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Abstract

Despite continued innovations in design of I/O systems,
I/O performance has not kept pace with the progress in
processor and communication technology. This paper ad-
dresses this I/O problem from a compiler’s perspective, and
presents an I/O optimization strategy based on access pat-
tern and storage form (file layout) detection. The objective
of our optimization strategy is to determine storage forms
for array-based data sets taking into account future use of
data (future access patterns). To tackle this problem, we
present a three-step strategy: (i) determining all I/O access
patterns to the array, and among them, selecting the most
dominant (i.e., the most beneficial) access pattern; (ii) de-
termining the most suitable storage form for the array tak-
ing into account the most dominant access pattern detected
in the previous step; and (iii) optimizing the non-dominant
access patterns using collective I/O, an optimization that
allows each processor to do I/O on behalf of others if doing
so improves overall performance.

Keywords: Parallel I/O, Optimizing Compilers, I/O-
Intensive Codes, File Layouts, Access Patterns.

1. Introduction

Despite continued innovations in design of I/O systems,
I/O performance has not kept pace with the progress in pro-
cessor and communication technology. For example, al-
though disk transfer times have reduced in recent years (as
a result of the increases in magnetic-media densities), the
overall improvement in disk access times has been much
less than the corresponding improvement in CPU cycle
times and memory access times. In addition to this, while
recent years have witnessed a growth in I/O software (par-
ticularly in the areas of runtime libraries and file systems),
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the performance of I/O-intensive applications is still far
behind the performance of CPU-intensive codes. This is
mainly due to lack of concrete automatic optimization tech-
niques for I/O [11].

This paper addresses this I/O problem from a compiler’s
perspective and presents an I/O optimization strategy based
on access pattern and storage form (file layout) detection
and program transformations. The main idea is to make
access patterns and storage forms compatible for as many
disk-resident arrays as possible. To achieve this objective,
our solution proceeds in three complementary steps for each
disk-resident array: (i) determining all I/O access patterns
to the array, and among them, selecting the most dominant
(i.e., the most beneficial) access pattern; (ii) determining the
most suitable storage form for the array taking into account
the most dominant access pattern detected in the previous
step; and (iii) optimizing the non-dominant access patterns
using collective I/O, an optimization that allows each pro-
cessor to do I/O on behalf of others if doing so improves
overall performance. Our objective is to select a storage
form (for each disk-resident array), which is the best from
the perspective of future I/O accesses to the array. However,
the proposed approach also works with the file layouts that
have already been determined (e.g., by a previous applica-
tion).

The remainder of this paper is organized as follows. Next
section describes the I/O problem that we address in this
work. Section 3 presents our approach in detail. Section 4
concludes the paper by summarizing our major contribu-
tions.

2. I/O Problem

There is a broadening gap between performances of I/O-
intensive applications and CPU-bound applications. This is
due to two major factors. First, there exists an increasing
disparity in the performance of I/O devices and the perfor-
mance of processors and communication links on parallel
platforms. In other words, I/O devices are inherently slow
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compared to CPU devices and communication links [11].
Second, the current software support for optimizing I/O-
intensive codes is not adequate. This second point manifests
itself in a number of ways. First, at the compiler level, very
few techniques (e.g., [20, 4, 3, 12]) target specifically I/O
statements; rather, many data dependence and data reuse
analysis techniques employed by state-of-the-art optimiz-
ing compilers fail when, during compilation, an I/O state-
ment (e.g., within a loop) is encountered. Second, at the
runtime system, libraries, and operating system (OS) lev-
els, no single, standard API for I/O exists. Instead, each
vendor has its own API, which makes code portability very
difficult. Different APIs are used in Unix, in commercial
parallel file systems like Intel PFS [21], IBM PIOFS [8], in
research file systems such as PPFS [13], Galley [18], in I/O
libraries such as PASSION [22], Panda [6], ChemIO [19],
and in MPI-IO [7, 23, 24], a recent attempt for I/O-interface
standardization. Finally, mainly, due to the first two factors,
there are not many solid programming strategies available
for I/O-intensive applications.

