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Abstract

We propose a novel framework to recognize human-
vehicle interactions from aerial video. In this scenario,
the object resolution is low, the visual cues are vague, and
the detection and tracking of objects are less reliable as a
consequence. Any methods that require the accurate track-
ing of objects or the exact matching of event definition are
better avoided. To address these issues, we present a tem-
poral logic based approach which does not require train-
ing from event examples. At the low-level, we employ dy-
namic programming to perform fast model fitting between
the tracked vehicle and the rendered 3-D vehicle models.
At the semantic-level, given the localized event region of
interest (ROI), we verify the time series of human-vehicle
relationships with the pre-specified event definitions in a
piecewise fashion. With special interest in recognizing a
person getting into and out of a vehicle, we have tested our
method on a subset of the VIRAT Aerial Video dataset [11]
and achieved superior results. Our framework can be easily
extended to recognize other types of human-vehicle interac-
tions.

1. Introduction

Recognizing human-vehicle interactions is a challenging
problem in computer vision. It is of interest in security,
automated surveillance, and aerial video analysis. For ex-
ample, the detection of a person getting into a vehicle may
provide the first level alert of abnormal events. The dis-
covery of frequent human-vehicle interactions from aerial
video may help pinpoint a warehouse or signify the migra-
tion of a group of people. As shown in Fig. 1, due to lim-
ited image resolution, air turbulence, cloud coverage, ob-
jects temporarily out of field of view, and the constantly
moving aerial vehicle, the recognition of human-vehicle in-
teractions from aerial view is a much more challenging task
than those in normal scenarios. In this work, we propose a
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(a) (b)
Figure 1. (a) The aerial image of a person approaching the front
door of a vehicle. The bounding box of the person is magnified to
illustrate this challenging scenario. (b) The snapshots of a vehicle
taken from an UAV in every 5 seconds.

general framework to recognize human-vehicle interactions
from an aerial video. More specifically, we illustrate our
framework using the cases of recognizing a person getting
into and out of a vehicle.

With careful and sometimes repeated inspections, a hu-
man observer can recognize human-vehicle interactions
from aerial video without seeing any examples from the
same setup. This is because humans are capable of con-
stantly tracking objects in low quality imagery and are pro-
ficient at reasoning about the underlying event without see-
ing it in its entirety. However, there are two major difficul-
ties for machine vision to perform the same task as well.
First, most machine learning algorithms require a sufficient
number of training samples to perform reliable recognition;
however, the cost is high for taking aerial videos and an-
notating example sequences. Second, the key moments
of human-vehicle interactions always happen when persons
are in close proximity of the vehicle; as a result, a human
tracker is easily subject to drift due to overlapped object
structures in blurry low-resolution imagery.

Our method is a temporal logic based approach which
does not require the tracking of human objects nor event-
level training examples. Our system starts with process-
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Figure 2. A ray tracer with 3-D scene including a vehicle.

ing the bounding box sequences of the tracked vehicles. To
estimate the location and the orientation of a vehicle, we
train Support Vector Machines (SVM) [3] classifiers with
samples rendered from 3-D vehicle models and ray tracing.
Then we search for the optimal solution of vehicle states
in a sequence of frames using dynamic programming un-
der a Markovian assumption. Given the aligned 3-D ve-
hicle models, we use the localized door (or trunk) regions
together with local human detection results to reason about
their interactions over time. We define the temporal flow of
a human-vehicle interaction based on the sub-events of par-
ticular changes in their spatial relationships. Weights are
manually assigned to the interaction associated sub-events
according to their relative importance to the composition
of the interaction. The likelihood of individual interactions
is computed by matching an observation sequence with the
formal event representations and binning the weighted votes
of matched sub-events. To the best of our knowledge, our
work is the first paper which explicitly tackles the problem
of recognizing human-vehicle interactions in aerial video.
This paper is arranged as follows. We discuss the pre-
vious work in Section 2. Section 3 introduces the techni-
cal details of our dynamic programming based 3-D vehicle
alignment. Our temporal logic based interaction recogni-
tion scheme is presented in Section 4. We demonstrate the
experimental results in Section 5 and conclude in Section 6.

