
Data-Smoothness based Preprocessing Strategy for Wavelet 

Data Processing in Wireless Sensor Networks 
 

Yalin Nie
1
, Haijun Wang

2
, and Yujie Qin

1
 

1 
Dept. of Computer and Information Engineering, Luoyang Institute of Sci. and Tech., Luoyang 471023, China 

2 
School of Mathematics and Statistics, Henan University of Sci. and Tech., Luoyang 471023, China 

Email: nieyalin111@163.com; hkdwhj@163.com; qyjswjtu@vip.sohu.com 

 

 
Abstract—Wavelet based data compression in wireless sensor 

networks can reduce in-network data transmissions and gain 

better data approximation. To improve the performance of 

algorithms based on wavelet data compression, data-smoothness 

based preprocessing strategy for wavelet data processing is 

proposed. The strategy can adjust the order of data to be 

processed for better smoothness through sample mean and 

control the frequency of data order adjustment by a threshold, 

achieving better data reconstruction precision with acceptable 

network control overhead, and higher data compression degree 

under a given requirement of data reconstruction precision. 

Theoretical analysis and experiments prove the effectiveness of 

the strategy. 
 
Index Terms—Wavelet, data smoothness, sensor network, data 

compression, data preprocessing 

 

I. INTRODUCTION 

In order to monitor environment sufficiently, a large 

number of sensor nodes are deployed, often resulting in 

amounts of redundant in-network raw data. A lot of 

redundant data transmission will greatly reduce the 

monitoring performance of wireless sensor networks. 

Therefore, it is necessary to process raw data to reduce 

the redundancy among data before transmitting them, 

decreasing the amount of data transmissions and 

prolonging network lifetime [1].  

Compared with the Fourier analysis, wavelet can 

characterize a signal in time-domain and frequency-

domain simultaneously and has multi-resolution analysis 

features. When a signal is processed by wavelet transform 

at different scales, its statistical features can still be 

maintained. Currently, Discrete Wavelet Transform 

(DWT) has been applied widely in many fields such as 

digital image processing, encoding theory, wireless 

sensor networks, etc. The amount of redundant 

information in raw sensory data is often large. DWT can 

mine spatial and temporal correlation among raw data to 

decrease the redundant information. Through DWT, raw 

sensory data can be transformed into a series of wavelet 

coefficients (approximation coefficients and detail 

coefficients) which can be efficiently compressed by a 
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suitable encoding algorithm. Abandoning parts of detail 

coefficients, approximation data can be reconstructed by 

performing inverse DWT on the rest of coefficients 

satisfying the given error bound[4, 5], which can be used 

to compress raw data further. 

Cluster is a common architecture for wireless sensor 

networks to process in-network data [2, 3]. Generally, 

cluster members send sensory data to cluster heads and 

cluster heads are responsible for intra-cluster data 

processing to decrease in-network data transmissions. 

With DWT, cluster heads process the intra-cluster data 

which can be regarded as a discrete signal and report 

approximation coefficients and parts of detail coefficients 

to the sink. The sink reconstructs approximation data on 

the basis of the received coefficients through inverse 

DWT. The wavelet features [6] show that the smoother 

the discrete data to be processed is, the more concentrated 

the energy distribution of the transformed data is, which 

is conductive for compressing coefficients. Therefore, if 

the intra-cluster data to be processed by wavelet has good 

smoothness, the effect of wavelet compression will be 

fine.  

Current researches on wavelet based data processing in 

wireless sensor networks are on the basis of some 

assumptions about data correlation or mine data 

correlation dynamically [6-14]. All of them do not pay 

attention to the smoothness of data to be processed. In 

order to improve the data compression performance of 

algorithms based on wavelet in wireless sensor networks, 

we propose a novel Data-Smoothness based 

Preprocessing Strategy (DSPS), which is simple but 

effective. It can gain smoother data to be processed and 

improve the performance of data compression and data 

reconstruction based on wavelet obviously. The strategy 

can be combined with any wavelet based data processing 

algorithm in wireless sensor networks, promoting the 

performance of original algorithms effectively. 

Theoretical analysis and experiments demonstrate that the 

strategy is effective. 

The rest of the paper is organized as follows: Section II 

introduces some related works. Section III describes the 

Data-Smoothness based Preprocessing Strategy (DSPS). 