Despite this grim picture, specific application domains
present better optimization opportunities for I/O. One
of these domains is scientific computing where multi-
dimensional disk (or tape) resident arrays are manipulated
using multiple processors. While many scientific environ-
ments process vast amounts of data, in most cases, the reg-
ularity in data access patterns enable code and data struc-
turing for better I/O behavior. Therefore, previous work in
I/O compilation [3, 20, 15, 4] targeted scientific applications
that manipulate out-of-core data sets. Note that a compiler
is in a good position for optimizing I/O in a program-wide
fashion as it can capture the global (program-wide) data ac-
cess pattern.

Many parallel I/O-intensive scientific codes from differ-
ent fields such as astrophysics and computational chemistry
access their data from files stored on (multiple) disks. Con-
sequently, it is of utmost importance that disk access pat-
terns exhibited by these applications are compatible with
the storage form of data (e.g., its striping style across par-
allel disks). Working at the disk storage level, however,
makes a compiler-based optimization process very com-
plex and non-portable as it requires access to low-level disk
system-related parameters. Instead, we show in this pa-
per that an optimizing compiler can work with file layouts
which directly represents the programmer’s view of the data
set in question. Note that while this high-level abstrac-
tion makes compiler’s job easier, it also brings an inaccu-
racy. Nevertheless, our results reported in this paper show
that setting the abstraction level to file layouts (file storage
forms) is a reasonable approach. Therefore, an optimization
process can target improving file access patterns.

It should be noted that the suitability of a file access pat-
tern is directly linked to the storage form (layout) of the

file. In other words, whether a file access pattern is good
or not depends on the file layout. If, for example, a two-
dimensional array stored in file as row-major is accessed by
multiple processors using a column-wise access pattern, we
cannot expect a good performance in general. This is be-
cause the column-wise access pattern is not compatible with
the row-major storage form. In contrast, a row-wise access
pattern (whereby each processor accesses a row-block por-
tion of the said array) is compatible with the row-major stor-
age form, and can be considered good. While for a given
storage form, it is possible to determine the most suitable
file access pattern(s), for applications which create their
own disk-resident arrays before using them in subsequent
computation, we can go one step further, and determine the
storage forms as well.

Based on the discussion above, we can define our
problem as follows: Given an I/O-intensive application
which manipulates multi-dimensional arrays stored in disk-
resident files, what is the best file storage form for each
disk-resident array and what is (are) the most suitable ac-
cess pattern(s) considering the best storage pattern.

In the ideal case, we would like to store a given array
in such a form that most of the future accesses to the ar-
ray will have the best possible I/O performance. While
this problem definition implies that for the best performance
both the most suitable access pattern and the storage form
should be determined, it does not say whether the access
pattern should be determined before the storage form, or
vice versa. There are several issues here that need to be ad-
dressed. First, there may not be a single access pattern for
a given array. Instead, each reference in the code might re-
sult in (define) an access pattern, and it is very likely that
two different references (to the same disk-resident array)
might demand different access patterns. Consequently, a
conflict resolution mechanism is needed to distinguish the
most suitable access pattern from the others. Second, we
may not be able to find a storage form which is compatible
with all access patterns. Because of this, we need to adopt
a strategy for handling the access patterns not compatible
with the storage form of the array. Third, as hinted above,
access patterns and storage forms are not independent at-
tributes; rather, the relation between them should be taken
into account in determining the best combination. The fol-
lowing section explains our solution to the problem defined
above and addresses some of the issues mentioned.

3. Our Approach

Our objective is to select for each disk-resident data set
(array) a file layout and an access pattern (compatible with
the file layout). One might come up with different strategies
for this. One alternative would be first fixing the layout at
a specific form, and then determining the access patterns.
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Alternatively, we can first determine the access pattern, and
then select the storage form. Our strategy is a combination
of both and is as follows for each disk-resident array:

(1) Determine all access patterns to the array. These ac-
cess patterns are defined by the references in the code
to that array. Then, among these patterns, select the
most dominant(or most beneficial) one.1

(2) Taking into account the most dominant access pattern
found in the previous step, determine a storage form
(layout) for the array. Since the storage form is deter-
mined based on the most dominant access pattern, we
can expect that it is the most beneficial one as far as
I/O performance is concerned.