2. Previous Work

There has been an emerging interest in recognizing hu-
man activities from aerial view in the past few years. The
pioneer work by Efros et al. [7] characterizes human ac-
tions at a distance by using an optical flow based descriptor.
They use the rectified optical flow components to describe
the motion patterns between pairs of figure-centric bound-
ing boxes. On the same subject, Chen and Aggarwal [4]

@
height)

crop

_ max (width{ height) .

Figure 3. Positive vehicle training sample generation.

present a joint feature action descriptor, which combines
features selected from human poses and motion in a super-
vised manner. Later in their work [5], they propose a novel
representation called action spectrogram, which character-
izes human activities by both local video content and occur-
rence likelihood spectra of body parts’ movements. Their
method has been shown to further the recognition accuracy
on two low-resolution human activity datasets [12, 11].

Ivanov and Bobick [8] use stochastic context-free gram-
mars on human-vehicle interaction recognition, Joo and
Chellappa [9] apply attribute grammars, and Tran and Davis
[15] adopt Markov logic networks to recognize human-
vehicle interactions. Their methodologies focus on the
high-level understanding of human-vehicle interactions.
Lee et al. [10] propose an view-independent approach for
the recognition of human-vehicle interactions. They per-
form vehicle detection and localization through the use of 3-
D vehicle models with chamfer matching. Ryoo et al. [13]
also recognize person-vehicle interactions in the presence of
occlusions using event context under a Bayesian formula-
tion. However, all the mentioned approaches are not appli-
cable to our scenario, where the interactions are filmed from
a moving platform and the accurate characterization of ob-
ject contour and motion is not possible. For the evaluation
of human activity and human-object interaction recognition
algorithms, the newly published VIRAT Video Dataset [1 1]
includes videos collected from stationary ground cameras
as well as unmanned aerial vehicles (UAV). This large-scale
benchmark dataset features 6 types of human-vehicle inter-
actions in both camera settings.

3. Alignment of 3-D Vehicle Model

The robust alignment of a 3-D vehicle model is essen-
tial for the system to extract event ROI and to estimate the
human-vehicle spatial relationship. In this section, we pro-
pose a novel and generic approach for the optimal search
of vehicles states by the alignment of 3-D vehicle models.
In the following subsections, we explain the details of our
methodology from 1) 3-D model rendering, 2) localization
of a vehicle centroid, 3) estimation of vehicle orientation,
and 4) the optimal search of vehicle states using dynamic
programming.
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Figure 4. Negative vehicle training samples.

3.1. 3-D Vehicle Model

Collecting training samples for vehicle detection is a te-
dious task, and it is impractical to collect them in all pos-
sible view points. Therefore, we use ray tracing with 3-D
vehicle models to generate controlled training images with
detailed annotations. In order for our ray tracer to generate
synthetic training samples, we create the scene of vehicles
using the following descriptions: we place a vehicle model
in the center of a 3-D space and a ground plane model below
the vehicle model. Then, four point light sources are placed
on the front, rear, left, and right of the vehicle model, re-
spectively. Finally, a scene camera is added and controlled
by the system as shown in Fig. 2. By adjusting the position
and direction of the camera, our ray tracer can generate the
projected images of a 3-D vehicle in different orientations.

Without loss of generality, our ray tracer disables reflec-
tion and refraction. It is not possible for the system to sim-
ulate the detailed characteristics of the texture of vehicles
and the ground from most aerial video data due to low res-
olution scenes and compression errors.

3.2. Vehicle Location Detection

In this subsection, we explain the probabilistic approach
to localize the centroid of the vehicle. Here, we assume
that a vehicle is completely visible in the scene. We train
an SVM classifier with the Histogram of Oriented Gradient
(HOG) [6] features extracted from positive and negative ve-
hicle sample images from 3-D vehicle models. The positive
sample images have a vehicle at the center of the image and
the negative sample images either have a vehicle near the
boundary of the image or do not have a vehicle. Therefore,
the trained binary SVM classifier can estimate the probabil-
ity of the vehicle located at the center of a testing image.

The positive sample set has 720 images from 360 degree
orientations and 2 vehicle types. The size of the projected
image of a vehicle varies with respect to the camera views.
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Figure 5. The configuration of our HOG descriptors.

These training samples are uniformly resized with a mini-
mal margin as shown in Fig. 3. In this process, we measure
the maximum length of the height and width of a vehicle
for all orientations, crop the margin, and resize the cropped
image.

