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Abstract

An approach to high-level interaction with autonomous robots by means of schematic

maps is outlined. Schematic maps are knowledge representation structures to encode

qualitative spatial information about a physical environment. A scenario is presented in

which robots rely on high-level knowledge from perception and instruction to perform

navigation tasks in a physical environment. The general problem of formally

representing a physical environment for acting in it is discussed. A hybrid approach to

knowledge and perception driven navigation is proposed. Different requirements for

local and global spatial information are noted. Different types of spatial representations

for spatial knowledge are contrasted. The advantages of high-level / low-resolution

knowledge are pointed out. Creation and use of schematic maps are discussed. A

navigation example is presented.
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Abstract. An approach to high-level interaction with autonomous robots by means
of schematic maps is outlined. Schematic maps are knowledge representation
structures to encode qualitative spatial information about a physical environment. A
scenario is presented in which robots rely on high-level knowledge from perception
and instruction to perform navigation tasks in a physical environment. The general
problem of formally representing a physical environment for acting in it is
discussed. A hybrid approach to knowledge and perception driven navigation is
proposed. Different requirements for local and global spatial information are noted.
Different types of spatial representations for spatial knowledge are contrasted. The
advantages of high-level / low-resolution knowledge are pointed out. Creation and
use of schematic maps are discussed. A navigation example is presented.

Introduction: A Robot Navigation Scenario

We describe a scenario consisting of an autonomous mobile robot and a structured spatial
environment it lives in. The robot is equipped with rudimentary sensory abilities to
recognize the presence as well as certain distinguishing features of obstacles that may
obstruct the robot’s way during navigation. The robot’s task is to move to a given location
in the environment.

This task – that appears so easy to humans – is a rather difficult task for autonomous
robots. First of all, the robot must determine where to go to reach the target location; thus
it needs knowledge about space. Next, the robot must determine what actions to take in
order to move where it is supposed to go; thus it needs knowledge about the relation
between motor actions and movements and about the relation between movements and
spatial locations.

In theory, we could provide the robot with detailed information about the spatial
structure of its environment including precise distance and orientation information as well
as information about its own location in the environment. The robot then could compute a
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route through unobstructed space from its current location to the target location.
Consequently, some route following procedure could traverse this route.

In practice, however, this approach does not work. What are the problems? First, it is
very hard to provide the robot with detailed knowledge about its spatial environment in
such a way that this knowledge actually agrees with the encountered situation in the
environment at a given time in all relevant aspects. Even if it agrees, it is impossible to get
the robot to carry out actions that correctly reflect the computed result. Second, the real
world is inherently dynamic: knowledge about the state of the world at a given time does
not guarantee the persistence of that state at a later time.

Why is autonomous robotics so difficult? The general problem a robot must cope with
when acting in the real world is much harder than the problem a computer1 must deal with
when solving problems. The reason is that autonomous robots live in two worlds
simultaneously while computers only must deal with a single world. Autonomous robots
live in the physical world of objects and space and in the abstract world of representation
and computation. Worst of all: these two worlds are incommensurable, i.e., there is no
theory that can treat both worlds in the same way [Dirlich et al. 1983].

Computers act entirely in a formalized computational (mental) world: their problems
are given in formalized form, they compute on the basis of formalized procedures, and the
results come out as formal statements. The physical existence and appearance of
computers are not essential for the solution of the formal problem. Autonomous robots, on
the other hand, are not only superficially submerged in the physical world; they are
essential physical parts of their own physical environment. When a robot moves, the
physical world changes. In addition to their physical existence, autonomous robots have
an important mental facet: autonomous robots are controlled by computers that compute
the decisions about the robots’ actions in their physical environment.