Section IV analyzes our strategy and does some 

experiments to prove its effectiveness. Section V presents 

our conclusions and future work finally. 
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II.  RELATED WORK 

Wavelet has been used widely in various applications 

of WSNs. In the help of wavelet error tree, Zhang JM et 

al. proposed a data compression scheme based on 1D 

Haar wavelet with infinite norm error bound [5]. Further, 

they designed the MWCEB algorithm for multivariate 

monitoring sensors based on a base signal selection 

algorithm which is used to select signals, a linear 

regression scheme and the former proposed 1D Haar 

wavelet compression scheme. RACE [7] is a time series 

compression algorithm based on wavelet with rate 

adaptivity and error bound. It builds a gradient error tree, 

selects wavelet coefficients by error-based zeroing and 

adjusts its maximum normalized error to current network 

capacity. Acimovic J et al. proposed several distributed 

Haar-based data compression algorithms [8]. Under the 

algorithms, network is divided into groups and the data 

processing based on wavelet for each group is carried out 

in a distributed manner, with more energy-efficient 

communication. An energy-efficient data representation 

and routing scheme based on a distributed wavelet 

compression algorithm is proposed by Ciancio et al. [9]. 

It uses the lifting factorization of wavelet transform, 

exploits the natural data flow and aggregates data by 

computing partial wavelet coefficients which are refined 

as the data flows towards the central node. The algorithm 

also computes an optimal combination of data 

representation algorithm on a selected routing strategy at 

each node for each route, further reducing the overall cost. 

Zhou et al. designed a ring topology and proposed a 

wavelet based spatio-temporal data compression 

algorithm [10] which can support a broad scope of 

wavelets. Later, they designed another overlapping 

cluster topology. Combined it with the former ring 

topology, they proposed 2D and 3D wavelet-based data 

compression transmission algorithms [11] which are 

efficient in memory requirement and data compression. R. 

Wanger et al. [12] designed a new wavelet basis. The 

wavelet basis can form a tight frame and adapt to the 

structure of the network. Then they performs an irregular 

wavelet transform under the wavelet basis which can 

adapt to an arbitrary, multiscale network routing 

hierarchy. Because of the limited computing and memory 

resources in multimedia sensor networks, Rein S. et al. 

first conducted a fractional wavelet filter [13] and then 

proposed a fractional wavelet transform algorithm based 

on fixed-point arithmetic [14]. The algorithm can reduce 

the consumption on memory and computation greatly and 

degrade image quality only a little. Hu et al. designed a 

wavelet basis generating algorithm which is running at 

the sink. Based on the basis, sensor measurements are 

compressed and reconstructed by their wavelet transform-

based distributed compressed sensing algorithm [15], 

with high performance on energy and reconstruction 

accuracy. For low power wavelet-based coder in visual 

sensor networks, Hadjou et al. compare the implement-

tations of the classical convolutional based wavelets and 

the relatively new lifting based wavelets, for choosing 

appropriate wavelets gaining tradeoff of energy and 

construction quality in image processing [16]. For 

multimedia sensor networks where nodes are deployed 

regularly in a 2D grid, Dutta et al. used red black wavelet 

lifting accompanied by difference detection technique for 

capturing spatial and temporal correlation respectively, 

and they proposed an energy-saving audio data 

compression technique and an energy-efficient routing 

scheme, which has good performance [17]. Hasan et al. 

studied the convolution based and the lifting based DWT 

implementation with the embedded hierarchical image 

compression structures using set partitioning in 

hierarchical trees (SPHIT) [18]. They found that the 

lifting based cdf 9/7 filter with five levels of 

decomposition produces excellent results in SPHIT image 

compression especially in low bit rates, with minimal 

performance degradation in memory reduction. For 

detecting data anomalies in WSNs, Takianngam et al. 

proposed an integrated data compression and anomaly 

detection algorithm [19]. In the help of only half of 

sensor measurements, the algorithm uses DWT to 

compress data first and then employs one-class support 

vector machine to detect anomaly, with good detection 

performance. 

III. DATA-SMOOTHNESS BASED PREPROCESSING 

STRATEGY FOR WAVELET DATA PROCESSING 

The general process of DSPS is as follows: Each 

cluster member calculates a sample mean and a sample 

standard deviation based on K sensory data as its 

approximate environment data characteristics. The 

change of the sample mean is used to measure the change 

of the environment approximately. A cluster member will 

update and report its sample mean to its cluster head if it 

discovers that the sample mean changes drastically. Each 

cluster head builds and holds a node order index (NOI) 

about its cluster members based on their sample means, 

generates an intra-cluster data vector by sorting intra-

cluster data according to the NOI, takes wavelet 

transform on the data vector and finally sends the 

approximation coefficients and some detail coefficients to 

the sink. The sink reconstructs sensory data by taking 

inverse wavelet transform on its received coefficients for 

each cluster with the help of the corresponding NOI. 

