in their first
algorithms class. This model assumes that all operations, includ-
ing memory accesses, take unit time. While this model is a good
predictor of performance on computationally intensive programs,
it does not properly capture the important characteristics of the
memory hierarchy of modern machines. Aggarwal and Vitter pro-
posed the Disk Access Machine (DAM) model [22] which counts the
number of memory transfers from slow to fast memory instead of
simply counting the number of memory accesses by the program.
Therefore, it better captures the fact that modern machines have
memory hierarchies and exploiting spatial and temporal locality
on these machines can lead to better performance. There are also a
number of other models that consider the memory access costs of
sequential algorithms in different ways [23-29].

For parallel computing, the analogue for the RAM model is the
Parallel Random Access Machine (PRAM) model [30], and there is
a large body of work describing and analyzing algorithms in the
PRAM model [31,32]. In the PRAM model, the algorithm’s complex-
ity is analyzed in terms of its work — the time taken by the algo-
rithm on 1 processor, and span (also called depth and critical-path
length) - the time taken by the algorithm on an infinite number
of processors. Given a machine with P processors, a PRAM algo-
rithm with work W and span S completes in max(W /P, S) time.
The PRAM model also ignores the vagaries of the memory hierar-
chy and assumes that each memory access by the algorithm takes
unit time. For modern machines, however, this assumption seldom
holds. Therefore, researchers have designed various models that
capture memory hierarchies for various types of machines such as
distributed memory machines [33-35], shared memory machines
and multi-cores [36-40], or the combination of the two [41,42].

All of these models capture particular capabilities and properties
of the respective target machines, namely shared memory ma-
chines or distributed memory machines. While superficially
highly-threaded, many-core machines such as GPUs are shared
memory machines, their characteristics are very different from tra-
ditional multi-core or multiprocessor shared memory machines.
The most important distinction between the multi-cores and
highly-threaded, many-core machines is the number of threads
per core. On multi-core machines, context switch cost is high, and
most models nominally assume that only one (or a small constant
number of) thread(s) are running on each machine and this thread
blocks when there is a memory access. Therefore, many models
consider the number of memory transfers from slow memory to
fast memory as a performance measure, and algorithms are de-
signed to minimize these, since memory transfers take a significant
amount of time. In contrast, highly-threaded, many-core machines
are explicitly designed to have a large number of threads per core
and a fast context switching mechanism. Highly-threaded many-
cores are explicitly designed to hide memory latency; if a thread
stalls on a memory operation, some other thread can be sched-
uled in its place. In principle, the number of memory transfers does
not matter as long as there are enough threads to hide their latency.
Therefore, if there are enough threads, we should, in principle, be
able to use PRAM algorithms on such machines, since we can ig-
nore the effect of memory transfers which is exactly what PRAM
model does.

However, the number of threads required to reach the point
where one gets PRAM performance depends on both the algorithm
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Fig. 1. Throughput of Bloom filter algorithm for set membership testing on
biosequence data. Performance (in membership tests per second) is plotted
vs. number of threads per processor both for a Tesla C1060 and a GTX 480 GPU.

and the hardware. Since no highly-threaded, many-core machine
allows an infinite number of threads, it is important to understand
both (1) how many threads does a particular algorithm need to
achieve PRAM performance, and (2) how does an algorithm per-
form when it has fewer threads than required to get PRAM perfor-
mance? In this paper, we attempt to characterize these properties
of algorithms. To motivate this enterprise and to understand the
importance of high thread counts on highly-threaded, many-core
machines, let us consider a simple application that performs Bloom
filter set membership tests on an input stream of biosequence data
on GPUs [3]. The problem is embarrassingly parallel, each set mem-
bership test is independent of every other membership test. Fig. 1
shows the performance of this application, varying the number of
threads per processor core, for two distinct GPUs. For both ma-
chines, the pattern is quite similar, at low thread counts, the per-
formance increases (roughly linearly) with the number of threads,
up until a transition region, after which the performance no longer
increases with increasing thread count. While the location of the
transition region is different for distinct GPU models, this general
pattern is found in many applications. Once sufficient threads are
present, the PRAM model adequately describes the performance
of the application and increasing the number of threads no longer
helps.

In this work, we propose the Threaded Many-core Memory
(TMM) model that captures the performance characteristics of
these highly-threaded, many-core machines. This model explicitly
models the large number of threads per processor and the memory
latency to slow memory. Note that while we motivate this
model for highly-threaded many-core machines with synchronous
computations, in principle, it can be used in any system which
has fast context switching and enough threads to hide memory
latency. Typical examples of such machines include both NVIDIA
and AMD/ATI GPUs and the YarcData uRiKA system. We do not try
to model the Intel Xeon Phi, due to its limited use of threading for
latency hiding. In contrast, its approach to hide memory latency
is primarily based on strided memory access patterns associated
with vector computation.

If the latency of transfers from slow memory to fast memory is
small, or if the number of threads per processor is infinite, then
this model generally provides the same analysis results as the
PRAM analysis. It, however, provides more intuition. (1) Ideally, we
want to get the PRAM performance for algorithms using the fewest
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number of threads possible, since threads do have overhead. This
model can help us pick such algorithms. (2) It also captures
the reality of when memory latency is large and the number of
threads is large but finite. In particular, it can distinguish between
algorithms that have the same PRAM analysis, but one may be
better at hiding latency than another with a bounded number of
threads.

This model is a high-level model meant to be generally appli-
cable to a number of machines which allow a large number of
threads with fast context switching. Therefore, it abstracts away
many implementation details of either the machine or the algo-
rithm. We also assume that the hardware provides 0-cost and per-
fect scheduling between threads. In addition, it also models the
machine as having only 2 levels of memory. In particular, we model
a slow global memory and fast local memory shared by one core
group. In practice, these machines may have many levels of mem-
ory. However, we are interested in the interplay between the far-
thest level, since the latencies are the largest at that level, and
therefore have the biggest impact on the performance. We expect
that the model can be extended to also model other levels of the
memory hierarchy.

We analyze 4 classic algorithms for the problem of comput-
ing All Pairs Shortest Paths (APSP) on a weighted graph in the
TMM model [43]. We compare the analysis from this model with
the PRAM analysis of these 4 algorithms to gain intuition about
the usefulness of both our model and the PRAM model for ana-
lyzing performance of algorithms on highly-threaded, many-core
machines. Our results validate the intuition that this model can
provide more information than the PRAM model for the large
latency, finite thread case. In particular, we compare these algo-
rithms and find specific relationships between hardware parame-
ters (latency, fast memory size, limits on number of threads) under
which some algorithms are better than others even if they have the
same PRAM cost.

Following the formal analysis, we assess the utility of the
model by comparing empirically measured performance on an
individual machine to that predicted by the model. For two of the
APSP algorithms, we illustrate the impact of various individual
parameters on performance, showing the effectiveness of the
model at predicting measured performance.

This paper is organized as follows. Section 2 presents related
work. Section 3 describes the TMM model. Section 4 provides the
4 shortest paths algorithms and their analysis in both the PRAM
and TMM models. Section 5 provides the lessons learned from this
model; in particular, we see that algorithms that have the same
PRAM performance have different performance in the TMM model
since they are better at hiding memory latency with fewer threads.
Section 6 continues the discussion of lessons learned, concentrat-
ing on the effects of problem size. Section 7 shows performance
measurements for a pair of the APSP algorithms executing on a
commercial GPU, illustrating correspondence between model pre-
dictions and empirical measurements. Finally, Section 8 concludes.

