
Look-Back Techniques and Heuristics in DLV:

Implementation, Evaluation, and Comparison

to QBF Solvers ⋆

Marco Maratea a,b Francesco Ricca a,∗

Wolfgang Faber aNicola Leone a

aDepartment of Mathematics, University of Calabria, 87036 Rende (CS), Italy
bDIST, University of Genova, 16145 Genova, Italy

Abstract

DLV is the state-of-the-art system for evaluating disjunctive answer set programs.
As in most Answer Set Programming (ASP) systems, its implementation is divided
in a grounding part and a propositional model-finding part. In this paper, we focus
on the latter, which relies on an algorithm using backtracking search.

Recently, DLV has been enhanced with backjumping techniques, which also in-
volve a reason calculus, recording causes for the truth or falsity of atoms during
the search. This reason calculus allows for looking back in the search process for
identifying areas in the search space in which no answer set will be found. We can
also define heuristics which make use of the information about reasons, preferring
literals that were the reasons of more inconsistent branches of the search tree. This
heuristics thus use information gathered earlier in the computation, and are there-
fore referred to as look-back heuristics.

In this paper, we formulate suitable look-back heuristics and focus on the exper-
imental evaluation of the look-back techniques that we have implemented in DLV,
obtaining the system DLV

LB . We have conducted a thorough experimental analysis
considering both randomly-generated and structured instances of the 2QBF prob-
lem, the canonical problem for the complexity classes ΣP

2 and ΠP
2 . Any problem

in these classes can be expressed uniformly using ASP and can therefore be solved
by DLV. We have also evaluated the same benchmark using “native” QBF solvers,
which were among the best solvers in recent QBF Evaluations. The comparison
shows that DLV endowed with look-back techniques is competitive with the best
available QBF solvers on such instances.

Key words: Knowledge Representation and Reasoning, Nonmonotonic Reasoning,
Heuristics

Preprint submitted to Elsevier 11 February 2008

1 Introduction

Answer Set Programming (ASP) [1,2] is a purely declarative programming
paradigm based on nonmonotonic reasoning and logic programming. The idea
of answer set programming is to represent a given computational problem by
a logic program the answer sets of which correspond to solutions, and then use
an answer set solver to find such solutions [3]. The language of ASP is based on
rules, allowing for both disjunction in rule heads and nonmonotonic negation
in the body. ASP is very expressive, allowing for representing every property
in the second level of the polynomial hierarchy. Therefore, ASP is strictly
more expressive than using encodings based on satisfiability of propositional
formulas (unless P = NP).

DLV is the state-of-the-art disjunctive ASP system, and it is based on an al-
gorithm relying on backtracking search, like most other competitive ASP sys-
tems, which include the disjunctive solvers GnT [4] and Cmodels [5]. Recently,
DLV has been enhanced with a backjumping procedure [6]. Backjumping [7,8]
refers to an optimized recovery upon inconsistency during the search: instead
of restoring the state of the search to the previous choice point, irrelevant
choices for the encountered inconsistency are “jumped over”, thereby restor-
ing the search state to the previous relevant choice point. A crucial point is how
relevance to an inconsistency can be determined. In [6], the necessary infor-
mation for deciding relevance is recorded by means of a reason calculus, which
collects information about the literals (“reasons”) whose truth has caused the
truth of other derived literals. Look-back heuristics [9] further strengthen the
potential of backjumping by using the information made explicit by the rea-
sons. The idea of this family of heuristics is to preferably choose those atoms
which frequently caused inconsistencies. This significantly differs from clas-
sical ASP heuristics that use information arising from tentatively applying
the simplification part (look-ahead) of the algorithm and analyzing the result.
Look-back optimization techniques and heuristics have been shown, in various
research areas, to be very effective on data intensive benchmarks coming from
applications, like planning and formal verification (see, e.g., the reports of the
various Competitions).

In this paper, we report on the formulation, implementation, and especially the
experimental evaluation of look-back heuristics for DLV, yielding the system
DLV

LB. Since the hardest problems that can be uniformly represented by

⋆ Preliminary versions of this work have been published at RCRA’07 and LP-
NMR’07.
∗ Corresponding author.

Email addresses: marco@dist.unige.it (Marco Maratea),
ricca@mat.unical.it (Francesco Ricca), wf@wfaber.com (Wolfgang Faber),
leone@mat.unical.it (Nicola Leone).

2

disjunctive logic programs, the language accepted by DLV
LB, are hard for the

class ΣP
2 or ΠP

2 , we have used the canonical problem for these classes, 2QBF—
quantified boolean formulas with two alternating quantifiers, for evaluation
purposes. In the literature of SAT a dichotomy has been reported, according
to which random problem instances generally do not gain much from look-
back techniques, while structured problem instances do - we have considered
both types of problems in our experiments in order to assess whether a similar
behavior can be observed for ASP.

DLV
LB provides several options regarding the initialization of the heuristics

and the truth value to be assigned to an atom chosen by the heuristics. In
our experimental analysis, we provide a comprehensive comparison of the im-
pact of these options, and demonstrate how the new components of DLV

LB

enhance the efficiency of DLV. We also provide a comparison to the other
competitive disjunctive ASP systems GnT and Cmodels. Moreover, since we
consider 2QBFs as a benchmark, we have also compared DLV

LB to the per-
formance of native QBF solvers. In particular, we have chosen those solvers
which were the best in recent QBF Evaluations over the various categories and
which are freely available. As a result, we observe that DLV

LB clearly outper-
forms its direct competitors GnT and Cmodels, and that DLV

LB is also on
par with the best available QBF solvers on 2QBF instances. Considering its
knowledge representation merits and its computational competitiveness, we
conjecture that DLV

LB is currently the system of choice for representing and
solving problems which are on the second level of the polynomial hierarchy.

The paper is organized as follows: in Section 2 we review syntax, semantics and
some properties of Answer Set Programming. In Section 3 we present first in
Section 3.1 the basic algorithm underlying the DLV system and its extension
by a reason calculus and backjumping. Since a main parameter of this algo-
rithm is a heuristic choice to be made, in Section 3.2 we review some choice
criteria from literature and define new look-back criteria in several variants.
In Section 4 we then present the settings of the performed experiments, report
the obtained results and discuss them. We discuss related work in Section 5
and draw our conclusions in Section 6.

2 Answer Set Programming Language

A (disjunctive) rule r is a formula

a1 ∨ · · · ∨ an :– b1, · · · , bk, not bk+1, · · · , not bm.

where a1, · · · , an, b1, · · · , bm are function-free atoms, n ≥ 0, m ≥ k ≥ 0 and
“not” is the nonmonotonic negation as failure operator. The disjunction a1 ∨

3

· · · ∨ an is the head of r, while b1, · · · , bk, not bk+1, · · · , not bm is the body, of
which b1, · · · , bk is the positive body, and not bk+1, · · · , not bm is the negative
body of r. We will also denote the head and (positive or negative) body as sets
containing the respective literals.

A rule r with empty negative body is called positive. A rule with empty head
is referred to as integrity constraint or just constraint. If the body of a rule is
empty we usually omit the :– sign.

An (ASP) program P is a finite set of rules; P is a positive program if all rules
in P are positive (i.e., not -free). An object (atom, rule, etc.) containing no
variables is called ground or propositional. A rule is safe if each variable in
that rule also appears in at least one positive literal in the body of that rule.
A program is safe if each of its rules is safe and in the following we will assume
that all programs are safe.

Example 1 Consider the following ASP program P1:

x(U) ∨ x(V) :– d(U, V).

g :– x(U), x(V), d(U, V), not e(U, V).

:– g, x(U), x(V), d(U, V).

d(1, 2). d(3, 4). d(5, 6).

e(1, 5). e(1, 6).

The first rule is a positive and disjunctive rule, where its head is {x(U), x(V)},
its positive body is {d(U, V)}, and its negative body is empty. The second rule is
a non-disjunctive rule with head {g}, positive body {x(U), x(V), d(U, V)}, and
negative body {not e(U, V)}. The third rule is a positive integrity constraint
with empty head, positive body {g, x(U), x(V), d(U, V)}, and empty negative
body. The last five rules are all ground facts. All of these rules are safe.

Given a program P, let the Herbrand Universe UP be the set of all constants
appearing in P and the Herbrand Base BP be the set of all possible ground
atoms which can be constructed from the predicate symbols appearing in P
with the constants of UP .

Given a rule r, Ground(r) denotes the set of rules obtained by applying
all possible substitutions σ from the variables in r to elements of UP . Sim-
ilarly, given a program P, the ground instantiation Ground(P) of P is the set⋃

r∈P Ground(r).

