Performance Modeling of Gyrokinetic Toroidal
Simulations for a many-tasking runtime system

Matthew Anderson, Maciej Brodowicz, Abhishek Kulkarni, Thomas Sterling
Center for Research in Extreme Scale Technologies
Indiana University
{andersmw, mbrodowi, adkulkar, tronj@indiana.edu

Abstract—Conventional programming practices on multicore
processors in high performance computing architectures are not
universally effective in terms of efficiency and scalability for
many algorithms in scientific computing. One possible solution
for improving efficiency and scalability in applications on this
class of machines is the use of a many-tasking runtime system
employing many lightweight, concurrent threads. Yet a priori
estimation of the potential performance and scalability impact
of such runtime systems on existing applications developed
around the bulk synchronous parallel (BSP) model is not well
understood. In this work, we present a case study of a BSP
particle-in-cell benchmark code which has been ported to a
many-tasking runtime system. The 3-D Gyrokinetic Toroidal
code (GTC) is examined in its original MPI form and compared
with a port to the High Performance ParalleX 3 (HPX-3) runtime
system. Phase overlap, oversubscription behavior, and work
rebalancing in the implementation are explored. Results for GTC
using the SST/macro simulator complement the implementation
results. Finally, an analytic performance model for GTC is
presented in order to guide future implementation efforts.

1. INTRODUCTION

The level of thread parallelism provided by the multicore
processors pervasive in present-day high performance computing
systems has increased the relative prominence of the concept
of many-tasking: implementing an application using many
lightweight concurrent threads for a wide variety of application
components. Many-tasking enables several key execution con-
cepts crucial for improving performance and scalability, including:
task oversubscription, or the overdecomposition of a problem
resulting in multiple tasks competing for a single computational
resource; overlapping of computational phases, including overlap-
ping communication and computation phases in order to hide net-
work latency; and intelligent task scheduling, resulting in implicit
load balancing controlled by the task scheduler. These benefits
have been documented across a wide variety of software libraries
and runtime systems, including more recently using MPI [1],
OpenMP [2], Charm++ [3], Unified Parallel C (UPC) [4],
MPI+OpenMP [5], MPI+UPC [6], Intel Threading Building
Blocks (TBB) [7], [8], High Performance ParalleX (HPX) [9],
[10], Cilk plus [11], Chapel [12], XKaapi [13], Coarray Fortran
2.0 [14], and Qthreads [15]. For several decades, the qualitative
characteristics of many-tasking have been set forth in the Actors
model [16], Multilisp [17], Fortress [18], and X10 [19].

While the many-tasking capabilities of runtime systems
and libraries continue to improve, scientific applications
overwhelmingly employ the bulk synchronous parallel (BSP)
model [20], [21]. Porting an application designed around the

BSP model to a many-tasking execution model can involve
significant development time and algorithm redesign costs while
the performance benefits of such a transition are hard to quantify
before performing the port. Specific case studies and discrete
event simulators can assist in identifying and quantifying such
performance benefits. This work provides a specific case study as
well as a discrete event simulator built for the ParalleX execution
model [22] to assist in quantifying expected performance
improvements resulting from transitioning an application from
the BSP model to a many-tasking execution model.

In the case study presented here, we examine the effects of
transitioning the 3D Gyrokinetic Toroidal Code (GTC) [23] from
a BSP model to the ParalleX execution model as implemented by
the HPX-3 runtime system. HPX-3 is an experimental, ParalleX-
compliant runtime system developed in C++ at the Louisiana
State University. It features lightweight (user space) multithread-
ing, advanced synchronization primitives called Local Control
Objects (LCOs), parcel based communication that extends the
concept of active messages, and Active Global Address Space
(AGAS). All computational objects created by an HPX program
are assigned unique identifiers by AGAS and are free to migrate
between compute nodes; HPX provides mechanisms that can
transparently access both local and remote objects using the
same interface. This approach facilitates building of parallel,
asynchronous, message-driven applications that are capable of
migrating work to data when beneficial to overall performance.

GTC uses the particle-in-cell method [24] for plasma
simulations and forms part of the NERSC-6 suite of
benchmarks [25]. There are numerous performance studies
on the MPI version of GTC [26], [27] across a wide array of
architectures making it an ideal candidate for this case study.
The metrics explored here include performance, communication
characteristics, and the overlap of phases both in cases with
an ideal load balance and a moderate load imbalance.

Complementing the GTC implementation effort in HPX-3 are
two additional performance modeling efforts: one using coarse
grained simulation of GTC with the SST/macro simulator [28]
and the second using an analytic performance model of GTC
for ParalleX. Overall, this work makes the following new
contributions:

« It provides both a simple legacy migration path for a BSP
style code to run in a many-tasking runtime system with
minimal modifications and a performance comparison between
the different modalities of computation. The legacy migration
path consists only of enforcing thread safety and replacing

mailto:andersmw@indiana.edu
mailto:mbrodowi@indiana.edu
mailto:adkulkar@cs.indiana.edu
mailto:tron@cs.indiana.edu

MPI calls with task model equivalents.

« It examines the phase overlap and implicit load balancing
capabilities of a many-tasking runtime system executing a
code designed for BSP and quantifies the benefits derived
from these capabilities.

« It provides a performance simulator for comparing performance,
communication, and phase overlap characteristics for a BSP
style code in a many-tasking runtime system.

« It provides an analytic performance model of GTC using the
ParalleX execution model.

This work is divided into six parts. Work related to this study
and where this study fits into the broader discussion about
many-tasking execution models is discussed in Section II
Section III introduces the GTC code as well as the methodology
behind the GTC port to HPX-3. It presents the implementation
results exploring performance, communication, and phase
overlap. Section IV introduces the skeleton GTC code and its
use within SST/macro for gauging the impact of key runtime
system overheads on performance. Section V presents an
analytic performance model based on ParalleX and developed
for GTC. Section VI presents our conclusions.

II. ReLaTED WORK

There are several recent efforts to explore how an application
changes when transitioning from MPI to a new runtime system
or programming model. The Livermore Unstructured Lagrange
Explicit Shock Hydrodynamics (LULESH) applications was re-
cently examined using a wide range of conventional and emerging
programming models, including MPI, OpenMP, MPI+OpenMP,
CUDA, Charm++, Chapel, Liszt, and Loci [29]. The numerous
application implementations contain a wide range of source code
line counts and implementation choices specific to each pro-
gramming model in order to systematically explore productivity
benefits of each. They found that several emerging programming
models showed significant productivity benefits over conventional
approaches as measured by the number of lines of code needed to
produce the parallel implementation of LULESH. However, they
also found that several models required significant additional
development just to match the performance of the MPI version.

