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ABSTRACT 
Grids are likely to be the mainstay of distributed computing. Grid 
was firstly applied as a concept for sharing computing resources 
among wired nodes, but there has been a growing interest in 
extending this concept to mobile environments. Although 
significant work has been done towards mobile grids, much of it 
has followed centralized approaches based on infrastructure 
wireless networks. We believe that a less restrictive, decentralized 
approach that supports mobile collaboration in ad-hoc wireless 
networks can cater for novel grid applications. To address this 
issue, we propose a middleware architecture called MoGrid. 
MoGrid orchestrates the distribution of grid tasks among mobile 
devices in a peer-to-peer (P2P) fashion. In this paper, we focus on 
the P2P Discovery Protocol (P2PDP), which is a central element 
of our architecture. P2PDP aids in distributing tasks among the 
most resourceful devices, while mitigating the overhead of control 
messages exchanged among them. We describe a prototype 
implementation of our architecture and discuss some issues 
related to the adoption of P2PDP as an ad-hoc resource discovery 
mechanism in mobile grids. 

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network 
Architecture and Design – Wireless communication; C.2.2 
[Computer-Communication Networks]: Network Protocols – 
Applications; C.2.4 [Computer-Communication Networks] 
Distributed Systems – Distributed applications. 

General Terms 
Design, Experimentation. 

Keywords 
Mobile grids, P2P protocols, resource discovery, mobile 
collaboration, ad-hoc networks, middleware. 

1. INTRODUCTION 
Grids are likely to be the mainstay of distributed computing. 
Originally conceived of as a concept for sharing computing 
resources among wired nodes, grids have been receiving growing 
attention as to their application to mobile environments [1, 11, 
13]. There are two main approaches to integrating mobile 
environments into grids. In the first approach, mobile devices are 
used just as interfaces to access wired grids [9]. In the second (and 
more challenging) approach, mobile devices can take part in a grid 
as task processing nodes, shaping the so-called mobile grids.1  

Mobile grids demand new control patterns for distributed resource 
sharing since mobile devices allow the establishment of 
spontaneous, highly-dynamic ad-hoc communities, for example  
those motivated by common interests or geographical proximity. 
Crucially, no centralized resource-discovery mechanisms may be 
available for such a community. In this context, mobile grids can 
be regarded as being supported by (and, conversely, a support for) 
P2P technologies. Examples of novel P2P applications a mobile 
grid can support include disaster handling [1], shared workspaces 
[7], and distributed recording [13]. 

Although significant work has already been done towards mobile 
grids, much of it has followed centralized approaches based on 
infrastructure wireless networks [12, 20].2 We claim there still 
remains the need for a less restrictive, decentralized approach that 
can support applications, like the aforementioned, in purely ad-
hoc networks. To address this issue, we propose a middleware 
architecture called MoGrid. The MoGrid architecture arised out of 
two convergent projects. MoCA [17] is a middleware architecture 
that supports the development of context-sensitive applications for 
mobile collaboration. MoCA offers application-level mobility 
transparency, but was initially conceived for infrastructure 
wireless networks. InteGridade [10] is a grid infrastructure over 
the GIGA network [5]—a nationwide academic multigigabit 
network in Brazil. InteGridade offers transparency and efficiency 

                                                                 
1 We use the term mobile grid instead of (the more common) 

wireless grid to stress our focus on mobility, which is not 
necessarily implied by wireless networks. 

2  In an infrastructure wireless network, communication tipically 
takes place only between the mobile nodes and a fixed access 
point. This access point can also act as a bridge to other wireless 
or wired networks [18]. 
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in the usage of resources distributed over the GIGA network, but 
is based on a central point of resource coordination.  

The MoGrid architecture aims at giving leverage to both 
aforementioned projects in ad-hoc networks by allowing the 
distribution of grid tasks in a P2P fashion among mobile 
collaborators. In our proposal, tasks involve not only computing 
resources, but also communication, peripheral, or storage 
resources. This is similar to the service-oriented view of grids 
presented in [3]. Mobile devices can split application requests 
(e.g. for file sharing or process execution) into tasks to be carried 
out by collaborators. Our architecture does not impose limitations 
on the ordering of tasks completion that a specific application may 
need, that is, tasks can be processed independently, sequentially, 
or in parallel.  