The negative sample set is generated from the positive
sample set. For every positive set sample, we generate four
negative samples by relocating the vehicle image of the pos-
itive sample. For the generality of the negative sample set,
the relocation is processed randomly in x and y direction.
The system chooses the sample if the center of the relocated
vehicle is far enough from the center of the image. Fig. 4
shows negative vehicle training samples.

Extracting reliable features from the generated training
samples is as important as generating robust training sam-
ples. The HOG descriptor has shown its excellence in de-
tecting humans and vehicles. Here, we compute HOG de-
scriptors from square image patches using 4x4 cell rectan-
gular blocks, 9 orientation bins, and an unsigned gradient as
shown in Fig. 5.

We train an SVM classifier with the HOG descriptor of
generated positive and negative sample images. The classi-
fier has two classes: 1) positive, a vehicle is located in the
center of an image and 2) negative, a vehicle is not located
at the center of an image [14].

In order to correct vehicle location in the given image
with a tracked vehicle presence, we scan the image by slid-
ing a window to extract the HOG and calculating the prob-
ability of vehicle existence in the center of the window by
the SVM classifier. The center of a window with the highest
probability of vehicle existence ideally indicates the cen-
troid of the vehicle in the given image.

3.3. Vehicle Orientation Estimation

Accurate vehicle orientation estimation enables the ex-
traction of regions-of-interest (ROI) such as door regions af-
ter the vehicle location detection. This subsection explains
the method to estimate 360 degree vehicle orientation in the
order of 10 degree. The method of vehicle orientation esti-
mation is similar to the method of vehicle location detection



Figure 6. Vehicle orientation estimation results.

in that both methods use generated images from a ray tracer
with 3-D vehicle models and extract the HOG descriptor
from the synthetic images.

We train an SVM vehicle orientation classifier with the
720 images and their HOG descriptors from positive sam-
ples of vehicle location detection. The classifier has 36
classes for every 10 degrees so that each class has 20 train-
ing images.

Then, the SVM classifier estimates the probabilities of
vehicle orientations in the testing images. Our SVM clas-
sifier can perform correctly if the vehicle is located in the
center of testing images (Fig. 6 (a)). If a vehicle is not cor-
rectly located (Fig. 6 (b)), or does not exist in the testing
images (Fig. 6 (c)), the estimation of our classifier cannot
be valid. Therefore, we need to combine the results of vehi-
cle location detection and vehicle orientation estimation for
the valid estimation of a vehicle states.

3.4. Dynamic Programming for the Optimal Search

In this subsection, we explain the method for the opti-
mal search of vehicle states (location and orientation) in a
sequence of frames using dynamic programming. For the
event ROI extraction in Section 4, searching both the correct
location and orientation of a vehicle is required. We first
formulate the joint probability of vehicle location and orien-
tation in a single frame under the assumption that vehicle lo-
cation and orientation are conditionally independent. Then,
we formulate the transition probability of vehicle states in
two consecutive frames. With the formulated probability
model and our dynamic programming solution, we are able
to effcienly search the optimal vehicle states in every frame.

The joint probability of vehicle location (I) and orien-
tation (o) given an image (1), P(l,o|I), is represented as
a product of the probability of vehicle location, P(I|I),
and vehicle orientation given vehicle location, P(ol|l, ) as
shown in Eq. 1. The estimation of P(I|I) and P(o|l, I) are
explained in Subsection 3.2 and 3.3.

_ P(,0,1) _P(I) P(,o,I)
P, oll) = P(I) _ P(I) P
— P(II) - P(olL,T) 1)

We formulate the joint probability model of a sequence of
the vehicle states given a sequence of corresponding im-

ages, P(l{1,4},071,4/I{1,+}). under the Markovian assump-
tion. Subscripts in equations indicate frame number(s) of
variables. Let S = {l, 0}, which indicates a vehicle state
composed of [ and o. Then, P(l{1 4,041, |I11+) can be
simplified as P(S¢1,41[I11,4y)- P(Sq1,e1|111,4y) is expanded
by using Bayes’ Theorem as shown in Eq. 2

P(Sqi4y, I1ey)
P(Sg ) = W

_ P(Se|Sq1,e-1y, I11,00) P(Sque—1y: Liey)
P(I114)