Example 2 Reconsider program P1 of Example 1. UP1
= {1, . . . , 6} and

BP1
= {x(1), . . . , x(6)} ∪

⋃
(x,y)∈{1,...,6}×{1,...,6}{e(x, y), d(x, y)}. The program

4

Ground(P1) is

x(1) ∨ x(1) :– d(1, 1).

x(1) ∨ x(2) :– d(1, 2).
...

x(6) ∨ x(5) :– d(6, 5).

x(6) ∨ x(6) :– d(6, 6).

g :– x(1), x(1), d(1, 1), not e(1, 1).

g :– x(1), x(2), d(1, 2), not e(1, 2).
...

g :– x(6), x(5), d(6, 5), not e(6, 5).

g :– x(6), x(6), d(6, 6), not e(6, 6).

:– g, x(1), x(1), d(1, 1), not e(1, 1).

:– g, x(1), x(2), d(1, 2), not e(1, 2).
...

:– g, x(6), x(5), d(6, 5), not e(6, 5).

:– g, x(6), x(6), d(6, 6), not e(6, 6).

d(1, 2). d(3, 4). d(5, 6).

e(1, 5). e(1, 6).

Note that the last five rules were already ground in P1.

For every program P, its answer sets are defined using its ground instantiation
Ground(P) in two steps: first answer sets of positive programs are defined,
then a reduction of general programs to positive ones is given, which is used
to define answer sets of general programs. A set L of ground literals is said
to be consistent if, for every atom ℓ ∈ L, its complementary literal not ℓ is
not contained in L. An interpretation I for P is a consistent set of ground
literals over atoms in BP . 1 A ground literal ℓ is true w.r.t. I if ℓ ∈ I; ℓ is
false w.r.t. I if its complementary literal is in I; ℓ is undefined w.r.t. I if it is
neither true nor false w.r.t. I. Interpretation I is total if, for each atom A in

1 We represent interpretations as set of literals, since we have to deal with partial
interpretations in the next sections.

5

BP , either A or not A is in I (i.e., no atom in BP is undefined w.r.t. I). A
total interpretation M is a model for P if, for every r ∈ Ground(P), at least
one literal in the head is true w.r.t. M whenever all literals in the body are
true w.r.t. M . X is an answer set for a positive program P if it is minimal
w.r.t. set inclusion among the models of P.

Example 3 For the positive ground program P2 = {a ∨ b ∨ c. , :– a.}, the
two interpretations {b, not a, not c} and {c, not a, not b} are the only answer
sets. For the positive ground program P3 = {a ∨ b ∨ c. , :– a. , b :– c. , c :– b.},
{b, c, not a} is the only answer set.

The reduct or Gelfond-Lifschitz transform of a general ground program P
w.r.t. an interpretation X is the positive ground program PX , obtained from
P by (i) deleting all rules r ∈ P the negative body of which is false w.r.t. X
and (ii) deleting the negative body from the remaining rules. An answer set
of a general program P is a model X of P such that X is an answer set of
Ground(P)X .

Example 4 For the negative ground program P4 = {a :– not b.}, A = {a, not b}
is the only answer set, as PA

4 = {a.}. For example for B = {not a, b},
PB

4 = ∅, and so B is not an answer set.

Example 5 Reconsider program P1 from Example 1 and its grounding Ground(P1)
of Example 2. First, we note that any reduct of Ground(P1) contains the fol-
lowing program Pf

x(1) ∨ x(1) :– d(1, 1).

x(1) ∨ x(2) :– d(1, 2).
...

x(6) ∨ x(5) :– d(6, 5).

x(6) ∨ x(6) :– d(6, 6).

:– g, x(1), x(1), d(1, 1), not e(1, 1).

:– g, x(1), x(2), d(1, 2), not e(1, 2).
...

:– g, x(6), x(5), d(6, 5), not e(6, 5).

:– g, x(6), x(6), d(6, 6), not e(6, 6).

d(1, 2). d(3, 4). d(5, 6).

e(1, 5). e(1, 6).

6

So any minimal model of a reduct, and thus any answer set, must contain
F+ = {d(1, 2), d(3, 4), d(5, 6), e(1, 5), e(1, 6)}. It is also easy to see that any
minimal model of a reduct must contain F− =

⋃
(x,y)∈{1,...,6}×{1,...,6}{not d(x, y),

not e(x, y)}\{not d(1, 2), not d(3, 4), not d(5, 6), not e(1, 5), not e(1, 6)}
as there is no reason for the truth of the atoms in F−. So that means that for
any possible answer set A ⊃ F+ ∪ F−, the reduct Ground(P1)

A contains Pf

and

g :– x(1), x(1), d(1, 1).

g :– x(1), x(2), d(1, 2).

g :– x(1), x(2), d(1, 3).

g :– x(1), x(2), d(1, 4).

g :– x(1), x(1), d(2, 1).

g :– x(1), x(2), d(2, 2).
...

g :– x(6), x(5), d(6, 5).

g :– x(6), x(6), d(6, 6).

The reducts of all possible answer sets are therefore equal, and so it is sufficient
to isolate those A ⊃ F+∪F− which are minimal models of this reduct program,
and thus answer sets:

{x(1), not x(2), x(3), not x(4), x(5), not x(6)} ∪ F+ ∪ F−

{not x(1), x(2), x(3), not x(4), x(5), not x(6)} ∪ F+ ∪ F−

{x(1), not x(2), not x(3), x(4), x(5), not x(6)} ∪ F+ ∪ F−

{not x(1), x(2), not x(3), x(4), x(5), not x(6)} ∪ F+ ∪ F−

{x(1), not x(2), x(3), not x(4), not x(5), x(6)} ∪ F+ ∪ F−

{not x(1), x(2), x(3), not x(4), not x(5), x(6)} ∪ F+ ∪ F−

{x(1), not x(2), not x(3), x(4), not x(5), x(6)} ∪ F+ ∪ F−

{not x(1), x(2), not x(3), x(4), not x(5), x(6)} ∪ F+ ∪ F−

3 Answer Set Computation Algorithms

In this section, we briefly describe the main steps of the computational process
performed by ASP systems. We will refer particularly to the computational

7

bool ModelGenerator (Interpretation& I) {
I = DetCons (I);
if (I == L) then

return false;
if (“no atom is undefined in I”)

return IsAnswerSet(I);
Select an undefined atom A using a heuristic;
if (ModelGenerator (I ∪ {A}))

return true;
else

return ModelGenerator (I ∪ {not A});
};

Fig. 1. Computation of Answer Sets without backjumping.

engine of the DLV system, which will be used for the experiments, but also
other ASP systems employ a similar procedure. In general, an answer set
program P contains variables. The first step of a computation of an ASP sys-
tem eliminates these variables, generating a ground instantiation ground(P)
of P. 2 The subsequent computations, which constitute the non-deterministic
core of the system, are then performed on ground(P) by the so called Model
Generator procedure.

In the following paragraphs, we briefly illustrate the original model genera-
tion algorithm of DLV and an enhancement of it by means of a backjumping
technique. Finally, we report a description of all the heuristics, that will later
be compared in the experiments.

3.1 The Model Generator Algorithms

Note that the algorithms presented here are abstractions of actual imple-
mentations, which have to deal with several additional technical details and
optimizations. For more details we refer to [11] for the basic technique and to
[6] for the enhancement by backjumping. Moreover, the algorithms presented
here compute one answer set for simplicity, however they can be modified to
compute all or n answer sets in a straightforward way.

The basic method is the Model Generator Algorithm sketched in Figure 1.This
function is initially called with parameter I set to the empty interpretation,
in which all atoms are undefined. 3

2 Note that ground(P) is usually not the full Ground(P); rather, it is a subset
(often much smaller) of it having precisely the same answer sets as P [10].
3 Observe that the interpretations built during the computation are 3-valued, that
is, a literal can be True, False or Undefined w.r.t. I.

8

If the program P has an answer set, then the function returns True, setting I
to the computed answer set; otherwise it returns False. The Model Generator
is similar to the DPLL procedure employed by SAT solvers. It first calls a
function DetCons, which returns the extension of I with the literals that can
be deterministically inferred (or the set of all literals L upon inconsistency).
This function is similar to a unit propagation procedure employed by SAT
solvers, but exploits the peculiarities of ASP for making further inferences
(e.g., it exploits the knowledge that every answer set is a minimal model). If
DetCons does not detect any inconsistency, an atom A is selected according
to a heuristic criterion and ModelGenerator is called on I ∪ {A} and on I ∪
{not A}. The atom A plays the role of a branching variable of a SAT solver.
And indeed, like for SAT solvers, the selection of a “good” atom A is crucial
for the performance of an ASP system. In Section 3.2, we will describe some
heuristic criteria for the selection of such branching atoms.

