
R E A L - W O R L D  D E P L O Y M E N T S

24 PERVASIVE computing Published by the IEEE CS and IEEE ComSoc   ■   1536-1268/06/$20.00 © 2006 IEEE

Moving Out of the Lab: 
Deploying Pervasive 
Technologies in a 
Hospital

R esearch into the nature of ubiqui-
tous and pervasive computing has 
now been around for more than 
a decade. However, there are few 
examples of real-world research-

based deployments of pervasive technologies 
and only a sparse amount of literature about 
how ubicomp concepts and technologies play 
out on a large scale.1,2 This is likely because per-
vasive technologies are, to a large degree, still 
premature, and examples of such systems are 
mostly in controlled lab environments. Another 
reason is that it’s problematic to defi ne a real 
pervasive computing application or system. 
Must it include sensors? Should it be context-

aware? Embedded? Invisible? 
And should mobile phones or 
PDAs be involved?

We can’t, and shouldn’t, 
answer these questions. It’s 

more sensible to talk about a system possessing 
different pervasive computing traits—that is, a 
system can contain sensors, use large interac-
tive displays, or involve mobile computing tech-
nologies. In this sense, researchers can fulfi ll 
the application’s requirements by inserting per-
vasive computing technology into the system, 
which is, simply put, an application that serves 
some business purpose.

This article reports our experiences with 
deploying the iHospital system, a hospital 
scheduling and awareness system. We built the 

system to support the often intense coordina-
tion of operations in a large hospital, and to this 
end, it incorporates location tracking, a context-
awareness system, large interactive displays, and 
mobile phones. We choose not to label our sys-
tem pervasive because, to its users, it’s a sched-
uling, coordination, and awareness system that 
possesses several pervasive computing traits.

Here we share our experiences in deploying 
this system at a small Danish hospital, which 
uses it extensively in the operating ward.

Interactive hospital project
Smoothly, effi ciently, and securely running an 

operating ward requires maintaining a shared 
overview of the current surgeries and person-
nel, being able to communicate with the people 
involved, and being able to quickly adjust to 
schedule changes. We developed a distributed 
and heterogeneous system for supporting this 
line of hectic work. The system, which we devel-
oped to support work in the operating ward, 
also supports work in the related patient and 
recovery wards.

The system runs on large wall displays, PCs, 
and mobile phones and uses location-tracking 
technology and video streaming to provide con-
text information.

Developed technologies
We carried out our entire project in close col-

laboration with clinicians. They participated in 

Lessons learned from deploying a hospital scheduling and awareness 
system can help other researchers prepare pervasive systems for the real 
world.

Thomas Riisgaard Hansen, Jakob 
E. Bardram, and Mads Soegaard
University of Aarhus



JULY–SEPTEMBER 2006 PERVASIVE computing 25

brainstorming sessions and workshops 
and have helped refi ne and evaluate 
early prototypes. During deployment, 
we used feedback from the clinicians 
to refine the iHospital system. The 
inspiration, design, and implementa-
tion process lasted approximately a 
year and half, and in November 2005, 
a suite of pervasive and context-aware 
applications was ready for deployment. 
The suite consisted of a distributed media 
space system, a system and infrastruc-
ture for providing awareness to mobile 
devices, and a context-awareness and 
location-tracking infrastructure: 

AwareMedia is an application that 
shows information about the work in 
the different operating rooms. A video 
stream provides overall awareness of a 

given operation’s state, a progress bar 
shows more detailed information about 
the progress, a chat area lets people 
communicate in a less intrusive manner, 
a schedule shows the current operating 
schedule including changes, and the 
location-tracking system shows infor-
mation about who is in the operating 
room. This information is distributed 
to different computers, both within the 
operating ward and the rest of the hos-
pital. Figure 1 shows the system in use 
in the central coordinating station.

AwarePhone is a program that runs 
on Symbian mobile phones. It provides 
an overview of people at work and 
the status of surgeries in the operat-
ing rooms. An augmented phone book 
lets the user get enhanced presence 
information about others in the phone 
book, such as their location, schedule, 
and self-reported status. With this 
information, users can decide who to 
call and when. AwareMedia users can 
also choose to send a message to an 
AwarePhone instead of calling. Figure 
2 shows the AwarePhone client running 
on a Nokia 6600 mobile phone.