Several other studies have compared and contrasted per-
formance using microbenchmarks with a focus on execution
overhead, such as in Appeltauer et al. [30] using context-oriented
languages and in Gilmanov et al. [31] using task models. Olivier
et al. [32] discusses comparisons of task models using an im-
balanced task graph as the proxy application. However, no study
exists which examines the performance characteristics of a full
application designed for BSP but run in a many-tasking runtime
system where the only change to the original code is thread safety
enforcement and the replacement of MPI calls with task model
equivalents. Performance simulators for task models along with
their comparisons to BSP are also missing from the literature.

Madduri et al. explore the impact of multicore-specific
optimizations for gyrokinetic toroidal simulations and report up
to 2x speedup using hybrid MPI-OpenMP and MPI-OpenMP-
CUDA GTC versions [33]. Performance improvements by
overlapping computation and communication for GTC using
OpenMP tasking have also been demonstrated previously [34].

Fig. 1: A timestep in the GTC simulation showing tracking of se-
lect particles in the toroidal mesh. The color indicates the speed of
the particle while the lines dividing the torus indicate the domain
decomposition across processors or threads for this simulation.

There are multiple performance modeling efforts either
using coarse grained simulation or analytic performance
models. Hoefler et al. [35] enumerate how analytic performance
models can guide systematic performance tuning. Hendry [36]
analyzed and reported on the MPI based GTC skeleton code
for the SST/macro coarse grained simulator with a focus on
reducing power consumption while maintaining performance.
Analytic performance models for MPI collectives were explored
by Angskun et al. [37] while Mathis et al. [38] created a
performance model for particle transport.

III. A Case Stupy: GTC

Using the default input parameters for GTC, we examine
the code scaling, phase, and performance characteristics in this
section. The default parameter case evolves 3.2 million particles
using the particle-in-cell approach inside a toroidal mesh with 3.6
million gridpoints for 150 steps with four point gyro-averaging
on the mesh. Figure 1 provides a visualization at a timestep in
the simulation showing particles location and speed in the mesh.

The GTC algorithm utilizes six basic types of communication
operations: allreduce, broadcast, split communicator, gather,
reduce, and send/receive. In order to port GTC to HPX-3,
nonblocking implementations of each of these operations were
created using HPX-3. The port from MPI to HPX-3 consists
of replacing all MPI calls with their HPX-3 equivalents, after
making the original GTC code thread safe so that it can be
used with a multithreaded runtime system like HPX-3. The GTC
version ported to HPX-3 is identified as GTCX. Output from
GTC and GTCX were verified to be identical out to 15 significant
digits for 8 separate analysis fields. Simulations were conducted
on a 16 node cluster of Intel Xeon E5-2670 2.60 GHz processors
providing 16 cores per node with InfiniBand interconnect between
nodes. Each node is equiped with 32 GB of 1600 MHz RDIMMS.

While GTC and GTCX are nearly identical in terms of the
codebase, their computational phase characteristics are not.
GTCX is capable of overlapping computational phases by
overdecomposing the problem into more lightweight concurrent
threads than execution resources (cores). This overdecomposition
of the problem enables the overlap of computation and

Overlap of computation and communication phases in GTC

Computation and communication phases in GTCX on 64 cores

BN computation EEE send-recv I gather EEE receive or send
[broadcast [allreduce BB reduce

“ [' Wl
= [ey
2 I 1]
“ DN (DN A
“ IR (DN N
I L]
o
3
£ B
g
2
S IS D (1T
S IS D AR
3 I DN
» W el
19 [/ Bl
. I DN [ANGAR
, I DN
‘ I DN
0 NN AN
3.9 4.0 41 43 4.4

32
Time [seconds]

Fig. 2: The phases of computation for a portion of a second in a
GTC (MPI based) simulation on 64 cores. The phases for every
fourth processor are plotted in the vertical axis for GTC. There
is no oversubscription in this case; blocking MPI collectives

ensure the computational phases do not overlap signficantly.

For comparison with GTCX (HPX-3 based), see Figure 3 where
the computational phases for the operations corresponding to
those here are plotted.

communication phases in an effort to hide network latency when
used in conjunction with the nonblocking HPX-3 equivalents
of MPI collectives. The computational phases for GTC on 64
cores is illustrated in Figures 2-3. In Figure 2, the number of
MPI processes running GTC was equivalent to the number of
computational resources. In Figure 3, however, the number of
HPX-3 threads running GTCX was a factor of two greater than
the number of resources. The phases of computation are color
coded; however, in the HPX-3 case in Figure 3, context switching
is usually how waiting for communication is manifested since
the communication calls are nonblocking. A noticeable increase
in the overlap of computational phases is evident in the GTCX
simulation compared with the GTC simulation.

The increase in overlap of computational phases becomes
more evident by introducing a synthetic load imbalance to one
of the threads or processes. For GTC, a load imbalance results in
the idling of resources until the slowest process catches up with
the rest of the processes in its computation. For GTCX, the load
is implicitly balanced among the resources on the node by the
thread scheduler. Figure 4 compares the phases of computation

for GTC and GTCX with and without a synthetic load imbalance.

In Figure 4, a synthetic load imbalance involving computing
the ¢ potential during the GTC/GTCX Poisson equation solve
is added to the process or thread identified as zero. This load
imbalance results in an immediate increase in time spent waiting
for communication in GTC for all processes except zero. In
GTCX there is also an increase in time spent in context switches;
however, that increase is amortized by the thread manager

BN sendrecv B reduce [context switch
3 allreduce B gather

B computation
9 broadcast

(11 N A] (]
\‘\ \|IH | I__-IIHW\HHH”\‘\IH
[X N N
s | iy
N | 1
AN || (I N 111
Ml i

Core number

N

[A 1| 11

NN [N R 11 1
| (NN mly |

| IRAIERT 11 | | 11N A N (1
I (I N DS 1] 1]

ey

BN | (|

39 4.0 41 42
Elapsed time [seconds]

Fig. 3: The phases of computation a portion of a second in a
GTCX (HPX-3 based) simulation on 64 cores. The phases for
every fourth core are plotted in the vertical axis for GTCX. The
simulation oversubscribes the computational resources by a factor
of two in order to hide network latency and overlap more com-
putational phases than otherwise possible when using blocking
collectives. For comparison, the GTC case is shown in Figure 2.