The key of our strategy is that the sequence of data to 

be processed is adjusted according to the NOI to improve 

the data smoothness and the update opportunity of the 

sensory data sample mean and the NOI is determined 

heuristically to decrease extra energy cost while better 

data smoothness is maintained. 

A. Relevant Symbols and Indicators 

vi: The i-th node; 

CHi: The i-th cluster head; 

CMi: The i-th cluster member; 

si(j): The j-th sensory data of vi; 
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i : The sample mean of sensory data on vi; 

i : The sample standard deviation of sensory data on 

vi; 

Pi/Qi: The Node Order Index (NOI) of CHi； 

K: The number of sample data for calculating the 

sample mean and sample standard deviation; 

Threshold_P: The threshold which measures the 

maximum position change, within [0,1]。 

[cA, cD]=DWT(s): DWT is a function that carries out a 

wavelet transform on data s, returning approximation 

coefficients and detail coefficients stored in cA and cD 

respectively. 

Data_C=F(cA, cD): F is a function that carries out 

zeroing and encoding on approximation and detail 

coefficients stored in cA and cD respectively, returning 

compressed coefficients which is stored in Data_C. 

CR(Compression Rate): Suppose s=(s1, s2,…, sn) is raw 

data. Transform it by wavelet and set some detail 

coefficients 0. The number of non-zero coefficients is 

n_C. Assuming that a raw data si needs Data1 bytes to be 

represented after encoding and a coefficient needs Data2 

bytes. Then the CR is 

2

1

_n C Data
CR

n Data





 

MSE(Mean Squared Error): Suppose original data s=(s1, 

s2,…, sn). Transform it based on wavelet and set some 

detail coefficients 0. Gain reconstructed data r=(r1, r2,…, 

rn) by taking inverse wavelet transform on the non-zero 

wavelet coefficients. Then, the MSE of r against s is  

2

1

1
( )

n

i i
i

MSE s r
n 

   

sE : The energy of data s=(s1, s2,…, sn) is 2

1

n

s i
i

E s


  

AEC (Average Energy Consumption): Suppose that a 

network has n nodes and the energy has been consumed 

by vi is ei. AEC is defined as follows: 

1

n

i
i

AEC e n


  

B. Strategy for Cluster Member 

The data processing strategy for cluster members is 

shown in Table I. Each cluster member, say iv , has two 

parameters: a sample mean i  and a sample standard 

deviation i . i  is initialized by the first sample data, 

and i  is initialized by the initial standard 

deviation initial  which is dependent on experience. 

Afterwards, once iv  collects K data, it calculates the new 

sample mean new

i . Based on new

i , iv  calculates its 

sample Mean Varying degree (MV) according to formula 
(1), for measuring the changes of the environment 
approximately. 

| |new

i i

i

MV
 




                                (1) 

TABLE I: DATA PROCESSING OF CLUSTER MEMBER  

1. iv  collects its data (1)is ; 

2. (1)i is  ; 

3. i initial  ;                          % initial  is obtained from experience 

4. iv  sends (1)is  to its cluster head; 

5. _ 2N S  ;                           % _N S  is the number of sensed 

data 

6. While True 

7.     iv  collects and sends its data ( _ )is N S  to its cluster heads; 

8.     If mod( _ , ) 0N S K    

9.         
_

_ 1

1
( )

N S
new
i i

j N S K

s j
K


  

  ; 

10.        
| |new

i i

i

MV
 




 ; 

11         If 1MV   

12.            new
i i  ; 

13.            
_

2 1 2

_ 1

1
( ( ( ) ) )

N S

i i i
j N S K

s j
K

 
  

  ;  

14.            iv  sends i  to its cluster head; 

15.     _ _ 1N S N S  ; 

 

If the sample mean changes much, i.e. 1MV  , iv  

thinks its sensory data distribution has changed 

significantly and its i  and i  should be updated. After 

updating the i  and i , iv  informs its cluster head the 

new data feature. If 1MV  , iv  thinks there is only few 

changes occurring in its monitoring environment and the 

distribution of its sensory data remains unchanged. It is 

not necessary for iv  to calculate a new data feature. All 

of those are shown in Table I Lines 8-14. The value of the 

parameter K can be different for each node and it can also 

be adjusted according to the actual monitoring 

environment. When the distribution of the environment 

data changes frequently, K should be decreased properly, 

making the intra-cluster data to be processed have good 

smoothness for better wavelet data processing but 

increasing extra communication cost. When the 

environment changes slowly, the cluster member should 

increase its K to reduce energy consumption on the 

updates of sample mean and NOI. 