In Eq. 2, the term P(S{;_1},l{1,,}) can be ex-
panded as P(S{1¢—1},1q1,t-13) - P(I;) , and the term
P(S¢|S¢1,t—13, I11,4y) can be simplified as P(S¢|S;—1, I1)
by the Markovian assumption. Also, P(1;) and P(I{1,t})
are counted as constants given a sequence of images. There-
fore,

(@)

P(Si1,0,0)
oc P(Se|St—1,1t) P(Sq1e-1y, L{1e-13) (3)

In Eq. 3, the left term can be expanded as the following by
using the Bayes’ Theorem:

P(S¢[St-1, 1)

P(S
:p(st|st,1)P(st|ft)P () 4)

(1) P(Si-1)

The right term can also be expanded as the following by
using the Bayes’ Theorem:

P(Sg1e—1y, Ig1,0-13)
= P(Sq1 -1y 1—13) P(I{1,—-1y) 5)
Under the assumption of the uniform prior probability dis-

tribution for S, Eq. 3 can be represented as in Eq. 6 by Eq.
4 and Eq. 5.

P(Sg1eq1,)
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By induction, Eq. 6 can be the product of a sequence of
terms as shown in Eq. 7.

P(Sgl 1)
k=t

= P(S1]I) H [P(Sk[Sk-1)P(SklIr)] (D)

k=2
By replacing back S by [ and o, we can derive the following
equation:

P(lgey, 000,00 1ey)
k=t
= P(ly,01|1) [ ] [Pl 0kllh—1, 0k—1)P(li, 0k | Ii)]

k=2
®)
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Figure 7. (a) The illustration of our human detection process. (b) Our system extracts interaction associated sub-events from a labeled
human-vehicle sequence using a two-sided sliding window. The sliding window detects Meets(IR,NE), which contributes a weighted vote

to the interaction of a person getting into a vehicle.

P(l, 0k|lk—1,0r—1) implies the transition probability of
vehicle states in two consecutive frames, k and k& — 1.
P(lg, o |I)) is derived from Eq. 1. We assume that the
transition probability model has an exponential distribution
as follows:

P(ly, o |lk—1,06-1)

=X Ao exp(=A - [l le—1 ]| — Xo - ||k, 0k—1]])
)

After all, the problem of searching for an optimal se-
quence of vehicle states can be modeled as a Markov deci-
sion process. In order to have a finite set of states, locations
are downsampled by every 5 pixels x 5 pixels windows, ori-
entations are downsampled by every 10 degrees, and the
original dataset with 30 fps (framesec) is downsampled in
time to 2.5 fps.

Finding optimal states can be determined by a value
iteration, V' as follows:

Initialize V (Sy) arbitrarily
loop for frame k
loop for states at k, Sy, = (I, o)
loop for states at k — 1, Si_1
V(Sk) = mazxs,_, { Sp(l1,01]11)-
=5 (Pl oklle—1, 00-1) - P(li, okl Ii)) }
end loop
end loop
end loop

Through dynamic programming, the optimal search im-
proves with each frame. When real-time processing is re-
quired, our system provides the optimal solution in the cur-
rent frame. Without the time constraints, the optimal vehi-
cle states in previous frames can be updated using a back-
ward search.

4. Temporal Logic for Human-Vehicle Interac-
tion Recognition

In this section, we introduce our temporal logic based
approach, which derives the most likely human-vehicle in-
teraction from low-level information. The low-level pro-
cessing results include the localized event ROI and the lo-
cations of detected human objects, which are assigned with
object states and parsed with modified temporal logic for
interaction analysis.

4.1. Human Detection

After the process of 3-D vehicle model alignment, we
perform human detection on the event ROIL. As shown in
Fig. 7 (a), for the recognition of a person getting into and
out of a vehicle, our 3-D vehicle alignment provides the
binary masks of the vehicle and its door regions. We di-
late both types of masks and apply the vehicle mask to the
bounding box so that arbitrary image content around the ve-
hicle will contribute less to the human detector. The door
mask after dilation is marked with a different color to indi-
cate the peripheral of the ROI, which is used to capture a
person’s approach of ROIL.