In this paper, we focus on the P2P Discovery Protocol (P2PDP), 
which is a central element of the MoGrid architecture. P2PDP 
helps in coordinating the distribution of grid tasks among the most 
resourceful collaborators in the mobile grid. This is accomplished 
by a new mechanism in which replies from collaborators willing 
to deal with a request are delayed according to a timer. This timer 
is set to be inversely proportional to the availability of resources 
in the mobile device. It must be remarked that the determination 
of reply delays is flexible with regard to the resources to be taken 
into account and the relative importance among them. Replies are 
broadcast so that a collaborator having received a specific request 
can detect whether other, more resourceful collaborators have 
already answered this request. The first reply suppresses other 
replies, thus mitigating the amount of messages exchanged among 
collaborators.  

We have developed a prototype implementation of the MoGrid 
architecture to obtain experimental results on P2PDP usage. In 
such a prototype, we define some general criteria for determining 
the availability of resources in mobile devices. We show in this 
paper the tests that we have conducted on the prototype 
implementation through a distributed file sharing application. 

This paper is organized as follows. Section 2 presents some 
related work on mobile grids, including a few preliminary 
attempts towards ad-hoc approaches. Section 3 introduces the 
MoGrid architecture, giving special attention to the P2PDP 
protocol. In Section 4, some details of our prototype 
implementation are presented. Section 5 discusses some relevant 
issues to our architecture. Section 6 concludes this paper. 

2. RELATED WORK 
So far, a great deal of work on grids has focused on applying the 
classic client-server model to distributed computing. For instance, 
the OGSA architecture [3] is based on a three-tier model, where 
the middle tier is built around Web services. Nevertheless, the 
growing interest in enabling grid-based applications for mobile 
devices has prompted alternative models for grid computing. Such 
interest relates to the development of P2P grids [2, 4, 15], 
although most approaches to that still depend to some extent on 
core servers supporting a global grid system. The remainder of 
this section discusses some specific projects that mainly focus on 
mobile technologies. 

The ISAM project [20] proposes the integration of three main 
concepts—context-awareness, mobility, and grid computing—in a 
pervasive computing environment. This environment supports the 

development of distributed mobile applications that have adaptive 
behavior. Nevertheless, ISAM assumes that mobile devices use 
some basic services deployed in a fixed network. Thus, its 
application is limited to infrastructure wireless networks. 

Kurkovsky et al. [12] propose a grid-based problem-solving 
environment for mobile devices, which are viewed as 
collaborative agents in a multi-agent system. Such an environment 
addresses the issues of distribution, coordination, and assembly of 
complex grid tasks, as well as network instability, access 
transparency, and dependability. The overall approach depends on 
a central element running on (or close to) a base station. Such a 
central element is responsible for coordinating the resource 
sharing among the agents. Therefore, purely ad-hoc networks are 
again disregarded. 

The K*Grid project [11] aims at providing a comprehensive 
research environment for both industry and academia through a 
nationwide grid in South Korea. K*Grid envisions the use of idle 
resources in a large number of mobile devices to form pervasive 
mobile grids. Nevertheless, such a project is in a very early stage 
of development, without any specific results so far. 

The AKOGRIMO project [1] is an European-funded project 
aiming at architecting and prototyping a next generation grid 
based on OGSA. Currently, AKOGRIMO focuses on devising 
novel grid applications over evolving mobile IPv6-based 
infrastructures. The domain of such applications range from e-
health, through e-learning, to disaster handling and crisis 
management. Like K*Grid, the AKOGRIMO project does not 
have any specific results yet. 

Overall, what still appears to be missing in the realm of mobile 
grids is an adequate collaboration support for applications running 
on purely ad-hoc networks. Crucially, such grid applications need 
a completely decentralized and collaborative approach to the 
resource discovery and coordination. Although K*Grid and 
AKOGRIMO seem to be promising approaches, there are 
currently no particular results on their effectiveness to support 
purely ad-hoc networks.  

3. MOGRID ARCHITECTURE 
To support grid services in ad-hoc networks, we propose a mobile 
grid middleware architecture, called MoGrid, that is independent 
of centralized elements for decisions on resource sharing. The 
MoGrid architecture comprises a P2P discovery layer and a 
transparency layer, as depicted in Figure 1. 

 

Figure 1. MoGrid middleware architecture. 