C. Strategy for Cluster Head 

Suppose a cluster, say the i-th cluster and its head iCH , 

has m members Mem={CMj | j=1, 2, …, m}. In order to 

generate data to be processed with good smoothness, 

iCH  preserves two parameters: a mean list 

1 2{ , , , , }m iCM CHCM CM

i i i i i      and an NOI 

{ ( ) { }| 1, , 1}i i iP P j Members CH j m     . The 

data processing strategy for cluster heads is detailed in 

Table II. Each cluster member sends one sensed data at a 

time. After getting the first batch of data ( (1)iS ) sent by 
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cluster members, the cluster head sorts them in 

descending order, initializes i  and records the 

corresponding node order index in iP (shown in Table II 

Lines 1-2). Once receiving an update information about 

sample mean of a cluster member, CHi updates i  and 

descends it, getting a new node order index stored in iQ . 

In order to determine that whether the order of nodes, 

which is used to adjust the order of intra-cluster data to be 

processed to gain good smoothness, needs to be updated, 

CHi compares iP  with iQ  and calculates the degree of 

node Order Varying (OV) according to formula (2). 

1 2

1 2

1 2
1 , 1

( ) ( )

max {| |}

1

i i

j j m
P j Q j

i

j j

OV
m

  







                    (2) 

TABLE II: DATA PROCESSING OF CLUSTER HEAD 

% CHi is a cluster head and its cluster members are Mem= {CMj | 

j=1, 2, …, m}. 

1. Collect data from its cluster members, gaining 

1 2(1) { (1), (1), , (1), (1)}m iCM CHCM CM

i i i i iS s s s s , and initialize 

1 2{ , , , , }m iCM CHCM CM

i i i i i     with (1)iS ; 

2. Sort (1)iS  in descending order and gain the sorted data _ (1)iS s  

and the NOI iP : 

(1) (2) ( 1)
_ (1) { (1), (1), , (1)}i i iP P P m

i i i iS s s s s


 ,  

( 1) ( )

{ ( ) | ( ) { }, ,

1 1, }i i

i i i i
P j P j

i i

P P j P j Mem CH j Z

j m  

   

   
; 

3. [ (1), (1)] ( _ (1))i i icA cD DWT S s ;  

4. _ ( (1), (1))i i iData C F cA cD ; 

5. Send _ iData C  to the Sink; 

6. _ 2N S  ; 

7. While True 

8.    Collect data from its cluster members: 

1 2( _ ) { ( _ ), ( _ ), , ( _ ), ( _ )}m iCM CHCM CM

i i i i iS N S s N S s N S s N S s N S

 

9.    If receive jCM
  from jCM ( 1, 2, ,j m ) OR iCH  is 

updated 

10.       Update 1 2{ , , , , }m iCM CHCM CM

i i i i i      

11.       Sort i  in descending order and gain the NOI iQ  

( 1) ( )

{ ( ) | ( ) { }, ,

1 1, }i i

i i i i
Q j Q j

i i

Q Q j Q j Mem CH j Z

j m  

   

   
; 

12.       
1 2

1 2

1 2
1 , 1

( ) ( )

max {| |}

1

i i

j j m
P j Q j

i

j j

OV
m

  







; 

13.       If _iOV Threshold P  

14.           i iP Q ; 

15.           Send iP  to the Sink; 

16.    Sort ( _ )iS N S  according to iP  and gain the sorted data: 

(1) (2) ( 1)
_ ( _ ) { ( _ ), ( _ ), , ( _ )}i i iP P P m

i i i iS s N S s N S s N S s N S


  

17.    [ ( _ ), ( _ )] ( _ ( _ ))i i icA N S cD N S DWT S s N S ;  

18.    _ ( ( _ ), ( _ ))i i iData C F cA N S cD N S ; 

19.    Send _ iData C  to the Sink; 

20.    _ _ 1N S N S  ; 

If _iOV Threshold P , it is demonstrates that a new 

node order is necessary to smooth intra-cluster data to be 

processed better under the new approximated data 

features of intra-cluster nodes. Therefore, iCH  updates 

iP  and informs the sink the new data processing order. 