maximizing resource usage resulting in less overall waiting.
Direct strong scaling performance measurements between GTC
and GTCX are presented in Figure 5. In this figure, simulations
using GTC and GTCX were performed five times prior to
averaging and reporting the results. The results also include
performance results from a version of the GTC code manually
implemented to use non blocking collectives from MPICH2 but
without oversubscription. The GTC and GTCX performance is
nearly identical on very few codes while GTCX suffers a consid-
erable decrease in performance at 16 cores and higher, matching
the GTC performance only at 128 cores where the GTC code has
already stopped scaling. The GTCX implementation continues
to scale beyond 128 cores and produces the fastest result at 256
cores. As will be explored in detail later in Section III, the use
of blocking collectives contributes to some of the performance
degradation observed in GTC. The MPI version of GTC which
uses non blocking collectives provides an intermediate compar-
ison point between standard GTC and GTCX where blocking
collectives are removed but no oversubscription is present.
With the exception of a few cases, GTCX generally lags GTC
performance in spite of the increase computational phase overlap
and network latency hiding capability of GTCX. However, it also
continues to scale even when the GTC code has stopped scaling.
The overheads associated with thread creation (2 us) and context
switching (1.2 us) as well as a large overhead in the network
layer contributes to mitigating many of the performance benefits
in GTCX resulting from an increase in overlapping computational
phases. The legacy migration path used to create the GTCX
code from GTC involves minimal code modification and no code

Computation and communication phases in GTC (16 core run)

B computation @ split-comm [allreduce M reduce
I broadcast I sendrecv B gather El receive or send

MPI process number

2 3
Elapsed time [seconds]

(a) GTC

Computation and communication phases in GTC (16 core run with load imbalance)

EEE computation [split-comm [allreduce EEE reduce
3 broadcast EE sendrecv B gather Bl receive or send

MPI process number

2 3
Elapsed time [seconds]

(¢) GTC with load imbalance

Computation and communication phases in GTCX
(16 cores, oversubscription factor 32)

B computation
B broadcast

BN sendrecv BN reduce [context switch
[allreduce = gather

Core number
©

2 3
Elapsed time [seconds]

Computation and communication phases in GTCX
(16 cores, oversubscription factor 32)

B sendrecv
3 allreduce

B reduce [context switch
B gather

B computation
= broadcast

Core number

2 3
Elapsed time [seconds]

(d) GTCX with load imbalance

Fig. 4: Computational phase diagrams for GTC and GTCX with and without a synthetic load imbalance on 16 cores are presented
here. For GTC, a load imbalance results in the idling of resources until the slowest process catches up with the rest of the
processes in its computation as seen by comparing (a) and (c). There is also an increase in idled resources for GTCX in the
presence of a load imbalance; however, the difference between (b) and (d) for GTCX is not as substantial as that for GTC
due to the ability to overlap computational phases and implicitly load balance.

restructuring in order to achieve more efficient performance for a
many-tasking execution model. Restructuring GTC for a specific
programming model has resulted in significant performance gains
for GTC before (e.g. see [33]). However, for many legacy applica-
tions, restructuring an application code base for use in a new pro-
gramming model is not a viable option while the legacy migration
path explored here could easily be achieved at the compiler level.

Overlapping computational phases, hiding network latency,
and removing global barriers in computation give key
performance benefits which can improve scalability in
applications provided the runtime system overheads can be
kept in check. Understanding how these overheads can affect
application performance is crucial for making design decisions
and extracting more parallelism in a simulation. While runtime
system overheads cannot be easily changed in an implementation
in order to empirically observe their impact on overall application
performance, overheads can be changed and experimented with
using a discrete event simulator. The following section explores
this behavior in the context of the SST/macro simulator.

IV. GTCX v SST/mAcro

To explore the scalability characteristics beyond the bounds of
available physical machines we used SST/macro simulator [28]

developed at Sandia National Laboratory. SST/macro is a coarse-
grain simulator, which offers a good balance of simulation speed,
accuracy of results, scaling of the model to arbitrary number of
nodes, and support of emulation on alternative architectures. As
such, it is ideal for realistic modeling of applications at scale,
studying the effects of network parameters and topology on
performance, and software prototyping of new algorithms and
library designs. SST/macro accomplishes this through skeletoniza-
tion of the modeled applications which is a process of creating
simplified code that approximately reproduces the behavior of
the original application, but without having to produce the same
computational results. From the network perspective, skeletons
preserve the control flow of communication code, resulting in
as much as order of magnitude potential speedup. Currently,
the conversion process of the original application code to an
equivalent skeleton is manual, although compiler assisted utilities
are being developed at Indiana University. The simulation runs
as a single process (shared address space), with component
application processes emulated by user level threads.

SST/macro is capable of modeling with significantly more
diverse range of parameters than most of the commonly available
tools used to predict the performance of MPI applications based

GTC and GTCX Performance

1024

. GICX &
GTC using non blocking collectives ---x:--

512

N
a
>

Runtime (seconds)
e
N
©
— 7

-3
x
@

.

S A TITSOR]
32

o = 3

xt

0 50 300

100 150 200
Number of Cores (16 cores/locality)

Fig. 5: Performance measurements for GTC and GTCX re-
flecting a strong scaling test. Also shown is a version of
GTC implemented using non blocking collectives but without
oversubscription. GTCX performance varies significantly based
on the number of lightweight threads used to decompose the
problem. The GTCX results presented here reflect the use of the
empirically discovered optimal number of lightweight threads
for decomposition. While GTCX is able to overlap more compu-
tational phases than GTC, it also suffers from higher overheads
in the form of thread creation and context switches resulting in
slightly worse performance than GTC from 16 to 128 cores.

on execution traces, such as LogGOPSim [39]. For example, com-
pute node parameters include core affinities, memory contention
along with NUMA effects, and NIC contention. Network switch
models support packet arbitration, adaptive routing, and buffering
parameters. The network topologies are represented accurately
and may support message traffic as flows, packets, or packetized
flows. Moreover, trace gathering may substantially stress the 1/O
subsystem due to volume of stored data; this frequently interferes
with network operation if the storage devices are attached to the
same interconnect. SST/macro is free of these issues.

Context switch overhead impact on GTCX

Sﬁaaﬁer context switch overpea
igher context swiich overhea

T
—

Speedup

50 100 150 200 250
Number of Nodes

Fig. 6: Comparison of strong scaling for GTCX with two different
context switch overheads. The smaller context switch overhead
is .1us while the larger is 10 ms. Results using empirically
determined near-optimal oversubscription factors are plotted.

