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ABSTRACT
Dynamic binary obfuscation or metamorphism is a tech-
nique where a malware never keeps the same sequence of
opcodes in the memory. Such malware are very difficult to
analyse and detect manually even with the help of tools. We
need to automate the analysis and detection process of such
malware. This paper introduces and presents a new lan-
guage named MAIL (Malware Analysis Intermediate Lan-
guage) to automate and optimize this process. MAIL also
provides portability for building malware analysis and de-
tection tools. Each MAIL statement is assigned a pattern
that can be used to annotate a control flow graph for pat-
tern matching to analyse and detect metamorphic malware.
Experimental evaluation of the proposed approach using an
existing dataset yields malware detection rate of 93.92% and
false positive rate of 3.02%.

Categories and Subject Descriptors
D.3 [Programming Languages]: Language Constructs
and Features—Patterns; K.6 [Management of Comput-
ing and Information Systems]: Security and Protec-
tion—Invasive software

General Terms
Security, Languages

Keywords
Intermediate languages, Static binary analysis, Malware anal-
ysis, Malware detection, Control flow graph

1. INTRODUCTION
Detecting whether a given program is a malware is an

undecidable problem [14, 27]. Antimalware detection tech-
niques are limited by this theoretical result. Malware writers
exploit this limitation to avoid detection.
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In the early days the malware writers were hobbyists but
now the professionals have become part of this group be-
cause of the financial gains [5] attached to it or for political
and military reasons. One of the basic techniques used by
a malware writer is obfuscation [26]. Such a technique ob-
scures a code to make it difficult to understand, analyze and
detect malware embedded in the code.

Initial obfuscators were simple and detectable by simple
signature-based detectors. These signature-based detectors
work on simple signatures such as byte sequences, instruc-
tion sequences and string signatures (pattern of a malware
that uniquely identifies it). However, they lack informa-
tion about the semantics or behavior of the malicious pro-
gram. To counter these detectors the obfuscation techniques
evolved, producing metamorphic malware that use stealthy
mutation techniques such as instruction reordering, dead
code insertion, and register renaming [29]. Likewise, to ad-
dress effectively the challenges posed by metamorphic mal-
ware, we need to develop new methods and techniques to
analyze the behavior of a program and make a better de-
tection decision with few false positives. One such approach
consists of translating the program into an intermediate lan-
guage that provides an abstract format for analyzing and
reasoning rigorously about the program behavior, in order
to discover malicious occurrences.

Intermediate languages are used in compilers [1] to trans-
late the source code into a form that is easy to optimize and
increase portability. The term intermediate language also
refers to the intermediate language used by the compilers of
high level languages that do not produce any machine code,
such as Java and C#.

The ability to translate programs written for different
platforms, such as intel x86 and ARM architectures, to the
same intermediate language provides portability to malware
analysis and detection tools. An intermediate language can
provide a general abstraction of the malicious code in a pro-
gram and hence can be used as part of a tool to simplify
and automate the process of malware analysis and detec-
tion. Different analysis techniques can be applied to the
intermediate language to optimize malware detection, such
as performing control flow analysis on the intermediate form
and annotating the intermediate form with patterns that can
be used by a pattern matching tool.

We propose, in this paper, a new intermediate language
named MAIL (Malware Analysis Intermediate Language)
for malware analysis that can enhance the detection of meta-



morphic malware.
Almost all the malware use binaries, instructions that a

computer can interpret and execute, to infiltrate a computer
system. There are hundreds of different instructions in any
assembly language. We need to reduce and simplify these in-
structions considerably to optimize the static analysis of any
such assembly program for malware detection. MAIL pro-
vides an abstract representation of an assembly program and
hence the ability for a tool to automate malware analysis and
detection. We want a common intermediate language that
can be used with different platforms, so we do not have to
perform separate static analysis for each platform. By trans-
lating binaries compiled for different platforms to MAIL, a
tool can achieve platform independence. Each MAIL state-
ment is annotated with patterns that can be used by a tool
to optimize malware analysis and detection.

