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Abstract

We consider the impedance of a structure with rectangular, periodic corrugations on two opposing
sides of a rectangular beam tube. Using the method of field matching, we find the modes in such
a structure. We then limit ourselves to the the case of small corrugations, but where the depth
of corrugation is not small compared to the period. For such a structure we generate analytical
approximate solutions for the wave number k, group velocity vy, and loss factor « for the lowest
(the dominant) mode which, when compared with the results of the complete numerical solution,
agreed well. We find: if w ~ a, where w is the beam pipe width and a is the beam pipe half-
height, then one mode dominates the impedance, with k& ~ 1/ Vwd (6 is the depth of corrugation),
(1—vg4/c) ~ 6, and k ~ 1/(aw), which (when replacing w by a) is the same scaling as was found for
small corrugations in a round beam pipe. Our results disagree in an important way with a recent
paper of Mostacci et al. [A. Mostacci et al., Phys. Rev. ST-AB, 5, 044401 (2002)], where, for the
rectangular structure, the authors obtained a synchronous mode with the same frequency k, but
with k ~ §. Finally, we find that if w is large compared to a then many nearby modes contribute

to the impedance, resulting in a wakefield that Landau damps.
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I. INTRODUCTION

In accelerators with very short bunches, such as is envisioned in the undulator region
of the Linac Coherent Light Source (LCLS) [1], the wakefield due to the roughness of the
beam-tube walls can have important implications on the required smoothness and minimum
radius allowed for the beam tube. One model that has been used to study roughness is a
cylindrically-symmetric structure with small, rectangular, periodic corrugations. For such a
structure, if the depth-to-period ratio of the corrugations is not small compared to 1, it has
been found that the impedance is dominated by a single strong mode, with the wakefield
given by W(s) =~ 2®(s)kcos(ks) [s is the (longitudinal) spacing between drive and test
particles and ®(s) is the step function|; in addition, it was found that the wave number
k~1/ Vad, with a the structure radius and ¢ the depth of corrugation, and the loss factor
k =4/a* (in Gaussian units) [2, 3].

In a recent report Mostacci et al. [4] studied the impedance of a structure with small,
rectangular, periodic corrugations on opposing sides of a rectangular beam tube (see Fig. 1)
using a perturbation approach. For a beam tube with width w comparable to height 2a the
authors find a mode with a similar frequency dependence as in the round case, but with
a loss factor that is proportional to the depth of corrugation §. If this model is meant to
represent surface roughness with e.g. 0 ~ 1 um and a ~ 1 cm, then their result implies
a factor ~ 107% smaller interaction strength than was obtained in the earlier cylindrically
symmetric calculations. Such a result seems unlikely—we would not expect a huge difference
in loss factor when changing from round to rectangular geometry. It is the goal of this paper
to resolve this discrepancy and to show that a correct calculation for the rectangular cross
section indeed gives a result that differs only by a numerical factor from the round case.

Another motivation for this work is to understand the impedance of two corrugated plates,
the limit of our geometry when w becomes large. And although, when w is not large, the
geometry is somewhat artificial, it may still be a useful model for some vacuum chamber
objects of accelerators, e.g. for the screens in the LHC vacuum chamber [4]. And thirdly,
we note that fabricating a structure with artificially large corrugations, for the purpose of
experimentally studying roughness impedance, may be much easier for the rectangular than
the round beam pipe.

In this report we calculate the impedance of the rectangular structure of Mostacci et



FIG. 1: A longitudinal cut of the structure geometry considered here, showing two periods in the

z-y plane (left), and a transverse cut showing the cross-section of the structure (right).

al.—but not limiting ourselves to small corrugations—using the method of field matching.
The solution is written as an infinite homogeneous matrix equation that we truncate to
solve numerically. Note that our approach is very similar to that used for the analogous
cylindrically symmetric problem in the computer program TRANSVRS [5]. Note also that
recently, Xiao et al. used a similar method to solve the impedance of the rectangular
structure, but with the corrugated surfaces replaced by dielectric slabs [6]. Next, using a
perturbation approach applied to the field matching equations we find the analytical solution
for the limit of small corrugations. Finally, we compare the analytical to the numerical

results.