Otherwise, iCH  does not think that a new node order can 

improve the smoothness of the intra-cluster data to be 

processed or much. Under the new node order, the 

performance of data compression can’t be improved or 

can only be promoted a little, but increasing the energy 

cost on the update of NOI a lot. The process is shown in 

Table II Lines 9-15. After an intra-cluster data collection, 

iCH  sorts the data to be processed according to its NOI 

iP  and performs data compression based on some 

wavelets, as shown in Table II Lines 16-19. 

Sort intra-cluster data to be processed, say o, according 

to iP , a discrete signal, say s, is obtained. Compared with 

o, the change between any two adjacent discrete data of s 

is often more gradual. According to wavelet theory, the 

smoother the signal to be processed is, the more 

concentrated the energy distribution of the transformed 

signal is. Therefore, the wavelet compression performed 

on s is beneficial for improving the precision of 

reconstructed data at the sink and increasing the degree of 

data compression to decrease the in-network data 

transmission. 

IV. THEORETICAL ANALYSIS AND EXPERIMENTS 

The purpose of DSPS is to be applied in improving the 

performance (reconstruction precision and compression 

rate) of the algorithms based on wavelet data 

compression in WSNs, so we compare our strategy only 

with the algorithm which processes intra-cluster data 

directly by some wavelets without data smoothness 

preprocessing, say common wavelet based algorithm 

(CWA), in both theoretical analysis and experiments. 

A. Theoretical Analysis 

Suppose that s=(s1, s2,…, sn) is raw data. Take wavelet 

transform on s and get the approximation and detail 

coefficients cA=(cA1, cA2,…, cAk) and cD=(cD1, cD2,…, 

cDl). The corresponding low and high frequency energy 

are 2

1

k

cA i
i

E cA


  and 2

1

l

cD i
i

E cD


  respectively. Wavelet 

theory shows that there exists complementary 

relationship between cAE  and cDE . For compressing 

signal, some unimportant coefficients are set 0 and the 

signal is reconstructed based on the approximation 

coefficients and parts of detail coefficients. In order to 

reduce the discrete signal reconstruction error, the lost 

signal energy caused by zeroing parts of detail 

coefficients must be decreased, that is the lost high 

frequency energy must be decreased. Furthermore, 

wavelet has good time-frequency characteristics. 

Reconstructing data mainly based on the low frequency 

energy which are around the high frequency energy (i.e. 

large detail coefficients) would cause large reconstruction 
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error inevitably. So here we analyze the strategies in the 

light of energy. 

Though the wavelet used for our strategy can be any 

wavelet, we only analyze DSPS and CWA which are 

based on Haar wavelet for simplicity. Due to the 

theoretical complexity of other wavelets, we do not 

analyze the corresponding strategies but compare them 

through experiments. 

For the sake of simplifying the problem analysis 

process, we only take the extreme case that 

Threshold_P=0 and K=1 for DPSP to explain. 

Correspondingly, the main process of DPSP (adjusting 

the order of intra-cluster data to be processed according 

to Threshold_P and the sample mean of cluster members) 

is simplified as descending intra-cluster data to be 

processed. 

(1) Under the same data compression rate, when 1K  , 

the energy of reconstructed data gained by DSPS is better 

than CWA. 

Suppose a cluster has 2n  nodes. The cluster head 

collects its members’ sensory data and forms a data 

vector 0 1 2 1
( , , , )ns s s s


 . Sort s in descending order 

and gain 0 1 2 1
_ ( _ , _ , , _ )ns s s s s s s s


 . Suppose the 

cluster head adopts 1-level Haar wavelet, the detail 

coefficients obtained by CWA and DSPS are 

10 1 2 1
( , , , )ncD cD cD cD  

  

10 1 2 1
_ ( _ , _ , , _ )ncD s cD s cD s cD s  

  

respectively, where: 

2 +1 2

2

i i
i

s s
cD


 ,  2 +1 2_ _

_
2

i i
i

s s s s
cD s


  

For 2 2 1 2 2 1| _ _ | | |i i i is s s s s s    , | _ | | |i icD s cD . 