The rest of the paper is structured as follows. In Section
2, we discuss related research efforts in the development of
intermediate languages for malware analysis and detection.
In Section 3 we describe in detail the language design and
components. In Section 4 we introduce our malware detec-
tion approach. In Section 5 we conduct an experiment to
assess the properties of MAIL and our proposed malware
detection approach. We finally conclude in Section 6.

2. RELATED WORK
Several intermediate languages for malware analysis and

detection have been proposed in the literature [6, 39, 38,
24, 4, 12, 19]. This Section discusses the academic and the
commercial research efforts in the development of intermedi-
ate languages for malware analysis and detection. First we
present one of the commercial efforts and then move to the
academic efforts. The reasons for selecting these research ef-
forts are: (1) information about them is available publicly;
(2) they are well described, i.e. at least part of the syntax
and semantics is either described or defined mathematically;
(3) they are currently being used in either academic or com-
mercial malware analysis and detection tools.

REIL is an intermediate language that is being used in a
commercial reverse engineering tool named BinNavi [18, 35].
Although REIL is not specifically designed for malware anal-
ysis, it is used in BinNavi for manual malware analysis and
detection. In [32], Sepp et al. proposed an extension of REIL
with relational information by translating the flags (an in-
struction’s side effects) calculations into arithmetic instruc-
tions. The extension also helps reduce the size of a REIL
program. The core language has a very reduced instruction
set and consists of only 17 different instructions, and uses a
flat memory model. The native instructions are translated
to REIL instructions using a map. Based on the experi-
ments carried out by the authors, on average an original
native instruction is translated into approximately 20 REIL
instructions. Unknown native instructions are replaced with
NOP instructions which may introduce inaccuracies in dis-
assembling. There are no examples in the paper of trans-
lating an assembly program into REIL. Furthermore, REIL
does not translate FPU, MMX and SSE instructions, priv-
ileged instructions like system calls, interrupts and other
kernel-level instructions. The reason for not including these
instructions is that the authors think that these instruc-
tions are not yet used in exploiting security vulnerabilities.
REIL cannot translate instructions of the type that address

registers by an index, as in PowerPC. REIL cannot handle
self-modifying code. The reason for this is that the REIL
instructions cannot be overwritten or modified during the
interpretation of REIL code.

SAIL is an intermediate language presented in [13] that
represents a control flow graph(CFG) [1] of the program un-
der analysis, and is used in a prototype malware detection
tool developed by the authors. Each instruction in SAIL
is either an assignment statement or a call statement, and
becomes a block [1] and a node in the CFG. The operators
supported in SAIL are arithmetic, bit-vector, relational and
the special memory addressing operator. A node in the CFG
contains only a single SAIL instruction, which can make the
number of nodes in the CFG extremely large and therefore
can make the analysis excessively slow for larger binary pro-
grams.

The VINE Intermediate Language (VINE-IL) proposed
by Song et al. [33] is the intermediate language of the static
analysis framework VINE used in the BitBlaze project. Bit-
Blaze provides an extensible binary analysis platform for
security applications. It is not specifically designed for mal-
ware detection but for general security applications. Bit-
Blaze is used in the tool Panorama [37] for malware analysis
and detection. The authors chose simplicity over efficiency,
so VINE first translates a binary to VEX, an intermediate
language used in Valgrind [28] (a dynamic binary instru-
mentation tool) and then to VINE-IL. The reason for not
using VEX intermediate language directly, is the presence of
implicit side effects in VEX instructions. In VINE-IL the fi-
nal translated instructions have all the side effects explicitly
exposed as VINE instructions. While exposing all the side
effects in VINE-IL may be appropriate for general security
applications such as program verification, this may not be
efficient for specific security applications such as malware de-
tection. Different platforms have different number and type
of flags. Exposing all the side effects makes this approach
general but also makes it difficult to maintain platform in-
dependence. In contrast to SAIL, side-effects are avoided
in MAIL, making the language much simpler and providing
ground for efficient malware detection.