We use HOG to characterize human objects in low-
resolution imagery. Our SVM based human detector
is trained with HOG features extracted from manually
cropped figure-centric bounding boxes and negative sam-
ples from patches around the figures. To save computa-
tion, the SVM window classifier only performs detection
on grid locations of the event ROI. We train linear SVM to
compute calibrated likelihood values [ 16], which are thresh-
olded to indicate the likely grid locations of human pres-
ence. However, the detection accuracy inevitably suffers
from the blurry low-resolution imagery as in Fig. 7 (a).
Therefore, instead of taking the risk of missing true detec-
tions, a low threshold (< 0.5) is used to allow a certain
amount of false positives. We perform connected compo-
nent analysis on the detection grid coordinate to label the
detected persons and remove unlikely blobs by area.
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Figure 8. The formal event representation of a person getting into
and out of vehicle.

To identify the human-vehicle spatial relationship in
each bounding box, the dilated mask of event ROI is ap-
plied to the mask of human blobs. Based on the overlapped
mask, our system estimates whether the person is inside the
ROI (IR), outside the ROI (OR), or does not exist (NE) in
the image patch. The specific permutations of these three
event states are defined as the constituent sub-events of in-
teractions.

4.2. Piecewise Temporal Logic

In Allen and Ferguson’s classic temporal interval repre-
sentation of events [2], an event is defined as having oc-
curred if and only if the sequence of observations matches
the formal event representation and satisfies the pre-defined
temporal constraints. Temporal logic based approaches
have been successfully applied for the recognition of human
activities, human-human interactions, human-object inter-
actions, and group activities [1]. Most importantly, instead
of learning events from training examples, temporal logic
allows the direct encoding of human knowledge. How-
ever, the recognition of interaction related sub-events from
aerial video is far less accurate than that in regular sce-
narios. Therefore, capturing human-vehicle interactions by
matching them against their complete event representation
is rarely a success in our experiments.

We adopt a modified temporal logic approach to mine
the pieces of event evidence embedded in a human-vehicle
sequence. We name our method piecewise temporal logic
(PTL), which is different from the classic temporal logic
in two major aspects. First, our interaction representation
is defined based on event states, from which the higher
level interaction associated sub-events are derived. Sec-
ond, our method recognizes interactions by comparing the
weighted sums of detected sub-events, the temporal rela-
tionships among which are not taken into account.

We found that in a human-vehicle sequence, the mo-
ments of interaction related primitive actions are not always
observable and cannot be reliably recognized. Therefore,
we define human-vehicle interactions in terms of the event
states that lead to them. Fig. 8 shows the formal event rep-
resentation of a person getting into and out of a vehicle.

Interaction Sub-event Weight
Getti Meets(IR,NE) 2
‘;t':g Meets(OR,IR) 1
. Meets(OR,NE) 0.5
vehicle —
Finishes(IR) -2
Getti Meets(NE,IR)
:ut'gjf’ Meets(IR,OR) 1
, Meets(NE,OR) 0.5
vehicle
Starts(IR) -2

Table 1. Interaction associated sub-events and their corresponding
weights. IR, OR, and NE are shorts for human inside the ROI,
outside the ROI, and does not exist (NE) in the image bounding
box, respectively. Meets, Starts, and Finishes are the temporal
predicates used to define their relationships.

Given the temporal flows of event states, interaction asso-
ciated sub-events are defined in terms of the alternations of
specific states. The set of predicates we used to describe the
temporal relationships of event states include Meets, Starts,
and Finishes. These sub-events are manually assigned with
weights based on their relative importance to the actual oc-
currence of the interaction. For example, in Fig. 7 (b), the
alternation of event states from IR to NE is more informa-
tive than the change from NE to OR for the detection of a
person getting into a vehicle. Table 1 shows the interac-
tion associated sub-events and their corresponding weights.
Note that the exact values of sub-event weights cause much
less effect on the system performance than their relative val-
ues.

It is a difficult task to extract instances of sub-events
from a noisy event state sequence such as Fig. 7 (b). We
propose to use a two-sided sliding window to detect inter-
action associated sub-events. As shown in Fig. 7 (b), the
sub-event Meets(IR,NE) extracted from rear and front slid-
ing windows is compared with the human encoded list in
Table 1. The matched sub-event contributes a weighted vote
to the corresponding bin of an event histogram. We use the
sum of absolute sub-event weights in an event histogram to
determine if any of the two interactions have ever occurred.
The normalized event histogram indicates the occurrence
likelihood of interactions.

