
Process Modelling Languages: One or Many?

Reidar Conradi�, Norwegian Institute of Technology, Trondheim, Norway
Chunnian Liu, Beijing Polytechnic University, Beijing, P.R. China

September 19, 1999 —Submitted for EWSPT’95, April 1995, Leiden

Abstract

The paper describes the different phases and subdomains of process modelling and their
needs for conceptual and linguistic support, and in what forms. We group the relevant factors
into three dimensions: meta-process phases, process elements, and the tool/user views. In
the first dimension, we focus on enactable process models. For such models, we describe the
design alternatives for a core process modelling language and a set of tailored sub-languages
to cover special process elements. However, no detailed and functional comparison of possible
modelling language are attempted.

Then we address interoperability between related sub-models and its implication to the
language design. We also present a general architecture for a Process-Centered Software
Engineering Environment, with a segmented repository of model servers.

Some concrete language realisations, mainly from the EPOS PSEE, are used throughout
the presentation. We also give a realistic example of the design of an interoperable PSEE, and
discuss how it can be improved using an extended EPOS.

The paper concludes that we have to live with many sub-languages around a core process
modelling language. However, the underlying linguistic paradigm in this core language is
not judged critical. What counts is use of standard support technologies, interoperability
to handle heterogeneous and distributed process information, non-intrusive process support,
end-user comprehension, and flexible support for evolution (meta-process).

1 Introduction

In the last decade, there has been much interest in thesoftware processas a vehicle to improve
software production. ManyProcess-Centred Software Engineering Environments (PSEEs)have
been constructed and documented, although to a less extent tested in industrial settings. A few
commercial PSEEs have also become available in the last years, e.g. Process Weaver from Cap
[Fer93], and Process Wise Integrator (PWI) from ICL [Rob94].

The goal of this paper is to pragmatically discuss the design of the “ideal”process modelling lan-
guageversus the functionality required. A special concern is how existing modelling concepts and
linguistic constructs can be used and combined. Therefore, interoperability between different lan-
guages and related models and tools are emphasised. Some aspects of a general PSEE architecture
are also discussed.

Discussing the “right” modelling concepts and language(s) for a certain application domain is
very ambitious, and the actual design of language can be hard to validate (“air castles”). We

�Dept. of Computer Systems and Telematics, Norwegian Institute of Technology (NTH), N-7034 Trondheim, Nor-
way. Phone: +47 73 593444, Fax: +47 73 594466, Email: conradi@idt.unit.no.

1

are faced with similar design decisions in Information Systems Engineering, Business Process
Reengineering, Enterprise Modelling etc. – resulting in a plethora of modelling formalisms. See
also [LSS94].

For instance, we may choose to have one large modelling language for the entire domain. An-
other alternative is to have one small and general core language, with a spectrum of specialised
sub-languages to cover different subdomains (activities, artifacts etc.), to cover different goals (un-
derstandability, executability etc.), or to be oriented against different user roles (expert designers
vs. normal users). We should also pay attention to standardisation and new platform technologies,
cf. distributed architectures and workflow systems.

To obtain more solid assessments and comparisons of the modelling alternatives, we should have
a well-defined set of domain subcategories, i.e. process elements. We will therefore focus on
process modelling languages for rather “low-level” or enactable process models, not on the more
high-level modelling languages to analyse and design more abstract process models.

There is yet little agreement on basic concepts, terminology, linguistic constructs, and tool ar-
chitectures underlying such PSEEs. Some classification of concepts can be found in [CFFS92]
[Lon93] [FH93] [CFF94], of languages in [CLJ91] [ABGM92], and of architectures in [BBFL94].
We will use the below definitions.

By processwe understand a set of goal-oriented, partially ordered and interactingactivities, and
their associatedartifacts and resources (humans, tools, time). Activities, artifacts, tools etc. are
calledprocess elements. We will limit ourselves tosoftware processes, covering both develop-
ment and maintenance of software. A process consists of aproduction process, ameta-processto
regulate evolution of the whole process, and aprocess support(the PSEE) consisting of a process
model and various process tools (Process Engine etc.). The production process is partlyexter-
nal to a computer, and is carried out by humans assisted by computerised production tools, e.g.
CASE tools. The process support is normallyinternal to the computer, but may be supplemented
by manual procedures. A PSEE has an explicit definition of the process, aprocess model. The
model is expressed by one or severalProcess Modelling Languages (PMLs), perhaps at various
levels of abstraction or granularity (from template to enacting), and/or covering different parts of
the process. It is usually stored in a PSEE repository, and consists ofmodel fragments. The model
can be interpreted to provide the user with process assistance of some sort (guidance, control,
automation).