2. Related work

In this section, we briefly review the related work. We first
review the work on abstract models of computations for both
sequential and parallel machines. We then review recent work
on algorithms and performance analysis of GPUs which are the
most common current instantiations of highly-threaded, many-
core machines.

Many machine and memory models have been designed for
various types of parallel and sequential machines. In an early
work, Aggarwal et al. [25] present the Hierarchical Memory Model
(HMM) and use it for a theoretical investigation of the inherent
complexity of solving problems in RAM with a memory hierarchy

of multiple levels. It differs from the RAM model by defining that
access to location x takes logx time, but it does not consider
the concept of block transfers, which collects data into blocks to
utilize spatial locality of reference in algorithms. The Block Transfer
model (BT) [27] addresses this deficiency by defining that a block
of consecutive locations can be copied from memory to memory,
taking one unit of time per element after the initial access time.
Alpern et al. propose the Memory Hierarchy (MH) Framework [26]
that reflects important practical considerations that are hidden by
the RAM and HMM models: data are moved in fixed size blocks
simultaneously at different levels in the hierarchy, and the memory
capacity as well as bus bandwidth are limited at each level. But
there are too many parameters in this model that can obscure
algorithm analysis. Thus, they simplified and reduced the MH
parameters by putting forward a new Uniform Memory Hierarchy
(UMH) model [28,29]. Later, an ‘ideal-cache’ model was introduced
in [23,24] allowing analysis of cache-oblivious algorithms that
use asymptotically optimal amounts of work and move data
asymptotically optimally among multiple levels of cache without
the necessity of tuning program variables according to hardware
configuration parameters.

In the parallel case, although widely used, the PRAM [30]
model is unrealistic because it assumes all processors work syn-
chronously and that interprocessor communication is free. Quite
different to PRAM, the Bulk-Synchronous Parallel (BSP) model [34]
attempts to bridge theory and practice by allowing processors to
work asynchronously, and it models latency and limited band-
width for distributed memory machines without shared memory.
Culler et al. [33] offer a new parallel machine model called LogP
based on BSP, characterizing a parallel machine by four parame-
ters: number of processors, communication bandwidth, delay, and
overhead. It reflects the convergence towards systems formed by
a collection of computers connected by a communication network
via message passing. Vitter et al. [35] present a two-level memory
model and give a realistic treatment of parallel block transfers in
parallel machines. But this model assumes that processors are in-
terconnected via sharing of internal memory.

More recently, several models have been proposed emphasizing
the use of private-cache chip multiprocessors (CMPs). Arge
et al. [36] present the Parallel External Memory (PEM) model with
P processors and a two-level memory hierarchy, consisting of the
main memory as external memory shared by all processors and
caches as internal memory exclusive to each of the P processors.
Blelloch et al. [37] present a multi-core-cache model capturing
the fact that multi-core machines have both per-processor private
caches and a large shared cache on-chip. Bender et al. [44] present a
concurrent cache-oblivious model. Blelloch et al. [38] also propose
a parallel cache-oblivious (PCO) model to account for costs of a
wide range of cache hierarchies. Chowdhury et al. [39] present
a hierarchical multi-level caching model (HM), consisting of a
collection of cores sharing an arbitrarily large main memory
through a hierarchy of caches of finite but increasing sizes that are
successively shared by larger groups of cores. They in [42] consider
three types of caching systems for CMPs: D-CMP with a private
cache for each core, S-CMP with a single cache shared by all cores,
and multi-core with private L; caches and a shared L, cache. All the
models above do not accurately describe highly-threaded, many-
core systems, due to their distinctive architectures, i.e. the explicit
use of many threads for the purpose of hiding memory latency.

While there has not been much work on abstract machine mod-
els for highly-threaded, many-core machines, there has been a lot
of recent work on designing calibrated performance models for
particular instantiations of these machines such as NVIDIA GPUs.
We review some of that work here. Liu et al. [19] describe a gen-
eral performance model that predicts the performance of a biose-
quence database scanning application fairly precisely. Their model
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incorporates the relationship between problem size and perfor-
mance, but only targets their biosequence application. Govindaraju
et al. [45] propose a cache model for efficiently implementing
three memory intensive scientific applications with nested loops.
It is helpful for applications with 2D-block representations while
choosing an appropriate block size by estimating cache misses, but
is not completely general. Ryoo et al. [46] summarize five cate-
gories of optimization mechanisms, and use two metrics to prune
the GPU performance optimization space by 98% via computing the
utilization and efficiency of GPU applications. They do not, how-
ever, consider memory latency and multiple conflicting perfor-
mance indicators. Kothapalli et al. are the first to define a general
GPU analytical performance model in [47]. They propose a simple
yet efficient solution combining several well-known parallel com-
putation models: PRAM, BSP, QRQW, but they do not model global
memory coalescing. Using a different approach, Hong et al. [17]
propose another analytical model to capture the cost of memory
operations by counting the number of parallel memory requests in
terms of memory-warp parallelism (MWP) and computation-warp
parallelism (CWP). Meantime, Baghsorkhi et al. [16] measure per-
formance factors in isolation and later combine them to model the
overall performance via workflow graphs so that the interactive ef-
fects between different performance factors are modeled correctly.
The model can determine data access patterns, branch divergence,
and control flow patterns only for a restricted class of kernels
on traditional GPU architectures. Zhang and Owens [15] present
a quantitative performance model that characterizes an applica-
tion’s performance as being primarily bounded by one of three po-
tential limits: instruction pipeline, shared memory accesses, and
global memory accesses. More recently, Sim et al. [48] develop
a performance analysis framework that consists of an analytical
model and profiling tools. The framework does a good job in per-
formance diagnostics on case studies of real codes. Kim et al. [49]
also design a tool to estimate GPU memory performance by col-
lecting performance-critical parameters. Parakh et al. [50] present
a model to estimate both computation time by precisely counting
instructions and memory access time by a method to generate ad-
dress traces. All of these efforts are mainly focused on the practi-
cal calibrated performance models. No attempts have been made
to develop an asymptotic theoretical model applicable to a wide
range of highly-threaded machines.

3. TMM model

The TMM model is meant to model the asymptotic performance
of algorithms on highly-threaded, many-core machines. The model
should abstract away the details of particular implementations so
as to be applicable to many instantiations of these machines, while
being particular enough to model the performance of algorithms
on these machines with reasonable accuracy. In this section,
we will describe the important characteristics of these highly-
threaded, many-core architectures and our model for analyzing
algorithms for these architectures.

3.1. Highly-threaded, many-core architectures

The most important high-level characteristic of highly-
threaded, many-core architectures is that they provide a large
number of hardware threads and use fast and low-overhead
context-switching in order to hide the memory access latency from
slow global memory.