The middleware architecture supports two main types of 
applications. MoGrid-tailored applications make direct use of the 
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services offered by the P2P discovery layer (see Section 3.1). For 
standard applications, the use of such services is made through 
the transparency layer (see Section 3.2). Irrespective of the 
application type, the middleware supports the application in two 
phases. First, resources are discovered among the participating 
devices by means of the P2PDP protocol. Second, tasks are 
submitted to selected participants according to the resources they 
make available. Task submissions can be carried out through 
various standard grid protocols (e.g. GridFTP [6]), and are out of 
the scope of this paper. 

3.1 P2P Discovery Layer 
The P2P discovery layer is composed of three main parts: the 
discovery API, the entities involved in resource discovery, and the 
P2P Discovery Protocol. 

3.1.1 Discovery API 
Applications executing on a mobile device must use operations 
available at the discovery API—either directly or through the 
transparency layer—to take profit of the MoGrid services. The 
discovery API provides applications with operations for resource 
registration and announcement, context definition, and resource 
discovery. Figure 2 shows the main operations of this API. 

resID = register( resourceDescriptor ) 
deregister( resID ) 
reqProfile = createRequestProfile( ctxtInfo, 
                        numMaxReplies, maxReplyDelay ) 
repList = discover( resourceQuery, reqProfile ) 

Figure 2. Discovery API. 

When a mobile device registers some resource in the middleware 
(operation register()), such resource becomes accessible to 
other devices in the mobile grid. The registration can be 
immediately announced to the other devices, or announcements of 
new available resources can be done on demand, as a result of 
application requests for resource discovery (operation 
discover()). Moreover, the API allows applications to 
previously customize their requests for resource discovery 
(operation createRequestProfile()). Such a customization is 
made with regard to the number of collaborators the initiator 
wishes to involve (numMaxReplies; zero means as many 
collaborators as are available in the mobile grid), how much time 
the application is willing to wait for replies (maxReplyDelay), 
and the contextual information of interest (ctxtInfo). The 
context information determines which resources are to be taken 
into account in a request and the relative importance among them. 
For instance, a long-lived CPU-intensive grid application can 
state that plenty of battery power is more important than highly 
available bandwidth when submitting its tasks for execution. 

3.1.2 Discovery entities 
The P2P discovery layer defines three main entities, which 
correspond to the different roles a device can play in the mobile 
grid, as depicted in Figure 3. Collaborators are available to run 
grid tasks. A mobile device is capable of being a collaborator after 
having resources registered in the middleware. Initiators submit 
application requests to collaborators for task processing. Any 
mobile device can be an initiator in the mobile grid at any time. 
Finally, Coordinators act in between initiators and collaborators. 
Coordinators broadcast initiator requests for resource discovery to 
collaborators and, based on received replies, inform the initiators 

about the most appropriate collaborators. Importantly, although 
our focus is on ad-hoc networks (see Figure 3(a)), a centralized 
coordinator could be deployed if an infrastructure network were 
available, thus freeing the mobile devices from additional 
processing overhead. Figure 3(b) illustrates this alternative 
scenario. 

 
[ a ] Ad-hoc mobile grid. 

 

 

[ b ] Infrastructure mobile grid. 

Figure 3. Discovery entities in the MoGrid architecture. 

Two other underlying services play important roles in the MoGrid 
architecture: the monitor and the context listener. Each device in 
the mobile grid has a monitor resident in it. The monitor service is 
responsible for collecting state information from the mobile 
devices, including connectivity status, CPU load, remaining 
battery power, and available memory and storage space. In an ad-
hoc mobile grid, each device also has a resident context listener 
(see Figure 3(a)). In contrast, an infrastructure mobile grid may 
have a centralized context listener (see Figure 3(b)). The context 
listener service periodically receives from the monitor service the 
collected state information, and deduces from such information 
the resource availability of the devices. When a coordinator 
queries collaborators about their resource availability to perform a 
grid task, the collaborators interact with the context listener 
service to check whether they can participate.  