II. FIELD MATCHING

We consider a periodic, rectangular structure with perfectly conducting walls, two periods
of which are sketched in Fig. 1. In the horizontal (z) direction the structure does not
vary, except for walls at + = +w/2. One period of the structure extends longitudinally to
z = +p/2. This cell can be divided into two regions: Region I, the “tube region”, extends
to y = +a; Region II, the “cavity region”, for z = 4¢/2, extends beyond y = +a to
y = +(a + 0). An exciting point beam moves at the speed of light ¢ from minus to plus
infinity along the z axis. We are interested in the steady-state fields excited by the beam,
and assume that initial transients have all died down. Note that we will work in Gaussian
units throughout.

We assume that the fields of a mode excited by the beam have a time dependence /%<,



where k is the mode wave number and ¢ is time. For either region the fields can be obtained
from two Hertz vectors, I1,, and II., which generate, respectively, TM and TE components

of the fields:

E =V xVxII, —jkV xII, , (1)
H =V xV xII, + jkV x 11,

Since there is no variation in the x direction we choose it as the direction of the Hertz
vectors. To satisfy the boundary conditions at © = +w/2 the fields vary as cosines and sines
of k,x where

ky=— (2)

with m an odd integer (see below). The general solution involves a summation, over all m,
of such modes.

Consider modes with horizontal mode number m. In the tube region, the most general
form of the (x component of the) Hertz vectors, consistent with the (perfectly conducting)

walls at © = +w/2, and the Floquet condition in z is:

M, = Z (A, sinh(k],y) + By, cosh(ky,y)] sin(k,z) e /7% (3)
Hé:c = Z [Cn Slﬂh(k‘;ny) + Dn COSh(k‘ény)} Cos(kxl') 6_j/87lz
with
2
b=t = k= VIR ()

Since the structure is symmetric in y about y = 0, the field components will be either even
or odd in y, and the modes will split into two categories. In the first type A, = D,, = 0 and
the resulting modes have £, # 0 on axis, in the second type B, = C,, = 0 and the resulting
modes have £, = 0 on axis. In either case we are left with only 2 sets of unknown constants
in Region I. Since an on-axis beam can only excite modes of the first type, it is this type in
which we are interested.

In the cavity region, the most general form of the Hertz potentials, consistent with per-



fectly conducting boundary conditions at z = £¢/2 and y = £(a + 9) is
m! = Z Eysinfk!!(a + 6 — y)] sin(k,2) sinfo,(z + g/2)] | (5)
Il =y Z Fycoslk)!(a+ 6 — y)] cos(kyx) cos[as(z + g/2)]

with
i1
, kys =\Vk?—a2—-k2 . (6)

oy = —
g

Note that in both regions &,, &,, and H, depend on z as cos(k,z) and, therefore, the
boundary conditions on the walls at © = +w/2 are automatically satisfied.

We need to match the tangential electric and magnetic fields in the matching planes, at

y = ta:
o _ ) &L 2] < g/2 )
0 : g/2<lz|<p/2
Hi, = ML - 2l <g/2 . (8)

Using the orthogonality of e=7%* over [—p/2,p/2] in Region I, and sin[a,(z + g/2)] and
cos|as(z + g/2)] over [—g/2, g/2] in Region II, we obtain a matrix system that we truncate
to dimension 2(2N + 1) x 2(2N + 1), where N is the largest value of n that is kept. To
obtain modes excited by the beam we need to set (3, = k for one value of n. The frequencies
at which the determinant of the resulting matrix vanishes are the excited frequencies of the
structure.

The relation of the coefficients at the excited frequencies gives the eigenfunctions of the
modes, from which we can then obtain the (R/Q)’s and the loss factors. The loss factor,

the amount of energy lost to a mode per unit charge per unit length of structure, is given

by

&P
" 4qu(l —v,/c) )

with &, the synchronous component of the longitudinal field on axis, u =
(8mp)~! [ |€|*dx dy dz, the (per unit length) stored energy in the mode [the integral is over
the volume of one period of structure|, and v, the group velocity in the mode. Note that
the factor 1/(1 — v,/c) is often neglected in loss factor calculations (it appears to have

been neglected in Mostacci et al.). This factor in the loss factor, which—as we will see—is



very important in structures with small corrugations, is discussed in Refs. [7-9]. We give
new derivations of it in Appendices A and B; the derivation in Appendix A is based on a
simple energy balance argument, and the one in Appendix B uses a more formal approach

employing the Lorentz reciprocity theorem. Finally the longitudinal wakefield is given as
W(s) = 20(s) Y _ #incos(kys) (10)

with ®(s) =0 for s < 0, 1 for s > 0, and the sum is over all excited modes. Note that in our
convention positive values of s correspond to the region behind the leading particle. Note
also that for a bunch (the induced) voltage is given by the convolution of the longitudinal
wake with the charge distribution.