We used Bluetooth to track people 
in our location and context-awareness 
infrastructure. All PCs in the operat-
ing ward have a modifi ed Bluetooth 
USB stick with a range just less than 
10 meters. The system tracks clinical 
personnel and patients using a spe-
cial Bluetooth chip (see fi gure 3) or 
their mobile phone. The Java Context 

Awareness Framework (JCAF) infra-
structure3 handles location, activity, 
and status information and, in turn, 
feeds the Aware infrastructure,4 which 
provides awareness information for the 

Figure 1. AwareMedia in use in the 
central coordinating station. Three 
nurses and a doctor are discussing 
and updating the schedule. 

Figure 2. A doctor can use the Aware-
Phone client to check the a surgery’s 
status. Here the clinician is running it 
on a Nokia 6600 mobile phone.

Figure 3. Tracking with Bluetooth 
beacons. The small black item sends a 
Bluetooth signal to the infrastructure. 
The chips are carried on the shirt or in 
the pocket during a work shift and then 
placed in a charger for the night.



26 PERVASIVE computing www.computer.org/pervasive

REAL-WORLD DEPLOYMENTS

AwareMedia and AwarePhone applica-
tions the clinicians use.

These systems were developed to 
support a number of scenarios. This 
example involves various steps: An 
acute patient arrives. After a quick 
glance at a large wall display running 
the AwareMedia client, the head nurse 
fi nds an empty operating room. She 
touches the screen to schedule a new 
acute surgery for that operating room. 
She then uses the location-tracking sys-
tem to fi nd a surgeon that isn’t currently 
in surgery and sends a message to that 
person’s mobile phone with informa-
tion about the new surgery. As soon as 
the nurse enters the patient into the sys-
tem, the patient ward is notifi ed about 
the change of plan. This lets the ward 
inform the next scheduled patient that 
his or her surgery has been postponed 
due to the acute surgery. Our setup sup-
ports many similar scenarios aimed at 
providing awareness and enhancing 
communication.

Deployment
We deployed the iHospital system in 

November 2005 at Horsens Hospital in 

Denmark. We installed 10 PCs in the 
hospital, some in the operating rooms 
and some in wards and offi ces in other 
areas. Two computers are equipped 
with two 40-inch touch-sensitive dis-
plays. All the computers are equipped 
with a Bluetooth location-tracking sys-
tem, and the computers in the opera-
tion department include webcams. We 
gave out 17 mobile phones to clinicians, 
and a central server runs the context-
awareness infrastructure and distrib-
utes events to the different clients.

Figure 4 shows a schematic overview 
of the operating ward; the red marks 
indicate the locations of the deployed 
clients. The operating ward is on the 
hospital’s second floor, the recovery 
ward is also on the second fl oor but 
approximately 200 meters away, and the 
presurgery ward is on the fi fth fl oor.

At the time we wrote this article, the 
system had been deployed for more 
than four months. In February 2006, 
the hospital discontinued paper-based 
schedules and is now using only the 
computer system. The system handles 
200 to 500 operation events per day. 
An event is either a manual creation of 

a new operation or a manual update to 
an existing surgery. We handed out 17 
mobile phones that the clinicians use 
in their daily work. We combined the 
phones with Bluetooth beacons that 
our system uses to track daily move-
ments for approximately 30 people.

We log interactions with the system 
and have collected extensive data about 
its use. With this data, we can see that 
the surgical staff is using the system 
extensively, especially the ability to 
send messages, access video feeds, and 
check a surgery’s progress.

Deployment issues
When deploying the suite of per-

vasive computing systems we’ve just 
described, we faced a range of non-
trivial, real-world issues. Some of these 
were well-known problems in pervasive 
computing, such as calibrating indoor 
location systems. Other issues seemed 
trivial and banal at fi rst, such as fi nd-
ing a place for displays. However, these 
also turned out to be major issues, and 
we hope that our “war stories” help 
others design and deploy pervasive 
computing technologies.

Figure 4. A schematic overview of the presurgery, operating, and recovery wards. Red circles indicate the deployed clients’ locations.