Basically, a collaborator uses two criteria to decide upon its 
participation in an initiator requested task. The first one acts like 
an ‘admission controller’, assessing whether the collaborator is 
able to provide the enquiring initiator with the required resources 
(e.g. whether the device has enough memory and battery power to 
execute a process). The second one defines the suitability of the 
collaborator to participate. Crucially, the suitability of a 
collaborator is measured according to the contextual information 
of interest provided by the enquiring initiator (ctxtInfo in 
operation createRequestProfile()). Such a measurement is 
used for setting up a timer that will determine how fast the 
collaborator will reply to the initiator request. Taking again the 
example of a long-lived grid application, collaborators with higher 
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energy levels will typically reply first to a request for process 
execution. Notice that, in fact, the timer associated with each reply 
is set to be inversely proportional to the suitability of each 
collaborator to participate. As aforementioned, replies are 
broadcast so that a collaborator having received the request can 
detect whether other, more resourceful collaborators have already 
answered it. The first replies can thus suppress additional replies, 
reducing the amount of P2PDP messages exchanged among 
devices in the mobile grid. 

Coordinators handle the cases of reply collisions and request 
underservings. Reply collisions occur when delayed replies are 
unable to suppress other unnecessary replies (e.g. if the reply 
delay timers of two or more collaborators are set to similar 
values). As a consequence, the coordinator can receive more 
replies than the initiator needs. In such cases, the coordinator 
selects the most appropriate replies based on a certain criterion, 
before forwarding them to the interested initiator. Request 
underservings happen typically because of replies being lost. As a 
consequence, the coordinator can receive fewer replies than 
expected. In such cases, the application (or the transparency layer) 
that triggered the initiator request will have to deal with it, for 
instance by means of an additional request. 

Section 4 discusses at greater length some sound criteria for 
defining suitability for collaborators and selecting the most 
‘appropriate’ replies by coordinators. 

3.1.3 P2P Discovery Protocol 
The P2PDP protocol defines three messages, as shown in 
Figure 4. 

 

Figure 4. P2PDP messages. 

InitiatorRequest (IReq) messages are sent from initiators to 
coordinators and forwarded by the latter to collaborators. IReq 
messages are triggered by calls to operation discover() in the 
discovery API. An IReq message conveys: (i) a request ID used to 
match requests to replies, (ii) the maximum reply delay that the 
enquiring initiator accepts (maxReplyDelay),3 (iii) the number of 
collaborators that the initiator wishes to involve 
(numMaxReplies), and (iv) the contextual information that the 
application is interested in (ctxtInfo).  

CollaboratorReply (CRep) messages are sent from 
collaborators to coordinators in response to IReq messages. A 
CRep message informs a coordinator about resource availability in 
a specific collaborator, according to the interested contextual 
information, as indicated in the corresponding IReq message. A 

                                                                 
3 This delay value can be statically defined or dynamically 

adjusted by an adaptive algorithm based on RTT estimations. 

CRep message also conveys a request ID matching that of the 
corresponding IReq message.  

Finally, CollaboratorReplyList (CRepList) messages are 
sent from coordinators to initiators. A CRepList message 
conveys a list summing up selected replies from collaborators in 
the context of a same request. Coordinators build CRepList 
messages as follows. When a coordinator receives an IReq 
message, it inserts a new entry describing the request into its table 
of pending requests. Each entry in such a table comprises the 
request ID and the number of collaborators that the initiator 
wishes to involve in the request. Such an entry is associated with a 
timer that is set to the maximum reply delay the enquiring initiator 
accepts.4 When such a timer expires, the coordinator summarizes 
all the CRep messages associated with the pending request that 
were received up to then, discarding unnecessary CRep messages 
if needed. The resulting summary is then sent to the enquiring 
initiator in a single CRepList message. 

3.2 Transparency Layer 
In contrast to MoGrid-tailored applications, standard applications 
are oblivious to the particular details of the discovery API. To 
address this issue, the transparency layer (see Figure 1) handles 
the resource coordination among collaborators using the proposed 
P2PDP protocol. The transparency layer is composed of two main 
parts: the Transparent Resource Access Sublayer (TRAS), and the 
Adaptation Sublayers (see Figure 5). 

 

Figure 5. Transparency layer. 

3.2.1 Transparent Resource Access Sublayer 
The purpose of the TRAS sublayer is to mask from grid 
applications some issues related to the irregular connectivity that 
is inherent to mobile environments. Normally, upon receiving the 
list of the most resourceful collaborators in response to a P2PDP 
IReq message, the enquiring initiator may start the task 
distribution among such collaborators by using a standard grid 
protocol. Each collaborator, having fully performed a task, sends 
the obtained results back to the initiator. Nevertheless, during the 
task submission or execution the initiator or any of the 
collaborators may endure a period of disconnection, which can be 
either voluntary (e.g. device being switched off or entering ‘doze’ 
mode) or involuntary (e.g. abrupt loss of RF signal strength). 