In Appendix C we present more details of the calculation of the modes of the corrugated
structure using field matching. We have written a Mathematica program that numerically
solves these equations for arbitrary corrugation size. The results of this program will be

used to compare with small corrugation approximations presented in the following section.

III. SMALL CORRUGATIONS

Let us consider the case where the corrugations are small, but withd ~ g ~ p < a ~ w. In
the analogous cylindrically symmetric structure it was found that: (i) there is one dominant
mode (its loss factor is much larger than those of the other modes), (ii) this mode has
a low phase advance per cell, and (iii) the frequency of the mode k ~ 1/vad [3, 10].
For our rectangular structure we look for a mode with the same properties. As was the
case for the cylindrically symmetric problem we also assume that the fields in the cavity
region are approximately independent of z, and that one term in the expansion of the Il
vectors, the term with n = 0 and s = 0, suffices to give a consistent solution to the field
matching equations [3]. Note that, it is true that to match the tangential fields well on the
matching plane may require many space harmonics (though even then, near the corners,
Gibbs phenomena and the edge condition will result in poor convergence); nevertheless, as
with the analogous cylindrically symmetric problem, the global mode parameters in which
we are most interested—frequency k, group velocity v,, and loss factor k—can be obtained
to good approximation when keeping only the one (the n =0, s = 0) term.

Setting o = 0 implies that IT/7 = 0, and that there are only 3 non-zero field components



in the cavity region: £, ng , and ‘HII. For small corrugations the excited modes become
approximately TM modes. To allow matching at the interface of Regions I and II we end

up with

Q

M, =0 (11)

Il ~ O sinh(kéoy) cos(kpx) eIP%
and
'l ~o0 (12)
I ~ jFycoslkij(a+ 0 — y)] cos(kyz)

Let us sketch how we match the fields: We equate £, and H, for the two regions at
y = +a; we multiply the first equation by /%% and integrate over one period in z, and then
we integrate the second equation over the gap in z. When we divide the resulting equations
one by the other, the constants Cy, Fy, drop out, and we are left with an approximation to
the dispersion relation, one valid in the vicinity of the synchronous point (the subscript 0

for 8 is understood):

VIR coth (VPP ¥ ) = ng/” =R tan (/P26
gp "
To properly keep track of the relative size of the terms in further calculations, we assign
to each parameter an order using the small parameter e: let a, w, be of order 1; 9, g, p, of

order €2; and k, 3, of order 1/¢. To find the synchronous frequency we let 8 = k in Eq. (13),

expand the equation to lowest order in €, and then set e = 1. The result is

ap
2  hz
km_ag

(the subscript m is included here to remind us of the m dependence). Note that, if a ~ w

(and p ~ g) then k ~ 1/v/wd, which is of the same order as the result that was found for the

coth (kya) | (14)

cylindrically symmetric problem. Note also that, for the limit g = p, the dispersion relation
and the synchronous frequency here agree with those given in Mostacci et al.

For the group velocity we take the partial derivative of Eq. (13) with respect to 3, and
rearrange terms to obtain 1 — 0k/08 = 1 — v,/c. After expanding in €, keeping the lowest

order term, and finally setting ¢ = 1 we obtain

(1 _ (vg)m) _ 20kug sinh?(kya)

1
c P {sinh(kma) cosh(kya) — k.a (15)
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Note that, as in the cylindrically symmetric problem, (1 —v,/c) ~ 6. The loss factor of our

structure
2
m — —F kIE ) 1
b =~ F (k) (16)
with
F(x) = X (17)
sinh(x) cosh(x)

The function F(x) and an approximation for large y are shown in Fig. 2. Note that for
x in the MKS units of [V/pC/m], one multiplies Eq. (16) by the quantity Zyc/(47), with
Zy = 377 Q. Note also that our result is independent of ¢, unlike the result of Mostacci et

al.
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FIG. 2: The function F(x) (solid) and the approximation 4ye~2X, valid for xy > 1 (dashes).

