

 Peer-to-Peer Resource Discovery in Mobile Grids
Luciana dos S. Lima1, 2, Antônio T. A. Gomes2, Artur Ziviani2,

Markus Endler1, Luiz F. G. Soares1, Bruno Schulze2

(1) Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)
Rua Marquês de São Vicente, 225 – 22.453-900 – Rio de Janeiro – RJ – Brasil

(2) Laboratório Nacional de Computação Científica (LNCC)
Av. Getúlio Vargas, 333 – 25.651-075 – Petrópolis – RJ – Brasil

{lslima,endler,lfgs}@inf.puc-rio.br, {atagomes,ziviani,schulze}@lncc.br

ABSTRACT
Grids are likely to be the mainstay of distributed computing. Grid
was firstly applied as a concept for sharing computing resources
among wired nodes, but there has been a growing interest in
extending this concept to mobile environments. Although
significant work has been done towards mobile grids, much of it
has followed centralized approaches based on infrastructure
wireless networks. We believe that a less restrictive, decentralized
approach that supports mobile collaboration in ad-hoc wireless
networks can cater for novel grid applications. To address this
issue, we propose a middleware architecture called MoGrid.
MoGrid orchestrates the distribution of grid tasks among mobile
devices in a peer-to-peer (P2P) fashion. In this paper, we focus on
the P2P Discovery Protocol (P2PDP), which is a central element
of our architecture. P2PDP aids in distributing tasks among the
most resourceful devices, while mitigating the overhead of control
messages exchanged among them. We describe a prototype
implementation of our architecture and discuss some issues
related to the adoption of P2PDP as an ad-hoc resource discovery
mechanism in mobile grids.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design – Wireless communication; C.2.2
[Computer-Communication Networks]: Network Protocols –
Applications; C.2.4 [Computer-Communication Networks]
Distributed Systems – Distributed applications.

General Terms
Design, Experimentation.

Keywords
Mobile grids, P2P protocols, resource discovery, mobile
collaboration, ad-hoc networks, middleware.

1. INTRODUCTION
Grids are likely to be the mainstay of distributed computing.
Originally conceived of as a concept for sharing computing
resources among wired nodes, grids have been receiving growing
attention as to their application to mobile environments [1, 11,
13]. There are two main approaches to integrating mobile
environments into grids. In the first approach, mobile devices are
used just as interfaces to access wired grids [9]. In the second (and
more challenging) approach, mobile devices can take part in a grid
as task processing nodes, shaping the so-called mobile grids.1

Mobile grids demand new control patterns for distributed resource
sharing since mobile devices allow the establishment of
spontaneous, highly-dynamic ad-hoc communities, for example
those motivated by common interests or geographical proximity.
Crucially, no centralized resource-discovery mechanisms may be
available for such a community. In this context, mobile grids can
be regarded as being supported by (and, conversely, a support for)
P2P technologies. Examples of novel P2P applications a mobile
grid can support include disaster handling [1], shared workspaces
[7], and distributed recording [13].

Although significant work has already been done towards mobile
grids, much of it has followed centralized approaches based on
infrastructure wireless networks [12, 20].2 We claim there still
remains the need for a less restrictive, decentralized approach that
can support applications, like the aforementioned, in purely ad-
hoc networks. To address this issue, we propose a middleware
architecture called MoGrid. The MoGrid architecture arised out of
two convergent projects. MoCA [17] is a middleware architecture
that supports the development of context-sensitive applications for
mobile collaboration. MoCA offers application-level mobility
transparency, but was initially conceived for infrastructure
wireless networks. InteGridade [10] is a grid infrastructure over
the GIGA network [5]—a nationwide academic multigigabit
network in Brazil. InteGridade offers transparency and efficiency

1 We use the term mobile grid instead of (the more common)

wireless grid to stress our focus on mobility, which is not
necessarily implied by wireless networks.

2 In an infrastructure wireless network, communication tipically
takes place only between the mobile nodes and a fixed access
point. This access point can also act as a bridge to other wireless
or wired networks [18].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise,to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MGC’05, November 28 – December 2, 2005, Grenoble, France.
Copyright 2005 ACM 1-59593-269-0/05/11... $5.00.