When the coordinator is centralized (see Figure 3(b)), it can deal 
with disconnected initiators by acting as a proxy for them, caching 
the task results sent by the collaborators. In case of disconnected 
collaborators, the coordinator acts on behalf of the enquiring 
initiator by selecting new collaborators with the help of the 
P2PDP protocol. When collaborator disconnections are voluntary, 
independent of the coordinator being centralized or distributed, 
mechanisms for task migration among collaborators can be 
used [14]. 
                                                                 
4 In case of a centralized coordinator, this timer must also consider 

the transfer delay between initiators and the coordinator. 
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For decentralized coordinators (see Figure 3(a)), as is typically the 
case in ad-hoc networks, some additional considerations must be 
made. The remainder of this section focuses on the TRAS support 
for ad-hoc networks and its relation with the P2PDP protocol. 

In case of voluntary disconnections, initiators notify current 
collaborators that they are going to become disconnected. When 
reaching the end of a task, the notified collaborators store the 
corresponding results until the initiator advertises that it is in 
service again, or a waiting-for-initiator timer expires, in which 
case the collaborators discard the cached results. When a 
collaborator detects that it is going to become disconnected, it 
interrupts the ongoing tasks and notifies all the associated 
initiators. In response to such notifications, initiators trigger the 
P2PDP protocol to select new collaborators, and then re-submit 
the tasks to the newly selected collaborators. Hence, such tasks 
will be re-executed from the beginning. Notice that another 
protocol (complementary to P2PDP) is needed to manage 
voluntary disconnections. The specification of this protocol is left 
for future work, since in this paper our focus is on the proposal of 
the MoGrid architecture, and the P2PDP protocol in particular.  

For involuntary disconnections, the transparency layer relies on 
the events received by the context listener service to detect 
possible disconnections. Each adaptation sublayer may take 
specific actions to overcome such involuntary disconnections, as 
discussed in Section 3.2.2.  

3.2.2 Adaptation Sublayers 
The TRAS sublayer provides application-independent 
transparency mechanisms for resource utilization. Nevertheless, 
each kind of application has its specific requirements on a mobile 
grid. For instance, master-worker applications demand higher 
processing power but are less susceptible to intermittent 
connectivity, whereas storage capacity and connection stability 
have greater importance to data replication applications. The main 
purpose of the adaptation sublayers is to implement the handling 
of mobility and connectivity-related events in a way that it is more 
adequate for each type of grid application.  

Each adaptation sublayer has to implement some callback 
operations that define the expected behavior of initiators in case 
of exception events, such as request underservings or voluntary 
collaborator disconnections. Crucially, the TRAS sublayer 
triggers a callback when any events happen. An example of 
adaptation sublayer implementation is presented in Section 4. 

4. IMPLEMENTATION 
To experiment with our approach, a middleware-architecture 
prototype was implemented in Java, using the Connected Device 
Configuration (CDC) of J2ME [19] as the reference 
implementation platform. The java.net.DatagramSocket and 
java.net.DatagramPacket classes are used to implement the 
P2PDP protocol over UDP. P2PDP messages exchanged between 
coordinators and collaborators are sent to the ‘all 1s’ IP broadcast 
address. To avoid the problem of reply implosion, we only 
consider single-hop ad-hoc networks in our implementation; 
multihop networks will be addressed in a next stage. 

Collaborators and coordinators use the java.util.Timer and 
java.util.TimerTask classes to implement their timers. In the 

prototype implementation, each collaborator sets its reply delay 
timer to τ units of time, as given by 

 

N represents the number of the different resource types the 
collaborator should take into account. Pi is the weight that 
describes the relative importance of each resource type i, 
1 ≤ i ≤ N. Both N and Pi are described as part of the contextual 
information sent by the initiator in the corresponding IReq 
message. Dmax is the maximum reply delay, which is also obtained 
from the IReq message. γ is a constant (arbitrarily set to 2 in our 
implementation) used for considering the transfer delays that 
CRep and CRepList messages may experience. αi is the 
normalized level of availability of resource type i at the 
collaborator, as indicated by its monitor service. Finally, ω 
indicates the willingness of the collaborator to participate in the 
execution of distributed tasks. It is a subjective, user-defined 
factor that describes the user level of interest in allowing its 
device to collaborate with others on the mobile grid. ω = 0 means 
the collaborator is not willing to participate; thus no CRep 
messages are sent by it. 