The total longitudinal wakefield is given by Eq. (10). Note that, if w < a (x 2 1) then
one mode dominates the wake, just like in the round case. (For example, if x = 1, then the
amplitude of the first, m = 1 term is 20 times larger than that of the next, m = 3 term
in the wake sum.) If, however, w > a, then more than one mode will contribute to the
impedance of the structure; in the limit of w — oo (two corrugated plates) there will be a
continuum of modes contributing to the impedance. The impedance is given by the Fourier

transform of the wake. Its real part is
ReZ = Z K [0(w — kpme) + 6(w + k)] . (18)

Consider now the limit of two corrugated plates (w — o0). The mode spectrum becomes



continuous and the sum in Eq. (18) can be replaced by an integral

Rez =7 /OOO dx F(x) {5 (w e ;g;gxcoth(x)) 45 (w te a%gxcoth(x))] (19)

The integral can be solved numerically, with the use of the relation [ dz g(x)d[f(z)] =
lg(z)/|f'(x)|]z=z0 Where f(zo) = 0. The result is shown in Fig. 3a; note that the axes are
normalized to k, = \/m and Z, = /(a*k.c). We see a continuous spectrum of modes
beginning at wave number k,, with average 1.14k, and rms 0.18k,. The corresponding
wakefield becomes a damped oscillation (see Fig. 3b). We see an effective ) ~ 10. Note

that W (0") = n%/(4a?) [to be discussed more in a later section].
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FIG. 3: For the case of two corrugated plates (w — o0): Re(Z) (a) and the wake (b), with

k. = \/p/(adg) and Z, = 7/ (a*k.c).

Finally, we should point out that it has been observed for the case of the cylindrically
symmetric problem that, if the small corrugations are replaced by a thin dielectric layer of
thickness d, and if the correspondence is made that the dielectric constant € = p/(p — g),
then the results for the two problems are the same [3, 12, 13]. Recently the modes in a
rectangular structure of Fig. 1, but with the corrugated surfaces replaced by dielectric slabs,
have been obtained by Xiao et al., also using a field matching approach [6]. If we take their
results, letting the thickness of the dielectric layers () be small, we obtain our results for k,

vy, and xk when we make the correspondence € = p/(p — g).



A. Comparison with Numerical Results

To test the validity of the analytical approximations in the case of small corrugations,
we compare with numerical results obtained by the Mathematica field matching program
(the method of solution is described in Appendix C). Consider as an example a square beam
tube (w/a = 2) with p/a = 0.05, g/a = 0.025, and §/a = 0.025, and let us consider the
lowest (m = 1) mode. In the field matching program we take S = 4 and N’ = 4, i.e. 5
space harmonics are kept in the cavity region and 9 in the tube region. (We find that, for
the example geometry, keeping more terms has no significant effect on the results.)

We begin by comparing the dispersion curve (see Fig. 4). Shown are the field matching
result (the solid curve) and the approximation, Eq. (13) (the dashes). We see that the two
agree well except far from the synchronous phase. The cross plotting symbol locates the
synchronous point, with kp = 0.2007, a result which is 7.5% larger than the analytical value
of Eq. (14). It is interesting to note that this dispersion curve is almost identical to the one
obtained (also by field matching) for the same geometry but in a round beam pipe [3]. As
for the loss factor, we find that it is a factor 0.84 as large as the analytical approximation,

Eq. 16.
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FIG. 4: A dispersion curve example: shown are the numerical result (solid), the synchronous point
(the cross plotting symbol), and the approximation, Eq. (13) (dashes). Also shown is the speed of
light line (dots).

These results confirm the validity of the analytical approximations for the structure with

10



small corrugations, provided that the depth of corrugation ¢ is not small compared to the
corrugation period p. However, in Ref. [3] it was shown that for the analogous round
structure the corresponding analytical formulas break down when § becomes small compared
to p: as 0 decreases the frequency first increases then decreases as compared to the analytical
result; meanwhile the loss factor continually decreases. When ¢ is small compared to p the
impedance is no longer well characterized by a single resonance, and is best described by
a different model [11]. As expected, we find the same kind of behavior in our rectangular
structure. If, for example, we reduce ¢ in our example problem by a factor of 2, we find that
the frequency becomes 18% larger, and the loss factor 30% smaller, than the values given

by the analytical formulas.