Article 11

in the usage of resources distributed over the GIGA network, but
is based on a central point of resource coordination.

The MoGrid architecture aims at giving leverage to both
aforementioned projects in ad-hoc networks by allowing the
distribution of grid tasks in a P2P fashion among mobile
collaborators. In our proposal, tasks involve not only computing
resources, but also communication, peripheral, or storage
resources. This is similar to the service-oriented view of grids
presented in [3]. Mobile devices can split application requests
(e.g. for file sharing or process execution) into tasks to be carried
out by collaborators. Our architecture does not impose limitations
on the ordering of tasks completion that a specific application may
need, that is, tasks can be processed independently, sequentially,
or in parallel.

In this paper, we focus on the P2P Discovery Protocol (P2PDP),
which is a central element of the MoGrid architecture. P2PDP
helps in coordinating the distribution of grid tasks among the most
resourceful collaborators in the mobile grid. This is accomplished
by a new mechanism in which replies from collaborators willing
to deal with a request are delayed according to a timer. This timer
is set to be inversely proportional to the availability of resources
in the mobile device. It must be remarked that the determination
of reply delays is flexible with regard to the resources to be taken
into account and the relative importance among them. Replies are
broadcast so that a collaborator having received a specific request
can detect whether other, more resourceful collaborators have
already answered this request. The first reply suppresses other
replies, thus mitigating the amount of messages exchanged among
collaborators.

We have developed a prototype implementation of the MoGrid
architecture to obtain experimental results on P2PDP usage. In
such a prototype, we define some general criteria for determining
the availability of resources in mobile devices. We show in this
paper the tests that we have conducted on the prototype
implementation through a distributed file sharing application.

This paper is organized as follows. Section 2 presents some
related work on mobile grids, including a few preliminary
attempts towards ad-hoc approaches. Section 3 introduces the
MoGrid architecture, giving special attention to the P2PDP
protocol. In Section 4, some details of our prototype
implementation are presented. Section 5 discusses some relevant
issues to our architecture. Section 6 concludes this paper.

2. RELATED WORK
So far, a great deal of work on grids has focused on applying the
classic client-server model to distributed computing. For instance,
the OGSA architecture [3] is based on a three-tier model, where
the middle tier is built around Web services. Nevertheless, the
growing interest in enabling grid-based applications for mobile
devices has prompted alternative models for grid computing. Such
interest relates to the development of P2P grids [2, 4, 15],
although most approaches to that still depend to some extent on
core servers supporting a global grid system. The remainder of
this section discusses some specific projects that mainly focus on
mobile technologies.

The ISAM project [20] proposes the integration of three main
concepts—context-awareness, mobility, and grid computing—in a
pervasive computing environment. This environment supports the

development of distributed mobile applications that have adaptive
behavior. Nevertheless, ISAM assumes that mobile devices use
some basic services deployed in a fixed network. Thus, its
application is limited to infrastructure wireless networks.

Kurkovsky et al. [12] propose a grid-based problem-solving
environment for mobile devices, which are viewed as
collaborative agents in a multi-agent system. Such an environment
addresses the issues of distribution, coordination, and assembly of
complex grid tasks, as well as network instability, access
transparency, and dependability. The overall approach depends on
a central element running on (or close to) a base station. Such a
central element is responsible for coordinating the resource
sharing among the agents. Therefore, purely ad-hoc networks are
again disregarded.

The K*Grid project [11] aims at providing a comprehensive
research environment for both industry and academia through a
nationwide grid in South Korea. K*Grid envisions the use of idle
resources in a large number of mobile devices to form pervasive
mobile grids. Nevertheless, such a project is in a very early stage
of development, without any specific results so far.

The AKOGRIMO project [1] is an European-funded project
aiming at architecting and prototyping a next generation grid
based on OGSA. Currently, AKOGRIMO focuses on devising
novel grid applications over evolving mobile IPv6-based
infrastructures. The domain of such applications range from e-
health, through e-learning, to disaster handling and crisis
management. Like K*Grid, the AKOGRIMO project does not
have any specific results yet.

