
The Model-Assisted Global Query System
for Multiple Databases in Distributed
Enterprises

WAIMAN CHEUNG
The Chinese University of Hong Kong
and
CHENG HSU
Rensselaer Polytechnic Institute

Today’s enterprises typically employ multiple information systems, which are independently
developed, locally administered, and different in logical or physical designs. Therefore, a funda-
mental challenge in enterprise information management is the sharing of information for
enterprise users across organizational boundaries; this requires a global query system capable of
providing on-line intelligent assistance to users. Conventional technologies, such as schema-based
query languages and hard-coded schema integration, are not sufficient to solve this problem. This
article develops a new approach, a “model-assisted global query system,” that utilizes an on-line
repository of enterprise metadata—the Metadatabase—to facilitate global query formulation and
processing with certain desirable properties such as adaptiveness and open-systems architecture.
A definitional model characterizing the various classes and roles of the required metadata as
knowledge for the system is presented. The significance of possessing this knowledge (via a
Metadatabase) toward improving the global query capabilities available previously is analyzed.
On this basis, a direct method using model traversal and a query language using global model
constructs are developed along with other new methods required for this approach. It is then
tested through a prototype system in a computer-integrated manufacturing (CIM) setting.

Categories and Subject Descriptors: H.2.3 [Database Management]: Languages—query
languages; H.2.4 [Database Management]: Systems—distributed systems; query processing;
H.2.7 [Database Management]: Database Administration—data dictionary/directory; H.3.3
[Information Storage and Retrieval]: Information Search and Retrieval—query formula-
tion; H.5.2 [Information Interfaces and Presentation]: User Interfaces

General Terms: Design, Performance

This research was supported in part by National Science Foundation grants DDM 9015277
and DDM 9215620 and by Rensselaer’s CIM and AIME Programs, both of which are sponsored
by ALCOA, Digital Equipment, General Electric, CM, and IBM, and was conducted under the
Center for Manufacturing Productivity and Technology Transfer.
Authors’ addresses: W. Cheung, Faculty of Business Administration, The Chinese University
of Hong Kong, Shatin, N.T. Hong Kong; email: wcheung@cuhk.hk; C. Hsu, Department of
Decision Sciences and Engineering Systems, Rensselaer Polytechnic Institute, Troy, NY
12180-3590; email: hsuc@rpi.edu.
Permission to make digital /hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1996 ACM 1046-8188/96/1000–0421 $03.50

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996, Pages 421–470.

Additional Key Words and Phrases: Enterprise integration, global query system, heteroge-
neous distributed information systems, metadatabase

1. GLOBAL QUERY SYSTEMS

The notion of information-based enterprises has become a reality. For
various organizational and technological reasons, information systems in
these enterprises are typically characterized by heterogeneous, distributed
environments. For example, a computerized manufacturing enterprise may
have a number of shop floor subsystems that are implemented with
different file management systems on various platforms, while its business
and engineering design subsystems are operating in relational and object-
oriented environments distributed over wide-area networks. In all likeli-
hood, this multiplicity will not disappear, nor be replaced by an all-
encompassing standard any time soon. Therefore, a major objective of
information integration for these enterprises is to provide a logical struc-
ture to integrate these islands of information resources for enterprisewide
information sharing and management without relying on a fixed controlling
hierarchy. A key requirement here is what might be called the “on-line
intelligence and assistance” capabilities of the integrated systems for sup-
porting enterprise users’ (varying) needs in retrieving information at a
global level from the multiple local systems, which may frequently change
their operating rules as well as contents. Numerous research and commer-
cial systems have evolved over the past decade toward providing these
capabilities for single-site or multiple-site databases. However, a rigorous
formulation of this requirement expressly for the global query needs of
multiple systems has not been provided previously in the literature, nor
has such a technology.

1.1 The Need for Enterprise Metadata Support

Metadata has been increasingly recognized as a key element in global
query systems [Babin 1993; Bouziane 1991; Cheung 1991; Collet et al.
1991; Ferrara 1994; Hsu et al. 1991; 1992; Siegel and Madnick 1991; Wang
and Madnick 1989]. The questions raised here are: how much and what
metadata should a global query system process in order to effect on-line
intelligence and assistance capabilities, and what architecture can manage
and utilize the metadata to suffice these capabilities?
To illustrate the significance of these desired capabilities, we consider

some basic tasks required of a global query system in a heterogeneous,
distributed environment (e.g., see Cheung [1991], Krishnamurthy et al.
[1991], Litwin et al. [1990], and Reddy et al. [1989] for a survey on these
tasks). A typical global query operation involves two steps: global query
formulation and global query processing. In the first step, the user’s
requests are articulated and represented in a way that the global query
system understands. The query formulation is done primarily through the

422 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

user interface of the system. In the second step, accomplished by the
system internally, queries are sent to appropriate local systems to retrieve
pertinent information and are reassembled for the users.
Toward query formulation, on-line intelligence enables the user interface

to provide assistance in the articulation as well as allow for a high-level,
intuitive representation of queries. Specifically, for the articulation of
queries, the system would utilize its knowledge on the enterprise informa-
tion resources (which are referred to in this article as metadata, including
information models, implementation models, and business and operating
rules—see Section 2.2.2 for a formal description) to alleviate semantic
ambiguity, facilitate logical analysis, and enhance adaptive construction
during the formulation of queries. Similarly, the representation itself could
accommodate heterogeneity in local models across the enterprise through,
for example, the knowledge on enterprise SUBJECTs (i.e., applications,
views, and objects) and the equivalence of data items among different local
systems, without having to impose a single, fixed “integrated schema” on
all databases.
In addition to supporting high-level and nonsyntax-based queries for

enterprise users, the system would also handle all context-based interpre-
tations and dynamic mappings between the globally formulated query and
the locally implemented file structures or database schemata. Assisted with
these capabilities, the second step—global query processing—would be
accomplished in the following fashion:

(1) query optimization: the global query is first decomposed into local
queries taking into account both semantics and performance;

(2) query translation: the local queries are then encoded in their respective
data manipulation languages;

(3) query execution: the encoded local queries get dispatched to and pro-
cessed at their respective systems; and finally

(4) result integration: results from local systems are assembled to answer
the global query.

Each of these processing steps makes use of metadata as well. For instance,
local database schemata, directory and network information, and the
contextual knowledge of data are required for query optimization; local
DBMS information for query translation; operating rules on information
flows for query execution; and knowledge on equivalent objects, incompati-
bility, and data conversion for result integration.
Without the assistance from sufficient on-line knowledge in the form of

metadata, all of the remaining information required above for both query
formulation and processing would have to be provided by the users or
application programs, such as the case in previous systems, regardless of
the interfacing designs used [Afsarmanesh and McLeod 1989; Angelaccio et
al. 1990; Azmoodeh 1990; Bernstein et al. 1981; Chung 1990; Greenberg
and Witten 1985; Motro 1990; Shipman 1981; Shyy and Su 1991; Stone-
braker 1988; Wang and Madnick 1989; 1990]. The problem of lacking

The Model-Assisted Global Query System • 423

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

on-line metadata support is especially acute for multiple systems, where
researchers have increasingly emphasized the use of enterprise metadata
(e.g., see Bouziane [1991] and Hsu et al. [1991] for a survey on this topic). A
basic reason is the significant differences in the CONTEXTs (i.e., processes
and contextual knowledge) in which data are utilized, on top of the
complexities in the varying data semantics (models), data manipulation
languages, and data structures among local systems (a discussion of the
contexts is provided in Hsu and Rattner [1990] and Hsu et al. [1993]).
Either the users or the global system itself must abridge these differences
for each query before the information can be shared. Since enterprise users
generally do not possess the expertise in database technology, nor the
technical knowledge about the local systems, they cannot truly benefit from
a global query system that does not possess sufficient metadata to provide
on-line intelligence and assistance. The notion of enterprise metadata is
concerned with all metadata pertaining to the above SUBJECTs and
CONTEXTs (see Section 3.1 for details).

1.2 User Interface for Query Formulation

User interface techniques are important to global query systems; however,
do they supplant the need for enterprise metadata support? Techniques
such as windows, icons, menus, graphics, visualization [Greenberg and
Witten 1985; Gyssens et al. 1990; Hartson and Hix 1989; Hutchins et al.
1986; Nilan 1992; Robertson et al. 1993] and other forms of nontextual
formalisms (e.g., see Hsu and Lee [1993] and Lodding [1983] for a survey)
free the typical user from having to learn sophisticated programming
languages. Therefore, graphical user interface (GUI) technologies have
been employed, together with cognition-theoretic interface design princi-
ples and guidelines [Gardiner and Christie 1987; Gould and Lewis 1985;
Greenberg and Witten 1985], to facilitate database query tasks. The results
have improved significantly the commercially available database query
systems (e.g., GUI add-ons to SQL for a few relational systems [Benjamin
and Lew 1986]). Notwithstanding, these products still do not support users
with on-line metadata on enterprise models (especially contextual knowl-
edge of data) required for global query systems in heterogeneous environ-
ments. Users are still charged with the responsibility of furnishing much of
the technical information mentioned above. Moreover, since these systems
do not offer an on-line global model separate from the schemata, which are
fixed, their user interfaces tend to be hard to change or to customize as the
underlying systems or the users change.
The same observations are largely applicable to natural-language inter-

faces. In principle, any systems that use natural languages should not
require the users to learn the artificialities of correct command formats or
modes of interaction [Blaser 1988; Bunt 1988; Hirschman 1989; Norcio and
Stanley 1989; Rich 1984]. Unfortunately, few systems (even research
systems) have successfully achieved this goal, due mainly to insufficient
results in linguistics and artificial intelligence to support this class of user

424 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

interface. However, even in the ideal case, a natural-language interface
would not be able to assist on the query formulation itself for the same
reasons as a GUI faces: it does not provide users with such knowledge as
the local and global data resources, dictionary and directory knowledge,
and business rules about the enterprise, all of which are needed before a
user interface could ever support a user in a “natural” mode of query
formulation.
Addressing the need of providing metadata to users, database browsers

have been developed to help end-users look through the contents of a
particular database. Most of these database interfaces are limited to
browsing the data instances and support only single-site and single-tuple
queries; moreover, few look beyond the simple database schema per se,
which does not include other types of enterprise metadata [Herot 1980;
Motro 1990; Smith et al. 1981; Stonebraker and Kalash 1982; Zloof 1977].
They, ironically, provide interesting evidence supporting the thesis that
enterprise metadata can lead to a new breakthrough for the problem.

1.3 Integrated Schema for Global Query

Enterprise metadata as discussed above are complex in their own right.
Thus, it is natural to expect an architecture devoted to them for the
above-stated tasks. Is the conventional integrated schema technology suffi-
cient?
A key issue is how to reconcile and consolidate the various views and

representation methods across the enterprise and still retain local differ-
ences for autonomy and flexibility. Most previous efforts employ a solution
strategy emphasizing the development of global architectures based on a
schema integration (e.g., Batini et al. [1986]) approach. Although an
integrated schema is a facility of metadata, its hard-coded nature tends to
contradict or even nullify some of the basic promises of true local auton-
omy, such as openness and adaptiveness [Litwin et al. 1990]. Moreover,
research efforts (e.g., Afsarmanesh and McLeod [1989], Chung [1990],
Krishnamurthy et al. [1991], Siegel and Madnick [1991], and Wang and
Madnick [1989]) have also revealed that additional enterprise metadata
beyond the integrated schema are needed to facilitate the representation of
global views and the management of query transactions among local
databases. Therefore, these efforts have by contradiction shown an even
bigger role for enterprise metadata, that is, minimizing the reliance on
some fixed, hard-coded global schemata or controller to effect information
integration.
Thus, the conventional approach of integrated schema does not seem to

provide a solution to the enterprise metadata management problem. To
bring the point into better light for our discussion, we refer to the concept
of an independent system of enterprise metadata supporting the above
purposes as a Metadatabase (which is first defined in Hsu and Skevington
[1987]).

The Model-Assisted Global Query System • 425

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

1.4 The Objective and Organization of the Article

A conclusion from the above discussion is evident: the man-machine
interface of global query systems requires a combination of technology,
cognition, and knowledge, as depicted in Figure 1. The one dimension that
has long been neglected is “knowledge,” which should be put on-line to
provide intelligent assistance to users. We submit that the idea of enter-
prise metadata holds a key for effecting this dimension; that is, knowledge
through enterprise metadata is elevated and explicitly formulated to play
the central role in a new solution approach to solving the global query
problem in this research. Since enterprise metadata are essentially infor-
mation models, this approach is referred to as the model-assisted global
query system. The original concept of such a system, along with its
execution methods, is the major contribution of this article.
Specifically, the conceptual model formulates the fundamental needs for

enterprise metadata in general terms, which other systems can adopt, with
or without the Metadatabase. The execution model then avails a direct
method using model traversal to assist end-users and a new high-level
language using global model constructs, both of which are based on a
Metadatabase enabling the assistance. Automatic derivation of required
metadata, which the users do not provide, is a key element in this
approach; thus, new methods, such as rule-based consistency checking and
message-based search for a shortest solution path, are developed for the
execution model. These results lead to a prototype developed at Rensselaer
recently to test the validity of the approach and demonstrate the global
query ability for a multiple-database environment.