The paper will specially draw on examples from the EPOS PSEE [JC93] [C+94] and its process
modelling language called SPELL. EPOS has been developed at NTH in Trondheim since 1989,
first as part of a national project, later as a Ph.D. project. The emphasis is flexible and evolving
process support during enactment for multiple software developers, using conventional develop-
ment tools and working on files in checked-out workspaces. EPOS process models (task networks)
are expressed in SPELL, an object-oriented, concurrent and reflective modelling language. The
process models are stored in EPOSDB, a versioned software engineering repository. EPOSDB
supports nested and cooperating transactions coupled to projects, and there is one Process Engine
per transaction. The underlying platform is Sun workstations running Unix, and Prolog is the
SPELL implementation language.

The paper is organised as follows. Chapter 1 is the above introduction. Chapter 2 discusses the
process modelling subdomains, the PML design alternatives, and some solutions in EPOS and
a few other PSEEs. Chapter 3 discusses the design of PMLs in an interoperability perspective,
and presents a general PSEE architecture and an example to illustrate this. Chapter 4 contains a
conclusion.

2

2 PMLs: Functionality versus Solutions

In this section, we will discuss the different design alternatives for PMLs, both generally and wrt.
to the functionalities that must be covered. The EPOS PML(s) are used as an example, but with
comparisons to PMLs in other PSEEs.

2.1 The PML Design Dilemma

Much research effort has been spent on designing the “right” PML. We can identify four ap-
proachesL1–L4 for PML design, and all include acore PML, cf. [ACF94] :

� L1: One fixed and large core PML.
Here, the core PML contains language primitives to express all relevant process elements.
Although Occam’s razor might be successfully used, a large but common PML will result.

Typical examples of “hard” language primitives include constructs for activity triggering
and concurrency.

� L2: One extensible and smaller core PML.
Here, the core PML contains less primitives, rather a set of declarative constructs. Thus we
can define tailored process models (often types and their instances), still within a common
PML.

Examples are “soft” descriptions of product structures, user roles, or tool interfaces.

� L3: one core and several compatible sub-PMLs.
Here, many of the above process elements will be covered by separate and usually more
high-levelsub-PMLs. These may have well-defined interfaces to or be down-translatable to
the core PML. We could also envisage an inverse translation from a more high-level core
PML to alternative low-level sub-PMLs, e.g. to generate alternative implementations; cf.
last comments in Section 2.2 and most of Section 3.

Examples are descriptions of check-out/in of workspaces, metrics collection, or transaction
protocols.

� L4: one core and several incompatible sub-PMLs.
Here, such sub-PMLs will be separate languages, but wholly independent of and often or-
thogonal to the core PML.

Example are descriptions of versioning or user interface paradigms.

The chosen strategy for PML design will influence the size and complexity of the PML and the
resulting PSEE. A good language design assumes that we understand the domain, so that we can
make sensible decisions on which process elements should be covered where and how. If our
knowledge is poor or immature, we might initially experiment with a small core PML and many
sub-PMLs. After collecting experiences, we are in a better position to decide – both strategi-
cally and technically – how the mutual sub-PML interfaces should be, which sub-PMLs could be
reconciled, or which ones could be merged into the core PML. There is clear analogy with concep-
tual modelling of software systems: In newer approaches (see e.g. [vV92]), entity-relationship or
object-oriented data models have been effectively combined with data flow diagrams or Petri-nets
to describe the static and dynamic parts of the domain, respectively. Cf. alsofederated databases,
trying to unify different data models, schemas and instances from possibly heterogeneous sub-
databases.

3

However, sometimes we do not have a free design choice, since parts of the domain already are
covered by existing or standardised languages and associated tools. The challenge is how the
core PML and its PSEE shall or caninteroperatewith non-core languages and tools, e.g. for user
interfaces, configuration management, or project management. This means that we should think
strategically to prepare for co-existence of possibly inhomogeneous and partial process models.
We may even stick to a small core PML to reduce labour and risk.