Equation (1) is quite general as it allows the definition of different 
criteria for determining the suitability of collaborators. For the 
selection of replies at coordinators, we preferred a rather 
straightforward criterion based on a ‘first in, first selected’ policy. 
Although simple, such a criterion allows a coordinator to build 
and send a CRepList message before the timer associated with a 
corresponding request expires, reducing the total time spent with 
the resource discovery procedure. 

The implementation of the monitor service was borrowed from the 
MoCA architecture [17]. The MoCA monitor is deployed as a 
daemon running on each mobile device, being responsible for 
collecting state information such as RF signal strength, energy 
level, CPU usage, and free memory. Since MoCA monitor is 
implemented in C/C++, the use of the Java Native Interface (JNI) 
was needed to integrate the monitor into our implementation.  

We have tested our prototype with a typical distributed file 
sharing application. For such an application, we defined the 
context information of interest as only comprising the battery 
power and the RF signal strength (i.e. N = 2), both with the same 
relative importance (i.e. P1 = P2 = 1).  

The test application was implemented over an experimental 
adaptation sublayer. This sublayer offers three operations: 
registerFile(), deregisterFile(), and getFile(). The 
first two operations provide a simple interface to manage resource 
announcements in MoGrid. The third operation triggers a P2PDP 
IReq message for discovering only one source of the desired file.5 
The callback operation that the adaptation sublayer provides for 
TRAS reacts to underservings by re-enquiring the discovery 
service offered by the P2PDP protocol. 

                                                                 
5 One improvement in this sublayer implementation could involve 

the discovery of multiple sources. For instance, it could cache 
additional responses to use them in case of involuntary 
disconnections. 
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The MoCA monitor provides an emulating mode that allowed us 
to use fixed nodes mimicking the behavior of mobile devices as 
regards RF signal strength and battery power readings. To test the 
P2PDP protocol, emulation scripts were used for describing the 
behavior of five devices with various levels of resource 
availability that randomly connect and disconnect from an ad-hoc 
mobile grid. As an outcome of our tests, we observed the 
effectiveness of P2PDP in selecting more resourceful 
collaborators while suppressing unnecessary response messages. 

5. DISCUSSION 
This work corresponds to an initial stage in the effort to develop a 
fully-fledged mobile grid middleware architecture. A central point 
that we envision as needing further developments is the 
description of resources. Currently, there is no standardized 
support for such descriptions in our implementation, which are 
left completely to the application. To address this issue, we plan 
to use an (or define a new) XML-based resource description 
language similar to those applied at OGSA [3] and WSDA [8]. 
Such a description language would allow the use of XML-targeted 
technologies like XQuery and XPath as inputs to the operation 
discover() of our discovery API.  

Other future work will involve the implementation of proxies that 
allow devices in the mobile grid to interoperate with devices in 
conventional grids. We are starting to investigate such integration 
through the use of Globus components, as part of the InteGridade 
project [10]. 

A key aspect not covered in our implementation is privacy and 
trust establishment. Social relationships based on reputation 
mechanisms have constantly been pointed out [13, 16] as a 
possible solution to this problem. We are currently examining the 
use of ω in Equation (1) as a parameter that aids in describing the 
collaborators reputation in a mobile grid. 

6. CONCLUSION 
In this paper we have proposed a middleware architecture that 
allows the distribution of tasks among devices in a mobile grid. 
Central to the proposed architecture is a resource discovery 
protocol called P2PDP. Fundamentally, P2PDP helps in 
coordinating such a distribution among the most resourceful and 
available mobile devices, while mitigating the overhead of control 
messages exchanged among them. We have implemented a 
prototype of the architecture and also a simple test application to 
evaluate the correctness of the protocol and to trial some main 
features of the design, such as the criteria for collaboration 
suitability. 

We are aware of the need for conducting more comprehensive 
experiments to evaluate the performance and scalability of our 
approach. This includes evaluating the behavior of the P2PDP 
protocol and the services provided by the transparency layer when 
they are faced with different mobility patterns, including periods 
of voluntary or involuntary disconnections. One specific problem 
that we plan to tackle in the context of the transparency layer is 
the migration of tasks among collaborators, for example when a 
device infers that it is losing connectivity with a mobile grid. 
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