Fig. 1. Dimensions of global query user interfaces.

426 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

The next section presents a conceptual model of this approach, defining
the uses and requirements of metadata in a global query system. New
methods that are required for the implementation of the approach are
provided in Section 3, while the implementation prototype and the new
query language using metadata are included in Section 4. The empirical
verification of the Model-assisted Global Query System (MGQS) is dis-
cussed in Section 5 through using the prototype for an integrated manufac-
turing case. An analysis of this system vis-a-vis some representative
systems (e.g., Multibase, MSQL, CIS, and KIM query system) in the
literature is presented in Section 6. Section 7 concludes the article with
further remarks and future directions of research. Although the prototype
system has been reported elsewhere as a part of the Metadatabase system
for certain industrial applications [Hsu et al. 1992; 1994], the complete
model—both conceptual and execution—and methods are presented and
discussed in this article.

2. THE MODEL-ASSISTED GLOBAL QUERY APPROACH

The basic logic of the model-assisted global query approach proceeds as
follows. First, all classes of enterprise metadata are specified and struc-
tured through a metadata representation method. This metadata structure
(abstraction) then serves as the basis for organizing and implementing
enterprise information models into an on-line and shared Metadatabase
facilitating all tasks of information integration. As such, the functional
views, processes, data models, business rules, and other knowledge con-
cerning the global query operation are readily available to both the users
and the system through the Metadatabase. Therefore, on-line assistance on
query formulation and processing becomes a feasible and fully character-
ized concept. Specific methods based on this knowledge can be defined and
developed in terms of metadata requirements and utilized in each major
task of the problem.

2.1 The Goals

The target of the model-assisted global query system is delineated in the
goals below, which will later be used as the criteria for comparing the
MGQS with the existing technologies.

(1) Information sharing: achieve information sharing in heterogeneous,
distributed, and autonomous environments by means of global queries.

(2) Subsystem transparency: support a global model of the whole system
and hide local implementations from the users.

(3) Local autonomy: maintain local control of its own applications and
allow (potentially) for local differences. In addition, this implies that
integration of local systems should not necessitate major conversions or
merging of the existing systems.

The Model-Assisted Global Query System • 427

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

(4) Interoperability: accommodate local heterogeneities while resolving
conflicts in data equivalency, different data models, and different data
manipulation languages.

(5) Open-system architecture: support the flexibility and adaptability for
incorporating new application systems or updating old ones without
imposing major recompilation of reconstruction efforts.

(6) Direct query formulation: provide sufficient enterprise metadata to
facilitate the articulation and representation of a global query using the
information models directly via a noncommand user interface (or mini-
mum-syntax query language for program interface). The user or pro-
grammer is not responsible for providing the technical details of the
local systems.

(7) On-line assistance: use enterprise metadata (including business rules
and other contextual knowledge) and knowledge-processing capability
to assist on difficult tasks for both query formulation and processing.
These tasks include, but are not limited to, model traversal and
semantic checks in direct query formulation, derivation of implied data
items and operating rules in the query, context-based joint path optimi-
zation, and data equivalence in the assembly of local results.

2.2 The Definitive Model for Metadata Requirements

We first formally characterize the role of a Metadatabase as on-line
knowledge for a global query operation. This characterization starts with a
technical analysis of the major global query tasks and their basic metadata
requirements. Since these tasks are generic and are not tied to any specific
systems, the analysis applies to the general problem studied in this article.

2.2.1 A Global Query Operation Algorithm. Let GQ denote a global
query characterized by a set of attributes/data items (A) that are involved
in the query operation, a set of persistent, stored data objects (D) from
which all the attributes are drawn, and an expression ^C& that specifies the
retrieval conditions. Expression ^C& consists of subexpressions for selection
conditions ^SC& and join conditions ^JC&. Finally, all data items, objects,
and expressions are subject to specification in terms of systems metadata
^M&. These metadata, which may be either supplied by the user or provided
by the global query system, must satisfy a minimum scope required by each
particular query, specifically,

GQ 5 (A, D, ^C&u^M&) where
A 5 Au ø As with Au Þ ø,
D 5 Du ø Ds with D Þ ø and Du ù Ds 5 ø,
^C& <5[^SC&u^JC&u^SC& AND ^JC&],
^M& <5{^Mu&}ø{^Ms&}.

Although this formalism is constructed at the most general level possible,
it does inspire the particular syntax of a query language for MGQS—see
Section 4.2. The additional data subsets are explained below:

428 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

—Au: this represents the set of data attributes selected by the user. It
includes both the items requested directly for retrieval and the items
indicated in the selection conditions. A global query must have at least
one data item in Au.

—As: the system may determine that additional data items are also needed
or implied in the query, and hence fill in some data attribute (the set As)
for the purpose of query processing.

—Du: the user could also specify the set of data object(s) Du that contain
the selected item(s) (i.e., the set Au).

—Ds: since Du may not contain all items in Au, the system will again
determine the remaining data objects (Ds) that are involved in the global
query operation.

—^Mu&: this is the user-supplied metadata, which represents the technical
knowledge that the user must possess about the enterprise information
models and multiple systems in order to represent and specify a query
sufficiently.

—^Ms&: this is the system-supplied enterprise metadata. The set ^Ms& is the
complement of {^Mu&} with respect to the minimum metadata require-
ments for a particular query.

The global query operation can be described as a process consisting of the
following steps:

Step 1. Global Query Formulation. Since the user is not necessarily
required to specify all of the technical details (the remaining ones will be
filled in by the query system automatically), the result of the formulation is
likely to be an incomplete global query IGQ defined as

IGQ 5 (Au, [Du], [^SC&]u[^M&])

where the data objects Du and selection conditions ^SC& may or may not be
required. For example, a global query “Find part ID and quantity com-
pleted for Jane Doe’s order which has a desired date of 5/10/91” could imply
the following sets in the formulation step:

Au 5 {PARTID, NUM_COMPLETED, CUST_NAME, DATE_DESIRED}
Du 5 {WORK_ORDER, CUSTOMER}
^SC& 5 CUST_NAME 5 “Jane Doe” AND DATE_DESIRED 5 “5/10/91”
^M& 5 the exact names and syntax used to specify the elements of Au,
Du, and ^SC&.

A direct approach for end-user global query formulation may be employed
to formulate the above query via model traversal where the user has the
choice of picking as few as only some data items in Au, or as much as other
information she or he wants to include.

Model Traversal. Model traversal is a direct approach whereby users
utilize the enterprise metadata to articulate the query directly in terms of
information models. The technical details and semantics of the heteroge-

The Model-Assisted Global Query System • 429

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

neous systems are provided interactively and maybe iteratively. The user
will, for example, “pick” the data items and objects directly from the models
as opposed to “enter” their names to the query. Every step along the way,
on-line assistance is provided to the user to traverse as well as pick. Some
common semantic errors due to syntax-based translation or interpretation
of information models in conventional “indirect” approaches are avoided, as
the user sees and deals directly with the comprehensive and unequivocal
system models. The purpose is to allow the user to formulate a global query
while traversing the information models.
The specific traversal method is designed according to the characteristics

of the model constructs and logical associations among the information
models stored in the Metadatabase. The following is a basic model traversal
process:

Repeat (for each visit)

Step 1.1 Traverse to the data object identified at the ith visit (di
u)

and select the data item(s) (ai
u) from di

u for retrieval.
Metadata required: names of the applications, functional views,

data constructs, attributes and their associa-
tions (i.e., the global data model).

Step 1.2 Specify selection condition(s) ^SC& that will be imposed on a
selected data item(s).

Metadata required: formats, domains, and operating constraints
of the data items

Step 1.3 Resolve semantic ambiguity.
Metadata required: semantic constraints, such as functional de-

pendencies and business rules that describe
the intended use of the data.

Until no more intended data attributes (i.e., all elements of Au are
specified) Au 5 i

ø (ai
u) and Du 5 i

ø (di
u).

Step 2. Join Condition Determination. A global query may involve
multiple data objects that are stored in one or more local systems. Nor-
mally, the user has to specify the equijoin conditions between these data
objects for a complete global query. The specification would require detailed
understanding of the information model. To relieve the user of this burden,
the system with an on-line Metadatabase can perform this job through an
automatic join condition determination algorithm using enterprise meta-
data, as follows:

Step 2.1. Determine the set of data objects, Ok, which contain all the
user-selected attributes, Au and their equivalent data items. This step
establishes the maximum space of data objects that the query involves. The
metadata required are the associations between the entities/relationships
and their data items, plus data equivalence information.

430 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Step 2.2. Determine a minimum set of data objects (Omin) that contain
all ak

u [Au and Du # Omin.

Step 2.3. Identify the shortest path (SPmin) which connects all data
objects dm [Omin. The metadata required are the associations between the
entities and relationships (global data model).

Step 2.4. Insert join conditions for every connected pair of data objects
in D. The results of step 2 for the earlier example would be:

As 5 {ORDER_ID CUST_ID CUST_ORDER_ID}
Ds 5 {ORDER}
^JC& 5 ORDER_ID 5 CUST_ORDER_ID AND

ORDER.CUST_ID 5 CUSTOMER.CUST_ID

Step 3. Global Query Processing. A formulated global query GQ 5 (A, D,
^C&) is decomposed into a set of local queries {LQi} where i indicates the
local system. The decomposition is based on the physical whereabouts of
the intended data. Each local query LQi pertains to one and only one local
system.

LQi 5 (LAi, LFi, ^LCi&) where
LAi is a set of local items with i

ø (LAi) 5 A,
LFi is a set of local files/base relations/record types/objects, and
^LCi& is a condition expression concerning only the data item(s)
that is (are) contained in the local system i.

Step 3.1. Determine all data files which contain aj [A. The metadata
required are the data equivalence, physical storage—such as files—relation
tables, and their data items (implementation models).

Step 3.2. Determine a minimum set of data files (Fmin) from which the
query system retrieves data items (A).

Step 3.3. Formulate local query LQi for local system i, such that

(a) (lfi) (lfi [LFi) ` (lfi [Fmin),
(b) (lai) (lfi) (lai [LAi) ` (lfi contains lai)
(c) all items involved in ^LCi& are elements of LAi.

The metadata required are the physical storage methods—such as files—
relation tables, and their data items.

Step 3.4. Preserve global join conditions ^GJC& such that

^GJC& <5 ^j_condition& [AND ^j_condition&]
^j_condition& <5 item1 5 item2
where item1 and item2 belong to two different systems.

The metadata required are the same as for Step 3.3.

The Model-Assisted Global Query System • 431

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Suppose two local systems—shop floor control and order entry system—
were involved in the query in the previous example, then two local queries
would result from this step:

LQSFC:
liSFC 5 {PART_ID NUM_COMPLETED ORDER_ID}
lfSFC 5 {WORK_ORDER}
^LCSFC& <5 (no condition)

LQOES:
liOES 5 {CUST_NAME CUST_ID DATA_DESIRED ORDER_ID}
lfOES 5 {ORDER CUSTOMER}
^LCOES& <5 CUST_NAME 5 “Jane Doe” AND

DATE_DESIRED 5 “5/10/91” AND
ORDER.CUST_ID 5 CUSTOMER.CUST_ID

^GJC& <5 WORK_ORDER.ORDER_ID 5 ORDER.ORDER_ID

Step 4. Local Query Generation. A language generator is needed for
each distinctive data manipulation language used in the enterprise. A local
query is generated using the local language for each LQ. For the earlier
example, the query language LQSFC generated for the shop floor is in
Oracle/SQL:

SELECT WORK_ORDER.ORDER_ID, ‘u’,
WORK_ORDER.PART_ID, ‘u’,
WORK_ORDER.NUM_COMPLETED, ‘u’

FROM WORK_ORDER;

The query language LQOES generated for the shop floor is in Rdb/Rdo:

invoke database filename OES$DIR:OES
FOR A IN ORDER
CROSS B IN CUSTOMER
WITH A.DATE_DESIRED 5 “5/10/91”
AND B.CUST_NAME 5 “JANE DOE”

PRINT “@”,
A.CUST_ID, “u”,
A.CUST_ORDER_ID, “u”,
A.DATE_DESIRED, “u”,
B.CUST_NAME, “u”

END_FOR

metadata required: implementation models: local DBMS, local DML,
and access path, and security metadata: user’s
access authority and password.

432 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Step 5. Query Execution. A local query, LQ, must be sent via the
network to the destination for processing by the local database, and then
the result will be sent back.