The GTCX implementation explored in Section III illustrated
key characteristics distinguishing the many-tasking behavior
of ParalleX from the MPI behavior of the Communicating
Sequential Processes (CSP) exection model. These include

GTC and GTCX using SST/macro

‘ ‘ : —
GTCX with t switch h
i crie oSG K

a0

35

30

25

20

Runtime (seconds)

64 128 256

2 4 8 16 32
Number of Cores

Fig. 7: Predicted performance comparison for GTC and GTCX
using SST/macro. For GTCX, two different context switch
overheads are examined. No oversubscription was applied to
GTCX; consequently GTCX and GTC closely mirror each other
in performance.

computational phase overlap, overdecomposition, network latency
hiding, implicit load balancing, and intelligent task scheduling.
However, the GTCX implementation performance in Section III
was generally at par or worse than the MPI implementation
due to the large overheads introduced by the runtime system
implementation. The SST/macro toolkit, in contrast to a full
runtime system implementation, is able to represent the parallel
machine using models to estimate processing and network
components and thereby modify the size of the overheads.
Recently, HPX-3 semantics were added to SST/macro in order
to model application performance using that runtime system
at different overhead levels [40]. This section explores GTCX,
the HPX-3 implementation of GTC, using the SST/macro
simulator with different runtime system overheads on the Hopper
supercomputer (Cray XE6, Opteron 6172 12 cores at 2.10 GHz).

As a tool for co-design, SST/macro is frequently used for
coarse grained rather than cycle accurate simulation. SST/macro
is also often used in conjunction with a skeleton code, where all
computation has been removed from an application except for
communication and control. This enables the skeleton to be used
for fast prototyping and making other design decisions. Actual
non-control computations in the skeleton code are replaced
with counters in order to record the computational cost without
actually performing the computation entailed. Consequently,
skeleton applications can run orders of magnitude faster than
their application counterparts while still faithfully modeling
the communication and control characteristics of the original
application. A skeleton application of the MPI version of GTC is
provided as an example in SST/macro; this skeleton served as the
basis for the GTCX skeleton used for the data provided in this
section. The MPI GTC skeleton for SST/macro, while sharing
qualitative performance behavior with the actual MPI GTC imple-
mentation, does differ in runtime performance prediction. These
differences between the implementation performance and the
skeleton’s predicted performance are due, in part, to the difficulty
of replacing computational loops in the implementation with
computation counters in the skeleton. Consequently, in this sec-

tion we directly compare the GTC skeleton performance with the

GTCX skeleton performance rather than the full implementations.

Using the GTC skeleton provided in SST/macro, the same
legacy migration path described in Section III was applied
producing the GTCX skeleton. Unlike the implementation in III,
however, the thread overheads and context switching overheads
can be changed as a parameter in SST/macro in order to model
the performance impact of these overheads. Figure 6 shows
GTCX strong scaling behavior for context switch overheads
differing by 5 orders of magnitude from .lus to 10 ms. Figure 7
compares the predicted performance between GTC and GTCX
in SST/macro without the benefit of oversubscription. Not
surprisingly, without oversubscription in GTCX, the results from
GTC and GTCX are very similar. Context switching overheads
become more pronounced at 64 cores or higher.

V. GTCX ANALyTIC PERFORMANCE MODEL

Performance prediction of applications in alternate execution
models is an emerging research problem. The overall performance
gain largely depends on the characteristics of the algorithm
itself. Limited improvement in performance is observed already
by a straightforward translation of the BSP-style communication
primitives to their equivalent in HPX-3, as shown earlier. This
is due entirely to the finer-grained concurrency and dataflow
parallelism allowed by the execution model. Better performance
can be achieved by leveraging more features admitted by HPX-3,
and at times, through a complete rewrite of the application’s
algorithm. Our port of GTC to the HPX-3 many-tasking runtime
system evaluated the effectiveness of its core parallelism
constructs and provided a feedback on the performance of the
implementation at relatively modest scales. To understand and
appropriately quantify the effect of overlapping computation
with communication through oversubscription and dataflow
parallelism, in this section, we introduce an analytic performance
model of the gyrokinetic toroidal simulation (GTC) code.

Analytic models that calculate the long-time running cost of
parallel applications have to strike a trade-off between accuracy
and overall cost. The model described in this section captures
the essential computation and communication characteristics of
the six key phases in the application. Through parameter sweeps
of the overheads involved, and varying the degree of overlap,
bounds for performance benefits of an alternate execution model
are obtained.

GTC employs the Particle-in-Cell formalism to model the
plasma interactions. The PIC algorithm involves six main phases
executed at each time step. The static call-graph of the core
GTC algorithm is shown in Figure 8.

The total runtime of GTC for a given sample input depends
several parameters such as the number of particle domains
(npartdom), the 1D toroidal decomposition (ntoroidal), the
size of the grid, the number of particles per cell etc. For a
given input and simulation parameters, the total runtime cost
is the sum of the initialization and the execution time of the

Fig. 8: Static Call Graph of GTC.

six phases for n timesteps as given in Eqn. 1.

n
Ttulul = Tselup + Z (Tcharge + Tpoisson + Tfield
i=1

+Tsmouth + Tpush + Tshift) (1)

A. Setup

In this phase, the GTC simulation is set up by reading
the input parameters. Both integer and real parameters are
read separately from an input file by the main process. These
parameters are packed and broadcasted to all other processes
where they are subsequently unpacked and assigned locally.
Relative to other phases, the time taken by this phase is rather
negligible and bounded by constant factor. We expand on this
phase only to elucidate our analytic modeling methodology and
highlight the key time gains in GTCX over GTC.

Type Action Weight Description

Comp 51 O(nints) Read integer parameters
Comp 52 @(nreals) Read real parameters

Comm bcast 144 Broadcast integer parameters
Comm bcast 224 Broadcast real parameters
Comp ki O(nints) Unpack integer parameters
Comp ko O(nreals) Unpack real parameters

TABLE I: Setup

Table I shows the key communication and computation steps
involved in this phase. Since GTC is implemented in a BSP
style using MPI, each of the communication steps are inherently
parallel. For instance, 7.5 represents the time taken by all
processes to perform the broadcast communication operation.
We use the same terms for GTCX to keep the presentation
of our model simple. However, the collective communication
operations can themselves be decomposed into their constituent
point-to-point operations as shown below.