(3) Since the selected storage form may not satisfy all ac-
cess patterns to the array (as there would be patterns
which are different from the most dominant one), op-
timize these non-dominant access patterns as much as
possible. For this purpose, we can use optimization
techniques such as collective I/O [24, 10].

Below we describe these three steps in detail.

3.1. Access Pattern Detection

In a given code, each array might be accessed using dif-
ferent patterns. Consider the code fragment on the left part
of Figure 1 which consists of two separate doubly-nested
loops that access a disk-resident arrayu. Assuming that
in the first nest thei loop is parallelized, and in the sec-
ond nest thek loop is parallelized, the access pattern for
(the reference in) the first nest is row-wise (i.e., each pro-
cessor accesses a row-block), whereas the references in the
second nest exhibit column-wise and row-wise access pat-
terns as depicted on right in Figure 1. Since all loops in this
fragment have the same number of iterations (N), all three
references have the equal saying in the final performance of
the code (assuming that no conditional flow of control ex-
ists within the loops). Since two of three access patterns are
row-wise, it might be reasonable to set the dominant access
pattern for arrayu to row-wise.

Let us now explain our dominant access pattern detec-
tion strategy for the general case. We start by a formal def-
inition of the access pattern concept. An access pattern of
a given arrayu, Pu is a function of the parallelization strat-
egy and specifies how each dimension of the array is divided
(distributed, or decomposed) across parallel processors. To
simplify discussion, let us focus on anm-dimensional case.
An m-dimensional arrayu can be accessed using, say,p

processors in a number of ways. One approach might be

1This ‘most dominant access pattern’ concept will be formalized later
in the paper.

for(i=0;i<N;i++)
for(j=0;j<N;j++)
::: u[i][j] :::

::::

::::

for(k=0;k<N;k++)
for(l=0;l<N;l++)
::: u[l][k], u[k][l] :::

Row-Wise Access Pattern

Column-Wise Access Pattern

Figure 1. Left: A code fragment which con-
sists of two separate nested loops; Right:
Two different access patterns.

to distribute only a specific dimensiond (1 � d � m)
across allp processors; the remaining dimensions are not
distributed. We can represent such an access pattern us-
ing the notation[�][�][�]::::[�][p][�]::::[�], where[�] denotes
an undistributed dimension and[p] (which appears in the
dth dimension) indicates that the dimension is distributed
acrossp processors. Alternatively,p processors can be di-
vided intom groups, withpi being the number of processors
in the ith group. Here, we havep = p1 + p2 + :::: + pm.
Then, an I/O access pattern such as[p1][p2]::::[pi]::::[pm]
indicates that theith dimension is shared bypi proces-
sors. It is also possible to adopt hybrid access patterns such
as[�][�]::::[�][pi][pi+1][pi+2]::::[pm�1][pm], where only the
dimensionsi and higher are distributed across processors.
For a two-dimensional array case withp processors,[p][�],
[�][p], and [p1][p2] denote row-wise, column-wise, and
block-wise access patterns, respectively, wherep = p1+p2.

It should be noted that these access pattern representa-
tions come directly from parallelization. Consider, for ex-
ample, the code fragment in Figure 1 once more, asssuming
that we havep processors. If thei loop is parallelized using
all p processors and thej loop is run sequentially, we obtain
an access pattern of[p][�] for the reference in the first nest.
In the second nest, on the other hand, we have two access
patterns,[�][p] and[p][�], assuming that only thek loop is
parallelized.