We can take at least two views regarding the relationship between the physical robot
and its controlling computer: (1) We can consider the computer as just a piece of physical
circuitry that connects sensor inputs to motor outputs in a more or less complex way. In
this view, we do not need to consider representations and mental processes; all issues can
be addressed in the physical domain. (2) We acknowledge that formal theories about
physical space are required for intelligently acting in a physical environment. Then we
have two options: (a) we believe that these theories can be made sufficiently precise to
describe all that is needed to perform the actions on the level of the representations; this
option corresponds to the classical AI approach. Or (b) we recognize that it is unfeasible
to employ a global theory that accounts for all aspects the robot may be confronted with in
physical space. Then we can formalize a theory that deals with some aspects of the
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designate a physical device with sensors and effectors that interact with the environment and
with a computer that interprets the sensor data and controls the actions.
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physical world and leaves other aspects to be dealt with separately – for example in the
manner suggested by the first view.

The first view was brought forward most prominently by Brooks [1985]. It works well
on the level of describing reactive behavior and for modeling adaptation behavior of
insects and robots in their environments [Braitenberg 1984]. However, it has not been
possible to describe purposeful proactive behavior in this paradigm, so far. To describe
and model intelligent planning behavior, for example, a representation of knowledge
about the world is necessary.

In board games or other domains that are defined entirely within a formal framework,
a representation with suitable inference procedures is all that is needed to provide
appropriate solutions. For tasks and problems that are given in the physical world,
however, formal representations must be set in correspondence with the physical world
and can only approximate actual situations. This is true not only for robots but also for
people and other living beings. Biological systems cope with this general representation
problem so well, that the extent of this correspondence problem has been underestimated
for a long time. Through the use of robots we have become aware of the severeness of this
problem and by using robots we can thoroughly study mappings between the physical
world and its mental representation.

An example of information that typically will not be available from a world model is
information about an object that happens to have entered the scene due to unpredictable
reasons. Another example is the information to which degree a certain location of the
robot environment will be slippery and cause a given robot wheel to slip (at a particular
angle, at a given force, speed, temperature, etc.). Such situations can be dealt with
reactively through perception and adaptation in the environment. In summary, the
autonomous robot requires a suitable combination of represented and directly perceived
knowledge.

A Robot that Communicates by Means of Maps

Our robot is designed to be autonomous to a certain extent: A navigation task is given to
the robot and it must find the specified destination autonomously. Given the situation as
described in the previous section, the robot must interact in two directions: (1) it must
communicate with the instructor who specifies the task and checks its solution, and (2) it
must interact with the environment to master the task. For a human instructor there are
three natural modes to communicate spatial information: by deictic means (looking and/or
pointing at spatial locations); by a description of spatial locations or objects in natural
language; by using a spatial medium to convey spatial information in an analogical
manner. Frequently these modes are combined to make use of their respective advantages.

As the robot must interact with its spatial environment to master its navigation task,
the communication by means of a spatial medium appears particularly advantageous and
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interesting. Common spatial media to communicate about space are sketches or maps.
Maps may serve as interaction interfaces between people and their environment, between
robots and their environment, but also between people and robots. In the present paper we
explore the communication with robots by means of schematic maps.

The power of maps as representation media for spatial information stems from the
strong correspondence between spatial relations in the map and spatial relations in the
environment. This allows, for example, to read spatial relations directly off the map that
have not explicitly been entered into the representation, without engaging inference
processes [Freksa & Barkowsky, 1999]. When maps are used to convey spatial
information, spatial relations in the map can be directly applied to the environment and
vice versa, in many cases. All maps distort spatial relations to some extent; the most
obvious distortion is the distortion due to scale transformation [Barkowsky & Freksa,
1997]. Most spatial distortions in maps are gradual distortions. No translation of spatial
information through symbol interpretation is required as in the case of natural language
descriptions.

The strong spatial correspondence between maps and spatial environments has specific
advantages when dealing with spatial perception; in our case the robot is equipped with
sensors that determine the spatial location of objects to perform its navigation task. The
distortions obtained in the sensor readings may share properties with the distortions we get
in map representations; thus, the same interpretation mechanisms may be used for the
interpretation of the maps and of the sensor readings.