The time taken by the main process for this phase is given by

Tsetup =51+ 82 + Tyena(144) + Tgea(224)
and the time at all of the other processes is

Tserup = Trecv(144) + Tree(224) + ki + ky

Here, T.,q(x) and T, (x) is the time taken to send and
receive x bytes respectively. The computation time between the
communication operations is measured empirically by profiling
the application. Since we are primarily interested in comparative
analysis (between GTC and GTCX), using one of the many
analytic communication models to represent the communication
costs is also a viable approach.

For instance, in the Hockney communication model [41],
the time to send or receive a message of size m is given by
T,, = a + fm. Using this, a linear broadcast of n messages of
size m to P processes can be computed as follows:

Tpeass = n(P = 1) (m - (@ + Bm))

Assuming no network congestion and full bisection-bandwidth,
this approximates the time to perform broadcast at all processes.

Since there are no data dependences between the broadcast
of the integer and real parameters, GTCX can execute them
concurrently in separate HPX-3 tasks, such that the computation
and communication is overlapped. Even when using a single
task in HPX-3, we have Eqn. 2.

Toerup = 1+ Theasr(144) + max (52 + Theaa(224), Theas(144) + k1)

+ Theast(224) + ky 2

Here, the packing (and sending) of the real parameters (s, and
Tpeas:(224)) is overlapped with the unpacking (and receiving)
of the integer parameters (k; and Tpeq5(144)).

By having two lightweight threads (one to send the integer
parameters, and the other to send the real parameters) run concur-
rently, both the tasks can be effectively overlapped, as in Eqn. 3.

Tsetup = max (Sl + Theasi(144), 52 + Tbcast(224))

+ max (k],kz) (3)

The degree of overlap is bounded by ¢ subject to factors such
as the number of system threads in HPX-3 and the progress
of communication with respect to computation.

B. Charge

In this phase, the charge from the particle data is deposited
onto the grid using a particle-grid interpolation step. The
computation operations in this phase, as shown in Table II are
asymptotically bounded above the number of particles in each
process. The load-balance of the computation step, thus, largely
depends on the particle distributions. The steps ¢y, ¢, iterate
through the particle array and update grid locations in memory
corresponding to the four-point ring representing the charged
particles. The effective time taken by these steps depends on
the arithmetic intensity of each step and non-deterministic
architectural factors such as cache behavior etc. These can either
be ignored completely, or measured empirically for a given run.

The time taken by this step, Eqn. 4, is the global sum of the
computation steps, an allreduce communication step to deposit
charge density on the grid and the computation of the global
sum of ¢.

Tcharge =cpt+cy+ Tallreduce(mgrid . (mzeta + l)) +c3
+ Txendrecv(mgrid) +C4 + T

allreduce(mpSi + 1) (4)

Type Action Weight Description

Comp cl Q(mi) Particle-grid interpolation

Comp (&) Q(mgrid - mzeta) Set density

Comm allreduce mgrid-(mzeta+1) Deposit charge density on the grid

Comp c3 Q(mpsi) Poloidal end cell

Comm sendrecv mgrid Send density array to left and

receive from right

Comp cy4 Q(mpsi - mzeta - Flux surface average and

mtheta;) normalization

Comm allreduce mpsi + 1 Global sum of phi00

TABLE II: Charge

In GTCX, the loop to iterate through the array in c; is fused
with the point-to-point communication operations in 7 yeduce
so that they are interleaved and executed concurrently. Thus,
the time to compute the global sum at all processes (T aireduce)
is offset by the time to iterate through the array to be reduced
(c2) by a constant factor 6. The time taken for the complete
charge step for GTCX is given by

Tcharge = ¢ + max (CZ, Tallreduce) +c3+ Tsendrecv(mgrid)

’
+ max (64’ Tallreduce)

=c1 4+ 6+ 3+ Tyongreey(mgrid) + c4 + &

&)

where Tareduce = €2+ 6, Toppoquce = €4 + 6

Note that, here, we assume that there is a strong
synchronization step (barrier) between phases. The degree of
overlap between computation and communication (6 and ")
depend on the subscription factor in GTCX. They cannot be
zero due to the data dependence between the operations, and

the finite time to execute them.

Type Action Weight Description
Comp p1 Q(mzeta - mgrid - mring) Initialization
Comm allgather n;:Z;;’fI‘:;m Gather full array ¢ on PEs
Comp D2 Q(mzeta - mgrid) Assign full array ¢
Comp P3 Q(mzeta - mpsi) In equilibrium unit
TABLE III: Poisson
C. Poisson

The gyrokinetic Poisson equation is solved on the grid in
this phase. The compute phases are asymptotically bounded
above by the grid size (Q(mgrid)). The only communication
step in the reference codes (GTC and GTCX) is an allgather
collective operation. The other steps are shown in Table III.

In case of GTC, the time taken to execute this phase depends
on the available processor parallelism. It is given by Eqn. 6.

(6)

For GTCX, the performance gain due to oversubscription
and dataflow parallelism is bounded by the factor 6. With true
dataflow parallelism obtained by loop fusion and the conversion
of sub-arrays into futures, the allgather communication step
is effectively executed concurrently with both p; and p,. The
marked end times of the allgather and p, steps are determined by:

Tpoisson =p1+ Tallgather(‘) + P2+ p3

Tpoi.mon = max (Pl 5 Tallgather’ pZ) +p3

=p1+0+p3 (N

where Tallgulher =p1t+ 01, P2 = Tullgather + 0>

0=01+0,
D. Field

This phase computes the electric field on the grid. As the
previous phase (Poisson), it scales with the number of the
poloidal grid points. The data redistribution involves array
shifts and thus, the communication pattern is captured by
MPI’s sendrecv function calls. In GTCX, the send and receive
operations are decoupled and hence can be scheduled closer
to the actual data sinks and sources in the dataflow graph.

Type Action Weight Description
Comp fi Q(mzeta - mgrid - Finite difference for e-field

mpsi)
Comm sendrecv mgrid Send ¢ to right and receive from left
Comm sendrecv mgrid Send ¢ to left and receive from right
Comp bi) Q(mzeta - mgrid) Unpack ¢ boundary and calculate

E_zeta

Comm sendrecv 3 - mgrid Send E to right and receive from left
Comp bE) Q(mgrid + mzeta- Unpack end points

(mpsi+ 1))

TABLE IV: Field

The operations to shift the ¢ array and compute the electric
field E are referred in Table IV. The time taken in GTC
to perform the field phase for a given simulation step is
approximated by

Tfield = fl +2- Tsendrecv(mgrid) + f2
+ T pirecy(3 - mgrid) + f3 (8)

The array shift of ¢ is overlapped with the computation of
finite difference for the electric field. After the ¢ boundaries
are unpacked, the calculuation of the electric field is fused with
its communication operations. These optimizations result in a
time reduction given by Eqn 9

Tfield = max (fl > Tsendrecv(mgrid)» Tsendrecv(mgrid)) + f2 +4
)

where

T =f2+5],

sendrecy

0=01+0,

_
f3 - Tsendrecv + 62

E. Smooth

In this phase, the potential and charge density undergo
radial smoothing. The computation kernels sy, s;ands; perform
grid-accesses relative to the grid size (mgrid). As shown in
Table V, a 2D-matrix is transposed using scatter and gather
collective operations.