Step 5.1. A message is produced for each local query generated from
step 4 containing destination, priority, and other metadata, in addition to
the LQ.

Step 5.2. These messages are transmitted to the appropriate local
system by a network administrator/monitor.

Step 5.3. At the local system shell, a message is received by the network
administration/monitor and dispatched to the DBMS where the local query
is executed.

Step 5.4. Local result is sent for Result Integration by the network
administration/monitor as a message. Please note that the above descrip-
tion assumes a networking system using the message methods and possess-
ing local as well as global administration monitoring capabilities. These
assumptions are consistent with virtually all network protocols such as
TCP/IP, MAP, and TOP.
For a minimum network, the metadata requirements can be satisfied by

the previous steps. For more advanced systems, metadata such as priority
and alternate sources can be used for flows management and optimization.

Step 6. Result Integration. The results of local queries (LQs) must be
interpreted and assembled according to the global join conditions (^GJC&) in
Step 3.4. Logically equivalent data items may be implemented differently
in terms of format, scale, and encoding in different local systems. In our
example, ORDER_ID in WORK_ORDER and CUST_ORDER_ID in ORDER
are encoded differently for local processing purposes. Therefore, data
conversions must be performed on one or both of them before the results
from these two systems can be joined and presented to the user. The
metadata required are data equivalence and contextual knowledge: conver-
sion rules and operation rules.

2.2.2 A Basic Model for On-Line Knowledge. The basic metadata re-
quirements identified above are organized into a definitive model, as
follows, to characterize the knowledge needed for the global query opera-
tion.

Definition. Enterprise metadata give rise to the knowledge required in
global query formulation and processing for both end-users and application
programs.

Knowledge for Global Query Formulation

—Global data model: a logical model representing the data resources of the
enterprise. Specifically, the (names of) applications or functions, data
constructs, and their relationships are needed for model traversal; format
and domains of the data items are used for selection condition(s) specifi-

The Model-Assisted Global Query System • 433

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

cation; functional dependencies are for integrity checking of the selection
conditions, and primary keys and foreign keys are for implicit join
conditions determination.

—Data equivalence: the knowledge needed in most steps to convert as well
as identity/clarify multiple data definitions, including typing, semantic
(interpretation of) presentation, and scale.

—Contextual knowledge: business rules describing the intended use of the
data and the needs of the user, also used for ambiguity checking of the
selection conditions.

Knowledge for Global Query Optimization and Decomposition

—Data equivalence.
—Implementation models: physical storage methods of the logical data
items, including the size of the files or relation tables and the like used
for query optimization and decomposition.

Knowledge for Global Query Generation

—Implementation models: metadata about local data language environ-
ments and access paths, used to determine the language generators to
use and the heading of a query program.

—Security metadata: users’ access privileges, used to determine whether
the retrieval requests are legitimate, and the passwords are used for
obtaining access permission.

Knowledge for Results Integration

—Data equivalence.
—Contextual knowledge: conversion rules and operating rules needed for
resolving conflicting data definitions and computing derived data items.

2.3 The Approach: The Conceptual Model

The above analysis, which applies to the global query problem in general,
also defines the overall algorithm and the contents of the Metadatabase for
the model-assisted global query approach. Thus, a defining characteristic of
the MGQS approach is ^Ms& 5 ^M&, i.e., the system provides all of the
metadata required. The methods that are required to implement this
approach are discussed next.

3. NEW METHODS: UTILIZING THE METADATABASE FOR ON-LINE
ASSISTANCE

The execution methods envisioned in the model-assisted GQS are developed
below. The Metadatabase can be designed in a number of ways, of course.
The particular execution model we developed is based on the particular
Metadatabase developed in the past several years, whose structure is
detailed by Hsu et al. [1991]. The Metadatabase structure itself is outlined
first.

434 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

3.1 The Metadatabase Structure: The GIRD Model

The Metadatabase employs a generic metastructure, the Global Informa-
tion Resources Dictionary (GIRD) model (see Figure 2 and Hsu et al. [1991]
for details), for abstracting the enterprise metadata resources (including
four categories: functional models, structural models, software and hard-
ware resources, and enterprise/application families) contained in a metada-
tabase. The model in Figure 2 shows the types of the abstraction (e.g., all
subjects from local data models are represented as instances into the
SUBJECT metaentity, their attributes ITEM, and so on). Furthermore, all
categories of medata are constructed in an integrated manner amenable for
implementation using primarily relational technology (i.e., each type can be

Fig. 2. The GIRD metamodel.

The Model-Assisted Global Query System • 435

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

mapped to and implemented as a base table). Thus, even though the local
databases can be of a variety of classes, from relational to object oriented
and flat files, the Metadatabase itself is always of a uniform environment.
An object hierarchy defined in EXPRESS for a local engineering database
would, for example, be represented as a set of subject tuples and a set of
(data) item tuples, along with a few other sets of metadata tuples for
inheritance/integrity, equivalence, rules, and so on for incorporation into
the Metadatabase. As such, each and every local model is represented and
integrated (but not duplicated, nor removed) into the Metadatabase as
ordinary metadata tuples populating the structure. This design is based
entirely on the logic of the representation for organizing metadata, and
hence the metastructure in Figure 2 self-describes the modeling concepts
prescribed. When a subject’s attributes are recorded generically and glo-
bally in the ITEM metaentity separate from the SUBJECT, with their
associations recorded as such, the global representation of local models is
extensible without losing structural integrity; yet structural limitations are
precisely a common problem with traditional cannonical data representa-
tions. Therefore, metadata independence [Hsu et al. 1992] at the model
integration level is achieved, since any change in enterprise models (which
are simply metadata instances) would involve only ordinary metadata
transactions similar to the usual relational processing and does not require
any change to the structure itself, nor reloading/recompilation. The term
metadata independence is phrased in the same philosophy as the well-
known data independence concept.
The metastructure itself, as well as the global representation of local

models as metadata instances, is developed using the Two-Stage Entity
Relationship (TSER) method, which is reported elsewhere [Hsu 1985; Hsu
et al. 1987; 1993]. TSER provides at the first, functional stage-two basic
representation constructs: SUBJECT (similar to objects in object-oriented
paradigm) and CONTEXT (rule-based description of process and other
contextual knowledge). At the second, structural stage, ENTITY (character-
ized with singular keys) and RELATIONSHIP (characterized with compos-
ite keys) plus two more types of associations signifying special integrity
rules (functional and mandatory) are defined. These constructs are in turn
defined in terms of DATA ITEM and RULE, where the latter is further
decomposed into CONDITION and ACTION, and then into FACT which
relates to DATA ITEM. Associating constructs such as expressions are also
defined along the way. All these constructs, combined with hardware and
software classes of metadata, give rise to the GIRD model. This approach
contrasts in a fundamental way with other repository systems in terms of
its self-descriptiveness [Hsu et al. 1991] and metadata independence. Other
than the ongoing ISO efforts on new IRDS, virtually all previous systems
such as the NIST IRDS, IBM Repository, and Digital CDD plus do not
support knowledge, nor heterogeneous environments. They all tend to focus
on managing software rather than integrating enterprise information, as
manifested in their inability to support a global query such as the proposed

436 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

MGQS approach. (The above description satisfies the purpose of this
article; the full details are provided by Hsu et al. [1991].)
This design provides a few basic properties important to the execution

model:

(1) The GIRD model can be implemented in the same manner as a regular
schema using a relational DBMS, where the TSER constructs of the
model provide design specifications.

(2) Local information models (represented in the Metadatabase as tuples)
can be added, deleted, or modified without causing the Metadatabase to
restructure or recompile.

(3) All metarelations in the GIRD model (e.g., APPLICATIONS, SUBJECT,
DEFINE, CONTEXT, RULE, ITEM, EQUIVALENT, and BELONGTO)
are normalized. Thus, they can be managed and processed as a (rela-
tional) database implementing the model.

(4) Contextual knowledge is represented in terms of relations as well. A
particular class is the equivalence between data items. For instance,
the fact that 5/31/94 in the American date format is equivalent to the
European 31/5/94 is established through ITEM and EQUIVALENT,
with the attendant conversion rules and routines represented through
RULE. These rules and routines include any mapping models as
needed.

(5) The required metadata as defined in Section 2 are all included in the
GIRD model. Thus, Figure 2 shows the high-level semantics of the
Metadatabase.

(6) In addition to effecting a full-fledged metadata management facility,
the Metadatabase also simplifies the mapping requirements. Since all
local databases map directly with the Metadatabase rather than among
themselves, the complexity is O(N) as opposed to O(N2).

(7) The usual concern of semantics loss during local-global mapping is also
kept to a minimum, since the mapping is based on metadata constructs
as opposed to relying on data structures. While the latter tends to be
arbitrary and rigid, the former can be accomplished through rigorous
(reverse) modeling at the time when the local databases are repre-
sented into the Metadatabase.

(8) The modeling and creation of the Metadatabase follow the tradition of
data and knowledge systems analysis and design. Full discussions of a
particular methodology and its CASE implementation can be found in
Hsu et al. [1992; 1993].

(9) The metadata independence nature of the architecture supports scal-
ability in terms of adding new systems, while its implementation using
a regular DBMS assures scaling up in software engineering. When a
new system is added, only the system’s models (schema) need to be
understood and reverse-engineered (or registered) into the Metadata-
base using ordinary (meta-) tables transactions. The new metadata are
then automatically integrated with those of existing systems through

The Model-Assisted Global Query System • 437

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

the GIRD semantics (see Section 6). This property is also discussed by
Hsu et al. [1992; 1993].

3.2 Query Formulation

3.2.1 Model Traversal. Two basic methods are employed for model
traversal: vertical and horizontal (Figure 3). The vertical method specifies
the traversal depth cutting across four layers: application systems, func-
tional models, structural models, and data items, each of which can be
entered independently before moving up or down therefrom. The horizontal
method traverses the entity/relationship (ER) surface of the global model in
a network manner. These two methods give rise to a fully connected
three-dimensional traversal mode allowing users to formulate global que-
ries from the global information constructs directly using GUI.
The user could page through the global model (i.e., the entire Figure 3)

according to the logical associations between these modeling constructs.
Depending on the user’s experience with the information models, the
traversal could be very pinpointing (specifying the exact constructs contain-
ing the data items needed) or very general (browsing through a list of data
items with little precise specification or through only the applications) or
anything in between. The different entry points shown in Figure 3 indicate
how a user might choose to perceive and approach the global model. It is
interesting to point out that the instances shown in Figure 3 would be
stored as instances of the metastructure in Figure 2, and the system would

Fig. 3. Model traversal methods.

438 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

generate the equivalent GUI of Figure 3 by deriving these instances
directly from the Metadatabase. The traversal mode does not assume nor
impose any a priori syntax other than the semantics of the constructs used.
Thus, the semantics of a query formulated this way is specified completely
through the selection of the constructs, their metadata instances, and
particular data values.

Selecting E/R and Data Items. The result of a simple selection in global
query formulation is equivalent to the projection operation of relational
algebra, which reduces the number of columns in a table. For instance,
selecting data items a and b from ER1 can be expressed as:

ER1 projected_to a, b: {^r.a, r.b&uER1(r) }
where r is a row (i.e., tuple) of an ER.

If the result of the selection involves data items contained in multiple ERs,
the interpretation would be different depending on whether or not the
automatic equijoin determination is used. The automatic determination
will lead to first performing equijoins among the ERs and then the
projection on the results of the joins. For example, consider a case where
data items a and b are selected from ER1, and c and d are selected from
ER2. Assuming ER1 and ER2 are directly connected in the global model
(i.e., they share a common item (x) as part of their primary key or foreign
key), the operation can be expressed as

1. ER1 join ER2 on x: ER 5 {r11t2^t.x&uER1(r) ` ER2(t) ` (r.x 5 t.x) }
r11t denotes a row made by concatenating row t onto the end of row r

2. ER projected_to a, b, c, d: {^u.a, u.b, u.c, u.d&uER(u) }.

If the selected ERs are not directly connected to each other, then a
connected solution path needs to be determined (see Section 3.2.1) in order
to determine the necessary equijoins.
When the equijoin determination is not used, it implies that a Cartesian

product (*) between ER1 and ER2 is performed among the ERs to precede
the projection operation. The same example would be expressed as

1. ER1 p ER2: ER 5 {r11tuER1(r) p ER2(t) }
2. ER projected_to a, b, c, d: {^u.a, u.b, u.c, u.d&uER(u) }.

Selecting Derived Data Items. Besides selecting the persistent (stored)
data items, the user can also include derived (run-time) data items in a
global query. A derived data item is not stored in any local system, but
computed by using the persistent data item(s). Continuing the above
example, suppose data item x 5 f(a,c). The derived item (x) can be selected
from either ER1 (ER1 projected_to x) or ER2 (ER2 projected_to x). The
result of the selection causes both a and c to be included in the global
query:

{^t.a&uER1(t)}, {^r.c&uER2(r) }.