Highly-threaded, many-core architectures typically consist of
a number of core groups, each containing a number of processors
(or cores),' a fixed number of registers, and a fixed quantity of

1 Acore group can also have a single core.
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Fig. 2. Abstracted highly-threaded, many-core architecture. The short arrows from
the cores to the local memory symbolize low latency, while the long arrows to the
global memory symbolize high latency.

fast local on-chip memory shared within a core group. A large
slow global memory is shared by all the core groups. Registers and
local on-chip memory are the fastest to access, while accessing
the global memory may potentially take 100s of cycles. The TMM
model models these machines as having a memory hierarchy with
two levels of memory: slow global memory and fast local memory.
In addition, on most highly-threaded, many-core machines, data
is transferred from slow to fast memory in chunks; instead of just
transferring one word at a time, the hardware tries to transfer
a large number of words during a memory transfer. The chunk
can either be a cache line from hardware managed caches, or an
explicitly-managed combined read from multiple threads. Since
this characteristic of using high-bandwidth transfers in order to
counter high latencies is common to most many-core machines
(and even most multi-core machines), the TMM model captures
the chunk size as one of its parameters.

These architectures support a large number of hardware
threads, much larger than the number of cores. Cores on a single
core group execute in synchronous style where groups of threads
execute in lock-step. When a thread group executing on a core
group stalls on a slow memory access, in theory, a context switch
occurs and another thread group is scheduled on that core group.
The abstract architecture is shown in Fig. 2. Note that this archi-
tecture abstraction ignores a number of details about the physical
machine, including thread grouping, scheduling, etc.

3.2. TMM model parameters

The TMM model captures the important characteristics of a
highly-threaded, many-core architecture by using six parameters
showninTable 1. Lis the latency for accessing the slow memory (in
our case, the global memory which is shared by all the core groups).
P is the total number of cores (or processors) in the machine. C
is the maximum chunk size; the number of words that can be
read from slow memory to fast memory in one memory transfer.
The parameter Z represents the size of fast local memory per core
group and Q represents the number of cores per core group. As
mentioned earlier, in some instantiations, a core group can have
a single core. In this case, a many-core machine looks very much
like a multi-core machine with a large number of low-overhead
hardware threads. Note that we do not have a parameter for the
number of core groups, that quantity is simply P/Q. Finally X is the
hardware limit on the number of threads an algorithm is allowed
to generate per core. This limit is enforced due to many different
constraints, such as constraints on the number of registers each
thread uses and an explicit constraint on the number of threads.
We unify these constraints into one parameter.

In addition to the architecture parameters, we must also con-
sider the parameters which are determined by the algorithm. We
assume that the programmer has written a correct synchronous
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Table 1
Architecture parameters.
Parameter Description
L Time for a global memory access
P Number of processors (cores)
C Memory access width
V4 Size of fast local memory per core group
Q Number of cores per core group
X Hardware limit on number of threads per core
Table 2
Program parameters.
Parameter Description
T: The work or total number of operations
Too The span or the number of operations on the critical path
M Number of global memory operations
T Number of threads per core
S Amount of local memory used per thread

program and taken care to balance the workload across the core
groups. These program parameters are shown in Table 2. T; rep-
resents the work of the algorithm, that is, the total number of op-
erations that the program must perform (including fast memory
accesses). T, represents the span of the algorithm, that is, the total
number of operations on the critical path. These are similar to the
analogous PRAM parameters of work and time (or depth or critical-
path length).

Next, we come to program parameters that are specific to
many-core programs. M represents the total number of global
memory operations performed by the algorithm. Note that this is
the total number of operations, not total number of accesses. Since
many-core machines often transfer data in large chunks, multiple
memory accesses can combine into one memory transfer. For
instance, if the many-core machine has a hardware managed cache,
and the program accesses data sequentially, then there is only one
memory operation for C memory accesses; these will count as
one when accounting for M. 7 is the number of threads created
by the program per core. We assume that the work is perfectly
distributed among cores. Therefore, the total number of threads
in the system is 7P. On highly-threaded, many-core architectures,
thread switching is used to hide memory latency. Therefore, it
is beneficial to create as many threads as possible. However, the
maximum number of threads is limited by both the hardware and
the program. The software limitation has to do with parallelism,
the number of threads per core is limited by 7 < T; /(T - P). The
hardware limits 7 < X. Finally, we have a parameter S, which is
the local memory used per thread. S and 7 are related parameters,
since there is a limited amount of local memory in the system. The
number of threads per core is at most 7 < Z/(QS).

3.3. TMM model applicability

The TMM model is a high-level abstract model, meant to
be applicable to many instantiations of hardware platforms that
feature a large number of threads with fast context switching and
a hierarchical memory subsystem of at least two levels with a
large memory latency gap in between. Typical examples of this set
include NVIDIA GPUs, AMD/ATI GPUs, and the uRiKA machine from
YarcData.

For NVIDIA GPUs, a number of streaming multiprocessors (core
groups in our terminology) share the same global memory. On
each of these core groups, there are a number of CUDA cores? that

2 cupa (aka Compute Unified Device Architecture) is a parallel computing
platform and programming model created by NVIDIA.

share a fixed number of registers and on-chip (fast) memory shared
among the cores of the core group. A fast hardware-supported
context-switching mechanism enables a large number of threads
to execute concurrently. Transfers between slow global memory
and fast local memory can occur in chunks of at most 32 words;
these chunks can only be created if the memory accesses are within
a specified range. Accessing the off-chip global memory usually
takes 20 to 40 times more clock cycles than accessing the on-chip
shared memory/L1 cache [51]. All these features are well captured
in the TMM model. Streaming multiprocessors serve the same role
as a core group, while CUDA cores are equivalent to the cores
defined in TMM. The width of memory access C is 32 due to the
coalescing of the threads in a warp. Global memory latency and
size of on-chip shared memory/L1 cache are also depicted by L and
Z respectively.

Considering AMD/ATI GPUs and taking Cypress, the codename
for Radeon HD5800 series GPUs, as an example, the architecture is
composed of 20 Single-Instruction-Multiple-Data (SIMD) compu-
tation engines. In each SIMD engine, there are 16 Thread Proces-
sors (TP) and a 32 kB Local Data Store (LDS). Every TP is arranged
as a five-way or four-way Very Long Instruction Word (VLIW) pro-
cessor, and consists of 5 Stream Cores (SC). Low context-switch
threading is well supported, and every 64 threads are grouped into
awavefront executing the same instruction. Basically, the SIMD en-
gine can naturally be modeled by core groups. Each SC is modeled
asacore in TMM, summing up to 1600 cores totally. LDS is straight-
forwardly described by the fast local memory of TMM. The width
of memory access C in TMM equals to the wavefront width of 64
for AMD/ATI GPUs.

The uRiKA system from YarcData is also a potential target
for the TMM model. Based on the description from Alverson
et al. [52] about the nature of the computations this processor
was designed to run, it is a purpose-built appliance for real-time
graph analytics featuring graph-optimized hardware that provides
up to 512 terabytes of global shared memory, massively-multi-
threaded graph processors (named Threadstorm) supporting 128
threads/processor, and highly scalable I/O. Therefore, 128 defines
parameter X, the hard limit of number of threads per processor.
There can be up to 65,000 threads in a 512 processor system
and over 1 million threads at the maximum system size of 8192
processors, so that the latencies are hidden by accommodating
many remote memory references in flight. The processor’s
instruction execution hardware essentially does a context switch
every instruction cycle, finding the next thread that is ready to
issue an instruction into the execution pipeline. This suggests that
the memory access width or chunk size C is 1 on these machines.
Threads do not share anything, as the Threadstorm processor has
128 hardware copies of the register set, program counter, stack
pointer, etc., necessary to hold the current state of one software
thread that is executing on the processor. Conceptually, each of
the Threadstorm processors is mapped to a core group in the TMM
model but, different than the two GPU architectures, it has only one
core on-chip, thus Q equals 1.