Overall, what still appears to be missing in the realm of mobile
grids is an adequate collaboration support for applications running
on purely ad-hoc networks. Crucially, such grid applications need
a completely decentralized and collaborative approach to the
resource discovery and coordination. Although K*Grid and
AKOGRIMO seem to be promising approaches, there are
currently no particular results on their effectiveness to support
purely ad-hoc networks.

3. MOGRID ARCHITECTURE
To support grid services in ad-hoc networks, we propose a mobile
grid middleware architecture, called MoGrid, that is independent
of centralized elements for decisions on resource sharing. The
MoGrid architecture comprises a P2P discovery layer and a
transparency layer, as depicted in Figure 1.

Figure 1. MoGrid middleware architecture.

The middleware architecture supports two main types of
applications. MoGrid-tailored applications make direct use of the

Article 11

services offered by the P2P discovery layer (see Section 3.1). For
standard applications, the use of such services is made through
the transparency layer (see Section 3.2). Irrespective of the
application type, the middleware supports the application in two
phases. First, resources are discovered among the participating
devices by means of the P2PDP protocol. Second, tasks are
submitted to selected participants according to the resources they
make available. Task submissions can be carried out through
various standard grid protocols (e.g. GridFTP [6]), and are out of
the scope of this paper.

3.1 P2P Discovery Layer
The P2P discovery layer is composed of three main parts: the
discovery API, the entities involved in resource discovery, and the
P2P Discovery Protocol.

3.1.1 Discovery API
Applications executing on a mobile device must use operations
available at the discovery API—either directly or through the
transparency layer—to take profit of the MoGrid services. The
discovery API provides applications with operations for resource
registration and announcement, context definition, and resource
discovery. Figure 2 shows the main operations of this API.

resID = register(resourceDescriptor)
deregister(resID)
reqProfile = createRequestProfile(ctxtInfo,
 numMaxReplies, maxReplyDelay)
repList = discover(resourceQuery, reqProfile)

Figure 2. Discovery API.

When a mobile device registers some resource in the middleware
(operation register()), such resource becomes accessible to
other devices in the mobile grid. The registration can be
immediately announced to the other devices, or announcements of
new available resources can be done on demand, as a result of
application requests for resource discovery (operation
discover()). Moreover, the API allows applications to
previously customize their requests for resource discovery
(operation createRequestProfile()). Such a customization is
made with regard to the number of collaborators the initiator
wishes to involve (numMaxReplies; zero means as many
collaborators as are available in the mobile grid), how much time
the application is willing to wait for replies (maxReplyDelay),
and the contextual information of interest (ctxtInfo). The
context information determines which resources are to be taken
into account in a request and the relative importance among them.
For instance, a long-lived CPU-intensive grid application can
state that plenty of battery power is more important than highly
available bandwidth when submitting its tasks for execution.

3.1.2 Discovery entities
The P2P discovery layer defines three main entities, which
correspond to the different roles a device can play in the mobile
grid, as depicted in Figure 3. Collaborators are available to run
grid tasks. A mobile device is capable of being a collaborator after
having resources registered in the middleware. Initiators submit
application requests to collaborators for task processing. Any
mobile device can be an initiator in the mobile grid at any time.
Finally, Coordinators act in between initiators and collaborators.
Coordinators broadcast initiator requests for resource discovery to
collaborators and, based on received replies, inform the initiators

about the most appropriate collaborators. Importantly, although
our focus is on ad-hoc networks (see Figure 3(a)), a centralized
coordinator could be deployed if an infrastructure network were
available, thus freeing the mobile devices from additional
processing overhead. Figure 3(b) illustrates this alternative
scenario.

[a] Ad-hoc mobile grid.

[b] Infrastructure mobile grid.

Figure 3. Discovery entities in the MoGrid architecture.

Two other underlying services play important roles in the MoGrid
architecture: the monitor and the context listener. Each device in
the mobile grid has a monitor resident in it. The monitor service is
responsible for collecting state information from the mobile
devices, including connectivity status, CPU load, remaining
battery power, and available memory and storage space. In an ad-
hoc mobile grid, each device also has a resident context listener
(see Figure 3(a)). In contrast, an infrastructure mobile grid may
have a centralized context listener (see Figure 3(b)). The context
listener service periodically receives from the monitor service the
collected state information, and deduces from such information
the resource availability of the devices. When a coordinator
queries collaborators about their resource availability to perform a
grid task, the collaborators interact with the context listener
service to check whether they can participate.