The Model-Assisted Global Query System • 439

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

The derived data items are defined via business rules in the Metadatabase.
The computation of derived data items using a rule processor is discussed
in Section 3.5.

Specifying Selection Conditions. Each selection condition (f(a)) imposes
a restriction on a data item a. For example, specifying the selection
conditions “f(a) ` (g(b) ~ h(c))” for an entity/relationship ER1 containing a,
b, c would mean

{ruER1(r) ` f(r.a) ` (g(r.b) ~ h(r.c)) }.

If, on the other hand, c is contained in ER2, then there are two different
actions depending on whether equijoin determination is used. If the equi-
join determination is used, it means to first perform an equijoin between
ER1 and ER2 on the common item x

ER 5 {r11t2^t.x&uER1(r) ` ER2(t) ` (r.x 5 t.x) }

and then a selection on ER

{uuER(u) ` f(u.a) ` (g(u.b) ~ h(u.c)) }.

If the equijoin determination is not used, it means to perform a Cartesian
product between ER1 and ER2

ER 5 {r11tuER1(r) p ER2(t) }

before the selection operation.

Formulating a Nested Query. A successfully formulated global query
can be kept as a run-time view by giving a unique name, which can then be
recalled to formulate a nested global query. MGQS supports two different
methods of relating run-time views: UNION (1) and NOT EXISTS (2). The
user starts with selecting a method and two views to combine. Then the
user selects items from the set of common items of these views presented by
the system. The result of the UNION of views V1, V2 based on data items
a, b (V1 1 V2 on a, b,) could be expressed as

{r11t2 ^duplicate columns&uV1(r) ~a,b V2(t) }.

The result of V1 NOT EXISTS (i.e., NOT EXISTS works as the relational
algebraic operator DIFFERENCE) in V2 based on data items a, b (V1 2 V2
on a, b,) could be expressed as

{ruV1(r) `a,b ;V2(t) }.

The above discussions have also shown that the traversal mode includes
analogs of the five primitive algebraic operations (i.e., selection, project,
product, union, and difference) that define relational completeness, the
common yardstick used for the expressive power of traditional query
languages [Date 1995]. We might stress that MGQS supports nonrelational
queries such as a nested query and an object-oriented query just like it does
with the relational, although the Metadatabase itself is primarily rela-
tional (and hence is sufficed with relational completeness). The invoking of

440 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

local systems that have nested query capabilities or object-oriented lan-
guages (e.g., C11) would be done via the local query code generators.

3.2.2 Query Validation. MGQS detects and prevents inconsistencies in
the selection of join conditions by examining the knowledge in the Metada-
tabase. Specifically, assistance is provided for the following three potential
problems:

(1) Domain incompatible conditions: the system will use the properties of
data domains to guide a user’s entry of values for a selection condition.
It will only allow values that conform with the type(s) (real, integer,
character, etc.) of the data item(s) selected.

(2) Semantically inconsistent conditions: the formal semantic constraints,
such as a functional dependency model, are used to detect and prevent
semantic inconsistencies.

(3) Conditions conflicting business rules: business rules might implicitly
nullify or render invalid certain selection conditions that the user
intends. The system will perform this consistency checking via the
rule-processing method provided in Section 3.4.

3.3 Automatic Completion of Global Query Formulation

The MGQS method determines all of the required metadata that users do
not provide to complete the query after model traversal. A key task here is
the automatic determination of the join conditions implied in a user’s
(incomplete) formulation of a query by using the global data model from the
Metadatabase. The data items and ERs that are not originally selected for
the global query, but that are needed for the joins, will be added to the
global query for completion.
The steps of metadata derivation for completing a global query include

the following:

3.3.1 Determining a Minimal Set of Data Objects. Equivalent(a) is a
function that requests the Metadatabase to retrieve all equivalent data
items of the specified data item, a. DataObject(A, subject, application) is a
function that requests the Metadatabase to retrieve an exclusive set of data
objects within the boundary of the specified subject and/or application, such
that every resulting data object contains at least one data item a [A.

The Minimum-Set-of-ERs Algorithm

Step 1. Set Omin 5 Du;
Step 2. For (each ak

u [Au)
Ok 5 DataObject(Equivalent(ak

u), subject, application);
Step 3. For ((each o [Omin) and (Au Þ Ø))

For ((each ak
u [Au) and (Au Þ Ø))

if o [Ok
Au 5 Au 2 {ak

u};
Step 4. if Au Þ Ø after Step 3 then Step 4.1 and Step 4.2

The Model-Assisted Global Query System • 441

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Step 4.1 For ((ak
u [Au) and (iOki 5 1))

{
Au 5 Au 2 {ak

u};
Omin 5 Omin ø Ok;
For each al

u [Au and Au Þ Ø
If (ok [O1)
Au 5 Au 2 {a1

u};
Step 4.2 get_minimal_sets(Omin, A

u, results) /* results 5 { } initially */
{
current_best 5 iAui 1 iOmini
select ak

u from Au;
for ((each ok [Ok) and (Ok Þ Ø))
{
If Au 2 {ak

u} 5 Ø))
If iOmin ø {ok}i^current_best
{
results 5 {Omin ø {ok}};
current_best 5 iOmin ø {ok}i;
}

else If iOmin ø {ok}i 5 current_best
results 5 results ø {Omin ø {ok}};

else
get_minimal_sets(Omin ø {ok}, A

u 2 {ak
u}, results);

}
}

3.3.2 Determining the Shortest Solution Path. In the context of global
query formulation, the global data model is considered as a network G,
which is a graph where all nodes (the set N) are connected with links (the
set L). The set of selected entities and relationships representing the
semantics of a global query defines the set of nodes (No) to be connected by
the solution path sought. The shortest solution path (SG) that connects all
selected entities and relationships denotes the complete formulation of the
global query. In the Metadatabase, all connected entities and relationships
share some common prime attributes and hence always represent some
meaning. In other words, the semantics of a global query is specified
implicitly or explicitly by the user’s selecting data objects (i.e., SUBJECTs,
entities, relationships, and data items), while the shortest (connected)
solution path signifies a meaningful query as well as guaranteeing a
minimum number of equijoins to be performed.
An algorithm is presented for searching for the SG. Although there exists

generic algorithms and even specialized entity-relationship algorithms for
the SG problem, a new idea is employed to develop a, hopefully, more
efficient SG algorithm to deal with large networks.
The algorithm begins by creating messages: one message for each of the

nodes in No. A message contains a unique identifier of the message (ID),
the cost (cost), and an indicator (from) signifying the preceding node of the

442 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

message. When the name of the node (i.e., entity or relationship) in the
global data model is unique, this name can be used as the ID; otherwise,
the system would generate unique identifiers. The cost of a message
represents the number of links that a message has been passed through,
from the originating node (i.e., one in No) to the current node. Last, “from”
contains the ID of the previous node that sent the message.
The algorithm centers around messages. The idea is to send a message

from the originating node to all its adjacent nodes, which, in turn, pass
each message to new nodes one unit distance farther from their originating
node. When two messages with the same IDs reach a node, only the one
with the smallest cost is kept. This cycle continues until a node has
collected all messages that were originally created; at this point a solution
path has been found. The total cost of the path is then calculated by adding
all costs of all collected messages. If the total cost of a new solution is less
than the cost of the previous solution, a better solution is found. The new
total cost is then recorded, and the node is marked as the current root R of
the solution. This solution-searching process is continued until the shortest
path is found. Two criteria are used to terminate the algorithm: (1)
current_cost 5 nb_nodes 2 1 (current total cost equals to the number of
nodes in No minus one), which means all nodes are directly connected and
(2) nb_cycle 5 current_cost 2 nb_nodes 1 2, where nb_cycle is the number
of cycles for message sending. The formal algorithm is given below, which
is followed by a proof for the termination conditions.

LEMMA 3.3.2.1. A lower bound for the best solution (shortest path) that
can be found for connecting the nodes in No has total cost CR 5 iNoi 2 1,
where iNoi is number of elements in No.

PROOF. The best solution occurs only when the root node R [No, and all
other nodes k (k Þ R, k [No), are directly connected to R.
Thus, 1R 5 0, (1 is the distance from a node to the root)

1k 5 1, ;k [No, and k Þ R

CR 5 1n 5 1k 1 1R 5 iNoi 2 1. e

LEMMA 3.3.2.2. The longest possible distance (Lm) between a furthest
node n1 (n1 [No) to the root node R in a solution with the total cost of CR is
Lm 5 CR 2 iNoi 1 2.

PROOF. Let n1 be the furthest node from the root R, and K 5 No 2 {n1}
(Figure 4).

CR 5 1n 5 1k 1 1n1, where k [K, and k Þ n1

f 1n1 5 CR 2 1k

From Lemma 3.3.2.1, the smallest possible cost to connect k nodes is 1k 5
iKi21, where K 5 No 2 1. Thus Lm 5 MAX (1n1) 5 CR 2 iNoi 1 2. e

The Model-Assisted Global Query System • 443

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

THEOREM 3.3.2.3. The algorithm will reach the shortest path (all shortest
paths if more than one exist) at the end of i message-sending cycles, where
i 5 CR 2 iNoi 1 2.

PROOF. From Lemma 3.3.2.2, the largest distance possible between a
node (n1) to the root (R) is 1n1 5 CR 2 iNoi 1 2. Each cycle of message
sending will pass the message (mn1) one unit distance closer to the root.
Thus exactly i (i 5 1n1) cycles are needed for the furthest message mn to
reach R. Also, if a better solution with root R9 exists (CR9, , CR), the
number of cycles required to reach the solution is i9 5 CR9 2 iNoi 1 2 f
i9 , i. e

The Shortest-Path Algorithm

{
current_cost 5 a large number;
root 5 NULL;
create message for each node in No;
initialize current_cycle;
next_cycle 5 NULL;
initialize visited_nodes;
nb_cycle 5 1;
for ((current_cost . nb_nodes 2 1) and
(nb_cycle # current_cost 2 nb_nodes 1 2))
{
for (each message mi in current_cycle)
{
list_of_nodes 5 get_related_entrel(mi 2 .from);
for (each node nj in list_of_nodes)
{
if (nj [visited_nodes)
{

Fig. 4. Determining the number of cycles needed.

444 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

add nj to visited_nodes;
mi 2.cost 5 mi 2.cost 1 1;
mi 2.from 5 nj 2.key;
add mi to next_cycle;
}

if (mi not in nj)
{
add message mi to nj;
if (new_best_solution())
{
root 5 nj;
current_cost 5 calculated_cost();
}

}
}

}
}

current_cycle 5 next_cycle;
next_cycle 5 NULL;
nb_cycle 5 nb_cycle 1 1;
}

Semantic Ambiguity on Solution Paths. Different solution paths repre-
sent different semantics. When the shortest-path determination algorithm
returns two or more shortest solution paths, it indicates that further
interaction with the user is needed to clarify the ambiguity. A straightfor-
ward method is to display all the alternative paths (graphically) with
suggestions, interpretations, and possibly dialogues. Then, the user will
select the correct path from the alternatives. Toward further automation,
the MGQS will match the ERs involved in a path with the ERs of the
SUBJECTs and user-defined views stored in the Metadatabase. If a match
is found, the matching path is likely to be the correct one. Therefore, a
recommendation could be made to the user. The idea is to offer more
assistance by providing, or acquiring, more information about each path
and the matching with SUBJECTs and views. However, the user will have
to make the final decision for the correct solution path.

3.3.3 Equijoin Conditions Determination. To complete the query, join
conditions needed to implement the solution path found must also be
determined. The method starts from the root node. It backtracks the
message-passing route (i.e., following the value of “from”) for each message
collected in the root to its originating node (i.e., when from 5 NULL). Along
the route, join conditions are determined for each pair of adjacent nodes.
Two routes may share a common section. Therefore, a list of processed
adjacent pairs is maintained, and the results from the previous join

The Model-Assisted Global Query System • 445

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

determination process between the same adjacent nodes are used to im-
prove performance.
The specific join condition between two nodes (ER1 and ER2) is deter-

mined based on the type of connection between them, which is model
structure specific. A join condition is added to the GQ when matching items
(i.e., two equivalent items) are found from the two nodes. The particular
methods for the TSER model used in the MGQS prototype (see Section 4)
can be found in Cheung [1991].