3.4. TMM analysis structure

In order to analyze program performance in the TMM model,
we must first calculate the program parameters for the particular
program. Once we have calculated these values, we can then try
to understand the performance of the algorithm. We first calculate
the effective work of the algorithm T¢. The effective work should
consider both work due to computation and work due to memory
accesses. Total work due to memory accesses is M - L, but since
this work is hidden by using threads, the real effective work due to
memory accesses is (M - L) /7T Therefore, we have

TE=O(max(T1,M7;L>>. (1
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Note that this expression assumes perfect scheduling (the threads
are context swapped with no overhead, as soon as they are stalled)
and perfect load balance between threads.

The time to execute on P cores is represented by Tp and is
defined as:

(mox (574 =0 (mox (5755
Tp =0max | —, T =0(max| —, T, —— . (2)
P P T-P

Therefore, speedup on P cores, Sp, is

T , T, P-T,-T
Sp=—=|min{P, —, ——— . (3)
Tp Too M-L

For linear speedup, Sp should be P. More precisely, for PRAM
algorithms, Sp = min(P, T;/T,). Therefore, if the first two terms
in the min of Eq. (3) dominate, then a highly-threaded, many-
core algorithm’s performance is the same as the corresponding
PRAM algorithm. On the other hand, if the last term dominates,
then the algorithm’s performance depends on other factors. If
7 could be unbounded, then the last term will never dominate.
However, as we explained earlier, 7 is not an unlimited resource
and has both hardware and algorithmic upper bounds. Therefore,
based on the machine parameters, algorithms that have the same
PRAM performance can have different real performance on highly-
threaded, many-core machines. Therefore, this model can help us
pick algorithms that provide performance as close as possible to
PRAM algorithms.

4. Analysis of all pairs shortest paths algorithms using the TMM
model

In this section, we demonstrate the usefulness of our model
by using it to analyze 4 different algorithms for calculating all
pairs shortest paths in graphs. All pairs shortest paths is a classic
problem for which there are many algorithms. We are given a
graph G = (V, E) with n vertices and m edges. Each edge e has
a weight w(e). We must calculate the shortest weighted path from
every vertex to every other vertex. In this section, we are interested
in asymptotic insights, therefore, we assume that the graphs are
large graphs. In particular n > Z.

4.1. Dynamic programming via matrix multiplication

Our first algorithm is a dynamic programming algorithm [53]
that uses repeated matrix multiplication to calculate all pairs
shortest paths. The graph is represented as an adjacency matrix A
where A; represents the weight of edge (i, j).

Alis a transitive matrix where Afj represents the shortest path

from vertex i to vertex j using at most [ intermediate edges. A! is
the same as the adjacency matrix A and we want to calculate A" !
to calculate all pairs shortest paths.

A? can be calculated from A' as follows:

Aj = min (Aj. Aj +Ay). (4)

Note that, the structure of this equation is the same as the structure
of a matrix multiplication operation where the sum is replaced by
a min operation and the multiplication is replaced by an addition
operation. Therefore, we can use repeated matrix multiplication
which calculates A" using O(lg n) matrix multiplications.

PRAM algorithm and analysis

Parallelizing this algorithm for the PRAM model simply involves
parallelizing the matrix multiplication algorithm such that each
element in the matrix is calculated in parallel. The total work
of Ign matrix multiplications using a PRAM algorithm is T; =

0(n® g n).3 The span of a single matrix multiplication algorithm is
O(n). Therefore, the total span of the algorithm is To, = O(nlgn).
The time and speedup using P processors are

ndlgn
Tp = O [ max P ,nlgn (5)

Sp = 2 (min(P, n%)) . (6)

Therefore, the PRAM algorithm gets linear speedup as long as
P < n?

TMM algorithm and analysis

TMM algorithms are tailored to highly-threaded, many-core
architectures generally by using fast on-chip memory to avoid
accesses to slow off-chip global memory, coalescing to diminish
the time required to access slow memory, and threading to
hide the latency of accesses to slow memory. Due to its large
size, the adjacency matrix is stored in off-chip global memory.
Following traditional block-decomposition techniques, sub-blocks
of the result matrix (whose size is denoted by B) are assigned to
core groups for computation. The threads in a core group read in
the required input sub-blocks, perform the computation of Eq. (4)
for their assigned sub-block, and write the sub-block out to global
memory. This happens Ig n times by repeated squaring.

The work and the span of this algorithm remain unchanged
from the PRAM algorithm. However, we must also calculate M,
the number of memory operations. Let us first consider a single
matrix multiplication operation. There are a total of n? elements
and each element is read for the calculation of O(n/B) other blocks.
However, due to the regularity in memory accesses, each block
can be read fully coalesced. Therefore, the number of memory
operations for one matrix multiply is 0((n?/C) - (n/B)) =
0(n?/(BC)). Also note that since we must fit a B x B block in a local
memory of size Z on one core group, we getB = © (\/Z). Therefore,
for g n matrix multiplication operations, M = O(n®Ign/ WZ-0)).

Now we are ready to calculate the time on P processors.

Tp =0 Lop ML 7)
= max [ —, Too, ——
F P TP
ndlgn nlgn-L
= O(max( & ,nlgn, & )) (8)
P JZ.C-T-P
Therefore, the speedup on P processors is
Sp =Ty/Tp 9

=Q (min (P, n?, Q P)) ) (10)

We can now compare the PRAM and TMM analysis and note
that the speedup is P as long as \/ZCT/L > 1. We also know that
7 < min(X, Z/(QS)), and S = 0(1), since each thread only needs
constant memory. Therefore, we can conclude that the algorithm
achieves linear speedup as long as L < min(~/ZCX, Z3/2C/Q).

4.2. Johnson’s algorithm: Dijkstra’s algorithm using binary heaps

Johnson’s algorithm [54] is an all pairs shortest paths algorithm
that uses Dijkstra’s single source algorithm as the subroutine
and calls it n times, once from each source vertex. Dijkstra’s

3 This can be done faster using Strassen’s algorithm. Using Strassen’s algorithm
will impact the PRAM and the TMM algorithms equally. Therefore, we demonstrate
our point using the simpler algorithm.



208 L. Ma et al. / Future Generation Computer Systems 30 (2014) 202-215

algorithm is a greedy algorithm for calculating single source
shortest paths. The pseudo-code for Dijkstra’s algorithm is given
in Algorithm 1 [55]. The single source algorithm consists of
n insert operations, m decrease-key operations and n delete-
min operations from a min-priority queue. The standard way of
implementing Dijkstra’s algorithm is to use a binary or a Fibonacci
heap to store the array elements. We now consider a binary heap
implementation so that each operation (insert, decrease-key, and
delete-min) takes O(lg n) time. Note that Dijkstra’s algorithm does
not work when there are negative weight edges in the graph.