If no atom is left for branching, the Model Generator has produced a “candi-
date” answer set, the stability of which is subsequently verified by IsAnswer-
Set(I). This function checks whether the given “candidate” I is a minimal
model of the program Ground(P)I and if so, outputs I. IsAnswerSet(I) re-
turns True if the computation should be stopped and False otherwise. Note
that, if during the execution of the ModelGenerator function a contradiction
arises, or the stable model candidate is not a minimal model, ModelGenerator
backtracks and modifies the last choice. This kind of backtracking is called
chronological backtracking.

To give an intuition on how backjumping is supposed to work, consider the
following simple example.

Consider the following program, which is a simplified ground version of P1 of
Example 1.

r1 : x(1) ∨ x(2). r2 : x(3) ∨ x(4). r3 : x(5) ∨ x(6).
r4 : g :–x(1), x(5). r5 : :– g, x(1), x(5).
r6 : g :–x(1), x(6). r7 : :– g, x(1), x(6).

and suppose that the search tree is as depicted in Figure 2.

Here we first assume x(1) to be true, deriving x(2) to be false (from r1 to ensure
the minimality of answer sets). Then we assume x(3) to be true, deriving x(4)
to be false (from r2 for minimality). Third, we assume x(5) to be true and
derive x(6) to be false (from r3 for minimality) and g to be true (from r4 by
forward inference). This truth assignment violates constraint r5 (where g must
be false), yielding an inconsistency. We continue the search by inverting the
last choice, that is, we assume x(5) to be false and we derive x(6) to be true

9

Fig. 2. Backtracking vs backjumping.

(again from r3 to preserve minimality) and g to be true (from r6 by forward
inference), but obtain another inconsistency (because constraint r7 is violated,
here g must also be false).

At this point, ModelGenerator goes back to the previous choice point, in this
case inverting the truth value of x(3) (cf. the arc labelled BK in Fig. 2).

Now it is important to note that the inconsistencies obtained are independent
of the choice of x(3), and only the truth value of x(1) and x(5) are the reasons
for the encountered inconsistencies. In fact, no matter what the truth value
of x(3) is, if x(1) is true then any truth assignment for x(5) will lead to an
inconsistency. Looking at Fig. 2, this means that in the whole subtree below
the arc labelled x(1) no stable model can be found. It is therefore obvious
that the chronological backtracking search explores branches of the search
tree that cannot contain a stable model, performing a lot of useless work. A
better policy would be to go back directly to the point at which we assumed
x(1) to be true (see the arc labelled BJ in Fig. 2). In other words, if we know
the reasons of an inconsistency, we can backjump directly to the closest choice
that caused the inconsistent subtree.

In practice, once a literal has been assigned a truth value during the compu-
tation, we can associate a reason for that fact with the literal. For instance,
given a rule a :– b, c, not d., if b and c are true and d is false in the current
partial interpretation, then a will be derived as true (by Forward Propaga-
tion). In this case, we can say that a is true “because” b and c are true and
d is false. A special case are chosen literals, as their only reason is the fact
that they have been chosen. The chosen literals can therefore be seen as being

10

their own reason, and we may refer to them as elementary reasons. All other
reasons are consequences of elementary reasons, and hence aggregations of ele-
mentary reasons. Each literal l derived during the propagation (i.e., DetCons)
will have an associated set of positive integers R(l) representing the reason of
l, which are essentially the recursion levels of the chosen literals which entail
l. Therefore, for any chosen literal c, |R(c)| = 1 holds.

The process of defining reasons for derived (non-chosen) literals is called reason
calculus. For a detailed definition of this calculus we refer to [6].

When an inconsistency is determined, we use reason information in order to
understand which chosen literals have to be undone in order to avoid the found
inconsistency. Implicitly this also means that all choices which are not in the
reason do not have any influence on the inconsistency. We can isolate two
main types of inconsistencies: (i) deriving conflicting literals, and (ii) failing
stability checks. Of these two, the second one is a peculiarity of disjunctive
ASP.

Deriving conflicting literals means, in our setting, that DetCons determines
that an atom a and its negation not a should both hold. In this case, the
reason of the inconsistency is – rather straightforward – the combination of
the reasons for a and not a: R(a) ∪R(not a).

Inconsistencies from failing stability checks are a peculiarity of disjunctive
ASP, as non-disjunctive ASP systems usually do not employ a stability check.
This situation occurs if the function IsAnswerSet(I) of ModelGenerator returns
false, hence if the checked interpretation (which is guaranteed to be a model)
is not stable. The reason for such an inconsistency is always based on an
unfounded set, which has been determined inside IsAnswerSet(I) as a side-
effect. Using this unfounded set, the reason for the inconsistency is composed
of the reasons of literals which satisfy rules containing unfounded atoms in
their head (the cancelling assignments of these rules). The information on
reasons for inconsistencies can be exploited for backjumping by going back to
the closest choice which is a reason for the inconsistency, rather than always
to the immediately preceding choice.

The function ModelGeneratorBJ (shown in Fig. 3) is a modification of the
ModelGenerator function, which implements backjumping. To this end, two
new parameters IR and bj level are introduced, which hold the reason of
the inconsistency encountered in the subtrees whose current recursion level is
the root, and the recursion level to backtrack or backjump to. When going
forward in recursion, bj level is also used to hold the current level. The vari-
ables curr level, posIR, and negIR are local to ModelGeneratorBJ and used
for holding the current recursion level, and the reasons for the positive and
negative recursive branch, respectively.

11

bool ModelGeneratorBJ (Interpretation& I, Reason& IR,
int& bj level) {

bj level ++;
int curr level = bj level;

I = DetConsBJ (I, IR);
if (I == L) return false;
if (“no atom is undefined in I”)

if IsAnswerSetBJ(I, IR); return true;
else

bj level = MAX (IR);
return false;

Reason posIR, negIR;

Select an undefined atom A using a heuristic;

R(A)= { curr level };
if (ModelGeneratorBJ(I ∪ {A}, posIR, bj level)

return true;
if (bj level < curr level)

IR = posIR; return false;

bj level = curr level;
R(not A) = { curr level };
if (ModelGeneratorBJ (I ∪ {not A}, negIR, bj level)

return true;

if (bj level < curr level)
IR = negIR; return false;

IR = trim(curr level, Union (posIR, negIR));
bj level = MAX (IR);
return false;

};

Fig. 3. Computation of Answer Sets with backjumping.

Instead of DetCons, here DetConsBJ is used, which additionally computes
the reasons of the inferred literals and if it encounters an inconsistency it will
return the reason of this inconsistency in its second parameter IR. Instead
of IsAnswerSet, ModelGeneratorBJ uses IsAnswerSetBJ, which additionally
computes the inconsistency reason in case of a failure of the stability check,
returning it in its second parameter.

Whenever there is the possibility to backjump, we set bj level to the maximal
level of the inconsistency reason (or 0 if it is the empty set) before returning

12

from this instance of ModelGeneratorBJ, the idea being that the maximum
level in IR corresponds to the nearest (chronologically) choice causing the
failure.

The information provided by reasons can be further exploited in a backjumping-
based solver. In particular, in the following paragraph we describe how reasons
for inconsistencies can be exploited for defining look-back heuristics.

3.2 Heuristics

In this paragraph we will first describe the two main heuristics for DLV (based
on look-ahead), and subsequently define several new heuristics based on rea-
sons (or based on look-back), which are computed as side-effects of the back-
jumping technique. We assume that a ground ASP program P and an inter-
pretation I have been fixed. We first recall the “standard” DLV heuristic hUT

[12], which has recently been refined to yield the heuristic hDS [13], which
is more “specialized” for hard disjunctive programs (like 2QBF). These are
look-ahead heuristics, that is, the heuristic value of a literal Q depends on the
result of taking Q true and computing its consequences. Given a literal Q,
ext(Q) will denote the interpretation resulting from the application of Det-
Cons on I ∪ {Q}; w.l.o.g., we assume that ext(Q) is consistent, otherwise Q
is automatically set to false and the heuristic is not evaluated on Q at all.

Standard Heuristic of DLV (hUT). This heuristic, which is still the default in the
DLV distribution, has been proposed in [12], where it was shown to be very
effective on many relevant problems. It exploits a peculiar property of ASP,
namely supportedness: for each true atom A of an answer set I, there exists a
rule r of the program such that the body of r is true w.r.t. I and A is the only
true atom in the head of r. Since an ASP system must eventually converge to a
supported interpretation, hUT is geared towards choosing those literals which
minimize the number of UnsupportedTrue (UT) atoms, i.e., atoms which are
true in the current interpretation but still miss a supporting rule. The heuristic
hUT is “balanced”, that is, the heuristic values of an atom Q depend on both
the effect of taking Q and not Q, the decision between Q and not Q is based
on the UT atoms criteria.