3.4 Query Processing

3.4.1 Query Optimization and Decomposition. Two heuristics are used
for global query optimization: (1) minimizing the number of equijoins
between ERs and (2) minimizing the number of local files being accessed.
During the query formulation, data items may be selected from SUBJECTs,
applications, or the enterprise as a whole instead of explicitly from ERs.
Determining a minimal set of ERs that contains all of these data items and
provides the shortest solution path will minimize equijoins. Determining a
minimal set of files is done in the following way:

Step 1. Determine the set of files (Fk) containing the data item (ak):
For each ak [A, the set of data items selected by the user and determined for
the join conditions by the system:
Fk 5 GET_FILE(ak);

GET_FILE() returns all files containing ak from the Metadatabase.
Step 2. Determine the minimal set of files that contain all ak [A:
Same as step 4 in the minimal set of ERs algorithm, but replace ERs with
files, Omin with Fmin, Ok with Fk, ak

u with ak, and Au with A.
Step 3. Determine the set of data items Af that will be retrieved from each file,

(f [Fmin).

Decompose Global Query into Local Queries. The purpose of the decom-
position procedure is to decompose the global query into subqueries, such
that each subquery concerns only one local system. The decomposition
procedure has the following steps:

Step 1. Decompose the global query (GQ) into multiple global queries (GQi).
Let AF 5 Uf {A

f}, f [Fmin.
Let GQ 5 {Fmin, A

F, C(Ac)}, transform the logical expression C(Ac) into
disjunctive normal form using the laws of Boolean algebra:
C(Ac) 5 C1(A

c) ~ C2(A
c) ~ . . . ~ Ci(A

c)
where Ci(A

c) is an elementary conjunct of the form X1 ` X2 ` . . . ` Xi. The
result of this step is GQi 5 {Fmin, AF, Ci(A

c)} (i.e., GQ 5 Ui GQi).
Step 2. Decompose each GQi into local queries.
Step 2.1. Group file f [Fmin by application (local system)
For each f [Fmin
{
s 5 GET_APPL(f); /*returns the application that file f belongs to */
Fs 5 Fs ø {f};
}

446 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Step 2.2. Separate conditions Ci(A
c) by applications.

Let Csi(A
c) be the condition expression that concerns only application

system s.
Ci(A

c) 5 (`si Csi) ` Ji(A
c)

where Ji(A
c) are join conditions that involve item from two different

applications.
The result of this step is a set of local queries (i.e., LQsi 5 {Fs, A

F, Csi(A
c),})

and the join conditions Ji(A
c).

3.4.2 Generating Local Queries. A local query using the local data manip-
ulation language (or local retrieval language for a file system) is generated for
each LQsi 5 {Fs, A

F, Csi(A
c),}. A code generator is designed specifically for a

particular DML (e.g., C11 for EXPRESS, SQL, Rdo/Rdb, and dBASE lan-
guages) based on the structure of LQ and the syntax of the DML.

3.4.3 Result Integration

Step 1. Assemble local results, Rsi, into the result of global query GQi.
Ri 5 {r111r211. . . uR1i(r1) ` R2i(r2) ` . . . ` Ji(A

c)}
r1 and r2 are the rows in local results R1i(r1) and R2i(r2) respectively, and
r111r2 denotes a row made by concatenating row r2 onto the end of row
r1.

Data conversion is needed during these join operations, if the two items
involved in a join condition are equivalent data (Section 3.4).

Step 2. final result, RGQ 5 {ruR1(r) ~ R2(r) ~ . . . }
Derived data items are computed according to the business rules, at the
end of this step. The persistent items used for the derivation will be replaced
by the derived data item (Section 3.5).

If the global query GQ is formulated by relating two run-time views using
the operators UNION or NOT EXISTS, the result RGQ would be:

(1) UNION views V1, V2 based on data items d: RGQ 5 {uuV1(u) ~d V2(u)}
(2) V1 NOT EXISTS in V2 based on data items d: RGQ 5 {uuV1(u) `d

;V2(u)}.

3.5 Knowledge Processing Using a Rule-Based Approach

3.5.1 Convert Equivalent Data. Function Join_condition_satisfied() re-
turns TRUE if the two rows in the join operation satisfy all conditions in
Jabi(A

c), and returns FALSE otherwise.

Join_conditions_satisfied(rowA, rowB, Jabi(A
c))

{
For (each condition (itemA operator itemB) in Jabi(A

c))
{
valueA 5 extract(rowA, itemA); /* returns value of itemA in rowA */
valueB 5 extract(rowB, itemB);
C_rules 5 find_convert_rules(itemA, itemB);
If (C_rules Þ NULL)
valueA 5 convert_item(itemA, itemB, valueA, C_rules);

If (compare(valueA, valueB, operator) 55 FALSE)

The Model-Assisted Global Query System • 447

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

return(FALSE);
}

return(TRUE);
}

The function find_convert_rules(itemA, itemB) searches the equivalent
table of the Metadatabase for the conversion rule(s) (Figure 5) that could
convert the value of itemA (valueA) into the format of itemB. As an
example, in Figure 6 find_convert_rules(itemA, itemB) returns two rules
(i.e., rule2 and rule4), which will first convert the value of itemA to itemC
format (using rule2) then to itemB format (using rule4). The function
returns “NULL” if no conversion is needed for comparing itemA and itemB.
The function convert_item() triggers the rule processor that will search

and fire the actions of the conversion rules [Bouziane 1991].

3.5.2 Compute Derived Data Item. Function get_involved_items(dd, Dp)
returns the list of persistent items Dp and the action ID (Actid) of the
action that binds a value to dd. For example, as shown in Figure 4, the
search of dp starts from identifying a fact (Factid) that binds a value to
PROFIT (i.e., factname 5 “PROFIT” and Facttype 5 5) in the Fact table of
the Metadatabase. Using the Factid through the Action table we find all
the rules (R) that may cause the binding. Therefore, all the involved
persistent items Dp can be identified through the Actions and Conditions
that are related to R (see Bouziane [1991, chapt. 9]). Dp is first used for

Fig. 5. Data conversion and derivation through a rule-based approach.

448 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

global query formulation and retrieval; then the values of Dp (Vdp) are used
to compute dd.
Let Result be the result from assembling the local results, and let Vdd be

the computed result of the derived item.

Compute_derived_item()
{
For each row (r) in Result
{
ActionID 5 get_involved_items(dd, Dp);
Vdp 5 extract(r, Dp);
populate_fact_table(Dp, Vdp);
Vdd 5 BChainer(ActionID);
insert (row, Vdd);
}

}

The procedure populate_fact_table() builds the fact table using the persis-
tent items code and their values Vdp. Function BChainer(ActionID) triggers
the rule processor, which uses backward chaining to try to reach the goal
(ActionID) according to the fact table. The computed value of the derived
item is returned by the function.

3.5.3 Check Business Rules. Consider the following example. Rule12
and Rule14 are stored in the metadatabase:

Rule12:
If WO_SEQ.WS_ID 5 ‘0001’
Then WORK_ORDER is a Milling job

Rule14:
If WORK_ORDER is a Milling job And
WO_SEQ.START_DATE Þ WO_SEQ.END_DATE
Then PRINT(“Warning: END_DATE should be the same as START_DATE for
a milling job”)

If the users select a condition such as

WO_SEQ.WS_ID 5 ‘0001’ AND
WO_SEQ.START_DATE Þ WO_SEQ.END_DATE

then MGQS will detect the inconsistency and issue a warning to the users.
This method calls for a forward-chaining inferencing strategy for the rule
processor. The consistency checking can be triggered whenever a new

Itemcode Eqitemcode reverse_by convert_by

itemA itemC Rule1 Rule2
itemB itemC Rule4 Rule3

Fig. 6. Equivalent table.

The Model-Assisted Global Query System • 449

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

condition is specified or by request (e.g., when a user requests the process-
ing of a global query).

Step 1. Populate the fact table.
Step 2. Activate the forward chainer.

The function FChainer() triggers the forward chainer, which
will fire rule(s) according to the fact table.

Note: details of all of the functions described in this section can be found in
Bouziane [1991] and Cheung [1991].

4. THE IMPLEMENTATION

4.1 The MGQS Architecture and Prototype Method

The general approach discussed above is implemented with particular
designs. The Metadatabase and its attendant concurrent architecture
[Babin 1993; Hsu and Rattner 1990; Hsu and Skevington 1987; Hsu et al.
1992; 1994] provide the technological basis for the particular MGQS
methods.
An MGQS architecture that complies with the basic requirements de-

scribed in the earlier sections and the idea of model assistance is developed,
as shown in Figure 7. It can be conceptually divided into two major
components: (1) metadata manager and (2) global query manager. The
metadata manager consists of the Metadatabase management system shell,
rule processor, metarelation manager, and routine manager [Bouziane
1991]. It acquires pertinent knowledge from the Metadatabase, and thereby
it provides model assistance for the global query operation through the user
interface. The global query manager, on the other hand, includes the
necessary modules, such as a query formulator, processor, translator, and
result integrator, that would fulfill the basic requirements of global query
operations.

4.2 Metadatabase Query Language

The Metadatabase Query Language (MQL) allows programs to query a
collection of autonomous local information system(s) in a nonprocedural
way. Its ability, supported by the metadatabase, to accommodate the
logical and physical heterogeneities of the local systems distinguishes MQL
from other distributed database query languages. The semantics of an MQL
query is provided in precisely the same way as the traversal mode dis-
cussed in Section 3.2.1. Instead of using the GUI of the MGQS, a syntacti-
cal structure is employed in its place.
The major functionalities which MQL provides are the following:

—retrieve metadata against the Metadatabase,
—support queries requiring joins of data from different local systems
operating under different schemata,

450 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

—support queries involving data with multiple definitions (i.e., differing
names, formats, units, and/or value coding) within a single system or
across different local systems,

—use user-familiar names in queries to qualify data elements in different
databases,

—minimize technical details expected of users for the global query formu-
lation while supporting the above functionalities (e.g., the physical
locations, local names, and implicit join conditions).

The Syntax. The conceptual structure of MQL is based on the Two-
Stage Entity-Relationship representation method. In Figure 8, the GET
command is the only command that must be stated in a global query. It is
used to specify the list of items for retrieval. Ii denotes the list of item
names that are delimited by a blank character “space,” and NULL is a

Fig. 7. The architecture of the model-assisted GQS.

The Model-Assisted Global Query System • 451

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

symbol to indicate that no data item will be retrieved. In the syntax
expression, vi denotes a run-time view name; ai denotes an application
name; si denotes a subject name; oei denotes an entity name; and pri
denotes a plural-relationship name.
The FROM clause is used to indicate where the items are to be retrieved

from. There are four ways of using the FROM command, depending on the
level of detail a user specifies in the global query: FROM VIEW, FROM
APPLICATION, FROM SUBJECT, and FROM E/R. If the items are se-
lected from a user-defined run-time view, the view name must be provided
by using the FROM VIEW clause. Otherwise, FROM is optional in this
syntax, especially when the user does not know where specific data items
can be retrieved from. During the global query formulation, the FROM and
GET commands can be used repeatedly until all of the items to be retrieved
are specified (see Figure 9 for an example).
Last, the FOR clause is used for specifying the selection condition(s) and

join condition(s) (^C&). The conditions are conjoined by the logical operators
AND or OR. Each condition states the binding of an item with a constant
value or another item. The logical location of an item involved in a
condition can be further specified with the OF clause. The OF clause works
in the same manner as the FROM clause.

Fig. 8. The syntax of MQL.

452 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Defining Run-Time View. A run-time view is a user-defined information
view based on the existing information model. After its creation, the view is
kept as a virtual relational table during the global query operation. To
define a run-time view, the user uses the command

DEFINE VIEW vi ^GQ&;
where ^GQ& is a global query in MQL.

vi is the name given to the new defined view. In essence, view vi is the
result of a global query.
A global query can be formulated based on a run-time view (using the

FROM VIEW and OF VIEW clauses) or by relating run-time views using
the UNION and EXIST functions (described below). With the MQL syntax,
a view can be built recursively on another run-time view. The capability of
view definition allows complex (nested) global queries to be formulated
using the MQL.

Standard Functions. Standard functions are provided in MQL, includ-
ing

AVG()—average of the values (numeric values only) in the column,
COUNT()—number of values in the column,
MAX()—largest value in the column,
MIN()—smallest value in the column, and
SUM()—sum of the numeric values in the column.

Three functions DISTINCT, GROUP BY, and ORDER BY are provided
for arranging the resulting tables. DISTINCT eliminates tuples with dupli-
cate values in the column. GROUP BY arranges tuples into groups such
that within any one group all tuples have the same values for the column.
ORDER BY sorts tuples (ascending or descending) according to the values
of a column.
Last, UNION and NOT EXISTS are used in MQL to formulate a nested

global query by relating two run-time views. The syntax of UNION and
NOT EXISTS is as follows:

Fig. 9. An MQL example.

The Model-Assisted Global Query System • 453

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

^viewi& UNION ^viewj& on Ii
^viewi& NOT EXISTS ^viewj& on Ii

Ii is a list of data item(s) contained in both view i and view j. UNION works
as the union operator of set theory; the result of a UNION operation is a
table with all unique data items from both views. Rows with duplicate
values on I i are eliminated from the result of the UNION. NOT EXISTS
works as the difference operator of set theory. The result of a NOT EXISTS
operation is a table containing rows from view i, such that there is no value
of its I i that matches any values of I i in view j.