Our strategy for determining the most dominant access
pattern is based on the concept ofpattern weight. The
weight of a pattern is the number of times it occurs dur-
ing execution. Note that different references can exhibit the
same pattern, and can, therefore, contribute to the weight of
the same pattern. To find the contribution of each reference,
we first estimate the number of times each array reference
will be touched in a typical run. To perform this estimation,
our current approach uses profile data (where available) and
also static analysis. Then, for each reference, we determine
the access pattern that it contributes to, and finally, for each
pattern, find the weight. We obtain the profile data used in
this study as follows. The program being analyzed is in-
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strumented such that when it is run a file is created which
contains the number of times each reference in the code is
accessed during execution. When profile data is not avail-
able, we use a simple static analysis strategy which employs
some form of symbolic manipulation. Specifically, our cur-
rent strategy computes the number of loop iterations for
each loop in the code and predicts the direction of ‘if con-
ditionals’ within loops. These two pieces of information,
namely, loop count estimation and if-direction prediction
allows the compiler to symbolically (if the loop bounds and
array sizes are not constant) calculate the number of times
each reference will be touched during a typical execution.
One point should be made clear. For each array, there might
be more than one write statements in the code. These write
statements are also treated as (normal) array accesses; that
is, they contribute to access pattern.

3.2. Storage Form Detection

As mentioned earlier in the paper, to achieve the best
I/O performance, the file layout and the file access pat-
tern should be compatible. To see why this is so, con-
sider the column-wise access pattern shown on the right
portion of Figure 1. Assuming that we havep processors
and that the array in question isN� N and is stored in file
as row-major, each processor accesses anN� N/p subarray
(column-block) of the array. Since the file layout is row-
major, this access pattern means that each processor needs
to access small subrows of sizeN/p (and N of them). It
should be noted that each subrow should be accessed us-
ing a separate I/O call.2 Previous research (e.g., [2, 15])
shows that initiating I/O call is the most costly part of a file
access, consequently, such an access pattern will incur this
most costly partN times. Let us now concentrate on a row-
wise access pattern for the same row-major array. In this
case, each processor accesses aN/p � N row-block portion
of the array. Note the array elements accessed by a given
processor are consucutive in the file space (as the array is
row-major). So, each processor can read its elements using
minimum number of I/O calls (restricted only by the num-
ber of maximum elements that can be read by a single I/O
call; this is typically a file system-defined parameter). This
small example illustrates the importance of compatibility
between the access pattern and the storage form.

Since our access pattern detection strategy determines
the most dominant access pattern, we set the storage form
to the most dominant access pattern. Specifically, we define
different storage forms analogous to access pattern forms
defined in the previous subsection. If we consider only lin-
ear layouts, anm-dimensional disk-resident array can be

2An alternative strategy which reads the entire array and sieves out un-
wanted elements is not a very reasonable approach in I/O-intensive appli-
cations due to large array sizes.

stored inm! forms, each corresponding to nested traversal
of axes in a pre-determined order. For instance, a three-
dimensional array can be stored in six different forms, the
well-know row-major and column-major layouts being only
two of them. Similarly, a two-dimensional array can have
only two forms, row-major and column-major. Non-linear
layouts (e.g., blocked layouts), on the other hand, divide a
given array into chunks. The elements that belong to the
same chunk are stored in file consecutively. Note that, for
a given chunk, we can adopt any linear layout for storing
its elements. Similarly, the relative order of chunks with re-
spect to each other might be row-major, column-major, or
higher-dimensional equivalents of them, depending on the
dimensionality of the array.

For a givenm-dimensional array, linear layouts can be
represented using permutation vectors in which each di-
mension is given a unique numberi (1 � i � m). If,
for two dimensions with their numbersi and j, i < j,
this indicates that the elements in the second dimension
are visited more frequently than those of the first dimen-
sion. For example,1234 represents a four-dimensional row-
major array whereas321 represents a three-dimensional
column-major array. The non-linear layouts, on the other
hand, are represented using a notation very similar to the
access pattern representation. Specifically, a layout form
such as[p1][p2]::::[pi]::::[pm] indicates that the first dimen-
sion is divided intop1 portions, the second dimension is
divided intop2 portion, and so on. Such a division gen-
eratesp1 � p2 � :::: � pm�1 � pm chunks. It should
also be noted that our non-linear layout representation form
subsumes linear layouts. For example, an access pattern
of the form [�][�][�]::::[�][k][�]::::[�], where[k] appears in
the dth dimension, indicates that thedth dimension is di-
vided intok chunks, while the other dimensions are not di-
vided. As a simpler example,[N][�] (for anN-dimensional
array) indicates a row-major layout. Since there is one-
to-one correspondence between this (non-linear) storage
form representation and the access pattern representation
presented earlier, our compiler employes this representa-
tion. Let us assume that the dominant access pattern is
[p1][p2]::::[pi]::::[pm�1][pm], where eachpi can be a[�] cor-
responding to a dimension not distributed, or a positive in-
teger value which gives the number of processors across
which the dimension is distributed. We set the storage form
of the array to this access pattern. For example, a dominant
access pattern such as[p][�] (row-wise) leads to a storage
form [p][�]. This storage form implies that the second di-
mension is not divided, but the first dimension is divided
into p chunks. Note that if the elements belonging to the
same chunk are stored in row-major form, this storage form
is the same as[k][�], wherek � p andp dividesk evenly.
Note that, if the storage form is determined as explained
above, all array references with the dominant access pattern
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access their data (from the array in question) using mini-
mum number of I/O calls. However, as discussed below,
this may not be the case for remaining references.