In [3], the authors use an intermediate language called
CFGO-IL to simplify transformation of a program in the
x86 assembly language to a CFG. After translating a binary
program to CFGO-IL, the program is optimized to make its
structure simpler. The optimizations also remove various
malware obfuscations from the program. These optimiza-
tions include dead code elimination, removal of unreachable
branches, constant folding and removal of fake conditional
branches inserted by malware. The side effects of the as-
sembly instructions are exposed explicitly in the instructions
of the CFGO-IL. The authors developed a prototype mal-
ware detection tool using CFGO-IL that take advantage of
the optimizations and the simplicity of the language. How-
ever, by exposing all the side effects of an instruction, the
language faces the same problem of maintaining the plat-
form independence like VINE-IL. Furthermore, the size of a
CFGO-IL program tends to increase compared to the origi-
nal assembly program.

In [10], Cesare and Xiang introduce a new intermediate
language for malware analysis named WIRE. The language



is currently being used in the Malwise tool [11] developed by
the authors. To the best of our knowledge, this is the only re-
search effort that has the same goals as the MAIL language.
The language is formally defined using an incomplete set of
BNF notations. The authors defined operational semantics
of WIRE and provided manual examples to check the seman-
tic equivalence of obfuscated code using these operational
semantics. WIRE does not explicitly specify the indirect
jumps, making malware detection more complicated. There
is only one instruction ijmp in WIRE that uses register as
the branch target. The register contents (address) can be
known or unknown and hence can complicate the malware
analysis, and may render an incorrect analysis. To simplify
malware analysis, in MAIL, this information is made explicit
in the instruction.

Furthermore, the authors mention side effects of the as-
sembly instructions as one of the difficulties of using the na-
tive assembly, but do not say anything about the side effects
of the WIRE instructions. It is not clear how the language is
used in the Malwise tool to automate the malware analysis
and detection process. None of the referred papers [9, 8, 7,
11, 10] covers the automation process using WIRE.

3. THE MAIL LANGUAGE
In this Section, we give an outline of the design of MAIL

and introduce underlying elements.

3.1 Language Design
We believe a good language must start small and simple,

and must give opportunities to the language developers to
grow (extend) the language with the users. Therefore MAIL
is designed as a small, simple, and extensible language. In
this and next subsections we describe how MAIL is designed
in detail.

The basic purpose of MAIL is to represent structural and
behavioral information of an assembly program for malware
analysis and detection. MAIL will also make the program
more readable and understandable by a human malware an-
alyst. An assembly program may consist of the following
type of instructions (we use Intel x86-64 assembly instruc-
tions [16] as sample instructions):

Control instructions: include instructions that can change
the control flow of the program, such as JMP, CALL, RET,
CMP, CMPS, CMPPS, PCMPEQW, REP and LOOP in-
structions.

Arithmetic instructions: perform arithmetic operations,
such as ADD, SUB, MUL, DIV, FSIN, FCOS, PADDW,
PSUBW, ADDPS, ADDPD, PMULLD, PAVGW, DPPD,
SHR and SHL.

Logical instructions: perform logical operations, such as
AND, OR, and NOT.

Data transfer instructions: involve data moving instruc-
tions, such as MOV, CMOV, XCHG, PUSH, POP, LODS,
STOS, MOVS, MOVAPS, MOVAPD, IN, OUT, INS, OUTS,
LAHF, SAHF, PREFETCH, FLDPI, FLDCW, FXSAVE,
LEA, and LDS.

System instructions: provide support for operating sys-

tems and include instructions such as LOCK, LGDT, SGDT,
LTR, STR and XSAVE, etc.