Enhanced Heuristic of DLV (hDS). The heuristic hDS [14] is based on hUT , and
is different from hUT only for pairs of literals which are not ordered by hUT .
The idea of the additional criterion is that interpretations having a “higher
degree of supportedness” are preferred, where the degree of supportedness is
the average number of supporting rules for the true atoms. Intuitively, if all
true atoms have many supporting rules in a model M , then the elimination of

13

a true atom from the interpretation would violate many rules, and it becomes
less likely finding a subset of M which is a model of PM (which would disprove
that M is an answer set). Interpretations with a higher degree of supportedness
are therefore more likely to be answer sets. Just like hUT , hDS is “balanced”.

The Family of Look-back Heuristics (hLB). We next describe a family of new
look-back heuristics hLB, motivated by heuristics implemented in SAT solvers
like Chaff [9]. Different to hUT and hDS, which provide a partial order on po-
tential choices, hLB assigns a number V (L) to each literal L (thereby inducing
an implicit order). The basic idea is that this number is periodically updated
using information about the inconsistencies that the assumption of the respec-
tive literal caused. The effect of basing this value on previous chosen literals
is twofold: first, it causes literals to be chosen that have also previously been
chosen in a different subtree of the search, thereby avoiding blindly choosing
literals of which nothing is known yet. Second, it favors the choice of literals
which are more likely to lead to inconsistent sub-branches, which in general
has the effect of more likely generating a smaller search tree 4 . Whenever a
literal is to be selected, the literal with the largest V (L) will be chosen. If
several literals have the same V (L), then negative literals are preferred over
positive ones, but among negative and positive literals having the same V (L),
the ordering will be random.

In more detail, for each literal L, two values are stored: V (L), the current
heuristic value, and I(L), the number of inconsistencies L has been a reason
for since the most recent heuristic value update. After having chosen k literals,
V (L) is updated for each L as follows: V (L) := V (L)/2 + I(L). The division
is often referred to as “aging” and has the effect of giving more importance
to recent data. The division itself is assumed to be defined on integers by
rounding the result. It is important to note that I(L) 6= 0 can hold only for
literals that have been chosen earlier (in a temporal sense, thus in a previously
explored branch of the search tree) during the computation. This criterion is
fairly simple and obviously very efficient to compute once the reason calculus
is used. Especially compared to the previously described look-ahead based
criteria, which involve a fairly heavy computation for almost every literal,
computing this criterion takes negligible time, especially if backjumping is
employed, in which the reasons have to be calculated and maintained anyway.

A crucial point left basically unspecified by the definition so far are the initial
values of V (L). Given that, initially, no information about inconsistencies is
available, all V (L) will initially be 0, and so a random choice would be taken.
It is not immediately clear how to define this initialization in the best way.
Yet, initializing these values seems to be crucial, as making poor choices in

4 Note that the search tree is not stored in its entirety in DLV, but only one partial
branch at a time.

14

the beginning of the computation can be fatal for efficiency, especially since
the heuristics favor choosing literals that have already been chosen earlier.

Here, we present two possibilities for initialization: the first, denoted by hMF
LB ,

is done by initializing V (L) to the number of occurrences of L in the program
rules. The motivation for hMF

LB is that it is fast to compute and stays with
the “no look-ahead” and “most constrained first” ideas of hLB. The second
initialization, denoted by hLF

LB, involves ordering the atoms with respect to
hDS, and initializing V (L) by the rank in this ordering. The motivation for
hLF

LB is to try to use as much initialization as possible initially, as the first
choices can be critical for the size of the subsequent computation tree, as hLB

implicitly prefers choosing atoms that have already been taken.

We also introduce yet another option for hLB, motivated by the fact that
answer sets for disjunctive programs must be minimal with respect to atoms
interpreted as true, and the fact that the checks for minimality are costly: if
false literals are chosen preferably, then the computed answer set candidates
may have a better chance to be already minimal. The heuristics hLB already
prefers false literals having the same V (L) as positive ones, but we can go
one step further and completely ignore the polarity of the best literals with
respect to V (L), choosing always the negative literal containing the atom of
the best literal, even if it is positive and the corresponding negative literal
has a lower value. This really means to consider, for each atom A, the value
max(V (A), V (not A)), and then choose the negative literal containing the
best atom according to that value. If we employ this option in the heuristics,
we denote it by adding AF to the superscript, arriving at hMF,AF

LB and hLF,AF
LB

respectively.

4 Experiments

We have implemented the above-mentioned look-back techniques and heuris-
tics in DLV; in this section, we report on their experimental evaluation.

4.1 Compared Methods

For our experiments, we have compared several versions of DLV [15], which
differ on the employed heuristics and the use of backjumping. For having a
broader picture, we have also compared our implementations to the competing
systems GnT and CModels3, and with the QBF solvers ssolve and sKizzo. The
considered systems are:

15

• dlv.ut, the standard DLV system employing hUT (based on look-ahead).
• dlv.ds, DLV with hDS, the look-ahead based heuristic specialized for ΣP

2 /ΠP
2

hard disjunctive programs.
• dlv.ds.bj, DLV with hDS and backjumping.
• dlv.mf.bj, DLV with hMF

LB and backjumping.
• dlv.mf.af.bj: DLV with hMF,AF

LB and backjumping.
• dlv.lf.bj, DLV with hLF

LB and backjumping.
• dlv.lf.af.bj, DLV with hLF,AF

LB and backjumping.
• gnt [4]: the solver GnT, based on the Smodels system, can deal with disjunc-
tive ASP. One instance of Smodels generates candidate models, while another
instance tests if a candidate model is stable.
• cm3 [5]: CModels3, a solver based on the definition of completion for dis-
junctive programs and the extension of loop formulas to the disjunctive case.
CModels3 uses two SAT solvers in an interleaved way, the first for finding
answer set candidates using the completion of the input program and loop
formulas obtained during the computation, the second for verifying if the can-
didate model is indeed an answer set. In the experiments, we used zChaff (ver.
2004) as underlying SAT solver: it is the default and fastest SAT solver among
the ones available in CModels3.
• ssolve [16]: is a search based native QBF solver that won the QBF Evalu-
ation in 2004 on random (or probabilistic) benchmarks (performing very well
also on non-random, or fixed, benchmarks), and performed globally (i.e., both
on fixed and probabilistic benchmarks) well in the last two editions.
• sKizzo [17]: is a reasoning engine for QBF featuring several techniques,
including search, resolution and skolemization, that won the last QBF Evalu-
ation 2007 (which was run only on fixed benchmarks).
• quantor [18]: is a QBF solver based on Q-resolution (to eliminate existen-
tial variables) and Shannon expansion (to eliminate universal variables), plus
a number of features, such as equivalence reasoning, subsumption checking,
pure literal detection, unit propagation, and also a scheduler for the elimina-
tion step.

For hLB heuristics we fixed k=100. We have conducted further experiments
with different values for k which indicate that 100 is a local optimum. Since
the basic picture does not seem to change significantly with different values for
k, we do not report on these experiments here. Note that we have not taken
into account other solvers like Smodelscc [19] or Clasp [20] because our focus
is on disjunctive ASP.

Furthermore, we want to point out that the QBF solvers which we have evalu-
ated, besides being among the best in recent QBF Evaluations, also represent
the three main lines of research for implementing QBF solvers: (i) search-based
extension of the DLL algorithm for SAT (ssolve), (ii) quantifier elimination
and Q-resolution (quantor), and (iii) hybrid method (sKizzo). Note also that

16

the performance comparison to QBF solvers is not to be seen as a competi-
tion, as these systems are fairly different in nature: on the one hand, QBF
solvers can deal with arbitrary QBFs, not just 2QBFs, thus also PSPACE-
hard problems. On the other hand, ASP can make use of variables, and in this
way allows for uniformly expressing all problems on the second level of the
polynomial hierarchy. The goal of our analysis is therefore to check whether
the runtimes of DLV are acceptable in comparison.

4.2 Benchmark Programs and Data

The proposed heuristic aims at improving the performance of DLV on disjunc-
tive ASP programs. Therefore we focus on hard programs in this class, which
is known to be able to express each query of the complexity class ΣP

2 /ΠP
2 , and

can therefore be considered to be the canonical problem for these complexity
classes. All of the instances that we have considered in our benchmark anal-
ysis have been derived from instances for 2QBF, the canonical problem for
the second level of the polynomial hierarchy. This choice is motivated by the
fact that many real-world, structured (i.e., fixed) instances in this complexity
class are available for 2QBF on QBFLIB [21,22], and moreover, studies on the
location of hard instances for randomly generated 2QBFs have been reported
in [23–25].