Under the same data compression rate, the number of 

detail coefficients which are not set 0 by CWA is the 

same with DSPS, say m. So, there are 1' 2nm m   

detail coefficients being set 0 correspondingly.  

Denote the subscript sets of the best 'm  detail 

coefficients to be set 0 by CWA and DSPS as zero and 

zeroS respectively, we have 

 1

2

| [0, 2 1], 1, , '

arg min
n

i i i

j
j JJ z z Z z i m

zero cD
      

  ， 

 1

2

| [0, 2 1], 1, , '

arg min _
n

i i i

j
j JJ z z Z z i m

zeroS cD s
      

  . 

For 

 1

2 2

| [0, 2 1], 1, , '

2 2

2 2

_ min _

 _ ,

_ , ,

n
i i i

j j
J z z Z z i mj zeroS j J

j j
j zero j zero

zeroS j zero j
j zeroS j zero

cD s cD s

cD s cD

E cD s E cD

      

 

 



 

 

 

 

 

 

there is zeroS zeroE E . Because  

2 1 2 1
2 2

0 0

_ ,

and ,

n n

total i i
i i

DSPS total zeroS CWA total zero

E s s s

E E E E E E

 

 

 

   

 
 

we have DSPS CWAE E . 

Therefore, when the cluster head performs 1-level 

Haar wavelet compression, DSPS CWAE E . 

For multi-level Haar wavelet compression, similar to 

the above discussion, we can have DSPS CWAE E . 

In conclusion, under the same data compression rate, 

the energy of reconstructed data gained by DSPS is better 

than CWA. 

(2) Under the same requirement on reconstructed data 

energy, when 1K  , the data compression performance 

of DSPS is better than CWA. 

Suppose that the energy difference between the 

original data and the reconstructed data should not be 

larger than Threshold_E. Then, the lost high frequency 

energy caused by zeroing some detail coefficients should 

not be larger than Threshold_E. For the same raw data, 

suppose 0 1( , , , )hcD cD cD cD  and 

0 1_ ( _ , _ , , _ )hcD s cD s cD s cD s  are the detail 

coefficients gained by CWA and DSPS under the same 

multi-level wavelet transform respectively. When 1K  , 

it is easy to know that | _ | | |, 0i icD s cD i h   . Denote 

the maximum numbers of detail coefficients which can be 

set 0 by CWA and DSPS as m and mS respectively, while 

the corresponding subscript sets of those detail 

coefficients gained by CWA and DSPS are denoted as M 

and MS. 

2

{0,1, , }

arg max{ | _ }j
P h j P

M P cD Threshold E
 

  , 

2

{0,1, , }

arg max{ | _ _ }j
P h j P

MS P cD s Threshold E
 

  , 

m M  , mS MS . 

For 
2

_j
j M

cD Threshold E


 and {0,1, , }j h  , 

| _ |j jcD s cD , then 
2| _ | _j

j M

cD s Threshold E


 . So, 

we have m mS . 

From the above, DSPS can lead to more detail 

coefficients able to be set 0 compared with CWA under 

the same requirement on reconstructed data energy. So 

the data compression performance of DSPS is better than 

CWA. 

(3) Suppose the environment does not change 

drastically. Given a data compression rate, the energy 

consumption of DSPS is larger than that of CWA, but not 

much. With a fixed requirement of reconstruction 

precision, DSPS can save more energy compared with 

CWA. 

Here free space energy consumption model [10] is 

used to calculate the energy consumed by node. The 

energy spent on a node transmitting an l-bit message over 
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a distance d is 2( , )Tx elec fsE l d lE l d   and the energy 

spent on a node receiving an l-bit message is 

( )Rx elecE l lE , where 50nJ/bitelecE  , 2100pJ/bit/mfs  . 

Suppose n is the average number of clusters in network, 

k is the average number of nodes in a cluster, 1d  is the 

average distance from a cluster head to the sink, 2d  is the 

average distance between a cluster member and its cluster 

head, 1Data  is the data volume of an encoded raw data, 

2Data  is the data volume of an encoded node ID, and 

DSPSCR  and CWACR  are the average data compression 

rates gained by DSPS and CWA respectively. For DSPS, 

intra-cluster data should be sorted according to the NOI 

before being processed, and each cluster head should 

update its NOI dynamically in line with the environment. 

Here we suppose each cluster head needs to update its 

NOI every T data transmissions. 