Basically, a collaborator uses two criteria to decide upon its
participation in an initiator requested task. The first one acts like
an ‘admission controller’, assessing whether the collaborator is
able to provide the enquiring initiator with the required resources
(e.g. whether the device has enough memory and battery power to
execute a process). The second one defines the suitability of the
collaborator to participate. Crucially, the suitability of a
collaborator is measured according to the contextual information
of interest provided by the enquiring initiator (ctxtInfo in
operation createRequestProfile()). Such a measurement is
used for setting up a timer that will determine how fast the
collaborator will reply to the initiator request. Taking again the
example of a long-lived grid application, collaborators with higher

Article 11

energy levels will typically reply first to a request for process
execution. Notice that, in fact, the timer associated with each reply
is set to be inversely proportional to the suitability of each
collaborator to participate. As aforementioned, replies are
broadcast so that a collaborator having received the request can
detect whether other, more resourceful collaborators have already
answered it. The first replies can thus suppress additional replies,
reducing the amount of P2PDP messages exchanged among
devices in the mobile grid.

Coordinators handle the cases of reply collisions and request
underservings. Reply collisions occur when delayed replies are
unable to suppress other unnecessary replies (e.g. if the reply
delay timers of two or more collaborators are set to similar
values). As a consequence, the coordinator can receive more
replies than the initiator needs. In such cases, the coordinator
selects the most appropriate replies based on a certain criterion,
before forwarding them to the interested initiator. Request
underservings happen typically because of replies being lost. As a
consequence, the coordinator can receive fewer replies than
expected. In such cases, the application (or the transparency layer)
that triggered the initiator request will have to deal with it, for
instance by means of an additional request.

Section 4 discusses at greater length some sound criteria for
defining suitability for collaborators and selecting the most
‘appropriate’ replies by coordinators.

3.1.3 P2P Discovery Protocol
The P2PDP protocol defines three messages, as shown in
Figure 4.

Figure 4. P2PDP messages.

InitiatorRequest (IReq) messages are sent from initiators to
coordinators and forwarded by the latter to collaborators. IReq
messages are triggered by calls to operation discover() in the
discovery API. An IReq message conveys: (i) a request ID used to
match requests to replies, (ii) the maximum reply delay that the
enquiring initiator accepts (maxReplyDelay),3 (iii) the number of
collaborators that the initiator wishes to involve
(numMaxReplies), and (iv) the contextual information that the
application is interested in (ctxtInfo).

CollaboratorReply (CRep) messages are sent from
collaborators to coordinators in response to IReq messages. A
CRep message informs a coordinator about resource availability in
a specific collaborator, according to the interested contextual
information, as indicated in the corresponding IReq message. A

3 This delay value can be statically defined or dynamically

adjusted by an adaptive algorithm based on RTT estimations.

CRep message also conveys a request ID matching that of the
corresponding IReq message.

Finally, CollaboratorReplyList (CRepList) messages are
sent from coordinators to initiators. A CRepList message
conveys a list summing up selected replies from collaborators in
the context of a same request. Coordinators build CRepList
messages as follows. When a coordinator receives an IReq
message, it inserts a new entry describing the request into its table
of pending requests. Each entry in such a table comprises the
request ID and the number of collaborators that the initiator
wishes to involve in the request. Such an entry is associated with a
timer that is set to the maximum reply delay the enquiring initiator
accepts.4 When such a timer expires, the coordinator summarizes
all the CRep messages associated with the pending request that
were received up to then, discarding unnecessary CRep messages
if needed. The resulting summary is then sent to the enquiring
initiator in a single CRepList message.

3.2 Transparency Layer
In contrast to MoGrid-tailored applications, standard applications
are oblivious to the particular details of the discovery API. To
address this issue, the transparency layer (see Figure 1) handles
the resource coordination among collaborators using the proposed
P2PDP protocol. The transparency layer is composed of two main
parts: the Transparent Resource Access Sublayer (TRAS), and the
Adaptation Sublayers (see Figure 5).