Operation 
room 9

Main corridor

Presurgery
ward

Operation 
room 4

Coordinating
central

Operation 
room 3

Recharge 
station

Recovery
department

Operation department



JULY–SEPTEMBER 2006 PERVASIVE computing 27

We have arranged our discussion of 
deployment issues around three main 
categories: hardware, software, and 
user settings. The hardware category 
contains a set of core questions that 
researchers can use to identify some 
of the issues a pervasive system must 
address before deploying it in a real-
world environment. The software 

category addresses the state of the soft-
ware being deployed. Can it handle the 
challenges of real-world deployment? 
Is it possible to deploy and update the 
software, locate errors, and debug the 
software? Does the system perform and 
scale? What about security? These ques-
tions help identify possible weaknesses 
in the software when moving it to real-

world settings. The user-setting category 
is a mixture of user and organizational 
issues, relevant to pervasive systems 
deployed in a user organization. 

Although these categories are broad, 
we fi nd they adequately capture many 
of the issues we faced. The checklist 
in table 1 further details the issues we 
encountered.

TABLE 1
A checklist of questions to consider during real-world deployment.

Category Issues Questions

Hardware Cost

Security
Environment

Power

Network

Space

Safety issues

What will implementation cost? Will scaling up the system affect the price? Is special equipment 
needed?
Is the equipment secure? Is there a risk of theft?
Does the environment pose special requirements on the equipment? Is the system going to be 
used outdoors? Can it handle vandalism? Can it withstand being dropped or cleaned?
Does the system require a power plug? How long can it run without being recharged? Do the 
batteries run fl at if radio communication is used excessively? How do you recharge the system?
How will the device communicate? Does it require an Ethernet connection? Is the wireless 
infrastructure in place? Do you need to transmit data in an external network?
How much physical space does the system use? Is there space on the wall for large wall displays? 
Is there table space for another computer? Do the doctors have enough room in their pockets for 
another device? Is there space on the dashboard for another display?
Will a system malfunction affect safety issues? What is the contingency plan in case of a full system 
crash? Will the system interfere with other systems? Can the system pose a threat to the user?

Software Deployment 
and updates

Debugging

Security

Integration

Performance 
and scalability
Fault tolerance

Heterogeneity

How is the software transferred to the device? Does the deployment mechanism scale to a large 
number of devices? Can you update the system? How do you update the different devices? Are 
the devices accessible after deployment?
If the system malfunctions, how do you fi nd the error? Does the system store debugging infor-
mation? How do you detect serious errors in the system? How is logging done?
Does the system need to be secure? How does it keep information confi dential and secure? Is 
there a concrete security risk?
Is the deployed system stand-alone? Does it need to communicate with other deployed systems 
or integrate with third-party systems? Is there a public API and converters for communicating 
between systems?
How does the system perform? Is system performance acceptable in the real-world setting? How 
many devices are needed for deployment? Does the system scale?
What happens when an error occurs? Can the system recover automatically? Can the daily sys-
tem users bring the system back up to a running state? Is the developer team notifi ed about 
errors? Is the system confi gured for remote support?
Does the system run in a heterogeneous environment? Do heterogeneous elements need to 
communicate?

User setting Usability

Learning

Politics

Privacy

Adaptation

Trust

Support

Will end users use the system? If so, how many? Can the average user use the system? Does the 
interface pose problems? Does the system’s overall usability match the average user?
How do the users learn to use the system? Is it individual instruction or group lessons? Does the 
system need superusers? Is a manual or help function needed? How does the user get support?
Who controls the system? Does the system change the power balance in the user setting? Who 
benefi ts from the system? Is the person that benefi ts from the system the same as the person 
that provides data to the system? Does the system require extra work from users?
Does the system reveal private information? What kind of personal information does the system 
distribute and to whom?
Is the organization ready for the system? Is there organizational resistance? Will the system 
change formal or informal structures in the organization?
Does the user trust the system? Is the information given to users reliable? Who sends the 
information?
Will the developers support the system? Does the support organization have remote access to 
the system?