B. Discussion

Our result for the loss factor, Eq. (16), is independent of the depth of corrugation 4.
However, for a given bunch, as the depth of corrugation § decreases to zero (while keeping
d/p fixed), we expect the wakefield effect to also decrease to zero. How does this happen?
To answer this we first need to keep in mind that it is the induced voltage of the bunch—the
convolution of the wake with the longitudinal charge distribution—and not the wake itself
that is the physically measurable quantity; it is this quantity that needs to vanish in the
limit 6 — 0. Then, we note that as d decreases to zero, the impedance of our structure shifts
up in frequency (the mode frequency k increases). As a result, for a fixed bunch shape,
the convolution that gives the induced voltage tends to zero (at least as fast as 1/k) when
0 — 0. Note that the same type of behavior is found, for example, for the wake of a thin
dielectric layer on a round, metallic tube, as the layer thickness decreases [12, 13], and for
the resistive wall wake, as the conductivity increases [14][15].

As to the value of the loss factor obtained here: consider that there is a general relation

that holds for the wake directly behind the driving particle
2 [e.e]
Wt == ReZ(w) dw = 2 m 20
0= ) Rz do=23 (20)

a relation that does not depend on the specific boundary conditions at the wall. To discuss
it, consider first the analogous cylindrically symmetric problem. It was earlier found that,

as long as the corrugations are small and the depth § 2 p, the contribution of one mode

11



dominates the wake sum. In this case, it was found that, as here, W (0") (or k) is independent
of ¢ [3]. If the corrugations are replaced by a thin dielectric layer, W (0") does not depend
on the dielectric properties (neither ¢ nor €) [12, 13]. In the same way, if the corrugations
are replaced by a lossy metal, W (0") will not depend on the conductivity [14]. And in all
three cases the answer is the same: W (0T) = 4/a®. [In fact, this relation is also valid for
the (steady-state) wake of a periodic accelerator structure, with a the iris radius [16, 17].]
We expect the same type of behavior to hold in a corrugated, rectangular structure,
i.e. that W (0") depends only on the cross-section geometry of the beam pipe. In Fig. 5
we plot, for our rectangular structure, a®?W(07)/2 = a3, K, as function of Ta/w (the
solid curve). Also shown is the contribution of only the first (m = 1) term (dashes), and
the approximation 8(7a/w)?exp(—2mra/w) (dots). Note that, for ma/w small, many modes

2 1, one mode dominates. As with the cylindrically-

~

contribute to the sum; for ma/w
symmetric case, W (0") must still be correct if we replace the corrugated surfaces by thin
dielectric slabs, or by lossy metal plates. We know of no published result for W (0) in
our rectangular geometry to compare with; nevertheless, Henke and Napoly found W (07)
between two resistive parallel plates [18], which becomes the limit of our geometry as w — oc.
Their result, a?W (0%)/2 = 7?/8, agrees with our calculation for ma/w — 0, and confirms

our result.
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FIG. 5: The sum of the loss factors a®>3, km [= a?W(07)/2] as function of ma/w (solid).
Also shown are the contribution of the first mode, a?k; (dashes), and the approximation

8(ma/w)? exp(—2mra/w) (dots).
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IV. CONCLUSION

We studied the impedance of a structure with rectangular, periodic corrugations on two
opposing sides of a rectangular beam tube using the method of field matching. We described
a formalism that, for arbitrary corrugation size, can find the resonant frequencies k, group
velocities v,, and loss factors x. In addition, for the case of small corrugations, but where
the depth of corrugation is not small compared to the period, we generated analytical per-
turbation solutions for k, v,, and & for the dominant mode. We then compared, for such a
structure, numerical results with the analytical formulas, and found good agreement.

In general, we found that, for the structure of interest, the results are very similar to what
was found earlier for a structure consisting of small corrugations on a round beam pipe: if
w ~ a, where w is the beam pipe width and a is the beam pipe half-height, then one mode
dominates the impedance, with k ~ 1/v/aé (8 is the depth of corrugation), (1 —wv,/c) ~ 6,
and k ~ 1/a?. If, however, w is large compared to a we find that many nearby modes

contribute to the impedance, resulting in a wakefield that Landau damps.