Figure 5. Transparency layer.

3.2.1 Transparent Resource Access Sublayer
The purpose of the TRAS sublayer is to mask from grid
applications some issues related to the irregular connectivity that
is inherent to mobile environments. Normally, upon receiving the
list of the most resourceful collaborators in response to a P2PDP
IReq message, the enquiring initiator may start the task
distribution among such collaborators by using a standard grid
protocol. Each collaborator, having fully performed a task, sends
the obtained results back to the initiator. Nevertheless, during the
task submission or execution the initiator or any of the
collaborators may endure a period of disconnection, which can be
either voluntary (e.g. device being switched off or entering ‘doze’
mode) or involuntary (e.g. abrupt loss of RF signal strength).

When the coordinator is centralized (see Figure 3(b)), it can deal
with disconnected initiators by acting as a proxy for them, caching
the task results sent by the collaborators. In case of disconnected
collaborators, the coordinator acts on behalf of the enquiring
initiator by selecting new collaborators with the help of the
P2PDP protocol. When collaborator disconnections are voluntary,
independent of the coordinator being centralized or distributed,
mechanisms for task migration among collaborators can be
used [14].

4 In case of a centralized coordinator, this timer must also consider

the transfer delay between initiators and the coordinator.

Article 11

For decentralized coordinators (see Figure 3(a)), as is typically the
case in ad-hoc networks, some additional considerations must be
made. The remainder of this section focuses on the TRAS support
for ad-hoc networks and its relation with the P2PDP protocol.

In case of voluntary disconnections, initiators notify current
collaborators that they are going to become disconnected. When
reaching the end of a task, the notified collaborators store the
corresponding results until the initiator advertises that it is in
service again, or a waiting-for-initiator timer expires, in which
case the collaborators discard the cached results. When a
collaborator detects that it is going to become disconnected, it
interrupts the ongoing tasks and notifies all the associated
initiators. In response to such notifications, initiators trigger the
P2PDP protocol to select new collaborators, and then re-submit
the tasks to the newly selected collaborators. Hence, such tasks
will be re-executed from the beginning. Notice that another
protocol (complementary to P2PDP) is needed to manage
voluntary disconnections. The specification of this protocol is left
for future work, since in this paper our focus is on the proposal of
the MoGrid architecture, and the P2PDP protocol in particular.

For involuntary disconnections, the transparency layer relies on
the events received by the context listener service to detect
possible disconnections. Each adaptation sublayer may take
specific actions to overcome such involuntary disconnections, as
discussed in Section 3.2.2.

3.2.2 Adaptation Sublayers
The TRAS sublayer provides application-independent
transparency mechanisms for resource utilization. Nevertheless,
each kind of application has its specific requirements on a mobile
grid. For instance, master-worker applications demand higher
processing power but are less susceptible to intermittent
connectivity, whereas storage capacity and connection stability
have greater importance to data replication applications. The main
purpose of the adaptation sublayers is to implement the handling
of mobility and connectivity-related events in a way that it is more
adequate for each type of grid application.

Each adaptation sublayer has to implement some callback
operations that define the expected behavior of initiators in case
of exception events, such as request underservings or voluntary
collaborator disconnections. Crucially, the TRAS sublayer
triggers a callback when any events happen. An example of
adaptation sublayer implementation is presented in Section 4.

4. IMPLEMENTATION
To experiment with our approach, a middleware-architecture
prototype was implemented in Java, using the Connected Device
Configuration (CDC) of J2ME [19] as the reference
implementation platform. The java.net.DatagramSocket and
java.net.DatagramPacket classes are used to implement the
P2PDP protocol over UDP. P2PDP messages exchanged between
coordinators and collaborators are sent to the ‘all 1s’ IP broadcast
address. To avoid the problem of reply implosion, we only
consider single-hop ad-hoc networks in our implementation;
multihop networks will be addressed in a next stage.