Algorithm 1 Dijkstra’s Algorithm
: Input: Graph G = (V,E), |V| =n, |[E| = m
: Input: W is weight of edges, [W| = m
: Input: S is source vertex
: Output: dist[n]

{Initialize distance array}
: forallu € Vdo
dist[u] = oo
: end for
: dist[S] =0
: forallu € Vdo
10:  Q < dist[u]
11: end for

{Propagate the distance update to all vertices}

12: while Q not empty do
13:  u=deletemin(Q)
14:  for each edge (u, v) € E do
15: if dist[v] > dist[u] + W[u, v] then

AW N =

O 0 N Y U

16: dist[v] = dist[u] + W|u, v]
17: decreasekey(Q, v)
18: end if

19: end for
20: end while

PRAM algorithm and analysis

A simple parallel implementation of Johnson’s algorithm us-
ing Dijkstra’s algorithm consists of doing each single-source short-
est path calculation in parallel. The total work of a single-source
computation is O(mlgn + nlgn). For simplicity, we assume that
the graph is connected, giving us O(mlgn). Therefore, the total
work for all pairs shortest paths is T; = O(mnlgn). The span is
T, = O(mlgn) since each single source computation executes se-
quentially. The time and speedup using P processors are

1
Tp:O<max<mnPgn,mlgn>> (11)

Sp = £2 (min(P, n)) . (12)

Therefore, the PRAM algorithm gets linear speedup as long as
P <n.

TMM algorithm and analysis

The TMM algorithm is very similar to the PRAM algorithm
where each thread computes a single source shortest path.
Therefore, each thread requires a min-heap of size n. Since n may
be arbitrarily large compared to Z/Q 7 (the share of local memory
for each thread), these heaps cannot fit in local memory and must
be allocated on the slow global memory.

The work and span are the same as the PRAM algorithm. We
must now compute M. Note that each time the thread does a
heap operation, it must access global memory, since the heaps
are stored in global memory. In addition, binary heap accesses are
not predictable and regular, so the heap accesses from different

threads cannot be coalesced. Therefore, the total number of
memory operations is M = O(mnlgn).#
Now we are ready to calculate the time on P processors.

Tp = O hop ML (13)
= max | —, Tog, ——
P P’ TP

mnlgn mnlgn-L
= 0| max ,mlgn, — | ). (14)
P T-P

Therefore, the speedup on P processors is

X T
Sp=%2 (mm (P,n, L«P)). (15)

Note that this algorithm gets linear speedup only if 7/L > 1.
Therefore, the number of threads this algorithm needs to get linear
speedup is very large. We know that 7 < min(X, Z/(QS)), and
S = 0(1) for this algorithm. This allows us to conclude that this
algorithm achieves linear speedup only if L < min(X, Z/Q), since
each thread needs only constant memory. These conditions are
much stricter than those imposed by the dynamic programming
algorithm.

4.3. Johnson’s algorithm: Dijkstra’s algorithm using arrays

This algorithm is similar to the previous algorithm in that it still
uses n single-source Dijkstra’s algorithm calculations. However,
instead of binary heaps, we use arrays to do delete-min and
decrease-key operations.

PRAM algorithm and analysis

The PRAM algorithm is very similar to the algorithm that uses
binary heaps. Each single source shortest path is computed in
parallel. However, in this algorithm, we simply store the current
estimates of the shortest path of vertices in an array instead of
a binary heap. Therefore, there are n arrays of size n, one for
each single source shortest path calculation. Each decrease-key
now takes O(1) time, since one can simply decrease the key using
random access. Each delete-min, however, takes O(n) work, since
one must look at the entire array to find the minimum element.
Therefore, the work of the algorithm is T; = 0(n® + mn) and the
span is O(n?> + m). We can improve the span by doing delete-min
in parallel, since one can find the smallest element in an array in
parallel using O(n) work and O(lgn) time using a parallel prefix
computation. This brings the total span to T,, = O(nlgn + m)
while the work remains the same.

The time and speedup using P processors is

n3
Tp:O<max (F,nlgn—i—m)) (16)
n3
=O<max (P,nlgn, m)) a7
n? nd
Sp= %2 <min <P, e —)) . (18)
Ign m

TMM algorithm and analysis

The TMM algorithm is similar to the PRAM algorithm, except
that each core group is responsible for a single-source shortest path
calculation. Therefore, all the threads on a single core group (Q T

4 There are other accesses that are not heap accesses, but those are asymptotically
fewer and can be ignored.
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in number) cooperate to calculate a single shortest path compu-
tation. Since we assume that n > Z, the entire array does not fit
in local memory and must be read with each delete-min opera-
tion. Therefore, the span of the delete-min operation changes. For
each delete-min operation, elements are read into local memory in
chunks of size Z. For each chunk, the minimum is computed in par-
allel in O(lg Z) time. Therefore, the span of each delete-min opera-
tionis O((n/Z) Ig Z). Therefore, the total spanis To, = 0(n*1gZ/Z).
The work is the same as the PRAM work.

We must now compute the number of memory operations,
M. There are n® delete-min operations in total, and each reads
the array of size n coalesced. In addition, there are a total of
mn decrease key operations, but these reads cannot be coalesced.
Therefore, M = 0(n®/C 4 mn).

( (“ ““))
Tp = O max Too, (19)

n3 n? ng +mn)-L
= — ; (20)
p’ T-P
n n*lgz n*. L mn-L
o mre 1)
P Z 'C-T-P°T-P
Speedupls
) nZ C-7T n.T
Sp = 2 ( min (P, -~ .p, .P)). (22)
lZ L m-L

Again, in this algorithm, 7 < min(X, Z/(QS)),and S = 0(1)
since each thread needs only constant memory. Therefore, the
PRAM performance dominates if L < min(CX, CZ/Q, n’X/m, n*Z/
(mQ)).

4.4. n iterations of Bellman-Ford algorithm

This is another all pairs shortest paths algorithm that uses a
single-source Bellman-Ford algorithm as a subroutine. The algo-
rithm is given in Algorithm 2 [56,57].

Algorithm 2 Bellman-Ford
1: Input: Graph G = (V,E), |V| =n,|[E| =m
: Input: W is weight of edges, |[W| = m
: Input: S is source vertex
: Output: dist[n]
{Initialize distance array}
: foralluinV do
dist[u] = oo
: end for
: dist[S]=0
{Update the distance for all vertices n — 1 times}
9:fori=1:(n—1) do
10:  for each edge e(u, v) € E do
11: if dist[v] > dist[u] + W[u, v] then

AW N
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12: dist[v] = dist[u] + W|u, v]
13: end if

14:  end for

15: end for

PRAM algorithm and analysis

Again, one can do each single source computation in parallel.
Each single source computation takes O(mn) work, making the
total work of all pairs shortest paths O(mn?) and the total span

O(mn). One can improve the span by relaxing all edges in one
iteration in parallel making the span O(n).

mn?
Tr =0 (max (T’ n)) . (23)

Sp = 2 (min(P, mn)) . (24)

TMM algorithm and analysis

The TMM algorithm for this problem is more complicated
and requires more data structure support. Each core group is
responsible for one single-source shortest path calculation. For
each single source calculation, we maintain three arrays, A, B and
W, of size m, and one array D of size n. D contains the current guess
of the shortest path to vertex i. B contains ending vertices of edges,
sorted by vertex ID. Therefore B may contain multiple instances
of the same vertex if that vertex has multiple incident edges. A[i]
contains the starting vertex of the edge that ends at B[i] and W/{i]
contains the weight of that edge. Therefore, both D and B are sorted.