4.3 Implementation of the Design

A prototype model-assisted global query system based on the architecture
described in the previous section is built for the purpose of concept
verification [Babin 1993; Bouziane 1991; Cheung 1991; Rattner 1990]. This
prototype is written in the C language and has two versions running
respectively on a Micro VAX workstation and an RS6000 workstation. It
provides functions of global query formulation, global query optimization,
local query translation, result integration, and on-line intelligence using a
rule-based approach.
The prototype MGQS user interface is designed according to the model

traversal method described in Figure 3. Figure 10 illustrates the implementa-
tion in a window environments. The upper left window entitled “SPECIFY
SCOPE FOR FORMULATION” is used for model traversal (browsing), where
horizontal movement realizes horizontal navigation, and a pull-down menu
enables vertical immersion for each subtitle (i.e., Application, Subject, and

Fig. 10. MGQS user interface for global query formulation.

454 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Entity/Relationship). Pertinent objects (application, subject, and entity/rela-
tionship) are displayed in the entry fields.
The center window, “FORMULATE QUERY,” is for selecting data objects

(two types: data item and entity/relationship) into the global query. This
way, a user can explicitly include an entity/relationship in a global query
for semantic purposes even though no data item will be retrieved from it.
The progress of the formulation is displayed in the window on the lower
half of the screen. Selection conditions for the query can be specified via the
“QUERY FORMULATION IN PROCESS” window.
The “Do Query” button in the upper right side of the screen will execute

the formulated global query. The “Save MQL” button will translate the
formulated global query into the syntax of the Metadatabase query lan-
guage (see Section 4.2) and save it into a file. Last, the “QUIT” button will
exit from the MGQS system.
The formulated global queries will be decomposed into optimized subque-

ries through the global query processor. The query translator then gener-
ates local DML code for each subquery before it is sent to the local system
for processing. Finally, as local results arrive, they are interpreted and
assembled by the result integrator.

5. AN EMPIRICAL CASE STUDY

5.1 The Heterogeneous Environment

The computer-integrated manufacturing (CIM) facility at Rensselaer is
used as a test bed for this research. Four functional systems are em-
ployed—namely, a process-planning system developed as a dBASE III1
application on an IBM PC/AT, a shop floor control system running under
the PC/Oracle DBMS, an order entry system implemented as a Rdb/VAX
application, and a product database designed in the EXPRESS language
and implemented on an object-oriented ROSE platform running on an IBM
RS6000. The metadatabase is the fifth system residing on an IBM RS6000.
This setup provides a heterogeneous, distributed environment for MGQS
prototyping and verification.

The Enterprise Model. A rigorous modeling and reverse-engineering (for
paradigm translation) process was engaged to create the enterprise infor-
mation models and populate the Metadatabase. The process, while beyond
the scope of this article, is reported by Hsu et al. [1992; 1993]. This process
yielded a global data model and other information models created expressly
for local systems, and resulted in the enterprise metadata stored into the
Metadatabase. Thus, all local systems were not disturbed at all by this
process; only a separated Metadatabase was added to the environment. The
global data model for this case is shown in Figure 11. When stored into the
Metadatabase, this model is logically corresponded to the structural layer
in Figure 3 while physically populated as instances into EnRel, Integrity,
and Item metaentities in Figure 2.

The Model-Assisted Global Query System • 455

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

It is worth noting that MGQS not only does away with imposing data
standardization or naming convention on any of the local systems, but also
preserves high local autonomy by dealing changes among the local systems
dynamically via updating data equivalence, the conversion rules, and other
metadata (as pertinent). These changes to the Metadatabase require only
ordinary database transactions, since the GIRD model features metadata
independence [Hsu et al. 1991].

5.2 A Global Query Scenario

Consider the following global query example:

“Find the customer order ID, part ID, part description, and quantity
completed for Jane Doe’s order which has a desired date of 10/25/90.”

This request involves data from three application systems, i.e., order entry,
shop floor control, and process planning. (Note that the user posing this
query may not know that the query traverses multiple systems.) The user
engages the system through the model-assisted dialog menus and windows
to formulate the query while paging through the models. The model
traversal starts with selecting an application as an entry point which is
very general. As shown in Figure 12, the shaded lines show the particular

Fig. 11. The global model for CIM at Rensselaer.

456 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

path followed by the user to formulate this query. Note the relationship
between the data items (listed at the bottom of the model) and the systems
in which they are stored (shown at the top). The user does not need to know
the information model; it is presented here as an illustration of the global
data model network stored in the Metadatabase. This network is used by
MGQS itself to guide the query formulation process. The items tagged with
asterisks have been requested in the query. Also observe that the rounded
boxes in the figure represent SUBJECTs and the Squared boxes the
corresponding Entities and Relationships of the enterprise model. During
the process the user marks the data fields needed along with any condi-
tional statements. (In this query example, DATE_DESIRED 5 “10/25/90”
and CUST_NAME 5 “Jane Doe”) The formulation is completed when all
the items are selected and when the selection conditions are specified.
Once the formulation is completed, MGQS will first determine the

solution path for the global query from the enterprise model. Equijoin
conditions are then inserted to the formulated global query according to the
path. The join conditions for this example are:

PART.PARTID 5 WORK_ORDER.PART_ID
WORK_ORDER.ORDER_ID 5 ORDER.CUST_ORDER_ID
ORDER.CUST_ID 5 CUSTOMER.CUST_ID

Note the synonyms PARTID vs. PART_ID and ORDER_ID vs. CUST_OR-
DER_ID are identified by the prototype system. Also, PARTID in PART,
PART_ID in WORK_ORDER, CUST_ORDER_ID and CUST_ID in ORDER,
and CUST_ID in CUSTOMER are not selected during the formulation;
therefore, MGQS will have to add these items into the global query. Then,

Fig. 12. Query example: Model traversal tree.

The Model-Assisted Global Query System • 457

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

MGQS decomposes the global query into a set of optimized, locally bound
subqueries using the implementation models in the Metadatabase. Each
subquery requires data retrieval from one and only one local system.
MGQS will disseminate these requests using the native query languages of
the local systems involved. These local queries are sent out across the
network to the respective local systems to be serviced. A rule-based shell
system for each and every local systems was included in the prototype to
provide data update and other active database functionalities [Babin 1993;
Hsu et al. 1992]. This aspect, however, is beyond MGQS and is not needed
in the discussion here. It suffices the purpose to simply consider that there
is a shell at each node serving as the interface between the metadatabase
and these local systems.
Each local application system’s shell receives a request to process the

local query. Upon reception, the subquery is executed by calling the local
DBMS with the file containing the generated local query. The results are
then sent back to the MGQS where they are assembled logically and
presented to the user (Figure 13).
As shown in Figure 13, the values of the ORDER_ID and CUST_ORDER_ID

are coded differently. Data conversion is required in order to complete the join
operation correctly. MGQS calls upon the rule processor to fire the proper
conversion rule containing contextual knowledge, which manipulates raw data
or triggers the desired procedures for the conversion before the join.

A Test for the Metadatabase Query Language. The same global query
example is used for testing the Metadatabase query language (MQL). Two
formulations for the example using MQL are shown in Figures 14 and 15.
Both formulations provide the same result as in Figure 13. Note the
formulation in Figure 15 is less precise. The user does not pinpoint the
entities and relationships that are involved in the global query. Instead,
only the involved applications are specified. The MGQS fills in the neces-
sary information by consulting the contents of the Metadatabase. Mini-
mally, a user will only need to specify the data item(s) and the necessary
selection condition(s) for a global query. The rest of the query processing is
the same as described before.

5.3 Discussion

It is worth noting that the OES was originally implemented as a VAX/VMS
file system. New OES using the Rdb, a relational DBMS on a Micro VAX,
was designed and built after the MGQS prototype had been functionalized.
The adaptation to the new system for MGQS was done rather quickly.
First, we removed the old OES models from the contents of the Metadata-
base. Then the TSER models of the OES, obtained from the top-down

Fig. 13. Final result of the global query.

458 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

modeling effort, were incorporated automatically into the Metadatabase
(i.e., consolidating the new model with the existing enterprise model and
populating the Metadatabase with the new models). Finally a customized
code generator for Rdo, a DML for Rdb, is programmed. The total effort for
the changes essentially was completed when the code generator was
completed. This situation illustrates the idea of changes under metadata
independence as mentioned before.
In the whole, the CIM facility at Rensselaer provides an environment

with a reasonable complexity to test the prototype MGQS and the model
assistance concept. All major objectives (i.e., information sharing, local
system autonomy, and model assistance) of the MGQS are achieved and
proven to be feasible with the prototype system. Most of the envisioned
functionalities (with the exception of ambiguity checking and derived item
querying) are implemented. In addition, the data conversion capability has
demonstrated a use of the contextual knowledge and rule processor for
providing on-line intelligence. This same method can be applied to the
function of ambiguity checking and derived data querying.
There are, however, the needs to investigate the performance issues

especially when run-time data conversion and other rule operations are
involved. The empirical study did not provide sufficient observations to
draw scientific conclusions from. Nonetheless, the preliminary results do
not appear to suggest that these operations are a bottleneck. One reason
might be the fact that data conversion in MGQS is performed at local nodes
in a truly distributed manner by local systems using concurrently the
common global representations as the target. Most other rules are pro-
cessed in a similar concurrent design using the Metadatabase’s distributed

Fig. 14. MQL formulation.

Fig. 15. MQL formulation.

The Model-Assisted Global Query System • 459

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

shells for local systems (see Babin [1993] and Hsu et al. [1992; 1994] for
details, which are beyond the scope of this article).

6. ANALYSIS

The MGQS approach is justified in this section through a comparison with
previous results with respect to the objectives (Section 2.1) of information
sharing in heterogeneous distributed environments. A comment on the
generalizability of the MGQS results is also provided.

6.1 Metadata Modeling versus Schema Integration

A key element in conventional distributed databases is schema integration.
All databases are logically structured and controlled under a single inte-
grated schema in a homogeneous environment [Cardenas 1987; Rem 1991;
Thomas et al. 1990]. The user would be able to share information across all
databases as if there were only one classical centralized database. There-
fore, local transparency and conflict resolution are achieved through enforc-
ing an integrated schema under a single data model. The primary problem
with this approach, however, is lack of local system autonomy and adapt-
ability.
To illustrate, consider the example in Figure 16. In this example SNO

and SID are two synonyms of the same logical attribute (one in data object
SUPPLY of database PJ at site A and the other in data object SUPPLIER of
database S at side B). Further, PNO in PART and the PNO in SUPPLY are
structured differently with different domains CODE1 and CODE2, respec-
tively. The integrated schema could be developed as shown in Figure 17
(assuming a relational system). In the integrated schema, the two conflict-
ing definitions are reconciled by changing attribute name SID to SNO in
SUPPLIER and the value domains of PNO in both SUPPLY and PART to
type integer. The local systems will recompile and reload so as to imple-
ment the changes according to the integrated schema.

Fig. 16. An example of three systems A, B, and C.

460 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

Figure 18 shows the global model that MGQS would employ for this
example. Note that each data item in the global model is assigned with a
unique item code. For instance, the two PNOs in PART and SUPPLY are
logically the same attributes with the same name, but reside in different
local systems, and hence they have different item codes. However, the
attribute JNO in the database PJ is only a single data item, since, albeit
shared by both SUPPLY and PROJECT, it is the same attribute with the
same name in the same system; therefore they have the same item code.
The fact that PNO in PART and SUPPLY are coded differently is repre-
sented as a tuple in Equivalent along with the conversion rules Rule1 and
Rule2. Synonyms SID and SNO are also reflected in Equivalent. There-
fore, no change is required of the local systems using this method, while
any names could be used by users in any systems to address the attributes
and obtain globally consolidated results. The same process is utilized to
effect, equivalent with respect to types, semantic formats (e.g., dates) and
user-dependent presentation. Note that the process does not require an
integrated global schema. Concerning adaptability, such as modifying,
adding, or deleting (local) models, any such changes to the enterprise
models can be simply handled as metadata transactions against the Meta-
database without affecting its schema (the GIRD model). This, as men-
tioned in Section 3.1, is the significance of metadata independence. Most
previous results, some of which avail the similar local system autonomy as
discussed in the above example, do not satisfy metadata independence.

6.2 MQL versus MSQL

The MSQL [Litwin et al. 1989; 1990] facility is an extension of SQL for
manipulating data managed by the multidatabase. The major results
include (1) additional commands for multiple databases and (2) enhanced
naming convention for data objects. Applying MSQL to the same global
query example in Figure 12 would yield the following result:

Create Multidatabase CIM (SHOPFLOOR PROCESS_PLAN ORDER)

Use CIM
Select SHOPFLOOR.WORK_ORDER.PART_ID,

SHOPFLOOR.WORK_ORDER.ORDER_ID,
SHOPFLOOR.WORK_ORDER.QUAN,
SHOPFLOOR.WORK_ORDER.COMPLETED,

Fig. 17. Integrated schema for the example using DDBMS approach.