28 PERVASIVE computing www.computer.org/pervasive

REAL-WORLD DEPLOYMENTS

Getting the infrastructure in place
Striking an appropriate balance be -

tween infrastructure cost, security, 
net working, and so on are often at the 
heart of designing and deploying hard-
ware and infrastructure for these kinds 
of technologies. For example, when 
researchers deployed a large-scale sensor 
network for habitat monitoring,5 ensur-
ing a correct balance between the chal-
lenges posed by a harsh environment, 
small spaces (such as a bird’s nest), ad 
hoc networking, and limited power were 
core design and deployment issues.

In our deployment, most of these 
issues also had varying impact. Cost 
is of course always a factor. In any 
research project, using your funding 
wisely means cutting your coat accord-
ing to your cloth. There are many forms 
of cost associated with a pilot study, 
but our discussion mainly addresses 
the costs associated with purchasing 
equipment. In our project, for example, 
the cost of a location-tracking system 
was critical. Commercial, produc-
tion-strength systems such as Ubisense 
(see www.ubisense.net) are precise but 
come with a steep price tag. In a full-
scale deployment in a large hospital, 
these systems come with large costs, 
especially if the system must track all 

the patients and clinicians.
The alternative solution—which we 

chose to pursue—was to develop our 
own, cheaper, and more coarse-grained 
location-tracking technology, which 
also let us use existing mobile phones 
owned by clinicians or patients for loca-
tion tracking. This solution worked well 
insofar as we only required location 
tracking with a room-level granularity.

Pervasive computing is fundamen-
tally about integration with the physi-
cal environment, and another mundane 
but often overlooked aspect of real-
world deployment is space—or rather 
the lack of it. It’s important for design-
ers to keep space limitations in mind. 
In our deployment, it proved diffi cult 
to integrate large amounts of techno-
logical devices into already confi ned 
spaces. Fitting two 40-inch screens 
into an operating room wasn’t trivial, 
and placing 19-inch touch screens in 
the tightly furnished offi ces around the 
hospital also proved diffi cult (see fi g-
ure 5). Furthermore, getting network 
and power sockets in the right places 
became an important issue because 
safety regulations prohibit cables on 
the fl oor of operating rooms.

With respect to power, wireless de -
vices need a place to recharge when not 

in use. At the hospital, this location had 
to be both central and secure. A lot of 
equipment is stolen from hospitals, so 
fi nding a secure spot was important. For 
the location tokens, we used a corner 
just inside the operating ward (see fi gure 
4). For the mobile phones, we gave each 
person a charger and the responsibility 
for charging it in a private place.

When situating new technology 
inside an existing technical environ-
ment, a range of safety issues related to 
interference, interaction, disturbance, 
and jamming can arise that researchers 
must address up front. For example, at 
our hospital, we needed to investigate if 
using mobile phones (Global System for 
Mobile Communication [GSM]) and 
Bluetooth (2.4-GHz band) could inter-
fere with existing medical equipment 
running in the operating rooms. For this 
purpose, we engaged special technicians 
to test these devices and survey the lit-
erature available in these areas. Luckily, 
they concluded that all the equipment in 
the hospital had proper shielding. How-
ever, this might not be the case in other 
hospitals.

Installing and launching software
The concerns relating to the soft-

ware’s design, implementation, and 
testing phases include

• how to deploy the software,
• how to keep it up-to-date,
• how to debug running systems,
• how to integrate different software 

systems, and
• how to ensure a stable and scalable 

system that performs adequately.

For example, to ensure stable opera-
tion in the habitat monitoring project,  
researchers needed to install a major sys-
tem component to monitor the motes’ 
health and status.5 

Figure 5. The confi ned space in a 
recovery department offi ce made it 
challenging to place all necessary 
system hardware.



JULY–SEPTEMBER 2006 PERVASIVE computing 29

In our hospital deployment, these 
issues also played an important role. 
After the hardware infrastructure was 
in place, our next concern was to deploy 
and continuously update the software. 
The different parts of the system ran 
on a server, 10 PCs, and 17 mobile 
phones. Making regular, often daily, 
updates posed a challenge. Access to 
operating rooms is restricted, and to 
enter the rooms, you must be sterile, 
which is a time-consuming process of 
getting dressed in surgical clothes and 
thoroughly washing. The mobile phones 
were distributed amongst nurses and 
physicians and weren’t easily accessible 
for maintenance.