Collaborators and coordinators use the java.util.Timer and
java.util.TimerTask classes to implement their timers. In the

prototype implementation, each collaborator sets its reply delay
timer to τ units of time, as given by

N represents the number of the different resource types the
collaborator should take into account. Pi is the weight that
describes the relative importance of each resource type i,
1 ≤ i ≤ N. Both N and Pi are described as part of the contextual
information sent by the initiator in the corresponding IReq
message. Dmax is the maximum reply delay, which is also obtained
from the IReq message. γ is a constant (arbitrarily set to 2 in our
implementation) used for considering the transfer delays that
CRep and CRepList messages may experience. αi is the
normalized level of availability of resource type i at the
collaborator, as indicated by its monitor service. Finally, ω
indicates the willingness of the collaborator to participate in the
execution of distributed tasks. It is a subjective, user-defined
factor that describes the user level of interest in allowing its
device to collaborate with others on the mobile grid. ω = 0 means
the collaborator is not willing to participate; thus no CRep
messages are sent by it.

Equation (1) is quite general as it allows the definition of different
criteria for determining the suitability of collaborators. For the
selection of replies at coordinators, we preferred a rather
straightforward criterion based on a ‘first in, first selected’ policy.
Although simple, such a criterion allows a coordinator to build
and send a CRepList message before the timer associated with a
corresponding request expires, reducing the total time spent with
the resource discovery procedure.

The implementation of the monitor service was borrowed from the
MoCA architecture [17]. The MoCA monitor is deployed as a
daemon running on each mobile device, being responsible for
collecting state information such as RF signal strength, energy
level, CPU usage, and free memory. Since MoCA monitor is
implemented in C/C++, the use of the Java Native Interface (JNI)
was needed to integrate the monitor into our implementation.

We have tested our prototype with a typical distributed file
sharing application. For such an application, we defined the
context information of interest as only comprising the battery
power and the RF signal strength (i.e. N = 2), both with the same
relative importance (i.e. P1 = P2 = 1).

The test application was implemented over an experimental
adaptation sublayer. This sublayer offers three operations:
registerFile(), deregisterFile(), and getFile(). The
first two operations provide a simple interface to manage resource
announcements in MoGrid. The third operation triggers a P2PDP
IReq message for discovering only one source of the desired file.5
The callback operation that the adaptation sublayer provides for
TRAS reacts to underservings by re-enquiring the discovery
service offered by the P2PDP protocol.

5 One improvement in this sublayer implementation could involve

the discovery of multiple sources. For instance, it could cache
additional responses to use them in case of involuntary
disconnections.

Article 11

The MoCA monitor provides an emulating mode that allowed us
to use fixed nodes mimicking the behavior of mobile devices as
regards RF signal strength and battery power readings. To test the
P2PDP protocol, emulation scripts were used for describing the
behavior of five devices with various levels of resource
availability that randomly connect and disconnect from an ad-hoc
mobile grid. As an outcome of our tests, we observed the
effectiveness of P2PDP in selecting more resourceful
collaborators while suppressing unnecessary response messages.

5. DISCUSSION
This work corresponds to an initial stage in the effort to develop a
fully-fledged mobile grid middleware architecture. A central point
that we envision as needing further developments is the
description of resources. Currently, there is no standardized
support for such descriptions in our implementation, which are
left completely to the application. To address this issue, we plan
to use an (or define a new) XML-based resource description
language similar to those applied at OGSA [3] and WSDA [8].
Such a description language would allow the use of XML-targeted
technologies like XQuery and XPath as inputs to the operation
discover() of our discovery API.

Other future work will involve the implementation of proxies that
allow devices in the mobile grid to interoperate with devices in
conventional grids. We are starting to investigate such integration
through the use of Globus components, as part of the InteGridade
project [10].

A key aspect not covered in our implementation is privacy and
trust establishment. Social relationships based on reputation
mechanisms have constantly been pointed out [13, 16] as a
possible solution to this problem. We are currently examining the
use of ω in Equation (1) as a parameter that aids in describing the
collaborators reputation in a mobile grid.

6. CONCLUSION
In this paper we have proposed a middleware architecture that
allows the distribution of tasks among devices in a mobile grid.
Central to the proposed architecture is a resource discovery
protocol called P2PDP. Fundamentally, P2PDP helps in
coordinating such a distribution among the most resourceful and
available mobile devices, while mitigating the overhead of control
messages exchanged among them. We have implemented a
prototype of the architecture and also a simple test application to
evaluate the correctness of the protocol and to trial some main
features of the design, such as the criteria for collaboration
suitability.