In the setting described, maps can be constructed from the spatial relations in the
environment by a human overlooking the environment or by a robot moving through the
environment. The human can convey instructions to the robot using maps. In solving its
task, the robot can match spatial relations in the map against spatial relations in the
environment. And the robot can communicate back to the human instructor by using a
map. This provides us with a rich environment to study formal properties of different
maps and practical map use. Figure 1 indicates the communication relations between the
human and the robot on one hand and the spatial correspondence between the environment
and the map on the other hand.

spatial environment

human map robot

Figure 1.  Spatial communication relations between human, map, robot, and environment.  
Thin arrows indicate spatial correspondence relations between map and spatial environment.
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Qualitative Spatial Knowledge for Navigation Tasks

Depending on the class of tasks to be performed, different abstractions of spatial
knowledge may be useful. To determine what type of knowledge may be most useful to
solve navigation tasks, let us consider two extreme cases: (1) the robot knows everything
about its spatial environment and (2) the robot knows nothing about its spatial
environment. In the first case, the robot does not require perception as it can navigate
entirely on the basis of the available knowledge. (We can dismiss this case on the basis of
unattainability of complete correct knowledge.) In the second case, the robot must get all
the information to solve its navigation task directly through perception of the
environment. (We dismissed this case as unsuitable for developing intelligent navigation
strategies.)

Between the two extremes, we should find an appropriate combination of information
to be provided externally through the map and information extracted directly from the
environment. The information in the environment is superior over information in a map in
several respects: (a) it is always correct and (b) it does not require an additional medium.
Information provided externally by a map is superior in other respects: (c) it may be
available when perception fails (for example at remote locations) and (d) it may be
provided at a more suitable level of abstraction for a given task. These considerations
suggest that information about the local situation preferably should be obtained directly
from the environment through perception while the information about the global spatial
situation should be provided externally to allow for developing suitable plans and / or
strategies to solve the navigation task.

This division between the primary sources of information also suggests the levels of
abstraction the respective information sources should deal with: the information in the
environment is very concrete; the perception processes must make it just abstract enough
for the decision processes to be able to act on it. The externally provided global
information, on the other hand, should preferably be abstract to allow for efficient route
planning processes; however, it must be concrete enough to be easily matched to the
actual spatial environment.

A suitable level of abstraction for these requirements is the level of qualitative spatial
knowledge [Zimmermann and Freksa 1996]. Qualitative spatial knowledge abstracts from
the quantitative details of precise distances and angles, but it preserves the information
relevant to most spatial decision processes. Navigation then can be carried out in two
phases: a coarse planning phase relying mainly on externally provided qualitative global
knowledge and a detailed execution phase in which the plan is confronted with the actual
details of reality in the local surroundings of the robot. This requires that the two sources
of knowledge for the robot can be brought into close correspondence.
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Schematic Maps

Maps to present spatial relations come in different varieties. Depending on the scale, on
the objects to be represented, and on the symbols to be used, they can be more or less
veridical with respect to the spatial relations depicted. Scaled-down maps (i.e. in particular
all geographic maps) distort spatial relations to a certain degree due to representational
constraints [Barkowsky & Freksa, 1997]. For many purposes, it is desirable to distort
maps beyond the distortions required for representational reasons to omit unnecessary
details, to simplify shapes and structures, or to make the maps more readable. This latter
type of map we will refer to as ‘schematic map’. Typical examples of schematic maps are
public transportation maps like the London underground map or tourist city maps. Both
types may severely distort spatial relations like distances or orientations between objects.

Schematic maps are well suited to represent qualitative spatial concepts. The
orientation of a line on the map may correspond to a general orientation (or category of
orientations) in the nature; a distance on the map may correspond to the number of train
stops, rather than to the metric distance in nature, etc. [Berendt et al. 1998].

If we consider abstract mental concepts of the spatial world as constituting one
extreme in a hypothetical continuum of representations and the concrete physical reality
itself as the other extreme, it is interesting to determine where different types of
representations of the world would be located in this continuum. Mental concepts can be
manifested most easily by verbal descriptions (in fact, some researchers believe that we
cannot think what we cannot express in words (Whorfian hypothesis [Whorf, 1956]).
When we move in the hypothetical continuum closer to the physical manifestation of the
world, we can put concepts of spatial objects and relations into a sketch map to convey
selected spatial relations. Sketch maps tend to have close correspondences to verbal
descriptions and they are used to augment verbal descriptions by spatial configurations
that correspond to spatial configurations in the physical world.