APPENDIX A: DERIVATION OF LOSS FACTOR BASED ON ENERGY BAL-
ANCE

Consider first a cavity of frequency w with the electric field of an eigenmode &(r)e’“".
The energy in the eigenmode is denoted by U. If a point charge ¢ passes through the cavity,
it excites this mode to the amplitude Ay (where A is a complex number), so that after the
passage through the cavity the electric field of the mode will be A,E(r)e’*!, and the energy
lost by the charge is equal to |A,|*U. In quantum language, this is spontaneous radiation
of the charge into the mode under consideration which is indicated by the subscript s. It is
clear that A, is proportional to the charge of the particle q.

To calculate the amplitude Ay, let us consider a situation when, before the charge enters
the cavity, the latter already has this mode excited by an external agent (RF source) to the
amplitude Ay. Due to linearity of Maxwell’s equation, after the passage of the charge, the
field in the cavity will be equal to the sum of the initial mode Ay and the spontaneously

radiated mode A, with the energy given by | A, + A¢|?U. The change of the energy AW in

13



the cavity is

AW = |Ay + Ag|PU — |Ao)?U = (A,Ag + c.c)U + |A U, (A1)

where c.c. denoted a complex conjugate. Let us consider the limit of small charges, ¢ — 0,
then we can neglect the last term on the right hand side of Eq. (A1), which scales as ¢,

and keep only the first term that is linear in ¢,
AW = (AAp + c.c.)U. (A2)

Discarding the term o< ¢? means that we neglect the beam loading effect.
We can now balance the energy change AW with the work done by the external field A
during the passage of the charge. This work is equal to the integral of the electric field &,(z)

along the particle’s orbit

AW = —qReAy / dzE.(2)e* /v = _4 dzE.(2)e"*Y + c.c. (A3)
Comparing Eq. (A2) with Eq. (A3) we conclude that
Ay = —-L [ aze (z)ei=l. (A4)
2U

Hence we found the amplitude of spontaneous radiation of the particle in terms of the
integral along the particle’s orbit of the electric field.
The energy lost by the particle (loss factor) is
¢V
4U

AU = (A5)

where the voltage V = [ dz&,(z)e?**/v.
Let us now apply the same approach as above to the excitation of a mode that propagates
with the speed of light in a waveguide. To deal with a mode of finite energy we consider

a wave packet, and assume that the packet has a length L, as shown in Fig. 6 below. It

[

FIG. 6: The shape of the wave packet of the synchronous mode. The packet has a long plateau of

length L and short edges.
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propagates in the pipe with the group velocity v,. The energy in the mode U can be related
to the energy flow P (the integral of the Poynting vector over the cross section and averaged
over time) if we note that U/L is the energy per unit length; hence

_rL

Vg

U (A6)

Now, the particle is synchronous with the wave and remains at the same phase, so it sees
the same longitudinal electric field £, which we denote by &. The integral in Eq. (A4) can
be written as

/dzé'z(z)ejwz/” — cT&y, (A7)

where T is the interaction time between the wave and the particle. This is the time that the
particle remains within the wave; since the wave is moving at velocity v, and the particle is

moving at c it follows that

L
T = . (A8)
c— 1,
Hence, for the amplitude of the radiated wave we find
q cL
A = ——=& , A9
2U ¢ — Vg (A9)
and the energy W radiated by the particle
2 272
W=AU="Lg "= A10
s AU 0 (C o Ug)2 ( )

To find the energy radiated per unit length of the path, we divide W by the length of
the interaction path Le/(c — v,), which gives

aw ¢ ., ¢
A Y — All
dz 4u50 (c—vy) (ALL)

where u = U/L is the energy per unit length of path. Finally, since the loss factor k =
q 2dW/dz, we arrive at Eq. (9).

APPENDIX B: DERIVATION OF LOSS FACTOR USING THE LORENTZ

RECIPROCITY THEOREM

Let us consider a point charge moving with relativistic velocity in the positive direction

along the z axis of the structure. To calculate the energy radiated by the charge into
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synchronous modes we will use the approach developed by Vainshtein [19]. This approach
gives an explicit expression for the amplitudes of the travelling wave modes excited by an
(arbitrary) current distribution j(r)e’** oscillating at frequency w, where r = (z,v, 2).