5. Experimental Results

We test our methodology with the challenging VIRAT
Aerial Video dataset [11]. The videos were taken in 30
frames per second with the resolution of 720 by 480 pixels.
As shown in Fig. 9, the challenges posed by this dataset in-
clude low image resolution, vague object appearance and
motion (due to air turbulence and video compression ar-
tifacts), time-varying views, changing weather conditions,
salient shadow, and cluttered backgrounds.
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Figure 9. The snapshots of four true positive (TP), two true negative (TN), one false negative (FN), and one false positive (FP) sequence
are shown. We treat the subject human-vehicle interactions (getting into vehicle, getting out of vehicle) as the positive class and all other

events (others) as the negative class.

There are a number of human-vehicle sequences in this
dataset. However, we can only find 7 instances of a per-
son getting into and out of a vehicle. We manually se-
lect 20 other types of human-vehicle interaction sequences,
in which a person may be passing by or (un)loading the
vehicle. Therefore, in our evaluation set, there are 4 se-
quences of a person getting into a vehicle, 3 sequences of
a person getting out of a vehicle, and 20 other types of
human-vehicle sequences. We use the same set of parame-
ters for vehicle alignment and interaction analysis without
any event-level training. Fig. 9 shows the snapshots of our
testing sequences. Despite the differences in the types of
vehicles, viewpoints, and interactions, our system is able to
correctly detect the subject human-vehicle interactions from
sequences such as the TP examples in Fig. 9. The FP and
FN examples in Fig. 9 show the cases when our method
fails. In the sequence of “Getting into vehicle, FN”, the
approach of the person from the left was partially occluded
by the building, and in the sequence of “Others, FP” the
departure of the person from the ROI misled the system.

Our system demonstrates superior results on the search
of the optimal vehicle states. In 20 sequences out of 27 test-
ing sequences (74.1%), both the orientation and location of
vehicles are correctly estimated. In the 6 isntances out of
7 incorrect sequences (22.2%), the locations of the vehicles
are correctly detected but the vehicle orientations are 180°
reversed. In spite of that, the ROI in those sequences were
correctly located because of the symmetry of vehicle shape.

In the other 1 instance (3.7%), the estimation of the vehi-
cle orientations is incorrect. For interaction recognition, we
analyze sub-events in every 4-second long two-sided slid-
ing window. The system classifies a sequence as the subject
human-vehicle interactions if its sum of absolute sub-event
weights exceeds 1 and there is no tie in the event histogram.
A sequence is recognized as other events if the sum of ab-
solute sub-event weights is less than 1 or there is a tie in its
event histogram. Fig. 10 shows the confusion matrix. By
treating the subject human-vehicle interactions as the posi-
tive class and all other events as the negative class, the ac-
curacy of our method on this evaluation set is 77.78% ((TP
+ TN)/ (TP + TN + FP + FN)), the precision is 53.85% (TP
/ (TP + FP)), and the recall is 100.0% (TP / (TP + EN)).

6. Conclusions

We propose a general framework for the recognition of
human-vehicle interactions from aerial view. Our method
offers three major advantages to better resolve the chal-
lenges posed in this scenario. First, we adopt a temporal
logic based approach to avoid the cost of manually collect-
ing and labeling the training examples. Second, we employ
a dynamic programming based 3-D vehicle model align-
ment technique, which accurately locates event ROI with
the consideration of the previous alignment results. Third,
based on classic temporal logic, we introduce the concept
of PTL, which significantly improves the recognition per-
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Figure 10. The confusion matrix of our method on a subset of the
VIRAT Aerial Video dataset.

formance in our problem. PTL detects interaction sub-
events by checking the temporal relationships between the
event states. However, at the semantic-level, the tempo-
ral logics among the sub-events are not verified to induce
the robustness against sequences of noisy sub-events. Fur-
thermore, the proposed method can be generalized to rec-
ognize any kinds of human-vehicle interactions with the
proper encoding and weighting of the temporal logics be-
tween event states. Most importantly, our method demon-
strates high recognition accuracy on the challenging VIRAT
Aerial Video dataset.
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