Moving from the other extreme, the physical reality, we obtain a mild abstraction by
taking a visual image (e.g. a photograph) that preserves important spatial relations.
Moving a few steps further towards concept formation, we may get a topographic map in
which objects have been identified and spatial relations from the real environment are
maintained. Further abstraction may lead to a schematic map as suggested above. Figure 2
depicts this abstraction scheme.
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In this framework, schematic maps differ from sketch maps in that they are derived
from topographic maps that are meant to represent a certain part of the environment
completely at a given granularity level. Sketch maps, on the other hand, usually
correspond to the linear flow of speaking and drawing and frequently to the temporal
sequence of route traversal. Thus, schematic maps provide information about a region
while sketch maps more typically provide information about a single route or about a
small set of routes. However, there is no sharp boundary between schematic maps and
sketch maps as schematic maps may be incomplete and sketch maps may be unusually
elaborate.

Using Schematic Maps for Robot Instruction

Schematic maps provide suitable means for communicating navigation instructions to
robots: they can represent the relevant spatial relationships like neighborhood relations,
connectedness of places, location of obstacles, etc. Humans can construct schematic maps
rather easily, as the necessary qualitative relations to be encoded are directly accessible to
human perception and cognition. But autonomous robots also can construct schematic
maps by exploring their environment and by keeping track of notable entities; thus,
schematic maps can be used for two-way communication between humans and robots.

abstract mental concepts

verbal description

sketch map

schematic map

topographic map

photograph

spatial environment

Figure 2.  Abstraction levels between conceptual-linguistic and physical-spatial structures. 
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In Fig. 3 we give a simple example of an initial schematic map of an indoor office
environment that may be provided by a human instructor to an autonomous robot. It
consists of three rooms, three doors connecting the rooms, and the robot that is located in
one of the rooms. This example may serve as reference for the following discussion.

Schematic maps can be encoded in terms of qualitative spatial relations. They preserve
important ordering information [Schlieder 1996] for identifying spatial configurations.
Qualitative spatial reasoning [Freksa and Röhrig 1993, Cohn 1997] can be used to infer
relationships needed for solving the navigation task.

To use schematic maps for actual robot navigation, a correspondence between entities
and relations in the schematic map and entities and relations in the spatial environment
must be established. As we have argued above, this is very difficult to do on the level of
high-resolution information. However, we believe that this task can be much more easily
performed on coarser, low-resolution information [Zadeh 1999]. One of the reasons for
this is that we can expect a larger number of rare or unique configurations on the coarser
and higher level of representation. This should make the approach rather robust against
perturbations due to incomplete, imprecise and even partially conflicting knowledge.
When spatial relations found in the map and in the spatial environment do not match
perfectly, conceptual neighborhood knowledge [Freksa 1992a, b] can be used to determine
appropriate matches.

Furthermore, in realistic settings suitable reference information usually will be
available to simplify the problem of matching the map to the environment. Like in route
instructions to fellow human beings we can inform a robot about its own location on the

Figure 3.  Schematic map of a simple indoor environment consisting of three rooms, 
three doorways, and one autonomous robot.
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map and possibly about its orientation in the environment. Other locations may be
indicated by unique landmarks or rare objects that the robot should be able to recognize.
These measures help control the number of possible matches between map and
environment.

This leads us to the problem of object recognition. Here we adopt a coarse, qualitative
approach, as well. Rather than attempting to recognize objects from details in visual
images, our strategy is to identify configurations through rather coarse classification and
by employing knowledge as to how these configurations may be distorted by the
perception and by matching processes. For example, we use coarse color information to
identify landmarks in our indoor office scenario. We may relate our approach to Rosch’s
findings of linguistic categories in human communication [Rosch 1975]. Rosch found that
the basic conceptual categories people use in communication tend to be neither the very
specific nor the very general categories but rather intermediate categories that may be
most suitable for object identification and concept adaptation.

Multimodal information2, for example a combination of color, distance, and ordering
information, can support the identification process on the level of high-level conceptual
entities and structures considerably, as the use of different feature dimensions helps select
appropriate matching candidates.