The problem 2QBF consists of deciding whether a quantified Boolean formula
(QBF) Φ = ∀X∃Y φ, where X and Y are disjoint sets of propositional variables
and φ = D1 ∧ . . . ∧Dk is a CNF formula over X ∪ Y , is valid.

The transformation from 2QBF to disjunctive logic programming is a slightly
altered form of a reduction used in [26]. The propositional disjunctive logic
program Pφ produced by the transformation requires 2∗(|X|+ |Y |)+1 propo-
sitional predicates (with one dedicated predicate w), and consists of the fol-
lowing rules:

v ∨ v̄. for each variable v ∈ X ∪ Y

y ← w. ȳ ← w. for each variable y ∈ Y

w ← vm+1, . . . , vn, v̄1, . . . , v̄m. for each disjunction ¬vm+1 ∨ · · · ∨ ¬vn∨

∨ v1 ∨ · · · ∨ vm in φ

← not w.

The 2QBF formula Φ is valid iff PΦ has no answer set [26].

Example 6 The 2QBF Φ = ∀x∃y[(¬x ∨ y) ∧ (¬y ∨ x)] is transformed into

17

PΦ = {x ∨ x̄.; y ∨ ȳ.; y ← w.; ȳ ← w.; w ← x, ȳ.; w ← y, x̄.; ← not w.}.

PΦ does not have an answer set, thus the 2QBF φ is valid. To check this
manually, observe that Φ is equivalent to ∀x∃y : x ↔ y, and indeed for each
valuation for x we can find a valuation for y (namely the same as for x) such
that the equivalence holds.

We have selected both random and structured 2QBF instances. The random
2QBF instances have been generated following recent phase transition results
for QBFs [23–25]. In particular, the generation method described in [25] has
been employed and the generation parameters have been chosen according to
the experimental results reported in the same paper. First, we have generated
10 different sets of instances, each of which is labelled with an indication of
the employed generation parameters. In particular, the label “A-E-C-ρ” indi-
cates the class of instances in which each clause has A universally-quantified
variables and E existentially-quantified variables randomly chosen from a set
containing C variables, such that the ratio between universal and existential
variables is ρ. For example, the instances in the class “3-3-70-0.8” are 6CNF
formulas (each clause having exactly 3 universally-quantified variables and 3
existentially-quantified variables) whose variables are randomly chosen from a
set of 70 containing 31 universal and 39 existential variables, respectively. In
order to compare the performance of the systems in the vicinity of the phase
transition, each set of generated formulas has an increasing ratio of clauses
over existential variables (from 1 to maxr). Following the results presented
in [25], maxr has been set to 21 for each of the classes 3-3-70-*, and 12 for
each of 2-3-80-*. We have generated 10 instances for each ratio, thus obtaining,
in total, 210 and 120 instances, respectively. Then, because these instances do
not provide information about the scalability of the systems w.r.t. the total
number of variables, we generated yet more sets. We took the “2-3-80-1.0”
and “3-3-70-1.2” classes, fixed the ratio of clauses over existential variables to
the “harder” value for the DLV versions and vary the number of variables C
(from 5 to maxC, step 5), where maxC is 80 and 70, respectively. We have
generated 10 instances for each point, thus obtaining, in total, 160 and 140
instances per set, respectively.

Concerning the structured instances, we have analyzed:

• Narizzano-Robot - These are real-word instances encoding the robot nav-
igation problems presented in [27], as used in the QBF Evaluation 2004 and
2005.
• Ayari-MutexP - These 2QBFs encode instances to problems related to

the formal equivalence checking of partial implementations of circuits, as
presented in [28].
• Letz-Tree - These instances consist of simple variable-independent subpro-

grams generated according to the pattern: ∀x1x3...xn−1∃x2x4...xn(c1 ∧ . . .∧

18

dlv.ut dlv.ds dlv.ds.bj dlv.mf.bj dlv.mf.af.bj dlv.lf.bj dlv.lf.af.bj gnt cm3 ssolve sKizzo quantor

2-3-80-0.4 119 120 120 120 120 120 120 3 57 120 38 41

2-3-80-0.6 91 102 99 103 83 101 96 4 62 120 25 32

2-3-80-0.8 88 99 99 99 79 97 92 5 73 120 21 29

2-3-80-1.0 81 95 96 106 80 95 95 10 81 120 21 26

2-3-80-1.2 84 99 101 109 85 101 102 6 93 120 22 27

3-3-70-0.6 159 174 168 172 157 164 166 4 76 210 49 66

3-3-70-0.8 128 138 135 150 123 132 140 2 82 210 37 53

3-3-70-1.0 114 128 127 149 112 128 125 7 96 205 34 50

3-3-70-1.2 123 131 133 156 115 129 140 9 117 209 34 47

3-3-70-1.4 124 139 142 161 117 142 141 9 131 210 34 43

#Total 1111 1225 1220 1325 1071 1209 1217 59 868 1644 315 414

Table 1
Number of solved instances within timeout for Random 2QBF.

cn−2) where ci = xi∨xi+2∨xi+3, ci+1 = ¬xi∨¬xi+2∨¬xi+3, i = 1, 3, . . . , n−3.

The benchmark instances belonging to Letz-tree, Narizzano-Robot, Ayari-
MutexP have been obtained from QBFLIB [21], including the 32 (resp. 40)
Narizzano-Robot instances used in the QBF Evaluation 2004 (resp. 2005), and
all the ∀∃ instances from Letz-tree and Ayari-MutexP.

4.3 Results

All the experiments were performed on a 3GHz PentiumIV equipped with
1GB of RAM, 2MB of level 2 cache running Debian GNU/Linux. Time mea-
surements have been done using the time command shipped with the system,
counting total CPU time for the respective process.

We start with the results of the experiments with random 2QBF formulas.
For every instance, we have allowed a maximum running time of 20 minutes.
In Table 1 we report, for each system, the number of instances solved in
each set within the time limit, highlighting the best value for each group
of systems. Looking at the table, it is clear that the new look-back heuristic
combined with the “mf” initialization (corresponding to the system dlv.mf.bj)
performed very well on these domains, being the version which was able to
solve most instances in most settings among the ASP systems, particularly
on the 3-3-70-* sets. Also dlv.lf.bj, in particular when combined with the
“af” option, performed quite well, while the other variants do no seem to be
very effective. Considering the look-ahead versions of DLV, dlv.ds performed
reasonably well. Considering GnT and CModels3, we note that they solve
quite few instances, while it is clear that ssolve is very efficient, being able to

19

solving almost all instances. In contrast, sKizzo and quantor did not perform
well here, which is in line with the results of the QBF Evaluations which
showed that ssolve is very efficient on probabilistic (i.e., fixed) benchmarks,
while sKizzo and quantor are not efficient on this domain.

Figures 4 and 5 show the results for the “2-3-80-1.0”, Figures 6 and 7 for
the “3-3-70-1.2” set, regarding scalability. For the sake of readability, only
the instances with a high number of variables are presented: GnT, Cmodels3,
ssolve, sKizzo, quantor and all the DLV versions solve all instances not re-
ported. Figures 4 and 6 contain the cumulative number of solved instances
for all DLV versions while Figures 5 and 7 contain the respective data for
GnT, CModels3, ssolve, sKizzo, quantor and the best version of DLV. Over-
all, on these particular sets, we can see that all the “look-back” versions of
DLV scaled much better than GnT and CModels3, with dlv.mf.bj being able
to solve some of the bigger instances not solved by other DLV versions, GnT
and Cmodels3. ssolve managed to solve all instances (but one in Fig. 6), and in
shorter time (not reported), while sKizzo and quantor showed comparatively
poor performances.

In Tables 2, 3 and 4, we report the results, in terms of execution time for finding
one answer set, and/or number of instances solved within 20 minutes, about
the groups: Narizzano-Robot, Ayari-MutexP and Letz-Tree, respectively. The
last columns (AS?) indicate whether the instance has an answer set (Y), or

 100

 105

 110

 115

 120

 125

 130

 135

 140

80757065605550

#s
ol

ve
d

in
st

an
ce

s

#variables

2-3-80-1.0 - hard region

dlv.ut
dlv.ds

dl.ds.bj
dlv.mf.bj

dlv.mf.af.bj
dlv.lf.bj

dlv.lf.af.bj

Fig. 4. Number of solved instances by all DLV versions.

20

not (N): only in Table 2 it indicates how many instances have answer sets. A
“–” in these tables indicates a timeout or a memory out.