To mitigate these challenges, we 
developed different semiautomatic and 
fully automatic updating strategies. 
For example, AwareMedia queries an 
update table periodically and auto-
matically installs a new release if one 
is available. For the AwarePhones, we 
used a semiautomatic approach that let 
the user install updates from a default 
Wireless Application Protocol page.

Integration is often an issue that’s 
deliberately excluded in the creation of 
proof-of-concepts of new technologies. 
When entering the real world, however, 
this issue is of utmost importance and 
can be the difference between a suc-
cessful deployment and a failure. On 
the other hand, systems integration is a 
cumbersome, tedious task that’s often 
rather costly. Our project faced several 
types of integration challenges. One 
was an integration between the hospi-
tal’s local telephone network and the 
AwarePhone; our goal was to let users 
operate AwarePhone like a normal 
hospital phone. Another was integra-
tion between the schedules in Aware-
Media with the old mainframe-based 
scheduling system the hospital used. In 
this latter case, making this integration 
was simply too costly (and technically 
challenging), so we hired a secretary 

to manually transfer the information 
during the pilot study. From a long-
term perspective, however, researchers 
can’t neglect integration requirements 
because they are fundamental to the 
design for deployment in a real-world 
setting.

Because performance and scalabil-
ity are clearly important in real-world 
deployment, developers must accom-
modate these aspects early in the tech-
nology’s design. In AwareMedia, for 
example, we used an IP multicast to 
stream video between different loca-
tions simultaneously. This took up 
significant bandwidth, which meant 
we had to create a logical separate net-
work during the deployment. Similarly, 
we took care to minimize traffi c to the 
mobile phone for scalability and perfor-
mance reasons. In addition, it’s neces-
sary to consider the performance of user 
interfaces. In AwareMedia, for exam-
ple, we made sure that only a necessary 
amount of data was loaded into the cli-
ent to ensure scalability over time.

In the real world, security and pri-
vacy are major issues. For example, 
our system handles real patient data 
as well as the medical staff’s location 
information. Within the hospital, the 
system is shielded by the existing fi re-
wall that could be accessed from the 
outside using a virtual private network. 
However, to avoid broadcasting sensi-
tive patient and location data across the 
open GSM network, we had an exter-
nal service provider install a custom-
ized security solution .

On a more general level, we argue 

that real-world deployment of pervasive 
computing technologies will often face 
the challenges of heterogeneity—that 
is, software systems need to run in a 
heterogeneous environment involving 
various networks, protocols, hardware, 
operating systems, applications, data-

bases, and so on. Hence, design for het-
erogeneity is fundamental for deploy-
able systems. One strategy we used to 
mitigate heterogeneity in our project 
was to design and implement loosely 
coupled subsystems that can run (and 
fail) independently of each other. In this 
way, each subsystem can accommodate 
and utilize the peculiarities of different 
platforms, networks, and languages 
and still work together as one system. 
Changing or updating one component 
doesn’t affect the entire system, and 
a breakdown in one component only 
affects part of the system’s functional-
ity. For example, a breakdown in the 
location-tracking system only affects 
the display of location information. 
Moreover, debugging a loosely coupled 
component is easier, and we were able 
to handle scalability issues for each sub-
system. Finally, a loosely coupled sys-
tem let us use different programming 
languages depending on the challenge 
the particular subsystem presents. 

A related technical strategy mitigat-
ing the challenges of robustness, fault 
tolerance, and performance is to use 
stateless components. In case of a seri-
ous error, it’s possible to restart and 
reinitialize stateless components with 
no loss of state information. Ensuring 
stability by restarting stateless processes 

Because performance and scalability are clearly 

important in real-world deployment, developers 

must accommodate these aspects early in the 

technology’s design.



30 PERVASIVE computing www.computer.org/pervasive

REAL-WORLD DEPLOYMENTS

has been a simple but effective strategy 
in embedded software engineering,6 
and these principles are applicable to a 
high degree in a pervasive computing 
environment. In our project, we can 
restart all subsystems independently, 
including AwareMedia, which we can 
restart by pressing an on/off button. 
The only stateful component is the 
database on the server; all other com-
ponents initialize from the server. This 
architecture exposes a single point of 
failure, but it has the advantage that all 
other components can fail and restart 
without losing vital information.