Miscellaneous instructions: All other instructions that
do not fit into any of the above groups are included in this
group of instructions, such as NOP, CPUID, SCAS, CLC,
STC, CLI, HLT, WAIT, MFENCE, PACKSSWB, MAXPS,
and UD (undefined instruction).

Designing a language that is small and simple, and ac-
curately represents all these instructions for structural and
behavioral information is non-trivial. Our goal is to create
as few statements as possible in the intermediate language
and map as many instructions as possible to these state-
ments. For example we do not translate (i.e. ignore) the
following x86 instructions:

CLFLUSH: Flush caches
CLTS: Clear TLB)
SMSW: Restore machine status word
VERR: Verify if a segment can be read
WBINVD: Writing back and flushing of external caches
XRSTOR: Restore processor extended states from memory
XSAVE: Save processor extended states from memory

The complete list of x86 instructions that are not trans-
lated into the MAIL statements is given in [2].

3.2 MAIL Statements
The MAIL statements are divided into the following 8

basic statements (the complete MAIL grammar is given in
[2]):

statements ::= ( statement* ) ;
statement ::= assignment_s+ | control_s+

| condition_s+ | function_s+
| jump_s+ | lib_call_s+
| ’halt’ | ’lock’ ;

Every statement in the MAIL language has a type also
called a pattern that can be used for pattern matching dur-
ing malware analysis and detection. These patterns are in-
troduced and explained in Section 3.4. MAIL has its own
registers but also reuses the registers present in the architec-
ture that is being translated to the MAIL language. There
are other special registers such as:

• Flag registers: ZF (zero flag), CF (carry flag), PF
(parity flag), SF (sign flag) and OF (overflow flag).
These flag registers are of size one byte and are used
in conditional statements.
e.g. if (ZF == 1) jmp 0x405632;

• eflags: stores the flag registers.

• sp: to keep track of the stack pointer.

• gr and fr: these are infinite number of general pur-
pose registers for use in integer and floating point in-
structions, respectively, and as they are used they are
appended by a number, such as gr1, gr2, gr3, fr1, fr2,
and fr3 etc.

The majority of the assembly instructions are data moving
instructions, as shown above. We introduce in the following,
two MAIL assignment statements covering the data transfer,
arithmetic, logical and some of the system instructions. We
use EBNF [17] notation to define these statements:



assignment_s ::= register_s
| address_s ;

register_s ::= register ’=’ (math_operator)? expr
| register ’=’ (expr)? math_operator expr
| register ’=’ lib_call_s ;

address_s ::= address ’=’ (math_operator)? expr
| address ’=’ (expr)? math_operator expr
| address ’=’ lib_call_s ;

expr ::= register | address | digit+ ;
register ::= ’eflags’

| ’gr_’ digit+ | ’fr_’ digit+ | ’sp’
| register_name (’:’ register_name)? ;

register_name ::= letter+ [’0’ - ’9’]?
| ’ZF’ | ’CF’ | ’PF’ | ’SF’ | ’OF’ ;

address ::= ’[’ digit+ ’]’ | reg_address
| ’UNKNOWN’ ;

Control instructions are very important because they can
change the behavior of a program, and they can be changed
or added by polymorphic and metamorphic malware to avoid
detection. The following MAIL control statement represents
the control instructions:

control_s ::= (’if’ condition_s
(jump_s | assignment_s))

(’else’ (jump_s | assignment_s))? ;
jump_s ::= ’jmp’ address ;
lib_call_s ::= letter+ ’(’ address (, args)* ’)’ ;
function_s ::= ’start_function_’ digit+ statement

’end_function_’ digit+ ;
condition_s ::= (expr rel_operator expr)+ ;

3.3 MAIL Library
The current MAIL library contains 22 functions. The fol-

lowing are some of the examples of MAIL library functions:

• compare(op1, op2): compares two values op1 and op2
and then set the flag register.

• max(op1, op2) and min(op1, op2): returns the max-
imum and minimum of the parameters op1 and op2
respectively.