In Table 2 we report only the instances from the QBF Evaluation 2004 and
2005, respectively, which were solved within the time limit by at least one of
the compared methods. In Table 2, dlv.mf.bj was, among the ASP and QBF
solvers, the system which solved the highest number of instances among the
67 reported (24 for QBF Evaluation 2004 and 40 for QBF Evaluation 2005)
instances, followed by ssolve (60), CModels3 and sKizzo (58), and dlv.lf.bj
(50). Moreover, dlv.mf.bj solved a superset of the instances solved by ssolve,
while the timeouts of dlv.mf.bj showed up on different instances w.r.t. the
timeouts of sKizzo. Further, dlv.mf.bj was always the fastest ASP system on
each instance (sometimes drastically, even if for the sake of presentation we do

 40

 60

 80

 100

 120

 140

 160

807570656055504540353025

#s
ol

ve
d

in
st

an
ce

s

#variables

2-3-80-1.0 - hard region

dlv.mf.bj
gnt

cm3
ssolve
sKizzo

quantor

Fig. 5. Number of solved instances by dlv.mf.bj, GnT, CModels3, ssolve, sKizzo and
quantor.

dlv.ut dlv.ds dlv.ds.bj dlv.mf.bj dlv.mf.af.bj dlv.lf.bj dlv.lf.af.bj gnt cm3 ssolve sKizzo quantor AS?

QBFEval.2004 10 10 11 24 15 18 13 5 18 20 22 10 5

QBFEval.2005 0 0 10 40 34 32 22 0 40 40 36 0 0

#Total 10 10 21 64 49 50 35 5 58 60 58 10 5

Table 2
Number of solved instances on Narizzano-Robot instances as selected in the QBF
Evaluation 2004 and 2005.

21

 90

 95

 100

 105

 110

706560555045

#s
ol

ve
d

in
st

an
ce

s

#variables

3-3-70-1.2 - hard region

dlv.ut
dlv.ds

dl.ds.bj
dlv.mf.bj

dlv.mf.af.bj
dlv.lf.bj

dlv.lf.af.bj

Fig. 6. Number of solved instances by all DLV versions.

not report CPU time) if we consider the instances on which it took more than
1 second, and often faster than ssolve and sKizzo, especially on the QBF Eval-
uation 2004 instances. All of the QBF Evaluation 2005 instances were solved
by dlv.mf.bj, Cmodels3 and ssolve, with mean execution times of 228.07s,
189.74s and 76.91s, respectively. The “traditional” DLV versions could solve
10 instances, while dlv.ds.bj solved 21 instances, and took less execution time.
This indicates the advantages of using a backjumping technique on these robot
instances.

In Table 3, we then report the results for Ayari-MutexP. In that domain all the
versions of DLV and the QBF solvers ssolve and quantor were able to solve
all 7 instances, outperforming both CModels3 and GnT which solved only one
instance. Comparing the execution times required by all the variants of DLV

we note that, also in this case, dlv.mf.bj is the best-performing version, while
QBF solvers scaled up much better, but for quantor that quickly run out of
memory.

About the Letz-Tree domain reported in Table 4, the DLV versions equipped
with look-back heuristics solved a higher number of instances and required less
CPU time (up to two orders of magnitude less) than all ASP competitors. In
particular, the look-ahead based versions of DLV, GnT and CModels3 could
solve only 3 instances, while dlv.mf.bj and dlv.lf.bj solved 4 and 5 instances,
respectively. Interestingly, here the “lf” variant is very effective, in particular

22

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

7065605550454035302520

#s
ol

ve
d

in
st

an
ce

s

#variables

3-3-70-1.2 - hard region

dlv.mf.bj
gnt

cm3
ssolve
sKizzo

quantor

Fig. 7. Number of solved instances by dlv.mf.bj, GnT, CModels3, ssolve, sKizzo and
quantor.

dlv.ut dlv.ds dlv.ds.bj dlv.mf.bj dlv.mf.af.bj dlv.lf.bj dlv.lf.af.bj gnt cm3 ssolve sKizzo quantor AS?

mutex-2-s 0.01 0.01 0.01 0.01 0.01 0.01 0.01 1.89 0.65 0.03 0.01 0.01 N

mutex-4-s 0.05 0.05 0.05 0.06 0.05 0.06 0.05 – – 0.04 0.01 0.01 N

mutex-8-s 0.21 0.2 0.23 0.21 0.21 0.23 0.21 – – 0.07 0.01 0.7 N

mutex-16-s 0.89 0.89 0.98 0.89 0.89 1.01 0.9 – – 0.13 0.01 – N

mutex-32-s 3.67 3.72 4.06 3.63 3.64 4.16 3.79 – – 0.3 0.03 – N

mutex-64-s 15.38 16.08 17.64 14.97 15.04 18.08 16.97 – – 0.81 0.07 – N

mutex-128-s 69.07 79.39 90.92 62.97 62.97 92.92 93.05 – – 2.83 0.13 – N

#Solved 7 7 7 7 7 7 7 1 1 7 7 3

Table 3
Execution time (seconds) and number of solved instances on Ayari-MutexP in-
stances.

when combined with the “af” option, like in the random instances for testing
scalability. It could solve the same number of instances as ssolve, sKizzo and
quantor, which, however, scale better.

23

4.4 Strategic companies

We also run native disjunctive ASP benchmarks for the Strategic Companies
problem, as defined in [29]. The goal here is to understand how the new look-
back based DLV versions perform on these instances. We have also transformed
the ASP intput into QBFs for having a complete picture also in this case. A
similar analysis in [13], however, showed that QBF solvers generally do not
perform very well on this kind of input.

Here, we generated tests as in [15] with 20 instances each size for m companies
(5 ≤ m ≤ 100), 3m products, 10 uniform randomly chosen contr by relations
per company (up to four controlling companies), and uniform randomly cho-
sen prod by relations (up to four producers per product), for a total of 400
instances. The problem is deciding whether two fixed companies (1 and 2,
without loss of generality) are strategic.

For the QBF solvers we have produced the following formula:

∃c1, . . . , cn : ∀c′1, . . . , c
′
n : ((I ∧NE)→ (R ∧R′) ∧ c1 ∧ c2)

where I stands for

(c′1 → c1) ∧ . . . ∧ (c′n → cn)

NE for

¬((c′1 ↔ c1) ∧ . . . ∧ (c′n ↔ cn))

R for

m∧

i=1

((
∧

cj∈Oi

cj)→ ci) ∧
n∧

i=1

(
∨

gi∈Cj

cj)

dlv.ut dlv.ds dlv.ds.bj dlv.mf.bj dlv.mf.af.bj dlv.lf.bj dlv.lf.af.bj gnt cm3 ssolve sKizzo quantor AS?

exa10-10 0.18 0.17 0.17 0.04 0.1 0.06 0.06 0.12 0.03 0.01 0.01 0.01 N

exa10-15 7.49 7.09 7.31 0.34 0.71 0.48 0.38 6.46 0.73 0.01 0.01 0.01 N

exa10-20 278.01 264.53 275.1 12.31 17.24 5.43 2.86 325.26 67.56 0.02 0.01 0.01 N

exa10-25 – – – 303.67 432.32 44.13 19.15 – – 0.02 0.02 0.01 N

exa10-30 – – – – – 166.93 129.54 – – 0.05 0.02 0.02 N

#Solved 3 3 3 4 4 5 5 3 3 5 5 5

Table 4
Execution time (seconds) and number of solved instances on Letz-Tree instances.

24

dlv.ut dlv.ds dlv.ds.bj dlv.mf.bj dlv.mf.af.bj dlv.lf.bj dlv.lf.af.bj gnt cm3 ssolve sKizzo quantor

#Solved 400 400 400 400 400 400 396 400 400 195 91 119

Table 5
Number of solved instances on Strategic Companies.

and Oi contains the controlling companies of ci, while Cj contains the compa-
nies producing good j. R′ is defined analogous to R on the primed variables.

Unfortunately this formula is not in CNF, as required by the qDimacs format.
In order to avoid a substantial blowup of the formula by a trivial normaliza-
tion, we have used the tool qst of the traquasto suite [30], which transforms
a formula into qDimacs by introducing additional “label variables” to avoid
exponential formula growth. However, these additional variables are existen-
tially quantified at the inner level and thus would turn the formula above into
a 3QBF. To avoid this, we consider the negated formula

∀c1, . . . , cn : ∃c′1, . . . , c
′
n : ¬((I ∧NE)→ (R ∧ R′) ∧ c1 ∧ c2)

which stays on the second level after the transformation.

In Table 5 we report the total number of solved instances. We can see that all
DLV versions (but dlv.lf.af.bj), GnT and Cmodels3 are able to solve all the
generated instances, while ssolve, sKizzo and quantor can just solve a very
limited portion, i.e., the smallest instances in the set.