Involving the users
The last group of issues addresses 

the user setting in which you plan to 
deploy the developed system. Because 
our project was designing an end-user 
system, we focused on usability from 
the outset. We wanted to deliver a walk-
up-and-use system that required no 
prior training. All objects are visually 
represented, and users interact through 
direct manipulation—dragging, drop-
ping, or otherwise visually manipulat-
ing most objects.

One special challenge in a hospital 
deployment is to teach a large number 
of users, who work in shifts, how to use 

the system. To this end, we employed a 
rumor-based and guerrilla-style teach-
ing strategy. We encouraged people to 
pass on the information we gave them, 
experiment with the system, and use 
the large wall displays to watch how 
other people used the system. Also, we 
assigned fi ve superusers to be the main 
“rumor spreaders.” As a supplement to 
rumor-based learning, we used what 
we call guerrilla-style teaching, where 
we stopped random passersby and 
taught them how to use new additions 
to the system.

A completely automated system 
(such as a context-aware system) can 
provide valuable information to users 
without any user interaction. Video 
streams and location tracking provides 
our users with valuable information 
without requiring any user interaction. 
However, automated systems are sel-
dom enough, and if users are required 
to take action, the question about who 
benefi ts from the system arises. Is it the 
users, researchers, managers, or col-
leagues? Do the pervasive components 
require extra work from users? In our 
project, it became a problem that users 
without a mobile phone needed to pick 
up a Bluetooth chip from the charg-
ing station and register it in the system 

every morning to be part of the track-
ing system—extra work that mainly 
benefi ted their colleagues. The result 
was that people tended not to pick up 
a chip, and we didn’t fi nd an easy solu-
tion to this problem. 

Distributed sensors collecting infor-
mation about the environment and 
human activities are often part of per-
vasive systems, introducing privacy 
issues. For example, based on a study 
in an elder-care facility, Richard Beck-
with discusses how ubiquitous technol-
ogies affect privacy.7 Our system also 
contains many privacy-sensitive com-
ponents. Video multicast of work in 
operating rooms (see fi gure 6) and loca-
tion tracking are two examples. Based 
on previous research on this topic, we 
expected privacy to be a major problem 
in the deployment. However, we have 
been surprised to fi nd how little privacy 
concerned our participants. Through 
interviews and observation, we con-
cluded that users trusted our system 
because of an overall well-function-
ing work environment and some well-
chosen design decisions, such as using 
only partial location tracking and low-
resolution video streams. For example, 
our location-tracking system doesn’t 
track people in all locations, providing 
“tracking free” areas such as the coffee 
room, cafeteria, and bathrooms. 

An interesting aspect of trying per-
vasive technologies out in an organiza-
tion is to study the adaptation of new 
technologies. System adaptation is a 
process where the technology is either 
integrated into daily work, marginal-
ized as something only a few enthusi-
asts use, or even completely abandoned. 
To facilitate system adaptation, we 
chose an iterative deployment. During 
each iteration, we deployed and tested 
a small part of the system, addressing 
smaller problems as they arose. It took 
approximately a month to deploy the 
full-scale system. Using the iterative 

Figure 6. Video streaming from an 
operating room.



JULY–SEPTEMBER 2006 PERVASIVE computing 31

deployment strategy, we were able to 
catch serious organizational or user 
inconsistencies in the system early on. 

A fi nal and often forgotten issue is 
to consider who is responsible for sup-
porting the system after it’s deployed. 
Supporting a pervasive system can be 
both time-consuming and challenging 
because its components might be dis-
tributed over large areas. Well-designed 
software architecture can reduce, but 
not remove, the need for a support solu-
tion. Deciding whether the developers 
or the organization in which the system 
is deployed will provide support consti-
tutes an important part of deployment 
considerations. In our project, the sys-
tem must run during the daytime and 
preferably 24 hours a day, seven days 
a week. We formulated a shared sup-
port agreement for the project where 
the hospital performs smaller support 
tasks and people from the developing 
team at the University of Aarhus car-
ried out larger support tasks.