Eqns 10 and 11 can be used to approximate the times
required to execute this phase in GTC and GTCX respectively.

Tsmooth =8+ 2- Tsendrecv(mgrid) +52 + Tsendrecv(mgrid)
ntoroidal ntoroidal
+ Z <S3 + Tgather) + Z (S4 + Tscatter)
i=1 i=1

+ 85+ T;endrm,(mgrid) + Tgalher(‘) (10)

Type Action Weight Description

Comp S1 Q(mzeta-(mgrid+mpsi)) -

Comm sendrecv mgrid Parallel Smoothing: send ¢ to
right and receive from left

Comm sendrecv mgrid Parallel Smoothing: send ¢ to left
and receive from right

Comp k%) Q(mgrid - mzeta) -

Comm sendrecv mgrid Toroidal BC: send ¢ to left and
receive from right

Comp s3 Q(mzeta-(mgrid+mpsi)) -

Comm gather mtdiag - mz - (idiag2 — Transpose a 2D-matrix from

idiagl + 1) (ntoroidal, mzeta mzbig) to

(1, mzetamax - mzbig)

Comp S4 Q(ntoroidal - mz) -

Comm scatter mtdiag - mz - (idiag2 — Transpose a 2D-matrix from

idiagl + 1) (ntoroidal, mzeta mzbig) to

(1, mzetamax - mzbig)

Comp S5 Q(mgrid) Interpolate field

Comm sendrecv mgrid Toroidal BC: send ¢ to right and
receive from left

Comm gather jlzlr'odl’;;‘fl - nummode Dominant (n, m) mode history data

TABLE V: Smooth

The optimizations due to overlapping of computation with the
send and receive operations are similar to those described in the

“field” phase. The transposition of the 2D-matrix involves gather

and scatter operations equal to the number of toroidal domains.

Tsmouth = max (S] > Tsendrecv(mgrid)a Tsendrecv(mgrid))

+ max (52, Tsendrecv(mgrid))

ntoroidal
+ Z (S3 +01 + 54+ 62) + 55 + 03 + Tgurher(*)
i=1
(11
where
Tgarher =53+0601, Tscaer = 54 + 62, ;endrecv =55 +03

FE Push

In this phase, the particles are advanced using the field array
computed in the previous phases. Since, this phase is dependent
on the size of the particle arrays at each processor, the particle
distribution among the processors determines the execution time
of the computation steps that are bounded below by Q(mi).

Type Action Weight Description

Comp p1 Q(mi) Runge-Kutta method

Comm allreduce 8 Calculate total sum of weights
Comm allreduce 4 Calculate total number of particles
Comp P2 Q(mi) Out of boundary particle

Comm allreduce 2 -mflux Restore temperature profile

Comp P3 Q(mflux + mi) -

Comm allreduce mpsi + 1 Heat flux psi

Comm allreduce 2 -mflux Compute marker,energy,particle
Comp D4 Q(mpsi(mzeta + 1)) Field energy

Comm reduce 3 Total field energy from all toroidal

domains

TABLE VI: Push

Table VI lists the computation and communication steps

involved in this phase. Despite having a higher arithmetic
intensity, the communication operations in this phase are

relatively expensive, making it a critical phase in the algorithm.
The grid data accesses made by tasks {py,..., ps} are irregular
and results in bad cache behavior without any data reorganization.

T

+p3+ Tallreduce(') + pa+ Treduce(') (12)
The time taken to execute this phase in GTC (Eqn 12) and
that to execute in GTCX (Eqn 13) are shown.

Tpush = max (pl ’ Tallreduce(g)’ Tallreduce(“’))
+ max (pZ + 61, p3t 62) + Taitreduce(2 - mflux)

+pat Treduce(') (13)

where

T atireduce(2 - mflux) =p2+ 01, Tallreduce(mpSi +1) = p3t+ 62

G. Shift

The shift phase actually moves particles between toroidal
domains. This involves communication of the number of
particles to be shifted, the packing and shifting of particles
to neighboring toroidal domains (using MPI’s sendrecv
operation), and unpacking of particles. The particles are moved
in the +zeta direction only one domain at a time.

Type Action Weight Description

Comp 51 Q(mi) -

Comm allreduce 4 Total number of particles to be shifted

Comp 52 40 - O(1) Pack particles and fill holes

Comm sendrecv 8 Send number of particles to move right

Comm sendrecv msendright, Send particle to right and receive from left
mrecvleft

Comm sendrecv 8 Send number of particles to move left

Comm sendrecv msendleft, Send particle to left and receive from right
mrecvright

Comp 53 20-0O(1) Unpack particles

TABLE VII: Shift

The time required for GTC (Tgif;) is simply the sum of the
times required for the communication and computation steps
shown in Table VII.

Tshift =85+ Tallreduce(4) + 52+ 2. Tsendrecv(g)

+ 2 - Tsondrecv(msend, mrecv) + s3 (14)

As shown in Eqn 15, the computation step s; cannot be over-

lapped with the first allreduce operation. Since the time to send

the number of particles to shift is negligible, it is not accounted
by the overlapping of the time to move the particle data.

Tshift =5+ Tallreduce(4) +2- Tsendrecv(msend’ mrecv) + 53
15)
Tsendrecv(msend’ mrecv) = Txendrecv(g) +6

where
Tsendrecv(g) < T.vendrecv(msendv mrecv)

push = P1 + Tallreduce(g) + Tallreduce(4) +p2+ 2- Tallreduce(2 ! mflux)

Parameter | Value || Parameter Value
nints 36 micell 2
nreals 28 ntoroidal 1 to 256
mzetamax | 64 npartdom 1
mpsi 90 nsteps 150
mthetamax | 640 || numberpe 1 to 256
mgrid 32449 mi 64718 to 258872

TABLE VIII: Parameters used for validating the model.

H. Model Validation

To quantify the performance benefits of removing global
barriers and overlapping computation steps in GTCX, we
evaluated our model with the parameters shown in Table VIIIL.