Summarizing, in all of the test cases presented, both random and structured,
DLV equipped with look-back heuristics obtained good results both in terms
of number of solved instances and execution time compared to traditional
DLV, GnT and CModels3. Variant dlv.mf.bj, the “classic” look-back heuristic,
performed best in most cases, but good performance was obtained also by
dlv.lf.bj. The results of dlv.lf.af.bj on the some random and Letz-Tree instances
show that this option can be fruitfully exploited in some particular domains.
The QBF solvers ssolve and sKizzo in general performed very well, but on
some domains (notably Narizzano-Robot for both solvers, and also random
benchmarks for sKizzo) they were outperformed by dlv.mf.bj, both in terms
of number of instances solved and CPU execution time. On the other hand,
quantor performed well on some domains, but in others, i.e., Narizzano-Robot
and Ayari-Mutex, it could solve very few instances, often because it run out
of memory. Moreover, ASP systems did much better than QBF solvers in
the Strategic Companies benchmarks. Overall we can observe that look-back
based ASP systems, in particular dlv.mf.bj, are competitive with QBF solvers.
It should be also noted that the vast majority of the structured instances
presented do not have answer sets, while the bigger advantages of dlv.mf.bj
over ssolve on the Narizzano-Robot instances are obtained on the instances

25

with answer sets.

5 Related Work

In this section we provide an overview about related work, especially with
respect to backjumping and look-back heuristics, and outline the main differ-
ences to our approach.

Look-back techniques, including backjumping notions, first studied for con-
straint solving [7,8,31], have been applied successfully for SAT [32–34,9] and
QBF solving [35–38]. More recently, they have been ported to ASP, resulting
in the non-disjunctive systems Smodelscc [19,39] and Clasp [20], and ultimately
also disjunctive ones, like CModels3 [5] and DLV [6]. In this paper, we have
extended the latter work, which provided a backjumping-enabled DLV, by a
variety of look-back heuristics, resulting in the system DLV

LB.

We will discuss the differences of our work with respect to related computa-
tional engines by considering the following groups of systems:

(1) CSP and SAT solvers
(2) non-disjunctive ASP systems
(3) disjunctive ASP systems
(4) QBF solvers

About group (1), in which the use of look-back techniques originated, we
observe that the formalism for determining reasons for inconsistencies is quite
different from the one presented in [6], and thus to the one in DLV

LB.

First of all, we note that DLV
LB makes use of reasons for concepts that do not

have any counterpart in formalisms and systems of group (1), like the notion
of unfounded sets, and stability check failures. Moreover, unlike CSP and SAT
solvers, DLV

LB does not use an implication graph, which has a similar role
as the reason table of DLV

LB. In practice, in both CSP and SAT solvers, the
implication relationships of variable assignments made during the computation
is stored in a directed graph (the implication graph), which contains a node for
each variable assignment. Two nodes, say a and b, are connected by an arc from
a to b whenever b is implied by a during a propagation step. A crucial difference
between the implication graph and the reason table is that the first one stores
also the dependencies between “implied” assignments, while in the latter only
branching literals are taken into account. Moreover, reasons of conflicts are
computed in a different way in DLV

LB and systems in group (1). In particular,
most SAT solvers build that reason from a clause which corresponds to a
“vertex cut” [9] in the implication graph. This cut partitions the implication

26

graph in two sets of nodes, the first containing all the branching variables
(called reason side), and the latter containing the conflicting variable conflict
side. In general, there are many possible “cuts”, and the reason computed in
DLV

LB basically coincides with the particular one which contains only the
branching assignments in the reason side. However, many SAT solvers employ
the so-called 1UIP (First Unique Implication Point) cut [9], which, in general,
is very different from the one corresponding to DLV

LB inconsistency reasons. 5

As a consequence of all these differences, both reasons and heuristic values are
quite different in DLV

LB with respect to the standard methods in SAT and
CSP solvers. One can argue that the heuristics in those systems are somewhat
more “informed”, since also implied atoms can occur in the reason of a conflict.
This additional information is obtained by (i) maintaining the implication
graph, which can be done efficiently 6 , but in a more involved way than the
reason table of DLV

LB, and (ii) exploiting a process (determining the 1UIP
cut) quite more intricate than the one implemented in DLV

LB. Indeed, reasons
are computed by performing the union of two sets of integers in DLV

LB,
compared to a more entangled transversal of the implication graph.

It is worth noting that, for systems in group (1), look-back techniques are
virtually always combined with other two techniques that DLV

LB does not
employ. The first one, called clause-learning, heavily relies on the implication
graph, and allows for pruning the search space by adding new clauses repre-
senting conflicts. The second one, which is always used in combination with
clause learning, requires to periodically restart the search from the beginning
by retaining the newly added clauses.

As the experiments clearly demonstrate, DLV equipped with backjumping
and look-back heuristics behaves very well, even without learning and restart.
However, we plan to add learning and restart capabilities to DLV in order to
further enhance its performance. Doing so requires rather fundamental changes
inside DLV, which currently heavily relies on the assumption that the ground
program does not change during the computation.

Concerning the systems in group (2), such as Smodelscc [19] or Clasp [20],
almost all arguments as for those in group (1) apply, apart from the fact that
the concept of unfounded sets indeed exists and is considered in the reason
calculus of those systems.

The only system (apart from DLV and DLV
LB) in group (3) that uses look-

back techniques is CModels3[40,5]. However, this system relies on a SAT solver

5 The 1UIP cut is preferred since it plays a central role in the clause learning
technique, which is usually combined with backjumping in SAT solvers.
6 Note that the implication graph can be implemented by associating each implied
variable with a pointer to the clause from which it has been derived.

27

internally, and the look-back techniques are confined to the SAT subsystem,
so the respective comments for SAT apply. Nevertheless, CModels3 tries to
bias the SAT heuristics by adding clauses in the event of model check failures,
which is loosely related to recording the reasons in case of a model check
failure in DLV

LB.

Finally, about group (4), given the nature of the problem, two types of back-
jumping are applicable: conflict- and solution-directed backjumping, following
the terminology of [37] (cumulatively called dependency-directed backtracking
in [38]). The first type allows search to skip over existentially quantified literals
while backtracking, while the second allows the same behavior on universally
quantified literals. Both types of conflicts can be used in order to update the
heuristic values. The conflict-directed backjumping is a direct extension of the
method used in SAT, and thus most of the discussions for group (1) apply
also in this case.

6 Conclusions

We have described a general framework for employing look-back techniques in
disjunctive ASP, based on the reason calculus described in [6], which allows
for the design of a variety of look-back based heuristics. In this work, we have
defined a basic heuristics hLB, which together with two different initialization
strategies yields the heuristics hMF

LB and hLF
LB. In addition, we have also defined

a criterion in which the negative literal is always chosen first, regardless of
the polarity of the best literal according to the heuristics, arriving at vari-
ants hMF,AF

LB and hLF,AF
LB . We have implemented all proposed techniques in the

DLV system, and carried out a broad experimental analysis on hard instances
encoding 2QBFs, comprising both randomly generated instances , generated
according to the method proposed in [25], and structured instances from the
QBFLIB archive.

It turned out that the proposed heuristics outperform the traditional (dis-
junctive) ASP systems DLV, GnT and CModels3 in most cases, and a rather
simple approach (“dlv.mf.bj”) works particularly well, being performance-wise
competitive with respect to “native” QBF solvers. A possible topic for future
research is to further expand the range of look-back techniques in DLV by
employing learning (the ability to record reasons in order to further avoid
inconsistencies already encountered).

28

Acknowledgements

This work has been supported by M.I.U.R. within projects “Potenziamento e
Applicazioni della Programmazione Logica Disgiuntiva” and “Sistemi basati
sulla logica per la rappresentazione di conoscenza: estensioni e tecniche di
ottimizzazione.” We would like to thank the anonymous reviewers for their
useful suggestions.

References

[1] M. Gelfond, V. Lifschitz, The Stable Model Semantics for Logic Programming,
in: Logic Programming: Proceedings Fifth Intl Conference and Symposium,
MIT Press, Cambridge, Mass., 1988, pp. 1070–1080.

[2] M. Gelfond, V. Lifschitz, Classical Negation in Logic Programs and Disjunctive
Databases, New Generation Computing 9 (1991) 365–385.

[3] V. Lifschitz, Answer Set Planning, in: D. D. Schreye (Ed.), Proceedings of
the 16th International Conference on Logic Programming (ICLP’99), The MIT
Press, Las Cruces, New Mexico, USA, 1999, pp. 23–37.

[4] T. Janhunen, I. Niemelä, Gnt - a solver for disjunctive logic programs, in:
V. Lifschitz, I. Niemelä (Eds.), Proceedings of the 7th International Conference
on Logic Programming and Non-Monotonic Reasoning (LPNMR-7), Vol. 2923
of LNAI, Springer, 2004, pp. 331–335.