For CWA, the energy spent on T data transmissions is  

1 1

1 1 2

( ( , )

(( 1) ) ( 1) ( , ))

T

CWA Tx CWA

Rx Tx

E n T E k Data CR d

E k Data k E Data d

    

     
 

For DSPS, the energy spent on T data transmissions is 

1 1

1 1 2

2 1 1

1 2

( ( ( , )

(( 1) ) ( 1) ( , ))

( , ) (( 1) )

( 1) ( , ))

T

DSPS Tx DSPS

Rx Tx

Tx Rx

Tx

E n T E k Data CR d

E k Data k E Data d

E k Data d E k Data

k E Data d

    

     

    

  

. 

The difference between T

CWAE  and T

DSPSE  is  

1

2 1 1 2

1

( ( )

, ) ( 1) ( , )

(( 1) )

T T

CWA DSPS Tx CWA DSPS

Tx

Rx

E E n k E T Data CR CR

Data d n k E Data d

n E k Data

      

    

   

. 

1) Same data compression rate 

For DSPS CWACR CR , 

2 1

1 2

1

1 2

2 2

2 1 1 2

( , )

( 1) ( , )

(( 1) )

( (2( 1) )

( ( 1) ))

T T

CWA DSPS Tx

Tx

Rx

elec

fs

E E n k E Data d

n k E Data d

n E k Data

n E k Data kData

k Data d k Data d

    

   

   

      

       

. 

From the above expression, the energy consumption of 

DSPS is larger than CWA under the same compression 

rate, but not much. That is because DSPS has two kinds 

of extra energy cost caused by sample mean update at 

cluster members and NOI update at cluster heads. And 

compared with energy spent on transmitting data, the two 

kinds of extra energy cost are small. When the 

environment does not change drastically, the update of 

NOIs and sample means is not frequent. So, the total 

energy consumption of DSPS is larger than CWA, but not 

much. 

2) Same reconstruction precision requirement 

From (2), it is known that DSPS CWACR CR . 

If we want that 0T T

CWA DSPSE E  , then 

1 2 1

1 2 1

( ( ) , )

( 1) ( , ) (( 1) )

Tx CWA DSPS

Tx Rx

k E T Data CR CR Data d

k E Data d E k Data

    

     
  

must be required to hold. i.e. T must be required to satisfy 

the following inequality: 

2

22

2

1 1

( 1)(2 )1
( )

( )

elec fs

CWA DSOS elec fs

k E dData
T

CR CR Data k E d





 
 

 
. 

When 2 2

1 2 500d d  , then 

2

2

2

1

2
1

elec fs

elec fs

E d

E d





 


 
. 

Generally, 2 2

1 2 500d d   holds for almost all wireless 

sensor networks. So, when 

2 1

1

1

CWA DSPS

Data Data
T

CR CR Data


 


, 

then 0T T

CWA DSPSE E   holds certainly. 

For example, if 2 1 0.5Data Data  , 0.7CWACR   and 

0.5DSPSCR  , then DSPS can save more energy as long 

as 7.5T  . When the environment changes slowly, T is 

large under general cases, and so DSPS is more energy-

efficient compared with CWA. 

TABLE III: PRIMARY PARAMETERS 

Parameters Value 

Network Size 120m×60m 

Number of Nodes 512 

Communication Radius of 

Node 
Adjustable, ≤80m 

Single Raw Data Size 64bits 

Single Coefficient Data Size 64bits 

Node ID Size 16bits 

Message Head Size 160bits 

Number of Clusters 8 

Number of Cluster Members 64 

Wavelet Type 
{db1，db2，coif1，bior2.2, 

bior4.4} 

Level of Wave Transform 5 

Number of Data Collection 2000 

Sample Data Distribution U(a-b, a+b), [20, 80], [5,15]a b   

Compression Rate (CR) 0.2-0.9 

Mean Square Error (MSE) 20-100 

Threshold_P 0.5 

K 10 

B. Experiments 

Within a 120m×60m area, 512 nodes are deployed to 

form a network. The network is divided into 8 clusters, 

and each cluster has 64 cluster members. Intra-cluster 

data processing based on wavelets is performed by cluster 

heads. In experiments, we compare the performance of 
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DSPS with CWA under different wavelets: 1) the average 

CR under the same MSE, 2) the average MSE under the 

same CR and 3) the AEC. The primary experimental 

parameters are shown in Table III. 