Each thread deals with one index in the array and relaxes that
edge in each iteration. All threads relax edges in parallel in order
of B. The total work and span are the same as the PRAM algorithm.
We can now calculate the time and speedup assuming threads can

read all the arrays coalesced, M = O(mn?/C +n>/C) = 0(mn?/C)
for connected graphs.
Tp = 0 hop M-I (25)
=0(max| —, T, —
: P’ T.p
mn? mn? - L
=0|max|{ —,n, ——— . (26)
P UC-T-P

Therefore, the speedup on P processors is

T
~P)). (27)

In this case, we get linear speedup if C7/L > 1. Subject to
the limits on threads of 7 < min(X,Z/(QS)) and S = 0(1) for
constant local memory usage per thread, this requires L < min
(X, CZ/Q).

C
Sp= %2 (min (P, mn,

5. Comparison of the various algorithms

As our analysis of shortest paths algorithms indicates, the TMM
model allows us to take the unique properties of highly-threaded,
many-core architectures into consideration while analyzing the
algorithms. Therefore, the model provides more nuance in the
analysis of these algorithms for the highly-threaded, many-core
machines than the PRAM model. In this section, we will compare
the running times of the various algorithms and see what interest-
ing things this analysis tells us.

Table 3 indicates the running times of the various algorithms
in both the PRAM model and the TMM model, as well as the
conditions under which TMM results are the same as the PRAM
results. We have ignored the span term, since the span is small rel-
ative to work in all of these algorithms. As we can see, if L is small,
then highly-threaded, many-core machines provide PRAM perfor-
mance. However, the cut-off value for L is different for different
algorithms where the performance in the TMM model differs from
the PRAM model is different for different algorithms. Therefore, the
TMM model can be informative when comparing between algo-
rithms.

We will perform two types of comparison between these al-
gorithms in this section. The first one considers the direct influ-
ence of machine parameters on asymptotic performance. Since
machine parameters do not scale with problem size, in principle,
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Table 3
Algorithm running times and constraints.
Algorithm Time (PRAM) Time (TMM) Constraints
. . nlgn n3lgn.L 3/2
Dynamic programming 5 JvzcTp L<~ZcX L<Z7%*C/Q
Johnson's (Binary heap) m"[,lg" % L<X L<Z/Q
3,_ 2
Johnson'’s (Array) % ol :ﬁ 2C L=X L=z/Q-C
ml < C L <n’X/m L < n’Z/(mQ)
n iteration Bellman—Ford L mr’L L<cX L<cz/Q

CcTP

machine parameters cannot change the asymptotic performance of
algorithms in terms of problem size. That is, if the PRAM analysis
indicates that some algorithm has a running time of O(n) and an-
other one has the running time of O(n Ig n), for large enough n, the
first algorithm is always asymptotically better since eventually Ig n
will dominate whatever machine parameter advantage the second
algorithm may have. Therefore, for this first comparison, we only
compare algorithms which have the same asymptotic performance
under the PRAM model.

Second, we will also do a non-asymptotic comparison where we
compare algorithms when the problem size is relatively small, but
not very small. In particular, we look at the case when Ign < +/Z.
In this case, even algorithms that are asymptotically worse in the
PRAM model can be better in the TMM model, for large latency L. In
the next section, we will look at even smaller problem sizes where
the effects are even more dramatic.

5.1. Influence of machine parameters

As the table shows, the limits on machine parameters to get
linear speedup are different for different algorithms. Therefore,
even when two algorithms have the same PRAM performance,
their performance on highly-threaded, many-core machines may
vary significantly. Let us consider a few examples:

5.1.1. Dynamic programming vs. Johnson’s algorithm using binary
heaps when m = 0(n?)

If m = 0(n?) (i.e., the graph is dense), the PRAM performance
for both algorithms is the same. However whenZ/Q < L <
73/2C/Q, Johnson’s algorithm has a significantly worse running
time. Take the example of L = 0(Z>2C/Q). The Johnson running
time is O(n®lg nﬁC/P) while the running time of the dynamic
programming algorithm is simply O(n® Ign/P).

5.1.2. Johnson'’s algorithm using binary heaps vs. Johnson’s algorithm
using arrays when m = 0(n?/ Ign)

If m = 0(n?/lgn) (ie. a somewhat sparse graph), these two
algorithms have the same PRAM performance, but if Z/Q < L <
ZC/Q, then the array implementation is better. For L = ZC/Q, the
binary heap implementation has a running time of O(n>C/P), while
the array implementation has a running time of simply O(n>/P).

5.2. Influence of graph size

The previous section shows the asymptotic power of the model;
the results there hold for large sizes of graphs asymptotically.
However, the TMM model can also help decide on what algorithm
to use based on the size of the graph. In particular for certain sizes
of graphs, algorithm A can be better than algorithm B even if it
is asymptotically worse in the PRAM model. Therefore, the TMM
model can give us information that the PRAM model cannot.

Consider the example of dynamic programming vs. Johnson’s
algorithm using arrays. In the PRAM model, the dynamic program-
ming algorithm is unquestionably worse than Johnson’s. However,

iflgn < +/Z, we may have a different conclusion. In this case, dy-
namic programming has runtime:

n*lgn-L  n’L nlgn n’L n
Jzcrp TP J7Zc TP C
While Johnson’s algorithm has runtime:

o ( n’L mnL nL . /n m
min| —, — ] = — - min (—, —) . (29)
CTP TP TP C n

Ifn?/m < C, i.e. dense graphs, n/C < m/n. Combine (28) and
(29), we have

(28)

n*lgn-L n’L _n?
e L T S (30)
JzcTp  CTP m

This indicates that when for small enough graphs where Ign <
VZ,thereisa dichotomy. For dense graphs n?/m < C, the dynamic
programming algorithm should be preferred, while for sparse
graphs, Johnson’s algorithm with arrays is better. We illustrate
this performance dependence on sparsity with experiments in
Section 7.

We get a similar result when comparing the dynamic program-
ming algorithm with Bellman-Ford when m = O(n). In spite of
being worse in the PRAM world, the dynamic programming algo-
rithm is better when Ign < v/Z.

Our model therefore allows us to do two things. First, for a
particular machine, given two algorithms which are asymptotically
similar, we can pick the more appropriate algorithm for that
particular machine given its machine parameters. Second, if we
also consider the problem size,then we can do more. For small
problem sizes, the asymptotically worse algorithm may in fact be
better because it interacts better with the machine. We will draw
more insights of this type in the next section.

6. Effect of problem size

In Section 5, we explored the asymptotic insights that can
be drawn from the TMM model. However, the TMM model can
also inform insights based on problem size. In particular, some
algorithms can take advantage of smaller problems better than
others, since they can use fast local memory more effectively. In
this section, we explore the insights that the TMM model provides
in these cases.