Let the index w denote an eigenmode with the frequency w propagating in the direction
of the particle’s motion. The electric and magnetic fields of eigenmode w are &, (r)e’** and
H.,(r)e?“t respectively. An external current 7(r)e’! in the waveguide excites this mode

with amplitude C,(z) so that the electric field £ and the magnetic field H in the mode are
E(r) =Cu(2)Ey(r), H(r) = Cyu(z)Hy,(T) : (B1)

The coefficient for C,, can be related to the current density j(r) by means of the Lorentz

reciprocity theorem [20]:

/ds-(g><71£;;+s;><71£):—4—7T avij- &, . (B2)

c

Here the integral on the left hand side is taken over the surface enclosing the volume, and
the integration on the right hand side goes over the volume of the pipe between two cross

sections, at z = z; and z = 2. The equation for C,, reads [19]

1 z
Cule) ==y [ a2 [asir)- €5, (B3)
where N,, is the norm of the mode

Nw:-i dS - (Eu x M, — £ x Ha) | (B4)

with the integral in Eq. (B4) taken over cross section of the waveguide. One can show
that the norm is equal to four times the energy flow (averaged over time) in the mode, P,:

N, = 4P, [19]. The field &, can be represented as
Eu(T) = Ey(z,y) e 7*0)2, (B5)

where E\,(x,y) gives the transverse distribution of the electric field in mode w, and k,(w)
is the wavenumber (a function of the frequency).
We now calculate the Fourier components of the current corresponding to the point charge

moving with velocity v & ¢. The current density has only a z component
Ja(r,t) = qcd(x)6(y) 6(z — ct) . (B6)
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Fourier transforming this current yields

1 . . q i
jwt __ jwz/e
o dtj,(r,t) e 7" = - d(z)d(y)e . (B7)

Inserting this expression into Eq. (B3) gives the following result for the amplitude C,,:

Cu(z2) = %%V & / d &% (kw)=w/o)

]qgo 6jz(k(w)_w/v)
T 27N, k(w) -2 — 50’

— o0

(B8)

where & = —E; (0,0) = Ey.(0,0) is the longitudinal electric field of the mode on the
particle’s path (we have chosen, for convenience, £, .(0,0) to be purely imaginary). As is
seen from Eq. (B8), the function C,, has a singularity at the synchronous mode frequency

ws which satisfies the equation

ws = ck(ws) . (B9)

Note that the term —j0 in the denominator of Eq. (B8) indicates an infinitesimally small
imaginary part that shifts the pole slightly off the real axis.

Let us now calculate the energy radiated by the particle per unit time into the synchronous
mode. First, we find the longitudinal electric field &,(z,¢) on axis by inverse Fourier trans-
forming the quantity C,,& e 7*«)*+i%t Note that k(w) is an odd function of w; hence there
are always two solutions for w, with opposite signs. Using Eq. (B8) we find

E.(21) = / du Oy € eI )it
qug oo e—jzw/v—}—jwt

- . B1
2Ny ) R = =50 (B10)

Expanding the denominator in the integrand about the pole,

w . dk 1 .
1 1
= (w—wy) [——=)—-j0, B11
w-w) (5 -3) - (B11)

where the group velocity of the mode, v, = dw/dk|,_, (it is easy to see that the pole is
located above the real w axis). In front of the particle, z > ct, we can close the integration
path of Eq. (B10) by an infinite half circle in the lower w plane, and since there are no poles
inside such an integration contour, the integral vanishes. Hence the field in front of the

particle is equal to zero.
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The field behind the particle, z < ct, can be obtained by shifting the integration path
above the real axis, Imw > 0. The contribution from the poles should be interpreted as
the radiation field associated with the synchronous modes. It is straightforward to find this

contribution by calculating the two residues at w = +wy:
2983 I )
E(z,t) = ]‘ifw (U—g - E) cos [%(2 - ct)} . (B12)

As might be expected, the field behind the particle oscillates sinusoidally with the frequency

and the wavenumber equal to that of the synchronous mode w.