• swap(op1, op2): swap the bits in op2 and write back
in op1.

Details about all these library functions are given in [2].
These library functions can help in translating most of the
complex assembly instructions present in current processor
architectures. The purpose of these functions is not to cap-
ture the exact functionality of the assembly instruction(s)
but to help in analysing the structure and behavior of the
assembly program, and capturing some of the patterns in
the program that can help detect malware.

3.4 MAIL Patterns for Annotation
MAIL can also be used to annotate a CFG of a program

using different patterns available in the language. The pur-
pose of these annotations is to assign patterns to MAIL
statements that can be used later for pattern matching dur-
ing malware detection. There are total 21 patterns in the
MAIL language as follows:

ASSIGN: An assignment statement, e.g. EAX=EAX+ECX;

ASSIGN CONSTANT: An assignment statement includ-
ing a constant, e.g. EAX=EAX+0x01;

CONTROL: A control statement where the target of the
jump is unknown, e.g. if (ZF == 1) JMP [EAX+ECX+0x10];

CONTROL CONSTANT: A control statement where the
target of the jump is known. e.g. if (ZF == 1) JMP
0x400567;

CALL: A call statement where the target of the call is un-
known, e.g. CALL EBX;

CALL CONSTANT: A call statement where the target
of the call is known, e.g. CALL 0x603248;

FLAG: A statement including a flag, e.g. CF = 1;

FLAG STACK: A statement including flag register with
stack, e.g. EFLAGS = [SP=SP-0x1];

HALT: A halt statement, e.g. HALT;

JUMP: A jump statement where the target of the jump
is unknown, e.g. JMP [EAX+ECX+0x10];

JUMP CONSTANT: A jump statement where the tar-
get of the jump is known, e.g. JMP 0x680376

JUMP STACK: A return jump, e.g. JMP [SP=SP-0x8]

LIBCALL: A library call, e.g. compare(EAX, ECX);

LIBCALL CONSTANT: A library call including a con-
stant, e.g. compare(EAX, 0x10);

LOCK: A lock statement, e.g. lock;

STACK: A stack statement, e.g. EAX = [SP=SP-0x1];

STACK CONSTANT: A stack statement including a con-
stant, e.g. [SP=SP+0x1] = 0x432516;

TEST: A test statement, e.g. EAX and ECX;

TEST CONSTANT: A test statement including a con-
stant, e.g. EAX and 0x10;

UNKNOWN: Any unknown assembly instruction that can-
not be translated.

NOTDEFINED: The default pattern, e.g. all the new
statements when created are assigned this default value.

4. MALWARE ANALYSIS USING MAIL

4.1 Approach Overview
Almost all the malware use binaries to infiltrate a com-

puter system, which can be a desktop, a server, a laptop,
a kiosk or a mobile device. Binary analysis is the process
of automatically analysing the structure and behavior of a
binary program. We use binary analysis for malware detec-
tion.

A binary program is first disassembled and translated to
a MAIL program. In [2], we expalin in detail with examples



of translating a x86 and an ARM assembly program into a
MAIL program. The MAIL program is then annotated with
patterns. We then build a CFG of the annotated MAIL pro-
gram. This annotated CFG becomes part of the signature
of the program and is matched against a database of known
malware samples to see if the program contains a malware
or not. This approach is very useful in detecting known
malware but may not be able to detect unknown malware.

It is difficult to write a new metamorphic malware [34] and
in general malware writers reuse old malware. To hide detec-
tion the malware writers change the obfuscations (syntax)
more than the behavior (semantic) of such a new metamor-
phic malware. If an unknown metamorphic malware uses all
or some of the same class of behaviors as are used by the
training dataset (set of old metamorphic malware) then it
is possible to detect these type of malware using machine
learning techniques. On this assumption and motivation,
we train our detector (classifier) on the training dataset and
detect unknown malware as follows:

After a program sample is translated to MAIL, an anno-
tated CFG for each function in the program is built. Instead
of using one large CFG as signature, we divide a program
into smaller CFGs, with one CFG per function. A pro-
gram signature is then represented by the set of correspond-
ing (smaller) CFGs. A program that contains part of the
control flow of a training malware sample, is classified as a
malware, i.e. if a percentage (compared to some predefined
threshold) of the number of CFGs involved in a malware
signature match with the signature of a program then the
program is classified as a malware.