6.1. Vertices fit in local memory

When n < Z, all the vertices fit in local memory. Note that
this does not mean that the entire problem fits in local memory,
since the number of edges can still be much larger than the num-
ber of vertices. In this scenario, the number of memory accesses
by the first, second, and fourth algorithms is not affected at all. In
the dynamic programming algorithm, we consider the array of size
n® and being able to fit a row into local memory does not reduce
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the number of memory transfers. In Johnson’s algorithm using bi-
nary heaps, each thread does its own single source shortest path.
Since the local memory Z is shared among Q 7 threads, each thread
cannot hold its entire vertex array in local memory. In the Bell-
man-Ford algorithm, the cost is dominated by the cost of reading
the edges. Therefore, the bounds do not change.

For Johnson’s algorithm using arrays, the cost is lower. Now
each core group can store the vertex array and does not need to
access it from slow memory. Therefore the bound on the number
of memory operations changes to M = 0(n?/C 4+ mn) = O(mn)
for connected graphs.

For these small problem sizes, the TMM model can provide
even more insight. As an example, compare the two versions of
Johnson'’s algorithm, the one that uses arrays and the one that uses
heaps. When m = 0(n?/ Ig? n), the algorithm that uses heaps is
better than the algorithm that uses arrays in the PRAM model.
But in the TMM model, for large L, the algorithm that uses heaps
has the running time of O(Lmnlgn/(7P)) = O(Ln®/(TPlgn)),
while the algorithm that uses arrays has the running time of
O(Ln®/(TP1g? n)). Therefore, the algorithm that uses arrays is
better. Note that asymptotic analysis is a little dubious when we
are talking about small problem sizes; therefore, this analysis
should be considered skeptically. However, the analysis is rigorous
when we consider the circumstance that local memory size grows
with problem size (i.e., Z is asymptotic). Moreover, this type
of analysis can still provide enough insight that it might guide
implementation decisions under the more realistic circumstance
of bounded (but potentially large) Z.

6.2. Edges fit in the combined local memories

When m = O(PZ/Q), the edges fit in all the memories of the
core groups combined. Again, the running time of the first,second,
and third algorithms do not change, since they cannot take
advantage of this property. However, the Bellman-Ford algorithm
can take advantage of this property and each thread across all core
groups is responsible for relaxing a single edge. Now a portion
of the arrays A, B and W fit in each core group’s local memory
and they never have to be read again. Therefore, the number of
memory operations reduces to M = O(n®/C). And the run time
under the TMM model reduces to O(n>L/(CTP)). Again, compare
Bellman-Ford algorithm with Johnson’s algorithm using binary
heaps. When m = 0(n?/Ign), Johnson’s algorithm is better than
the Bellman-Ford algorithm in the PRAM model. However, in
the TMM model, Johnson’s has run time of O(Lmnlgn/(7P)) =
O(Ln3/(TP)), while Bellman-Ford with a run time of O(Ln3/
(C7TP)) flips to be the better one.

7. Empirical investigation

In this section, we conduct experiments to understand the
extent of the applicability of our model in explaining the perfor-
mance of algorithms on a real machine. This evaluation is a proof-
of-concept that the model successfully predicts performance on
one example of a highly-threaded, many-core machine. It is not
meant to be an exhaustive empirical study of the model’s applica-
bility for all instances of highly-threaded, many-core machines. We
implemented two all-pairs shortest paths algorithms: the dynamic
programming using matrix multiplication and Johnson'’s algorithm
using arrays, on an NVIDIA GPU.

In these experiments, we investigate the following aspects of
the TMM model:

o Effect of the number of threads: the fact that the TMM model
incorporates the number of threads per processor in the model
is the primary differentiator between the PRAM and TMM
models. The TMM model predicts that as the number of threads
increases the performance increases, up to a certain point. After
this point, the number of threads does not matter, and the TMM
model behaves the same as the PRAM model. In this set of
experiments, we will use both the dynamic programming and
Johnson’s algorithms to demonstrate this dependence on the
number of threads.

o Effect of fast local memory size: in some algorithms, including
the dynamic programming via matrix multiplication, the size
of the fast memory affects the performance of the algorithm in
the TMM model. We investigate this dependence.

e Comparison of the dynamic programming algorithm and Johnson'’s
algorithm with arrays: for Johnson’s algorithm using arrays, the
PRAM performance does not depend on the graph’s density.
However, the TMM model predicts that performance can
depend on the graph'’s density, when the number of threads is
insufficient for the performance to be equivalent to the PRAM
model. Therefore, even though Johnson’s algorithm is always
faster than the dynamic programming algorithm according
to the PRAM model (since its work is n® while the dynamic
programming algorithm has work n®lgn), the TMM model
predicts that when the number of threads is small, the dynamic
programming algorithm may do better, especially for dense
graphs. We demonstrate through experiments that, this is a true
indicator of performance.

7.1. Experimental Setup

The experiments are carried out on an NVIDIA GTX 480,
which has 15 multiprocessors, each with 32 cores. As a typical
highly-threaded, many-core machine, it also features a 1.5 GB
global memory and 16 kB/48 kB of configurable on-chip shared
memory per multiprocessor, which can be accessed with latency
significantly lower than the global memory.

Runtimes are measured across various configurations of each
problem, including graph size, thread count, shared memory size,
and graph density. When plotted as execution time, the perfor-
mance units are in seconds. In many cases, however, the trends
we wish to see are more readily apparent when performance is
shown in terms of speedup rather than execution time. This poses
a problem, however, as it is arguably meaningless to attempt to re-
alistically measure the single-core execution time of an application
deployed on a modern GPU. We address this issue using the follow-
ing technique: all speedup plots compare the measured, empirical
execution time on P cores to the theoretical, asymptotic execution
time on 1 core using the PRAM model. As a result, the speedup axis
does not represent a quantitatively meaningful scale, and the scale
is labeled “arbitrary” on the graphs to reflect this fact; however,
the shape of the curves are representative of the speedup achiev-
able relative to a fixed serial execution time.

7.2. Effect of the number of threads

The TMM model indicates that when the number of threads
is small, the performance of algorithms depends on the number
of threads. With sufficient number of threads, the performance
converges to the PRAM performance and only depends on the
problem size and the number of processors. We verify this result
using both the dynamic programming and Johnson’s algorithms.

For the dynamic programming algorithm, we generate random
graphs with {1k, 2k, 4k, 8k, 16k} vertices. To better utilize fast
local memory, the problem is decomposed into sub-blocks, and we
must also pick a block size. Since we only care about the effect of
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Fig. 3. Speedup (theoretical T; via PRAM model over empirically measured Tp) of
the dynamic programming algorithm, varying the number of threads per core from
2 to 32 (data block size = 64).
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Fig. 4. Speedup of Johnson’s algorithm using arrays vs. threads/core for different
graph densities. All curves are with 8k nodes. Again, speedup is theoretical T,
divided by empirically measured Tp.

threads and not the effect of shared memory (to be considered in
the next subsection), here we show the results with a block size of
64, as it allows us to generate the maximum number of threads. We
increase the number of threads until we reach either the hardware
limit or the limit imposed by the algorithm. Fig. 3 shows the
speedup while varying the number of threads per core. We see that
the speedup increases approximately linearly with the number of
threads per core (as predicted by Eq. (10)) and then flattens out.
This indicates that for this experiment, 16 is an estimated threshold
of threads/core where the TMM model switches to the “PRAM
range” and the number of threads no longer matters. Note that the
expression for this threshold does not depend on the graph size, as
it is equal to L/ﬁC. Also note that the speedup (both in and out
of the PRAM range) is not impacted by the size of the graph (again
as predicted by Eq. (10)).