1) Performance of data compression 

To evaluate the performance of data compression of 

DSPS and CWA with different wavelets, MSE is 

designated as the requirement of reconstruction error. We 

increase it from 20 to 100 and calculate average data 

compression rate, with results shown in Fig. 1. Among 

the four wavelets db1, db2, coif1, bior2.2 and bior4.4, 

db1 wavelet performs best regardless of DSPS or CWA. 

And it is obvious that the data compression rate gained by 

DSPS is lower than CWA under different wavelets, i.e. 

DSPS is better for data compression. From Fig. 1, we find 

that the best data compression is gained by db1, and the 

compression performance is degraded by db2, coif1, 

bior2.2 and bior4.4 in sequence on the whole. 
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Fig. 1. Comparison of data compression rate 
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Fig. 2. Comparison of data reconstruction precision 

2) Performance of data reconstruction 

In order to compare the data reconstruction 

performance of DSPS with CWA, we do experiments 

with fixed data compression rates which range from 0.2 

to 0.9 and collect corresponding average MSE on the 

whole network for the strategies with different wavelets, 

shown in Fig. 2. When the compression rate is 0.2, the 

MSE gained by DSPS is much less than the MSE gained 

by CWA. As compression rate increases, the gap of MSE 

between DSPS and CWA decreases, but the MSE of 

DSPS is smaller than that of CWA under a same wavelet 

type. Compared with CWA, the data reconstruction 

performance of DSPS is better. The difference of average 

MSE gained by DSPS with wavelets db1, db2, coif1, 

bior2.2 and bior4.4 is not large compared with CWA. 

And either DSPS or CWA, db1 leads to the best data 

reconstruction and bior4.4 the worst. 
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(a) CR varies 

20 40 60 80 100
0.36

0.38

0.4

0.42

0.44

0.46

0.48

MSE

A
E

C
(J

)

 

 

db1-DSPS

db1-CWA

db2-DSPS

db2-CWA

coif1-DSPS

coif1-CWA

bior2.2-DSPS

bior2.2-CWA

bior4.4-DSPS

bior4.4-CWA

 
(b) MSE varies 

Fig. 3. Comparison of average energy consumption per node 

3) Energy consumption 

Under the same data compression rate, DSPS and 

CWA have the same energy consumption on coefficient 

data transmission. But DSPS has two extra energy costs 

compared with CWA: 1) energy cost on sample mean 

update and 2) energy cost on NOI update. In this case, 

DPSP consumes more energy than CWA. As 

compression rate varies, the AECs of the two strategies 

with different wavelets are shown in Fig. 3(a). From Fig. 

3(a), we find that the energy consumption increase for 

DSPS against CWA is not large, but DSPS can gain more 

precise data at the sink which is shown in Fig. 2.  

Under a fixed requirement for MSE of reconstruction 

data, DSPS can gain smaller data compression rate 
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compared with CWA, i.e. the data compression 

performance of DSPS is better than that of CWA, which 

is shown in Fig. 1. So, although DSPS has to spend two 

extra energy costs, its total energy consumption should be 

usually smaller than CWA. This energy consumption is 

proved by our experiments whose results are shown in 

Fig. 3 (b): the AEC of DSPS is lower than that of CWA. 

From Fig. 3, we find that db1 brings the best energy 

performance and bior4.4 the worst roughly. 

V. CONCLUSIONS 

The node deployment of wireless sensor networks is 

often dense, causing the raw data sensed by nodes in 

network have greater relevance. Data compression based 

on wavelet can remove redundant information among the 

raw in-network data, which contributes it to a feasible 

data processing scheme for wireless sensor networks. For 

the sake of improving the performance of data 

compression algorithms based on wavelets, we propose a 

Data-Smoothness based Preprocessing Strategy (DSPS) 

for wavelet data processing in wireless sensor networks. 

On one hand, DSPS can promotes the data reconstruction 

precision under a given data compression rate. On the 

other hand, it can improve the data compression 

performance under a fixed data reconstruction precision, 

decreasing the in-network data transmissions greatly and 

prolonging network lifetime. Theoretical analysis and 

experiments show that DSPS can improve the 

performance of wavelet based data processing algorithms 

in wireless sensor networks. 

K is an important parameter of DSPS. In this paper, we 

determined K approximately according to some 

experiences. How to find the best K dynamically 

according to the real network situation to optimize the 

performance of DSPS is one of our future works. 
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