Figure 9 shows a strong-scaling plot of GTC against
GTCX for an assumed, fixed degree of overlap (6) for each
of the phases. The execution times for the computation and
communication steps of GTC were determined empirically by
the output data of an actual run. The model errors were found
to be within 15% of the execution time.

GTC model —+—
— GTCX model —e—
o GTC (actual run) —>—
Y 100 :
()
£
'_
C
K]
S
>
19}
(0]
x
w
10 1 1 1 1 1]
0 50 100 150 200 250 300

Number of processors

Fig. 9: Comparative analysis of the GTC and GTCX performance

model. VI. CONCLUSIONS

Implementing GTC in HPX-3 and SST/macro for HPX-3 has
highlighted some key characteristics of many-tasking runtime
systems while at the same time exposing some performance
deficiencies. The removal of global barriers, the increase in
overlapping phases of computation, and the presence of implicit
load balancing all helped to extract more parallelism in GTCX
while the increased overhead due to oversubscription and context
switching mitigated the impact of those improvements. The
legacy migration application path for GTCX enabled overlapping
computational phases and intelligent scheduling of threads but
did not take advantage of any code re-writes or data restructuring
that would have more directly benefited from a many-tasking ex-
ecution model. The GTCX and GTC code performance generally
resembled each other both in the full implementation and in SST/-
macro with only small performance and scaling gains registered
in GTCX at the area where GTC had already stopped scaling.
Comparative analysis based on the performance model enabled us
to quantify the benefits due to overlapping computation phases.

ACKNOWLEDGMENTS

We would like to thank Gilbert Hendry and Hartmut Kaiser
for their technical assistance.

[1]

[2

—

[3]

[4]

[5]

[6

=

[7

—

[8]

[10]

[11
[12]

[13

[t

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

C. Iancu, S. Hofmeyr, F. Blagojevic, and Y. Zheng, “Oversubscription
on multicore processors,” in Parallel Distributed Processing (IPDPS),
2010 IEEE International Symposium on, april 2010, pp. 1 —11.

A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade, “Barcelona
OpenMP tasks suite: A set of benchmarks targeting the exploitation
of task parallelism in OpenMP,” in Proceedings of the 2009 International
Conference on Parallel Processing, ser. ICPP ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 124-131. [Online]. Available:
http://dx.doi.org/10.1109/ICPP.2009.64

L. V. Kale and S. Krishnan, “Charm++: Parallel Programming with
Message-Driven Objects,” in Parallel Programming using C++, G. V.
Wilson and P. Lu, Eds. MIT Press, 1996, pp. 175-213.

T. El-Ghazawi, F. Cantonnet, and Y. Yao, “Evaluations of UPC on the
Cray X1,” in CUG 2005 Proceedings, New York, NY, USA, 2005, p. 10.
[Online]. Available: http://www.gwu.edu/~upc/publications/cug05.pdf
F. Cappello and D. Etiemble, “Mpi versus mpi+openmp on the ibm sp
for the nas benchmarks,” in Supercomputing, ACM/IEEE 2000 Conference,
2000, pp. 12-12.

J. Dinan, P. Balaji, E. Lusk, P. Sadayappan, and R. Thakur, “Hybrid
parallel programming with mpi and unified parallel ¢,” in Proceedings
of the 7th ACM international conference on Computing frontiers, ser.
CF ’10. New York, NY, USA: ACM, 2010, pp. 177-186. [Online].
Available: http://doi.acm.org/10.1145/1787275.1787323

J. Reinders, Intel Threading Building Blocks: Outfitting C++ for
Multi-Core Processor Parallelism, 1st ed. O’Reilly Media, Jul. 2007.
M. D. McCool, A. D. Robison, and J. Reinders. (2012) Structured parallel
programming patterns for efficient computation. Waltham, MA.

H. Kaiser, M. Brodowicz, and T. Sterling, “ParalleX an advanced parallel
execution model for scaling-impaired applications,” in Parallel Processing
Workshops, 2009. ICPPW ’09. International Conference on, sept. 2009,
pp. 394 —401.

C. Dekate, M. Anderson, M. Brodowicz, H. Kaiser, B. Adelstein-
Lelbach, and T. Sterling, “Improving the scalability of parallel
N-body applications with an event-driven constraint-based execution
model,” International Journal of High Performance Computing
Applications, vol. 26, no. 3, pp. 319-332, 2012. [Online]. Available:
http://hpc.sagepub.com/content/26/3/319.abstract

2012, http://cilkplus.org/.

B. Chamberlain, D. Callahan, and H. Zima, ‘“Parallel programmability
and the Chapel language,” Int. J. High Perform. Comput. Appl.,
vol. 21, no. 3, . 291-312, Aug. 2007. [Online]. Available:
http://dx.doi.org/10.1177/1094342007078442
T. Gautier, J. V. F. Lima, N. Maillard, and B. Raffin, “Xkaapi: A runtime
system for data-flow task programming on heterogeneous architectures,” in
Proc. of the 27-th IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2013.

C. Yang, K. Murthy, and J. Mellor-Crummey, “Managing asynchronous
operations in coarray fortran 2.0,” in Proc. of the 27-th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2013.

K. Wheeler, R. Murphy, and D. Thain, “Qthreads: An API for Programming
with Millions of Lightweight Threads,” in International Parallel and
Distributed Processing Symposium. IEEE Press, 2008.

C. Hewitt and H. G. Baker, “Actors and continuous functionals,
Cambridge, MA, USA, Tech. Rep., 1978.

J. Robert H. Halstead, “Multilisp: a language for concurrent symbolic
computation,” ACM Trans. Program. Lang. Syst., vol. 7, no. 4, pp.
501-538, 1985.

E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen, S. Ryu,
G. L. S. Jr, and S. Tobin-Hochstadt, “The Fortress language specification,
version 1.0,” March 2008.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu,
C. von Praun, and V. Sarkar, “X10: an object-oriented approach to non-
uniform cluster computing,” SIGPLAN Not., vol. 40, pp. 519-538, October
2005. [Online]. Available: http://doi.acm.org/10.1145/1103845.1094852
HPC University and the Ohio Supercomputer Center, “Report
on high performance computing training and education survey,’
available from http://www.teragridforum.org/mediawiki/images
/5/5d/HPCSurveyResults. FINAL.pdf.

T. Stitt and T. Robinson, “A survey on training and education
needs for petascale computing,” available from http://www.prace-
project.eu/IMG/pdf/D3-3-1 document _final.pdf.