We see a similar performance dependence on the number of
threads in Johnson's algorithm. Here we ran experiments with 8k
vertices and varied the number of edges (ranging between 32k
and 32 M). The speedup graph is shown in Fig. 4. As we increase
the number of threads, the speedup increases. We see two other
interesting things, however. First, we never see the flattening
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Fig. 5. Runtime of Johnson’s algorithm on graphs with constant 8k nodes and
varying density by increasing edges. Threads/core varies from 2 to 32.

of performance with increasing thread counts that is seen with
the dynamic programming algorithm. Therefore, it appears that
Johnson’s algorithm requires more threads to reach the PRAM
range where the performance no longer depends on the number
of threads. This is also predicted by our model as the number
of threads/core required by the dynamic programming algorithm
to reach PRAM range is 7 > L/ﬁC while the corresponding
number of threads required by Johnson’s is 7 > L/C, clearly a
larger threshold. Johnson’s algorithm is not taking advantage of
the fast local memory, and this factor influences the number of
threads required to hide the latency to global memory. Second, we
see that the performance depends on the number of edges. This
is consistent with the fact that we are in the TMM range where
the runtime is (mnL/7P) and not in the PRAM range where the
runtime only depends on the number of vertices.

The dependence on graph density is explored further in Fig. 5.
Here, the runtime is plotted vs. number of graph edges for varying
threads/core. The linear relationship predicted by the last term of
Eq. (21) (for dense graphs) is illustrated clearly in the figure.

7.3. Effect of fast local memory size

In highly-threaded, many-core machines, access to local
memory is faster than access to slow global memory. Among
our shortest paths algorithms, only the dynamic programming
algorithm makes use of the local memory and the running time
depends on this fast memory size. In this experiment we verify the
effect of this fast memory size on algorithm performance.

We set the fast memory size on our machine and measure
its effect. Fig. 6 illustrates how this change has an impact on
speedup across a range of threads/core. For a fixed Z (fast memory
size), the maximum sub-block size B can be determined. Then,
varying thread counts has the same effect as previously illustrated
in Fig. 3, increasing threads/core increases performance until the
PRAM range is reached. But as we can see from the figure, different
block sizes have different performance for the same number of
threads/core. This effect is predicted by Eq. (10). As we increase
the size of local memory, the performance improves, since we can
use bigger blocks.

In order to isolate the effect of block size from the effects of
other parameters, we also plot this data in a pair of different
formats in Figs. 7 and 8, in both cases limiting the number of
threads/core to below the PRAM range (i.e., the range where
speedup is linear in threads/core). The first curve shows the
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Fig. 6. Speedup of the dynamic programming algorithm for different block sizes,
varying the threads/core on graphs with 16k nodes.
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Fig.7. Spread of performance between block size 64 and block size 32. The speedup
scale is the same as that of Fig. 6.

difference between the speedups for different block sizes. As the
curve indicates, the delta speedup increases linearly with the
number of threads/core, consistent with the model prediction of
(B1—B;)7.The second curve shows the ratio of the performance of
block size 64 to block size 32, indicating a flat line, since the thread
term cancels out.

7.4. Comparison between the dynamic programming and Johnson’s
algorithms

It is interesting to compare the dynamic programming algo-
rithm and Johnson’s algorithm with arrays, since the PRAM and
the TMM model differ in predicting the relative performance of
these algorithms. The PRAM model predicts that Johnson’s algo-
rithm should always be better. However, from Section 5.2, for a
small number of threads/core working on a dense graph, the TMM
model predicts that dynamic programming may be better.

For the graphs with 8k vertices that we explored earlier, Ign <
+/Z. Consequently, TMM predicts Johnson’s algorithm is generally
faster than dynamic programming for sparse graphs, but slower for
relatively dense ones. Fig. 9 demonstrates this effect concretely.

In addition, for the dense graph, the figure also shows the inter-
section between the runtime curves of the two algorithms. At that
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Fig. 8. Ratio of performance between block size 64 and block size 32.
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Fig. 9. Runtime of the dynamic programming (DP) algorithm relative to Johnson’s
algorithm on a graph with 8k nodes, varying threads/core from 4 to 32 and edges
from 32k to 32 M.

point (32 threads/core), dynamic programming has already been
in the PRAM range with stable performance since 16 threads/core,
while Johnson’s has not. Its runtime is still benefiting by increas-
ing the threads/core. As a result, we predict that Johnson’s runtime
will flip to be the better one if given sufficient threads. The peak
performance of Johnson’s being better than that of dynamic pro-
gramming is consistent with what the PRAM model predicts.

8. Conclusions

In this paper, we present a memory access model, called the
Threaded Many-core Memory (TMM) model, that is well suited for
modern highly-threaded, many-core systems that employ many
threads and fast context switching to hide memory latency. The
model analyzes the significant factors that affect performance
on many-core machines. In particular, it requires the work and
depth (like PRAM algorithms), but also requires the analysis of
the number of memory accesses. Using these three values, we can
properly order algorithms from slow to fast for many different
settings of machine parameters on highly-threaded, many-core
machines. We analyzed 4 shortest paths algorithms in the TMM
model and compared the analysis with the PRAM analysis. We
find that algorithms with the same PRAM performance can have
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different TMM performance under certain machine parameter
settings. In addition, for certain problem sizes which fit in local
memory, algorithms which are faster on PRAM may be slower
under the TMM model. Further, we implemented a pair of
the algorithms and showed empirical performance is effectively
predicted by the TMM model under a variety of circumstances.
Therefore, TMM is a model well-suited to compare algorithms and
decide which one to implement under particular environments. To
our knowledge, this is the first attempt to formalize the analysis
of algorithms for highly-threaded, many-core computers using a
formal model and asymptotic analysis.

There are many directions of future work. One obvious direc-
tion is to design more algorithms under the TMM model. Ideally,
this model can help us come up with new algorithms for highly-
threaded, many-core machines. Empirical validation of the TMM
model across a wider number of physical machines and manufac-
turers is also worth doing. In addition, our current model only in-
corporates 2 levels of memory hierarchy. While in this paper we
assume that it is global memory vs. memory local to core groups,
in principle, it can be any two levels of fast and slow memory. We
would like to extend it to multi-level hierarchies which are be-
coming increasingly common. One way to do this is to design a
“parameter-oblivious” model where algorithms do not know the
machine parameters. Other than the dynamic programming algo-
rithm, all of the algorithms presented in this paper are, in fact,
parameter-oblivious. And matrix multiplication in the dynamic
programming can easily be made parameter-oblivious. In this case,
the algorithms should perform well under all settings of parame-
ters, allowing us to apply the model at any two levels and get the
same results.
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