[5] Y. Lierler, Disjunctive Answer Set Programming via Satisfiability, in:
C. Baral, G. Greco, N. Leone, G. Terracina (Eds.), Logic Programming
and Nonmonotonic Reasoning — 8th International Conference, LPNMR’05,
Diamante, Italy, September 2005, Proceedings, Vol. 3662 of Lecture Notes in
Computer Science, Springer Verlag, 2005, pp. 447–451.

[6] F. Ricca, W. Faber, N. Leone, A Backjumping Technique for Disjunctive
Logic Programming, AI Communications – The European Journal on Artificial
Intelligence 19 (2) (2006) 155–172.

[7] J. Gaschnig, Performance measurement and analysis of certain search
algorithms, Ph.D. thesis, Carnegie Mellon University, Pittsburgh, PA, USA,
Technical Report CMU-CS-79-124 (1979).

[8] P. Prosser, Hybrid Algorithms for the Constraint Satisfaction Problem.,
Computational Intelligence 9 (1993) 268–299.

[9] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff:
Engineering an Efficient SAT Solver, in: Proceedings of the 38th Design
Automation Conference, DAC 2001, ACM, Las Vegas, NV, USA, 2001, pp.
530–535.

29

[10] W. Faber, N. Leone, C. Mateis, G. Pfeifer, Using Database Optimization
Techniques for Nonmonotonic Reasoning, in: INAP Organizing Committee
(Ed.), Proceedings of the 7th International Workshop on Deductive Databases
and Logic Programming (DDLP’99), Prolog Association of Japan, 1999, pp.
135–139.

[11] W. Faber, Enhancing Efficiency and Expressiveness in Answer Set Programming
Systems, Ph.D. thesis, Institut für Informationssysteme, Technische Universität
Wien (2002).

[12] W. Faber, N. Leone, G. Pfeifer, Experimenting with Heuristics for Answer
Set Programming, in: Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI) 2001, Morgan Kaufmann
Publishers, Seattle, WA, USA, 2001, pp. 635–640.

[13] W. Faber, F. Ricca, Solving Hard ASP Programs Efficiently, in: C. Baral,
G. Greco, N. Leone, G. Terracina (Eds.), Logic Programming and
Nonmonotonic Reasoning — 8th International Conference, LPNMR’05,
Diamante, Italy, September 2005, Proceedings, Vol. 3662 of Lecture Notes in
Computer Science, Springer Verlag, 2005, pp. 240–252.

[14] W. Faber, N. Leone, F. Ricca, Solving Hard Problems for the Second Level of
the Polynomial Hierarchy: Heuristics and Benchmarks, Intelligenza Artificiale
2 (3) (2005) 21–28.

[15] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, F. Scarcello, The
DLV System for Knowledge Representation and Reasoning, ACM Transactions
on Computational Logic 7 (3) (2006) 499–562.

[16] R. Feldmann, B. Monien, S. Schamberger, A Distributed Algorithm to Evaluate
Quantified Boolean Formulae, in: Proceedings National Conference on AI
(AAAI‘00), AAAI Press, Austin, Texas, 2000, pp. 285–290.

[17] M. Benedetti, skizzo: A suite to evaluate and certify qbfs., in: R. Nieuwenhuis
(Ed.), Automated Deduction - CADE-20, 20th International Conference
on Automated Deduction, Tallinn, Estonia, Vol. 3632 of Lecture Notes in
Computer Science, Springer, 2005, pp. 369–376.

[18] A. Biere, Resolve and Expand., in: Revised Selected Papers of the 7th
International Conference on Theory and Applications of Satisfiability Testing
(SAT’04), Vol. 3542 of Lecture Notes in AI (LNAI), 2005, pp. 59–70.

[19] J. Ward, J. S. Schlipf, Answer Set Programming with Clause Learning, in:
V. Lifschitz, I. Niemelä (Eds.), Proceedings of the 7th International Conference
on Logic Programming and Non-Monotonic Reasoning (LPNMR-7), Vol. 2923
of LNAI, Springer, 2004, pp. 302–313.

[20] M. Gebser, B. Kaufmann, A. Neumann, T. Schaub, Conflict-driven answer set
solving, in: Twentieth International Joint Conference on Artificial Intelligence
(IJCAI-07), Morgan Kaufmann Publishers, 2007, pp. 386–392.

30

[21] M. Narizzano, A. Tacchella, QBF Solvers Evaluation page, http://www.

qbflib.org/qbfeval/index.html/ (2002).

[22] M. Narizzano, L. Pulina, A. Tacchella, The QBFEVAL Web Portal, in:
Proceedings of the 10th European Conference on Logics in Artificial Intelligence
(JELIA’06), Vol. 4160 of Lecture Notes in AI (LNAI), Springer, 2006, pp. 494–
497.

[23] M. Cadoli, A. Giovanardi, M. Schaerf, Experimental Analysis of the
Computational Cost of Evaluating Quantified Boolean Formulae., in:
Proceedings of the 5th Congress: Advances in Artificial Intelligence of the Italian
Association for Artificial Intelligence, AI*IA 97, Lecture Notes in Computer
Science, Springer Verlag, Rome, Italy, 1997, pp. 207–218.

[24] I. Gent, T. Walsh, The QSAT Phase Transition, in: Proceedings of the 16th
AAAI, 1999.

[25] H. Chen, Y. Interian, A model for generating random quantified boolean
formulas., in: Nineteenth International Joint Conference on Artificial
Intelligence (IJCAI-05), Professional Book Center, 2005, pp. 66–71.

[26] T. Eiter, G. Gottlob, On the Computational Cost of Disjunctive Logic
Programming: Propositional Case, Annals of Mathematics and Artificial
Intelligence 15 (3/4) (1995) 289–323.

[27] C. Castellini, E. Giunchiglia, A. Tacchella, SAT-based planning in complex
domains: Concurrency, constraints and nondeterminism., Artificial Intelligence
147 (1/2) (2003) 85–117.

[28] A. Ayari, D. A. Basin, Bounded Model Construction for Monadic Second-Order
Logics., in: Prooceedings of Computer Aided Verification, 12th International
Conference, CAV 2000, Chicago, IL, USA, 2000.

[29] M. Cadoli, T. Eiter, G. Gottlob, Default Logic as a Query Language, IEEE
Transactions on Knowledge and Data Engineering 9 (3) (1997) 448–463.

[30] M. Zolda, Comparing Different Prenexing Strategies for Quantified Boolean
Formulas, Master’s thesis, Institut für Informationssysteme, Technische
Universität Wien (2005).

[31] R. Dechter, D. Frost, Backjump-based backtracking for constraint satisfaction
problems., Artificial Intelligence 136 (2) (2002) 147–188.

[32] R. Bayardo, R. Schrag, Using CSP Look-back Techniques to Solve Real-world
SAT Instances, in: Proceedings of the 15th National Conference on Artificial
Intelligence (AAAI-97), 1997, pp. 203–208.

[33] J. P. M. Silva, K. A. Sakallah, GRASP: A Search Algorithm for Propositional
Satisfiability, IEEE Transaction on Computers 48 (5) (1999) 506–521.

[34] E. Goldberg, Y. Novikov, BerkMin: A Fast and Robust Sat-Solver, in: Design,
Automation and Test in Europe Conference and Exposition (DATE 2002), IEEE
Computer Society, Paris, France, 2002, pp. 142–149.

31

[35] L. Zhang, S. Malik, Conflict Driven Learning in a Quantified Boolean
Satisfiability Solver, in: Proceedings of the International Conference on
Computer-Aided Design (ICCAD 2002), 2002, pp. 442–449.

[36] L. Zhang, S. Malik, Towards a Symmetric Treatment of Satisfaction and
Conflicts in Quantified Boolean Formula Evaluation., in: Proceedings of
Principles and Practice of Constraint Programming - CP 2002, 8th International
Conference, CP 2002, Lecture Notes in Computer Science, Springer Verlag,
Ithaca, NY, USA, 2002, pp. 200–215.

[37] E. Giunchiglia, M. Narizzano, A. Tacchella, Backjumping for Quantified
Boolean Logic Satisfiability, Artificial Intelligence 145 (2003) 99–120.

[38] R. Letz, Lemma and Model Caching in Decision Procedures for Quantified
Boolean Formulas, in: Proceedings of Automated Reasoning with Analytic
Tableaux and Related Methods, International Conference, TABLEAUX 2002,
Lecture Notes in Computer Science, Springer Verlag, Copenhagen, Denmark,
2002, pp. 160–175.

[39] J. Ward, Answer Set Programming with Clause Learning, Ph.D. thesis, Ohio
State University, Cincinnati, Ohio, USA (2004).

[40] E. Giunchiglia, Y. Lierler, M. Maratea, Answer Set Programming Based on
Propositional Satisfiability, Journal of Automated Reasoning 36 (4) (2006) 345–
377.

32