4.2 Subgraph Matching
Before explaining the subgraph matching technique used

in this paper for malware detection, we first define graph
isomorphism [23] as follows:

Let G = (VG, EG) and H = (VH , EH) be any two graphs,
where VG, VH and EG, EH are the sets of vertices and edges
of the graphs, respectively.

DEFINITION 1: A vertex bijection (one-to-one mapping)
denoted as fV = VG → VH and an edge bijection denoted
as fE = EG → EH are consistent if for every edge e ∈ EG

fV maps the endpoints of e to the endpoints of edge fE(e).

DEFINITION 2: G and H are isomorphic graphs if there
exists a vertex bijection fV and an edge bijection fE that
are consistent. This relationship is denoted as G ∼= H.

An example of isomorphism is shown in Figure 1. The
edges of graphs G and H1 are not consistent, e.g. edge
{00, 10} in graph G is not mapped to any edges in graph H1,
therefore graphs G and H1 are not isomorphic. Whereas the
edges of graphs G and H2 are consistent, therefore graphs
G and H2 are isomorphic.

In our malware detection approach, graph matching is de-
fined in terms of subgraph isomorphism. Given the input
of two graphs, subgraph isomorphism determines if one of the
graphs contains a subgraph that is isomorphic to the other
graph. Generally, subgraph isomorphism is an NP-Complete
problem [15]. A CFG of a program is usually a sparse graph,
therefore it is possible to compute the isomorphism of two
CFGs in a reasonable amount of time.

10

00

11

01

(a) Graph G

00 01 10 11

(b) Graph H1

00

01

10

11

(c) Graph H2

Figure 1: Example of graph isomorphism. Graphs G
and H2 are isomorphic but not G and H1.

Based on the definition of graph isomorphism presented
above we formulate our CFG matching approach as follows:

Let P = (VP , EP ) denote a CFG of the program and M =
(VM , EM ) denote a CFG of the malware, where VP , VM and
EP , EM are the sets of vertices and edges of the graphs,
respectively. Let Psg = (Vsg, Esg) where Vsg ⊆ VP and
Esg ⊆ EP (i.e. Psg is a subgraph of P ). If Psg

∼= M then P
and M are considered as matching graphs.

After the binary analysis performed we obtain a set of
CFGs (each corresponding to separate function) of a pro-
gram. To detect if a program contains a malware we com-
pare the CFGs of the program with the CFGs of known
malware samples from our training database. If a percent-
age of the CFGs of the program, greater than a predefined
threshold, match one or several of the CFGs of a malware
sample (from the database) then the program will be classi-
fied as a malware.

4.3 Pattern Matching
Very small graphs when matched against a large graph

can produce a false positive. Likewise to alleviate the impact
of small graphs on detection accuracy, we integrate a Pat-
tern Matching sub-component within the Subgraph Match-
ing component. Every statement in MAIL is assigned a
pattern as explained in Section 3.4. If a CFG of a malware
sample matches with a CFG of a program (i.e. the two
CFGs are isomorphic), then we further use the patterns, as-
signed to MAIL statements, to match each statement in the
matching nodes of the two CFGs. A successful match re-
quires all the statements in the matching nodes to have the
same (exact) patterns, although there could be differences
in the corresponding statement blocks.