G. Gao, T. Sterling, R. Stevens, M. Hereld, and W. Zhu, “Parallex: A study
of a new parallel computation model,” in Parallel and Distributed Process-
ing Symposium, 2007. IPDPS 2007. IEEE International, 2007, pp. 1-6.

>

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

S. Ethier, W. M. Tang, and Z. Lin, “Gyrokinetic particle-in-cell
simulations of plasma microturbulence on advanced computing platforms,”
Journal of Physics: Conference Series, vol. 16, no. 1, p. 1, 2005. [Online].
Available: http://stacks.iop.org/1742-6596/16/i=1/a=001

D. Tskhakaya, “The particle-in-cell method,” in Computational Many-
Farticle Physics, ser. Lecture Notes in Physics, H. Fehske, R. Schneider,
and A. Weie, Eds. Springer Berlin Heidelberg, 2008, vol. 739, pp. 161-189.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-74686-7 6
K. Antypas, J. Shalf, and H. Wasserman, “Nersc-6 workload analysis
and benchmark selection process,” National Energy Research Scientific
Computing Center Division Ernest Orlando Lawrence Berkeley National
Laboratory, Tech. Rep. LBNL 1014E, August 2008. [Online]. Available:
http://www.nersc.gov/assets/pubs_ presos/NERSCWorkload.pdf

S. Ethier, W. M. Tang, and Z. Lin, “Gyrokinetic particle-in-cell
simulations of plasma microturbulence on advanced computing platforms,”
Journal of Physics: Conference Series, vol. 16, no. 1, p. 1, 2005. [Online].
Available: http://stacks.iop.org/1742-6596/16/i=1/a=001

X. Wu and V. Taylor, “Performance modeling of hybrid mpi/openmp
scientific applications on large-scale multicore cluster systems,” in
Computational Science and Engineering (CSE), 2011 I[EEE 14th
International Conference on, 2011, pp. 181-190.

G. Hendry and A. Rodrigues, “Sst: A simulator for exascale co-design,”
in Proc. of the ASCR/ASC Exascale Research Conference, 2012.

I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,
R. Haque, D. Laney, E. Luke, F. Wang, D. Richards, M. Schulz, and C. H.
Still, “Exploring traditional and emerging parallel programming models
using a proxy application,” in Proc. of the 27-th IEEE International
Parallel and Distributed Processing Symposium (IPDPS), 2013.

M. Appeltauer, R. Hirschfeld, M. Haupt, J. Lincke, and M. Perscheid, “A
comparison of context-oriented programming languages,” in International
Workshop on Context-Oriented Programming, ser. COP *09. New
York, NY, USA: ACM, 2009, pp. 6:1-6:6. [Online]. Available:
http://doi.acm.org/10.1145/1562112.1562118

T. Gilmanov, M. Anderson, M. Brodowicz, and T. Sterling, “Application
characteristics of many-tasking execution models,” in Proc. of the
2013 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA), 2013.

S. Olivier and J. F. Prins, “Comparison of OpenMP 3.0 and other task
parallel frameworks on unbalanced task graphs.” International Journal
of Parallel Programming, vol. 38, no. 5-6, pp. 341-360, 2010. [Online].
Available: http://dblp.uni-trier.de/db/journals/ijpp/ijpp38.html#OlivierP 10
K. Madduri, K. Z. Ibrahim, S. Williams, E.-J. Im, S. Ethier, J. Shalf,
and L. Oliker, “Gyrokinetic toroidal simulations on leading multi- and
manycore hpc systems,” in Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, ser.
SC ’11. New York, NY, USA: ACM, 2011, pp. 23:1-23:12. [Online].
Available: http://doi.acm.org/10.1145/2063384.2063415

A. Koniges, R. Preissl, J. Kim, D. Eder, A. Fisher, N. Masters, V. Mlaker,
S. Ethier, W. Wang, M. Head-Gordon, and N. Wichmann, “Application
Acceleration on Current and Future Cray Platforms,” in CUG 2010, the
Cray User Group meeting, May 2010.

T. Hoefler, W. Gropp, M. Snir, and W. Kramer, “Performance Modeling
for Systematic Performance Tuning,” in International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’11), SotP
Session, Nov. 2011.

G. Hendry, “Decreasing Network Power with On-Off Links Informed
by Scientic Applications,” in the Ninth Workshop on High-Performance,
Power Aware Computing, May 2013.

T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, and J. J. Dongarra,
“Performance analysis of mpi collective operations,” in In: Proceedings
of the 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS05) - Workshop 15, 2005.

M. M. Mathis, D. J. Kerbyson, and A. Hoisie, “A performance model
of non-deterministic particle transport on large-scale systems,” Future
Gener. Comput. Syst., vol. 22, no. 3, pp. 324-335, Feb. 2006. [Online].
Available: http://dx.doi.org/10.1016/j.future.2004.11.018

T. Hoefler, T. Schneider, and A. Lumsdaine, “LogGOPSim - simulating
large-scale applications in the LogGOPS model,” in Proceedings of the
19" ACM International Symposium on High Performance Distributed
Computing. ACM, Jun. 2010, pp. 597-604.

G. Hendry and A. Rodrigues, “Simulator for exascale co-design,” available
from http://sst.sandia.gov/publications.html.

R. W. Hockney, “The communication challenge for mpp: Intel paragon
and meiko cs-2,” Parallel Comput., vol. 20, no. 3, pp. 389-398, Mar. 1994.
[Online]. Available: http://dx.doi.org/10.1016/S0167-8191(06)80021-9

http://dx.doi.org/10.1109/ICPP.2009.64
http://www.gwu.edu/~upc/publications/cug05.pdf
http://doi.acm.org/10.1145/1787275.1787323
http://hpc.sagepub.com/content/26/3/319.abstract
http://dx.doi.org/10.1177/1094342007078442
http://doi.acm.org/10.1145/1103845.1094852
http://stacks.iop.org/1742-6596/16/i=1/a=001
http://dx.doi.org/10.1007/978-3-540-74686-7_6
http://www.nersc.gov/assets/pubs_presos/NERSCWorkload.pdf
http://stacks.iop.org/1742-6596/16/i=1/a=001
http://doi.acm.org/10.1145/1562112.1562118
http://dblp.uni-trier.de/db/journals/ijpp/ijpp38.html#OlivierP10
http://doi.acm.org/10.1145/2063384.2063415
http://dx.doi.org/10.1016/j.future.2004.11.018
http://dx.doi.org/10.1016/S0167-8191(06)80021-9