Since the electric field in front of the particle is zero, the effective electric field that acts
on the charge is equal to half of the field behind it, Eg = 3E.(z = ¢t — 0). The energy lost
by the particle per unit length of path can be calculated as:

dw @ ., (1 1\
L SR L B1

dz 4Eet Nw|50‘ (vg c) (B13)
This result agrees with Eq. (All) (note that N,, = 4P,, and u = P,v,) and it also gives
Eq. (9) for the loss factor k = ¢~ 2dW /dz.

APPENDIX C: FIELD MATCHING, THE GENERAL SOLUTION

In Section II we presented Hertz vectors and wave numbers for Regions I and II, and
also the four equations that need to be matched at the interface y = +a. We continue with
the notation introduced there: We multiply the matching equations for &, and &, by e/’w?
and integrate over [—p/2,p/2]; and we multiply the matching equations for H, and H, by
sinfay (2 4+ ¢/2)] and cos[ay (2 + g/2)] and integrate over [—g/2, g/2]. We obtain the infinite

set of equations:

(Cpkk},w — Bymm3,) cosh(k],b) = J Z Nus(=Flkkfw + Eimma,) sin(k]L5)
— B, cosh(k],b) = J ZMME' sin(k,10)
(ELkk)Iw + Fimmoy) cos(kild) = QZMM (B, kk,,,w — Cymm3,) sinh(k,,b)
(14 6,0) FL cos(kLs) = —220 Ny, sinh(k[,b) . (C1)

Here

L . . - Eg Fy : seven
Bn7Cn:jB’ﬂ7jCTL 9 Es7Fs: I (Cz)
JEs, 7Fs s odd
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N,s O 2 sin(f,g9/2) : s even

= — , (C3)
M, a, | (B2 —ad)g cos(fng/2) : s odd
and 0.+ the Kronecker delta.
This system of equations can be written as a homogenous matrix equation:
G(H*-T1?) —-GH N N 0 P(@Q*+ R?))S —PQ NT 0 B” 0
—GH G 0 M —-PQ/S P 0 MT c”

with superscript 7' indicating the transpose of a matrix. The diagonal elements of di-
agonal matrices are: G, = coth(k] b)/(kk],w), H, = mnf3,, I, = kkjw; P, =
2g tan(k,10)/(pkkllw), Qs = mmay, Ry = kk}lw, S = (1 + d5). Note that the sys-
tem matrix is real. The expansion coefficients are: Bj, = —sinh(k}b)C), and C; =
sinh(k),b)(kk},wB;, — mn3,C},).

To solve the matrix equation we truncate to dimension 2(2A + 1) x 2(2N + 1), where N/
is the largest value of n that is kept. Therefore, subscript n, representing space harmonic
number in the tube region, runs from —A\ to A; subscript s, representing space harmonic
number in the cavity region, runs from 0 to S, the largest value kept. Note that the values
N, 8, should be chosen so that (2N +1)/p ~ (S+1)/g. The system matrix U is a function
of By and of k. To find synchronous modes, we need to first set, for one space harmonic
n', B, = k and then numerically search for the value of k for which the determinant of U
becomes zero. The value n' should be taken to be the nearest integer to kp/(27). To find
values of the dispersion curve, we, for various values of 3,/ [where again n’ is the nearest
integer to kp/(2m)], numerically search for the value of k for which the determinant of U
becomes zero.

Once we have found the frequency we can find the eigenfunctions, from which we obtain

the synchronous component of the longitudinal electric field &:

(C5)

2
"

&o|? = K | Bl k, — Cl k!

ns'Vy

(where ns represents the synchronous space harmonic) and the energy per unit length w.
For example, the stored energy in Region I is given by

1
- 32mp ~

+C2 [-2k*ka + (K*k[* + K2 B2) sinh(2k.,a) /K], | — 4B,,C)kky3, sinh(2k],a))  (C6)

! (B2 [2k2k2a + (k% + K2kI? + k262) sinh(2k.,a) /K] ]
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with k% = k% — k2

-, with a corresponding equation giving the energy stored in Region II.

Note that for small corrugations, u// < u!. The quantity 1/(1 — v,/c) is obtained by

first calculating the dispersion curve, and then finding the slope at the synchronous point

numerically. Knowing |&|?, u, and 1/(1 — v,/c) we can finally obtain the loss factor .
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