The Model-Assisted Global Query System • 461

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

PROCESS_PLAN.PART.PARTDES,
ORDER.ORDER.DATE_DESIRED, ORDER.CUSTOMER.CUST_NAME

From SHOPFLOOR.WORK_ORDER, PRO-
CESS_PLAN..ORDER, PROCESS_PLAN.PART, ORDER.CUSTOMER

Where PROCESS_PLAN.PART.PARTID 5 SHOPFLOOR.WORK_
ORDER.PART_ID

And SHOPFLOOR.WORK_ORDER.ORDER_ID 5 ORDER.ORDER.
ORDER_ID

And ORDER.CUSTOMER..CUST_ID 5 ORDER.ORDER.CUST_ID
And ORDER.ORDER.DATE_DESIRED 5 “10/25/93”;

The above example is evidently more complicated than using MQL (see
Figures 14 and 15). The reason is simple: MSQL does not utilize a
metadata facility for global query formulation. Users have to provide all the
technical details, including precise location of data items, data equivalence,
and join conditions. Furthermore, two equivalent data items, PARTID in
PART and PART_ID in WORK_ORDER, in a join condition must have the
same format in order for MSQL to integrate the results.

6.3 MGQS versus Multibase

Multibase [Dayal and Hwang 1984; Smith et al. 1981] is one of the
pioneering research efforts and arguably the most well known practical
system in the field of heterogeneous, distributed DBMS. A single query
language (DAPLEX) based on the functional data model is employed for
information retrieval. Preserving local system autonomy and resolving data

Fig. 18. Global model for the example using the MGQS.

462 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

incompatibilities are the major design objectives for the Multibase. Thus, it
is a natural reference point for MGQS to be compared with.
Multibase has three levels of schema: (1) a global schema at the top level,

(2) an integration schema and one local schema for each local system at the
middle level, and (3) one local host schema per local database at the bottom
level. The global schema, local schemata, and the integration schema are
all defined according to and in terms of the functional data model. Each of
the local host schemata is translated into a local schema, and the integra-
tion schema is used to describe the so-called integration database contain-
ing information needed for integrating results from local databases (i.e.,
information about mapping between conflicting data definitions). The local
schemata and integration schema are then mapped into global schema.
To provide a single query language for information retrieval from heter-

ogeneous systems, Multibase has to synchronize multiple data definitions
at the global schema level. Also, multiple data definitions for the logically
identical data are not allowed. This is the classical case of integrated
schema as discussed in Section 6.1. In contrast, MGQS supports a single
global query environment by consulting the Metadatabase instead of im-
posing restrictions via the global model. Multiple data definitions are
allowed, and they are stored in the metadatabase along with the conversion
methods.

6.4 MGQS versus Other HD_DBMSs

Other heterogeneous, distributed DBMSs such as Federated databases
[Sheth and Larson 1990] have proposed similar three-level schema struc-
tures as Multibase to achieve local system autonomy. The basic difference
from the latter is, in order to promote an open architecture, these ap-
proaches do not enforce a single global model. Instead, several logically
related subsystems are grouped together with an integrated model (re-
ferred to as external schema) developed for them. Multiple external sche-
mata are coexisting in the global system. This approach provides more
flexibility for integration design and reduces the scope of schema integra-
tion by cutting down the number of subsystems involved in an integrated
model. However, since each subsystem may participate in multiple external
schemata that are custom developed, evolving the overall structure, such as
incorporating a new subsystem to the environment, is still fundamentally
more complicated.
Moreover, there are no metadata management facilities used. Global

query formulation relies, therefore, on an extended query language and the
user’s technical knowledge of the subsystems and their external schemata.
A minimal extension of the language is to allow relation names to be
qualified with database names in case of naming conflicts. To address an
attribute, the user has to know precisely which relation of what database
the attribute belongs to. For instance, PNO of PART is referred to as
P.PART.PNO. Thus local system transparency is not completely supported
in these approaches.

The Model-Assisted Global Query System • 463

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

6.5 MGQS versus Other Metadata-Supported Systems

Increasingly, more global query systems have come to the same conclusion
of utilizing metadata to resolve some well-known problems in query pro-
cessing. The driving issues include semantics, optimization path selection,
and result integration, which correspond respectively to steps 1.3, 2 (par-
ticularly 2.3), and 6 of the MGQS definitional algorithm in Section 2.2.1.
Some metadata management facilities may also be used in the forms of a
knowledge base or a repository. Their main difference from the MGQS
approach lies in the scope of metadata and the metadata independence of
the management facilities. A prime example is the Composite Information
Systems (CIS) [Siegel and Madnick 1991; Wang and Madnick 1989; 1990]
of MIT. It is one of the first works to emphasize the significance of
metadata and use it to resolve some semantic conflicts in query translation
and result integration. Since there are no formal knowledge methods
included in its metadata facility used, the scope and functionality would be
affected. In addition, CIS assumes all local systems and the global schema
are relational.
The Carnot approach of MCC (Microelectronics and Computer Technol-

ogy Corporation) [Collet et al. 1991] differs from the CIS approach in its
global schema construction and the use of metadata representation
model—namely, the Cyc knowledge base. This approach makes the global
schema much easier to construct and maintain. However, Collet et al. state,
there are two major problems that the Carnot approach has not yet
resolved—i.e., (1) how to integrate the results returned from subsystem
queries and (2) how to develop a graphical entity-relationship representa-
tion of the global schema and an intelligent interface for specifying queries.
Both of these are direct results of the Cyc knowledge base design. The
MGQS approach facilitates both, due in part to the scope and the structure
of the Metadatabase (see Figures 2 and 3, and Sections 3.5 and 6.1).
In contrast to CIS and Carnot, the recently reported KIM (Knowledge-

base Information Manager) Query System [Ferrara 1994] provides an
iconic ER-based user interface for global query formulation, but does not
seem to address such issues as system evolution, optimization path, and
result integration. Again, although KIM features a repository similar to
Carnot, its design does not support a full vision of enterprise metadata.

6.6 Conceptual Evaluation of the MGQS Approach

The model-assisted global query approach provides several important func-
tionalities for sharing information in heterogeneous distributed environ-
ments. The defining and enabling characteristic is the Metadatabase
implementing the global model in a metadata-independent design. Based
on the discussions in the above sections, these properties are categorized
into five areas, as discussed below.

Maintain Local System Autonomy Using the Metadatabase. As men-
tioned above, MGQS employs a Metadatabase for identifying and resolving
the heterogeneities among these systems. Instead of imposing an inte-

464 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

grated schema over all the local systems, the Metadatabase approach
allows the local systems to keep their environments insulated and to
control their own data definitions and everything. The functional model,
structural model, implementation model, and the associations among these
models of each local system are independently represented, consolidated,
and stored in the Metadatabase. Thus, their manipulation and manage-
ment are as easy as any ordinary data in a database.

Allow Direct and Visual Query Formulation from Enterprise Metadata.
A global query is formulated by selecting the data constructs while brows-
ing the global enterprise information models. Regardless of the entry point
chosen, the user will eventually lead to the needed data constructs by
paging through the global model without noticing the boundary of local
systems. This is a high level of direct manipulation (of information objects)
that researchers have advocated for a cognitive user interface. The con-
structs used (see Figure 2) are clearly compatible with a graphical repre-
sentation and hence support visual methods for query formulation.

Provide On-Line Intelligence and Assistance for Challenging Tasks such
as Semantics, Path Selection, and Result Integration. MGQS provides
on-line knowledge to facilitate both global query formulation and process-
ing. During query formulation, the pertinent information contents and
semantics of the heterogeneous systems are either provided interactively to
the user, or MGQS utilizes them to automate certain tasks for the user (see
Sections 2 and 3). The on-line knowledge provided to the global query
processing is transparent to the user. They include the automatic decompo-
sition and optimization of global query and the recognition and conversion
of equivalent data resources across local systems. Combined, the ap-
proaches provide a broad range of metadata support covering the entirety
of the definition discussed in Section 2.2. They are sufficient for certain
difficult tasks, including semantics, path selection for query optimization,
and result integration using data equivalence knowledge (see above com-
parisons). Since the Metadatabase contains both enterprise knowledge
resources and data models, its extent of metadata is unique and is capable
of providing significant on-line intelligence and assistance.

Include Rule-Based Knowledge Processing for Extensibility. MGQS ac-
quires contextual knowledge from the knowledge model of the Metadata-
base to provide on-line intelligence for the global query operation. Two
representative examples of contextual knowledge are business rules, which
describe the intended use of data, and operating rules, which facilitate
decision processes across systems. Global queries involving derived items is
another example on the use of contextual knowledge. A rule base model and
an inference engine are part of the Metadatabase system. New rules
concerning MGQS can be relatively easily incorporated into its architecture
and execution model.

Achieve Open-System Architecture through Metadata Independence. The
MGQS approach provides an open-system architecture that is flexible for

The Model-Assisted Global Query System • 465

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

adding, deleting, or modifying a local system in the integrated enterprise.
The property is referred as metadata independence in Section 3.1. For
instance, to remove the shop floor control system from the CIM enterprise
in Section 5, no change is required of the MGQS. The metadata pertaining
to the shop floor system will be removed from the Metadatabase through
ordinary transactions (i.e., deleting tuples from the metarelations). Accept-
ing a new subsystem to the integrated enterprise requires primarily a
modeling effort, which is no more than that required by conventional
approaches. However, the addition of this new model to the existing global
model is merely a matter of performing, again, ordinary Metadatabase
addition transactions. A documentation of this modeling process is pro-
vided, for example, by Hsu et al. [1992; 1994].

6.7 The Generalizability of the MGQS Approach

How much of the MGQS approach can be utilized by other systems than the
prototype at Rensselaer, which makes heavy use of a particular Metadata-
base and a particular modeling method TSER? The answer turns out to be
correlated in steps with the development from Sections 2 to 4. The
conceptual model in Section 2 is most general and generic. Any system may
be able to develop its own metadata facility (be it a knowledge base, a
repository, or a metadatabase) utilizing the metadata requirements speci-
fied in the model. At the next level, the particular MGQS execution model
is based on the particular Metadatabase. Although its design is rooted in
TSER, the GIRD model is simply a specification for creation of the metada-
tabase. Therefore, the model may be implemented in any system support-
ing the usual relational-compatible facilities. The third level, the most
specific, involves TSER modeling and the Metadatabase management sys-
tem. The full repetition of the results reported in Sections 5 and 6 will
require all elements in Sections 2, 3, and 4. However, these elements are
available in the open literature and can be adopted by the general reader-
ship.

7. CONCLUSIONS AND CONTRIBUTIONS

The model-assisted global query system accomplishes information sharing
in heterogeneous, distributed environments. The goals of the approach and
its conceptual model were discussed in Sections 1 and 2, justified in
Sections 5 and 6, while the execution methods were established in Sections
3 and 4.
In particular, MGQS contributes a direct method to end-user query

formulation through on-line assistance using metadata (Section 2). It
allows the user to articulate directly in terms of information models with
which they are familiar. The pertinent information contents and data
semantics of the heterogeneous multiple systems are provided interactively
to the user, thereby further alleviating the technical complexities and
semantic ambiguity during formulation. In a similar manner, some techni-
cal support is also afforded, including diagnosis and feedback of query

466 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

formulation according to the business rules and other contextual knowledge
in the system. This direct method contributes in its own right to the
conceptual foundations of graphical and interactive user interface technol-
ogy.
New methods that utilize the on-line knowledge (or metadata) for major

global query processing tasks are also developed. They encompass the areas
of global query optimization and decomposition, query translation, and
result integration. The knowledge needed for these tasks (e.g., implied data
items, shortest solution path, and join conditions; local system access
paths; query construction across local database schemata; and data equiv-
alency and conversion) is automatically derived from the Metadatabase.
Without such on-line intelligence and assistance, the required knowledge
would have to either be supplied by users at run/compile-time or be
predetermined at design time through schema integration and other stan-
dardization approaches.
This article has resolved some interoperability issues of heterogeneous

multiple information systems through offering an alternative to the ap-
proaches that rely on schema integration. Schema integration is a major
source of technical complexity of heterogeneous distributed DBMS at both
design time (efforts and restrictions) and run-time (mappings and architec-
tural overheads). Additional knowledge, such as conflicting or alternating
data definitions and their resolutions, is also supported and stored in the
Metadatabase for MGQS. Conversion is done through a rule processor
firing conversion rules. As a result, the only global modeling effort required
of this approach is the development of the enterprise information model
itself. It is still challenging, especially concerning knowledge acquisition;
but it nevertheless avoids the excessive complexity of integration at the
schemata level that would ensue on the enterprise model in the case of
conventional approaches.
This research has also identified and characterized a model for the notion

of “on-line intelligence and assistance” in end-user query interface and
query processing in terms of the enterprise metadata. It is also shown
through MQL, its query language, that programming query languages can
also benefit from the on-line intelligence and assistance. As we have shown
in Section 4, the syntax and the technical details of MQL are an improve-
ment over existing global query languages. The concept and methods were
tested with the prototype system using the CIM facility at Rensselaer.
Further research is currently underway to enhance MQL and MGQS

methods, especially by incorporating additional rule-oriented capabilities
into the system. MGQS is also being employed in to facilitate global data
management and event-based information flow management in Metadata-
base research. New progress might come from applying the basic methods
to other information modeling paradigms (than TSER). Finally, informa-
tion visualization [Hsu and Yee 1993] will be a natural extension to MGQS,
where an agent may be developed to personalize the Metadatabase, and a
visual/virtual environment can replace the GUI-based user interface used
presently.