Creating Schematic Maps

Schematic maps can be created in at least three different ways: (1) by a human observer /
instructor; he or she can acquire knowledge about the spatial layout of the environment
through inspection and can put down relevant relationships in a schematic map. The actual
layout of that map can be supported by a computerized design tool that creates a simple
regularly structured map and helps making sure the depicted relations can be interpreted in
the intended way; (2) by the robot itself; in its spare time, the robot can explore its
environment, note landmarks, and create a schematic map that reflects notable entities and
their spatial relationships as discovered from the robot’s perspective; (3) from a spatial
data base: for artificial environments data about the kinds of objects and their locations
may be specified in a data base; this information can be fed into a computerized design
tool to create a schematic map, as well.

Navigation Planning and Plan Execution using Schematic Maps

The initial schematic map (cp. Fig. 3) provides the robot with survey knowledge about its
environment. The robot extracts important features from the map for identification in the
environment. The robot can enter discoveries into the map that it made during its own
perceptual explorations in the environment. It produces a coarse plan for its route using
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perceptual categories.
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global knowledge from the map and local knowledge from its own perception. Details of a
planning procedure that we use are described in the next section. The resulting plan is a
qualitative plan comparable to what people come up with when giving route instructions
to a fellow human being: it indicates which roads to take but does not specify in precise
quantitative terms where to move on the road.

During plan execution, the robot will change its local environment through
locomotion. This enables it to instantiate the coarse plan by taking into account temporary
obstacles or other items that may not be present in the map. Also, the local exploration
may unveil serious discrepancies between the map and the environment that prevent the
instantiation of the plan. In this case, the map can be updated by the newly accumulated
knowledge and a revised plan can be generated.

Communication and Negotiation using Schematic Maps

The robot may not be able to generate a working plan for its task due to incompleteness or
incorrectness of the map or due to constraints that lead the robot to believe that it will not
be able to move to the destination. Rather than just stopping its actions, the robot should
get in touch with its instructor, in such a situation. Using the schematic map, the robot
should be able to indicate to the instructor what kind of problem it has in plan generation
or plan execution. The human instructor then can inspect the schematic map to evaluate
the problem and revise his or her instructions. Figure 4 summarizes the different
interaction pathways discussed.

human robotmap

knowledge 
representation
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Figure 4.  The interaction pathways between the human instructor, the schematic map, the 
autonomous robot, and its spatial environment.
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A Simulation Scenario

Currently we develop our scenario such that a simulated robot solves navigation tasks in a
simple world with the aid of a schematic map. The schematic map depicts selected spatial
aspects of the environment as well as the position and the orientation of the robot and the
target location for the navigation task. An example is presented in Fig. 5. The map depicts
a few spatial aspects of the three-room office environment in a qualitative manner.
Specifically, walls, room corners, and doorways are represented. Other aspects are
neglected. For example the thickness of the walls is not depicted. Also, distances and
angles need not be to scale, in the depiction.

The sensors of the simulated robot simulate two laser range finders, each covering a
range of 180 degrees. Together these sensors yield a panorama view of 360 degrees.
Using the schematic map, the robot determines a ‘qualitative path’, i.e. a path specified
only in terms of the route to be taken, not in terms of metrically specified locations. To
compute this path the free regions depicted on the map are partitioned into convex regions
(Fig. 6a) [Habel et al. 1999].

A robot can overlook a convex cell entirely from any location in that cell with a single
panorama view. To make use of this feature, the algorithm partitions the free regions in
the schematic map into convex cells. Each concave corner is transformed into two convex
corners by converting it into a corner of two different regions. A qualitative path graph is
constructed by connecting the cell centers with the centers of their adjacent cell transition
lines (Fig. 6b). In this graph, the path from start to goal is found by a simple graph search
[Wallgrün 1999].

Figure 5.  S chematic map of robot environment including location and orientation of 
robot and goal location.
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The simulated robot environment is spatially more veridical than the schematic map.
Here, the thickness of the walls is represented and distances and angles reflect the
distances and angles of the actual robot environment (Fig. 7).