An example of Pattern Matching of two isomorphic CFGs
is shown in Figure 2. One of the CFGs of a malware sam-
ple, shown in Figure 2 (a), is isomorphic to a subgraph of
one of the CFGs of a benign program, shown in Figure 2
(b). Considering these two CFGs as a match for malware
detection will produce a wrong result, a false positive. The
statements in the benign program do not match with the
statements in the malware sample. To reduce this false pos-



itive we have two options: (1) we can match each statement
exactly with each other or (2) assign patterns to these state-
ments for matching. Option (1) will not be able to detect
unknown malware samples and is time consuming, so we
use option (2) in our approach, which in addition to reduc-
ing false positives has the potential of detecting unknown
malware samples.

908                  RSP = 0x8 - RSP;  (ASSIGN)
90c  [sp=sp+1] = 0x911; call (0xaec);  (CALL_C)

911  [sp=sp+1] = 0x916; call (0xb80);  (CALL_C)

916  call (0x180);                     (CALL_C)

91b  RSP = RSP + 0x8;                  (ASSIGN)
91f  jmp [sp=sp-0x1];                  (JUMP_S)

Block 0

Block 1

Block 2

Block 3

129                  RAX = RAX + 0xf;  (ASSIGN)
12d  [sp=sp+1] = 0x132; call (0x4b8);  (CALL_C)

132  jmp 0xed6;                         (JMP_C)

916  jmp (0x068);                       (JMP_C)

13e                    EDI = EDI;      (ASSIGN)
140            [sp=sp+0x1] = EBP;       (STACK)
141                    EBP = ESP;      (ASSIGN)
143              EAX = [EBP+0x8];      (ASSIGN)
146                  EAX = [EAX];      (ASSIGN)
148   compare([EAX], 0xe06d7363);     (LIBCALL)
14e       if (ZF == 0) jmp 0x17a;   (CONTROL_C)

Block 0

Block 1

Block 2

Block 3

           (a) One of the CFGs of a malware sample

Block 4

           (b) One of the CFGs of a benign program

Figure 2: Example of pattern matching of two iso-
morphic CFGs. The CFG in (a) is isomorphic to the
subgraph (blocks 0 - 3) of the CFG in (b).

For a successful pattern matching we require all the state-
ments in the matching blocks to have the same patterns.
In Figure 2, only the statements in block 0 satisfy this re-
quirement. The statements in all the other blocks do not
satisfy this requirement, therefore these CFGs fail the pat-
tern matching.

5. EXPERIMENTS

We conducted an experiment to evaluate the performance
of our malware detection technique. The evaluation was
carried out using 10-fold cross validation, and prototype im-
plementation of our detector named MARD (for Metamor-
phic malware Analysis and Real-time Detection). MARD
fully automates the malware analysis and detection process,
without any manual intervention during a complete run. We
present, in this section, the evaluation metrics, the experi-
mental settings and obtained results.

5.1 Performance Metrics
To measure the performance of the malware detection

technique we compute the detection rate (DR) and false
positive rate (FPR). The DR metric indicates the number
of samples correctly recognized as malware out of the total
malware dataset. The FPR metric indicates the number of
samples incorrectly recognized as malware out of the total
benign dataset. These performance metrics are defined as
follows:

DR =
Number of correct malware detected

Total number of malware in the dataset
(1)

FPR =
Number of incorrect malware detected

Total number of benign programs in the dataset
(2)

5.2 Dataset
The dataset used for the experiments consisted of total

1387 sample Windows programs collected from two differ-
ent resources [30, 31]. Out of the 1387 programs, 250 are
metamorphic malware samples, and the other 1137 are be-
nign programs. The dataset distribution based on the size
of the CFG after normalization is shown in Table 1. The
dataset contains a variety of programs with CFGs, ranging
from simple to complex for testing. As shown in Table 1,
the size of the CFG of the malware samples range from 3
nodes to 129 nodes, and the size of the CFG of the benign
programs range from 17 nodes to 15343 nodes. This vari-
ety in the samples provides a good testing platform for the
graph and pattern matching techniques used in our tool.