The Model-Assisted Global Query System • 467

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

REFERENCES

AFSARMANESH, H. AND MCLEOD, D. 1989. The 3DIS: An extensible object-oriented informa-
tion management environment. ACM Trans. Inf. Syst. 7, 4 (Oct.), 339–377.

ANGELACCIO, M., CATARCI, T., AND SANTUCCI, G. 1990. QBD*: A graphical query language
with recursion. IEEE Trans. Softw. Eng. 16, 10, 1150–1163.

AZMOODEH, M. 1990. BRMQ: A database interface facility based on graph traversals and
extended relationships on groups of entities. Comput. J. 33, 1, 31–39.

BABIN, B. 1993. Adaptiveness in information systems integration. Ph.D. dissertation, Deci-
sion Sciences and Engineering Systems Dept., Rensselaer Polytechnic Inst., Troy, N.Y.

BENJAMIN, A. J. AND LEW, K. M. 1986. A visual tool for managing relational databases. In
Proceedings of the IEEE International Conference on Data Engineering. IEEE, New York,
661–668.

BERNSTEIN, P., GOODMAN, N., WONG, E., REEVE, C. L., AND ROTHNIE, J. B., JR. 1981. Query
processing in a system for distributed databases (SDD-1). ACM Trans. Database Syst. 6, 4
(Dec.), 602–625.

BATINI, C., LENZERINI, M., AND NAVATHE, S. B. 1986. A comparative analysis of methodolo-
gies for database scheme integration. ACM Comput. Surv. 18, 4.

BLASER, A. 1988. Natural Language at the Computer: Scientific Symposium on Syntax and
Semantics for Text Processing and Man-Machine-Communication, A. Blaser, Ed. Springer-
Verlag, New York.

BOUZIANE, M. 1991. Metadata modeling and management. Ph.D. dissertation, Computer
Science Dept., Rensselaer Polytechnic Inst., Troy, N.Y.

BUNT, H. C. 1988. Natural language communication with computers: Some problems,
perspectives, and new directions. In Human-Computer Interaction: Psychonomic Aspects,
G. C. Veer and G. Mulder, Eds. Springer-Verlag, Berlin, 406–442.

CARDENAS, A. F. 1987. Heterogeneous distributed database management: The HD-DBMS.
Proc. IEEE 75, 7.

CHEUNG, W. 1991. The model-assisted global query system. Ph.D. dissertation, Computer
Science Dept., Rensselaer Polytechnic Inst., Troy, N.Y.

CHUNG, C. W. 1990. DATAPLEX: An access to heterogeneous distributed databases. Com-
mun. ACM 33, 1 (Jan.), 70–80.

COLLET, C., HUHNS, M. N., AND SHEN, W. M. 1991. Resource integration using a large
knowledge base in Carnot. IEEE Comput. 24, 12 (Dec.), 55–62.

DATE, C. J. 1995. An Introduction to Database Systems. 6th ed. Addison-Wesley, Reading,
Mass.

DAYAL, U. AND HWANG, H. 1984. View definition and generalization for database integration
in MULTIBASE: A system for heterogeneous distributed databases. IEEE Trans. Softw.
Eng. SE-10, 6, 628–644.

FERRARA, F. M. 1994. The KIM query system: An iconic interface for the unified access to
distributed multimedia databases. ACM SIGCHI Bull. 26, 3 (July), 30–39.

FARDINER, M. M. AND CHRISTIE, B. 1987. Applying Cognitive Psychology to User-Interface
Design. John Wiley and Sons, New York.

GOULD, J. D. AND LEWIS, C. 1985. Designing for usability: Key principles and what design-
er’s think. Commun. ACM 28, 3 (Mar.), 300–311.

GREENBERG, S. AND WITTEN, I. H. 1985. Adaptive personalized interfaces—A question of
viability. Behav. Inf. Tech. 4, 1, 31–45.

GYSSENS, M., PAREDAENS, J., AND GUCHT, D. V. 1990. A graph-oriented object model for
database end-user interfaces. In Proceedings of ACM SIGMOD. ACM, New York, 24–33.

HARTSON, H. R. AND HIX, D. 1989. Human-computer interface development: Concepts and
systems for its management. ACM Comput. Surv. 21, 1 (Mar.), 5–92.

HEROT, C. 1980. Spatial management of data. ACM Trans. Database Syst. 5, 4, 493–513.
HIRSCHMAN, L. 1989. Natural language interfaces for large-scale information processing. In
Integration of Information Systems: Bridging Heterogeneous Databases, A. Gupta, Ed. IEEE
Press, New York, 308–314.

468 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

HSU, C. 1985. Structured databases system analysis and design through entity-relationship
approach. In Proceedings of the 4th International Conference on the Entity Relationship
Approach. IEEE Computer Society Press, Los Alamitos, Calif., 56–63.

HSU, C. AND RATTNER, L. 1990. Information modeling for computerized manufacturing.
IEEE Trans. Syst. Man Cybernet. 20, 4, 758–776.

HSU, C. AND SKEVINGTON, C. 1987. Integration of data and knowledge model in manufactur-
ing enterprises: A conceptual framework. Manuf. Syst. 6, 4, 277–285.

HSU, C. AND YEE, L. 1993. Model-based visualization for enterprise information manage-
ment. In Proceedings of the 4th Annual Conference on AI, Simulation and Planning in High
Autonomous Systems. IEEE Computer Society Press, Los Alamitos, Calif., 324–327.

HSU, C., BABIN, G., BOUZIANE, M., CHEUNG, W., RATTNER, L., AND YEE, L. 1992. Metadata-
base modeling for enterprise information integration. J. Syst. Integration 2, 1, 5–37.

HSU, C., BABIN, G., BOUZIANE, M., CHEUNG, W., RATTNER, L., RUBENSTEIN, A., AND YEE, L.
1994. The metadatabase approach to integrating and managing manufacturing informa-
tion systems. J. Intell. Manuf. 5, 333–349.

HSU, C., BOUZIANE, M., RATTNER, L., AND YEE, L. 1991. Information resources management
in heterogeneous distributed environments: A metadatabase approach. IEEE Trans. Softw.
Eng. SE-17, 6 (June), 604–625.

HSU, C., PERRY, A., BOUZIANE, M., AND CHEUNG, W. 1987. TSER: A data modeling system
using the two-stage entity-relationship approach. In Proceedings of the 6th International
Conference on the Entity Relationship Approach. IEEE Computer Society Press, Los Alami-
tos, Calif., 461–478.

HSU, C., TAO, Y., BOUZIANE, M., AND BABIN, G. 1993. Paradigm translations in integrating
manufacturing information using a meta-model: The TSER approach. J. Inf. Syst. Eng. 1, 3,
325–352.

HUTCHINS, E. L., JOLLAN, J. D., AND NORMAN, D. A. 1986. Direct manipulation interfaces. In
User Centered System Design, D. A. Norman and S. W. Draper, Eds. Lawrence Erlbaum,
Hillsdale, N.J., 118–123.

KRISHNAMURTHY, R., LITWIN, W., AND KENT, W. 1991. Language features for interoperability
of databases with schematic discrepancies. In Proceedings of the 1991 ACM SIGMOD
International Conference on the Management of Data. ACM, New York, 40–49.

LITWIN, W., ABDELLATIF, A., ZEROUAL, A., AND NICOLAS, B. 1989. MSQL: A multidatabase
language. Inf. Sci. 49, 59–101.

LITWIN, W., MARK, L., AND ROUSSOPOULOS, N. 1990. Interoperability of multiple autonomous
databases. ACM Comput. Surv. 22, 3, 267–293.

LODDING, K. N. 1983. Iconic interfacing. IEEE Comput. Graph. Appl. 3, 2, 11–20.
MOTRO, A. 1990. A tolerant and cooperative user interface to databases. IEEE Trans.
Knowl. Data Eng. 2, 2 (June), 231–246.

NILAN, M. S. 1992. Cognitive space—Using virtual reality for large information resource
management problems. J. Commun. 42 (Autumn), 115–135.

NORCIO, A. F. AND STANLEY, J. 1989. Adaptive human-computer interfaces: A literature
survey and perspective. IEEE Trans. Syst. Man Cybernet. 19, 2 (Mar./Apr.), 399–408.

RATTNER, L. 1990. Information requirements for integrated manufacturing planning and
control: A theoretical mode. Ph.D. dissertation, Dept. of Decision Sciences and Engineering
Systems, Rensselaer Polytechnic Inst., Troy, N.Y.

REDDY, M. P., PRASAD, B. E., AND REDDY, P. G. 1989. Query processing in heterogeneous
distributed database management systems. In Integration of Information Systems: Bridging
Heterogeneous Databases, A. Gupta, Ed. IEEE Press, New York, 264–277.

REM, S. 1991. Guest editor’s introduction: Heterogeneous distributed database systems.
IEEE Comput. 24, 12 (Dec.), 7–11.

RICH, E. 1984. Natural-language interface. IEEE Comput. 17, 9 (Sept.), 39–47.
ROBERTSON, G. C., CARD, S. K., AND MACKINLAY, J. D. 1993. Information visualization using
3D interactive animation. Commun. ACM 36, 4 (Apr.), 56–71.

SHETH, A. P. AND LARSON, J. A. 1990. Federated database systems for managing distributed
heterogeneous and autonomous databases. ACM Comput. Surv. 22, 3, 183–236.

The Model-Assisted Global Query System • 469

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

SHIPMAN, D. W. 1981. The functional language DAPLEX. ACM Trans. Database Syst. 6, 1,
140–173.

SHYY, T. M. AND SU, S. Y. W. 1991. A high-level knowledge base programming language for
advanced database applications. In Proceedings of the 1991 ACM SIGMOD International
Conference on the Management of Data. ACM, New York, 338–346.

SIEGEL, M. AND MADNICK, S. 1991. A metadata approach to resolving semantic conflicts. In
Proceedings of the 17th International Conference on Very Large Data Bases. VLDB Endow-
ment Press, Saratoga, Calif., 133–146.

SMITH, J. M., BERNSTEIN, P. A., DAYAL, U., GOODMAN, N., LANDERS, T., LIN, K. W. T., AND

WONG, E. 1981. Multibase integrating heterogeneous distributed database systems. In
Proceedings of the AFIPS NCC. Vol. 50. AFIPS, Montvale, N.J., 487–499.

STONEBRAKER, M. 1988. Introduction for user interfaces. In Readings of Database Systems,
M. Stonebraker, Ed. Morgan Kaufmann, San Mateo, Calif., 337–339.

STONEBRAKER, M. AND KALASH, J. 1982. TIMBER: A sophisticated relation browser. In
Proceedings of the 8th International Conference on Very Large Data Bases. VLDB Endow-
ment Press, Saratoga, Calif., 1–10.

THOMAS, G., THOMPSON, G. R., CHUNG, C.-W., BARKMEYER, E., CARTER, F., TEMPLETON, M.,
FOX, S., AND HARTMAN, B. 1990. Heterogeneous distributed database systems for produc-
tion use. ACM Comput. Surv. 22, 3, 237–266.

WANG, R. AND MADNICK, S. 1989. Facilitating connectivity in composite information sys-
tems. Data Base (Fall), 38–46.

WANG, R. AND MADNICK, S. 1990. A polygen model for heterogeneous database systems: The
source tagging perspective. In Proceedings of the 16th International Conference on Very
Large Data Bases. VLDB Endowment Press, Saratoga, Calif., 519–538.

ZLOOF, M. M. 1977. Query-By-Example: A data base language. IBM Syst. J. 4, 324–343.

Received October 1993; revised July 1994, February 1995, and August 1995; accepted August
1995

470 • Waiman Cheung and Cheng Hsu

ACM Transactions on Information Systems, Vol. 14, No. 4, October 1996.