T echnologies used in perva-
sive systems are often under 
development or implemented 
as a prototype. If novel per-

vasive systems are going to be tested in 
real-world settings, a research prototype 
isn’t enough. With the issues we address 
in this article, we hope to have provided 
a useful tool for testing and discussing 
real-world issues with pervasive systems 
before and during deployment. 

Large-scale deployments of pervasive 
systems are still rare, but we expect that 
researchers will test more systems in 
real-world environments with a non-
trivial number of users. We have had 
few projects to learn from and were 
forced to learn many lessons by trial 
and error. As we’ve shown, issues that 
seem trivial in the laboratory might 
become major obstacles when deploy-
ing systems in real-world settings. 

ACKNOWLEDGMENTS
We thank our project group from Horsens Hospi-
tal, especially Marie Louise Ulsøe, Lisbeth Meier, 
Jan Bjørn Nielsen, Ole Glerup, Jens Ole Storm, 
and Steen Friberg. This work has been fi nan-
cially supported by the Competence Centre ISIS 
Katrinebjerg project 107. We also thank Christian 
Jonigkeit and Martin Mogensen for their techni-
cal support and development.

REFERENCES

 1.  N. Davis and H.W. Gellersen, “Beyond 
Prototypes: Challenges in Deploying 
Ubiquitous Systems,” IEEE Pervasive 
Computing, vol. 1, no. 1, 2002, pp. 26–
35.

 2.  J. Scholtz and S. Consolvo, “Toward a 
Framework for Evaluating Ubiquitous 
Computing Applications,” IEEE Perva-
sive Computing, vol. 3, no. 2, 2004, pp. 
82–88.

 3.  J.E. Bardram, “The Java Context Aware-
ness Framework (JCAF): A Service Infra-
structure and Programming Framework 
for Context-Aware Applications,” Proc. 
3rd Int’l Conf. Pervasive Computing (Per-
vasive 05), Springer, 2005, pp. 98–116.

 4.  J.E. Bardram and T.R. Hansen, “The 
AWARE Architecture: Supporting Context 
Mediated Social Awareness in Mobile 
Cooperation,” Proc. 2004 ACM Conf. 
Computer Supported Cooperative Work 
(CSCW 04), ACM Press, 2004, pp. 192–
201.

 5.  A. Mainwaring et al., “Wireless Sensor 
Networks for Habitat Monitoring,” Proc. 
1st ACM Int’l Workshop on Wireless Sen-
sor Networks and Applications, ACM 
Press, 2002, pp. 88–97.

 6.  J. Armstrong et al., Concurrent Program-
ming in Erlang, Prentice-Hall, 1996.

 7.  R. Beckwith, “Designing for Ubiquity: 
The Perception of Privacy,” IEEE Perva-
sive Computing, vol. 2, no. 2, 2003, pp. 
40–46. 

For more information on this or any other com-
puting topic, please visit our Digital Library at 
www.computer.org/publications/dlib.

the AUTHORS

Thomas Riisgaard Hansen is a doctoral student in computer science at the 
University of Aarhus. His research interests include human-computer interac-
tion with pervasive technologies, interacting with mobile devices, gesture 
and speech interaction, and technology for the medical domain. He received 
his MS in information studies from the University of Aarhus. Contact him at 
Åbogade 34, 8200 Århus N, Denmark; thomasr@daimi.au.dk.

Jakob E. Bardram is an associated professor at the Department of Computer 
Science at the University of Aarhus. His research interests include pervasive 
computing, software architecture, computer-supported cooperative work, 
and applying software within healthcare. He received his PhD in computer 
science from the University of Aarhus. Contact him at the Computer Science 
Dept., Univ. of Aarhus, Åbogade 34, 8200 Århus N, Denmark; bardram@
daimi.au.dk.

Mads Soegaard is a doctoral student in computer science at the University 
of Aarhus. He conducts his research in designing interaction for computer-
supported collaborative work in ubiquitous computing environments. He 
received his master’s degree in information studies from the University of 
Aarhus. Contact him at Åbogade 34, 8200 Århus N, Denmark; madss@daimi.
au.dk.