Table 1: Dataset distribution for the experimental
study

250 Malware Samples 1137 Benign Programs

Size Number Size Number
of CFG of Samples of CFG of Samples

3 200 17 127

88 1 30 44

91 – 99 38 44 – 998 412

100 – 104 10 1000 – 9765 535

129 1 10118 – 15343 19

5.3 Evaluation Methodology and Results
The experiment was run on the following machine: Intel

Core 2 Quad (4 Cores) CPU Q6700 @ 2.67 GHz with 4GB
RAM, operating system Windows 7 professional.



We conducted 10-fold cross validation by selecting 25 mal-
ware samples out of the 250 malware to train our detector.
The remaining 225 malware samples along with the 1137
benign programs in our dataset were then used to test the
detector. These two steps were repeated 10 times and each
time different set of 25 malware samples were selected for
training and the remaining samples for testing. The overall
performance results were obtained by averaging the results
obtained in the 10 different runs.

As explained above, to classify a program as benign or
malware we compare to some predefined threshold (value)
the percentage of its CFGs that match malware CFGs from
the training set. To determine this threshold value empiri-
cally, we ran the above experiments with different values of
the threshold ranging from 20% to 90%. Table 2 lists the
obtained results. As it can be noted the best results are
obtained for threshold values of 20%− 25%.

Table 2: Malware detection performance by varying
the detection threshold value.

Threshold DR FPR

20 99.2% 3.07%

25 99.2% 3.07%

30 93.2% 3.07%

40 86.4% 3.07%

50 82.8% 3.07%

60 76% 3.07%

70 76% 3.07%

80 76% 3.07%

90 76% 3.07%

Using a threshold value of 25%, we conducted further eval-
uation by increasing the size of the training set from 25
samples to 100 and 200 malware samples, respectively. The
obtained results are listed in Table 3. The DR improved
from 93.92% when the size of the training set is 25 to 99.6%
and 100% when we used a training dataset of 100 and 200
samples, respectively.

Table 3: Malware detection performance by varying
the training sample size, and setting the threshold
value to 25%.

Training set size DR FPR Real-Time

25 93.92% 3.02% 3

100 99.6% 3.43% 3

200 100% 3.43% 3

Real-time here means the detection is fully automatic and
finishes in a reasonable amount of time.

6. CONCLUSION

We have developed MAIL as a new intermediate language,
and shown through experimental evaluation its effectiveness
in malware analysis and detection.

It is important to note that a program translated to MAIL
when executed may not produce the same output as the
original program. MAIL is designed to perform static binary
analysis and is not suitable for performing dynamic binary
analysis.

The patterns developed if used with a behavioral signa-
ture of a binary program such as a CFG have the capability
to produce useful classifications for malware analysis and
detection, as shown by the results of the above experiments.
But if the patterns are used alone, it may not produce the
desired results.

The side effects of an assembly instruction are not directly
translated to the MAIL statement. With the presence of
various flag registers in the MAIL language it is possible
for a malware analysis tool to include the side effect(s) of
an assembly instruction by generating more statements and
updating the affected flag registers.

The MAIL language is most useful in capturing the behav-
ior (including structural and functional) of a binary program
and can be used as part of different malware detection tech-
niques such as the ones described in this paper and in [25,
22, 21, 20]. These techniques require behavioral, structural
or functional information about a program. In its current
form, MAIL cannot be used as part of other signature-based
malware detection techniques, such as [36, 31, 30]. These
techniques build the signatures using the opcodes of a bi-
nary program.

Currently we are carrying out further research into op-
timizing the tool to increase its accuracy and efficiency for
detecting unknown metamorphic malware. We are collecting
more metamorphic malware samples to use in our research
and carry out experiments to further improve malware clas-
sification and detection.

Our future work will consist of strengthening our existing
algorithms by investigating and incorporating more powerful
pattern recognition techniques.
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