3.3. Optimizing Non-dominant Patterns

Since, for a given array, there might be access patterns
different from the most dominant one, we need to handle
these (non-dominant) patterns as well. To do this, our com-
piler employs an I/O optimization technique, calledcollec-
tive I/O [10, 24]. As discussed in [24], in many parallel
applications, although each process may need to access sev-
eral noncontiguous parts of a given file (which holds an ar-
ray), the requests coming from different processors are of-
ten interleaved, and may together span a large contiguous
chunk. If each processor accesses its portion of data (i.e.,
data required to perform its computation) directly, then nu-
merous I/O calls, each for a small sized contiguous portion
need to be issued. For example, accessing a column-block
of a row-major array results in a such a scenario. Instead, if
the processors co-operate and negatiate a global file access
pattern, a much better I/O performance can be attained. The
idea is then to merge the requests from different processors
and to service (collectively) the merged request. While col-
lective I/O can be implemented at the disk [16], server [6],
and client [10] levels, in this work, we employ a client-side
implementation calledtwo-phase I/O[10].

In two-phase I/O, the processors first access the file using
an access pattern which is most compatible with the storage
form of the file. This is the first phase and is called layout-
efficient I/O. After that, in the second phase (called data re-
distribution), the processors engage in many-to-many com-
munication so that each processor receives its portion (of
the array). Consider, as an example, a two-dimensional ar-
ray stored in a file in row-major fashion (say[4][�]) and ac-
cessed (e.g., read) using an access pattern of[�][4] (i.e., a
column-wise access). To prevent each processor from is-
suing many I/O calls, the two-phase I/O proceeds as de-
picted in Figure 2. In the first-phase, the processors read
the file using the access pattern[4][�]. In the second phase,
they perform a collective communication to re-distribute the
data between them so as to obtain the final (desired) access
pattern[�][4]. While collective I/O incurs an extra commu-
nication cost (whose magnitude depends on the number of
processors involved, on the amount of data that needs to be
communicated, and on the existence of collective commu-
nication primitives in the underlying file system), since the
per item I/O cost is, in general, much higher than the per
item communication cost in today’s parallel machines, we
can expect large performance gains.

Although we have discussed the overhead due to col-
lective I/O in terms of inter-processor communication,
in shared-memory parallel architectures, the data re-

Layout-Efficient I/O

Data

Re-distribution

File

Column-Wise Access Pattern

Row-Wise Access Pattern

Figure 2. Two-phase I/O.

distribution step (the second phase) can be implemented us-
ing non-local memory accesses. To optimize these accesses,
data layout transformations can be employed.

4. Conclusions

Optimizing I/O performance of scientific codes is an im-
portant problem as data set sizes keep getting larger and
larger. While continued improvements in I/O hardware
(e.g., disks with fast access times) are very important for
achieving large reductions in time spent in I/O, one also
needs to consider addressing the I/O problem at the soft-
ware level. This paper has presented a compiler-directed
I/O optimization strategy based on access pattern and stor-
age pattern detection. By using collective I/O only when
necessary, our three-step approach implements the rule that
the most beneficial storage layout is the one that minimizes
the I/O latency of future data accesses.
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