The robot’s task is now to traverse the path found on the map in the simulated world.
To do this, the robot must establish a correspondence between the schematic map and the
world (Fig. 8). This is done by mapping the sensor information from the simulated

Figure 6. Qualitative path generation using a schematic map: a) partitioning the free 
region into three convex cells; b) connecting the cell centers with the centers of their 
adjacent cell transition lines to obtain the path graph for the route to be traversed.

Figure 7. The simulated robot environment. The spatial dimensions reflect the actual 
robot environment to scale. The simulated laser range finders measure the distances from 
the robot to the closest obstacles (walls).
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environment and the corresponding information from the schematic map – the spatial
information about the cell in which the robot currently resides – into a common
representation. The mapping task is supported by the use of qualitative spatial relations.

The robot first matches the current sensor percepts with the cell that is marked in the
map as its own location (see figure 8). The marked cell then is translated into a qualitative
spatial representation in terms of vector relative position relations (“double cross calculus”
– Fig. 9) [Freksa 1992b; Isli et al. 2000 (this volume)]. These relations allow for effective
qualitative spatial inferences suitable for wayfinding [Zimmermann & Freksa 1996].

Now, the qualitative description of the relevant map area can be matched with the
sensor percept produced by the simulation. Since only the qualitative relations are
represented the corresponding corners in the simulated world typically have the same
relations like the ones on the map. Therefore the correct mapping between the entities on
the map and in the world can be identified. Next, the transition line that is on the goal path
can be determined in the simulated world. The midpoint of the transition line is the next
intermediate goal of the simulated robot. At this point, the neighboring cell is entered, and
the new local region is subject of a new map matching process. With this iterative
procedure the target location in the simulated environment is reached.

Figure 8. Correspondence between spatial features in the schematic map (Fig. 5) and 
spatial features derived from the simulated sensor readings (Fig. 7). The arrows depict 
the correspondence relations between the corners depicted in the schematic map and 
those derived from the sensory input and the correspondence relations between the 
robot’s location indicated in the schematic map and that in the simulated world.
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Conclusion and Outlook

We have presented an approach to high-level interaction between humans and robots on
one hand and between robots and their environment on the other hand by means of
schematic maps. The approach is based on the presumption that meaningful interaction
requires an appropriate level of abstraction for intelligently solving tasks in a given
domain. In the domain of wayfinding in a structured environment, a representation of
space on the abstraction and granularity levels of decision-relevant entities is considered
appropriate. Schematic maps are found to be suitable (1) for representing spatial
knowledge on this level, (2) for qualitative spatial reasoning, (3) for human-robot
interaction, and (4) for robot-environment interaction.

In pursuing this approach, we proceed in three stages: (1) conceptual design taking
into account (a) spatial properties of the perceptual apparatus and the environment, (b)
representational tools, and (c) inference methods; (2) implementation and experimentation
in a simulation environment emphasizing the spatial reasoning aspects; and (3)
implementation in a physical robot environment. The three stages are not carried out in a
purely sequential manner; instead we have rather strong interactions between the stages
during their development. As the three stages can be developed independently of one

Figure 9. Spatial relations in local robot region expressed in terms of vector relative 
position relations suitable for qualitative spatial inferences. Only the relations with 
reference to the room corners c1 and c2 are presented as an example.
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another to a large extent, we gain interesting insights about the transitions between the
static analytic theory and the dynamic simulation environment on one hand and between
the idealized perception/action model in the simulation environment and the real
perception / action situation in the physical environment, on the other hand.

The work we are reporting on is work in progress. We have developed formal systems
for qualitative spatial reasoning, a platform for simulation studies for spatial reasoning,
and we have carried out experiments in physical robot navigation on the basis of
qualitative spatial knowledge. The main focus of our present work is on the simulation
environment that we build on the basis of our existing qualitative spatial reasoning
theories. In parallel, we carry out perception studies in the physical robot environment to
determine the type of landmarks we can use best for the navigation task.

In our future work on this project we will particularly focus on issues of dealing with
incomplete sensor and map information, exploiting neighborhood and other spatial
structures, matching descriptions of different granularity, and integrating information
sources of different modality.
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