We are aware of the need for conducting more comprehensive
experiments to evaluate the performance and scalability of our
approach. This includes evaluating the behavior of the P2PDP
protocol and the services provided by the transparency layer when
they are faced with different mobility patterns, including periods
of voluntary or involuntary disconnections. One specific problem
that we plan to tackle in the context of the transparency layer is
the migration of tasks among collaborators, for example when a
device infers that it is losing connectivity with a mobile grid.

7. REFERENCES
[1] AKOGRIMO Project, http://www.akogrimo.org/ (2005).

[2] Bhatia, K. Peer-To-Peer Requirements On The Open Grid
Services Architecture Framework. GFD.49, GGF Document
Series, OGSAP2P Research Group, 2005.

[3] Foster, I., Kesselman, C., Nick, J.M., and Tuecke, S. The
Physiology of the Grid: An Open Grid Services Architecture
for Distributed Systems Integration. Globus Project, 2002.

[4] Fox, G., Gannon, D., Ko, S., Lee, S., Pallickara, S., Pierce,
M., Qiu, X., Rao, X., Uyar, A., Wang, M., and Wu, W. Peer-
to-peer Grids. In Berman, F., Fox, G., Hey, T., eds.: Grid
Computing - Making the Global Infrastructure a Reality,
471-490. John Wiley & Sons Ltd, 2003.

[5] GIGA Project, http://www.projetogiga.org.br/ (2005).

[6] Globus Project, http://www.globus.org/ (2005).

[7] Gutwin, C., Greenberg, S., and Roseman, M. Workspace
Awareness in Real-Time Distributed Groupware:
Framework, Widgets, and Evaluation. In Proc. of HCI'96:
People and Computers XI, 281-298, London, UK, 1996.

[8] Hoschek, W. The Web Services Discovery Architecture. In
Proc. of the Int’l IEEE/ACM Supercomputing Conference,
1-15, Baltimore, USA, 2002.

[9] Hwang, J., and Aravamudham, P. Middleware Services for
P2P Computing in Wireless Grid Networks. IEEE Internet
Computing, vol. 8, nº. 4, 40-46, 2004.

[10] InteGridade Project, http://integridade.lncc.br/ (2005)

[11] K*Grid Project, http://gridcenter.or.kr/ (2005).

[12] Kurkovsky, S., Bhagyavati, and Ray, A. Modeling a Grid-
Based Problem-Solving Environment for Mobile Devices. In
Proc. of the IEEE Int’l Conference on Information
Technology: Coding and Computing (ITCC-04), Las Vegas,
USA, 2004.

[13] McKnight, L.W., Howison, J., and Bradner, S. Wireless
grids: Distributed resource sharing by mobile, nomadic, and
fixed devices. IEEE Internet Computing, vol. 8, nº. 4, 24-31,
2004.

[14] Milojicic, D.S., Douglis, F., Paindaveine, Y., Wheeler, R.
and Zhou, S. Process Migration. ACM Computing Surveys,
vol. 32, nº. 3, 241-299, 2000.

[15] P-Grid Project, http://www.p-grid.org/ (2005).

[16] Rheingold, H. Smart Mobs: the next social revolution,
Perseus Publishing, 2003.

[17] Sacramento, V., Endler, M., Rubinsztejn, H.K., Lima, L.S.,
Gonçalves, K., Nascimento, F.N, and Bueno, G.A. MoCA: A
Middleware for Developing Collaborative Applications for
Mobile Users. IEEE Distributed Systems Online, vol. 5, nº.
10, 2004.

[18] Schiller, J. Mobile Communications, Addison Wesley, 2003.

[19] Sun Microsystems. Java 2 Platform, Micro Edition.
http://java.sun.com/j2me/ (2005).

[20] Yamin, A.C., Barbosa, J.B., Augustin, I., Silva, L.C., Real,
R., Geyer, C., and Cavalheiro, G. Towards Merging Context-
Aware, Mobile and Grid Computing. Int’l Journal of High
Performance Computing Applications (jHPCA), vol. 17, nº.
2, 191-203, 2003.

Article 11