In other words, there are many factors to consider, when specifying and assessing the functionality
of a PML to describe a given or desired process. In Figure 1 we group these factors along three
main dimensions: meta-process phases (design, implementation etc.) process elements (activities,
artifacts, ...), and user/tool interaction. In the “process element” dimension, there is a list of core
and non-core process elements and their PML design approaches (L1-L4), which can be regarded
as a summary of Section 2.3 and Section 2.4. In addition comes general PML design criteria, such
as understandability and modularisation (Section 2.5). For all these dimensions, the EPOS PSEE
and some other PSEEs are commented. However, the emphasis is on their positioning of the core
PML vs. the sub-PMLs, not on comparing specific language paradigms.

The next Section 3 contains a more general discussion on PMLs in the perspective of interoper-
ability, presenting a general PSEE architecture and an example of this.

Meta−Process Phases

Process Elements

process specification

process analysis

process design

process implementation

process enactment

process assessment

activities

roles

 work
context

 model
evolution

artifacts production
 tools

humans
(users,
 groups)

non−core elements

core elements

tool/user
interaction

 quality
 and
performance

projects
 of
projects

L1, L2 L2, L3 L2

L2 L2 L1, L2, L4

L2, L3 L3, L4 L4, L3

L4L4, L1, L2

Too
/U

se
r

Int
er

ac
tio

n

to
ol

 v
ie

w us
er

 v
ie

w

(meta−
process)

versioning,
transactions

cooperation

L2, L3

Figure 1: Three Dimensions of PML Design

2.2 PMLs and Meta-process Phases

The PML could be used to support the following meta-process phases:

4

1. Process elicitation and requirement specifications:
Here, we must assist human understanding and negotiation of the perceivedas-isprocess.
We will need overall (conceptual) modelling, often stating business rules, coarse-grained
work flow, and general work responsibilities. Intuitive and often graphical notations may be
important if the audience is company decision makers. The PML of this phase will resemble
languages used for Information Systems and Enterprise Modelling.

2. Process Analysis:
Here, the PML must be sufficiently formal to be used for reasoning or simulation (dry runs).
Changed needs from markets and new inputs from technology providers may enter in this
phase. Decisions on changes to define ato-be process will typically take place here, so
quality and performance matters must be dealt with here.

3. Process Design:
Here, the PML must be able to express a more detailed process architecture and to incorpo-
rate more project-specific information, e.g. number of workpackages/subprojects, over-all
planning (dependencies, timing), development technology (OO techniques), quality model
etc.

4. Process Implementation:
Here, the PML must allow specification of sufficient low-level details to achieve an en-
actable process model. This model must possibly be translated and otherwise prepared for
execution. This may imply that parts of the process model is implemented and installed
outside the PSEE, e.g. as tool configuration tables in a broadcast message server (BMS1) or
as triggers/monitors in the production workspace.

5. Process Enactment:
First, we start a Process Engine to achieve an enacting process model, residing in the PSEE
repository. This Process Engine interacts with production tools and with human agents (wet
runs). This interaction occurs, respectively, through a tool interface (e.g. a BMS) and a user
interface (e.g. through an agenda).

6. Process Assessment: Quality and Performance issues:
This covers anything from trivial follow-up of tool activations to collecting prepared mea-
surements. All such data can be given as feedback to previous phases, either to guide the
process or possibly to evolve the process model and its process. A Quality and Performance
model must regulate all this, and the production tools must be properly instrumented for this
purpose.

As shown, the different process lifecycle phases (the meta-process) exhibit different goals, con-
texts, and clients. It is doubtful that one PML can be used for all this, although we can use
flow-based notations in most phases. Specialised and more high-level specification languages,
with successive and not always automatic transformations towards more low-level enactable lan-
guages, is envisaged (theL3 approach) – as for the normal software lifecycle. However, what is
normally considered conceptual models in Information Engineering Systems are often being in-
terpreted in PSEEs to support real enactment. For instance, specification languages like Petri-nets
are used for such enactment.

In the following, we will only deal with PMLs for Process Implementation and Process Enactment.
These are the only meta-process phases that we understand to some extent, but they also have the
most detailed and heterogeneous information. Most PMLs and PSEEs, including EPOS, have
emphasis on these phases.

1BMS is only used as an abbreviation, not as a potential product name.

5

2.3 PMLs and Process Elements to be Covered

A real-world software (production) process can be very large and have a variety of process ele-
ments. These must be modelled by a PML and supported by the associated PSEE. The PML should
also describe the interface between the process support and the production process, covering tool
activations, capturing of performance data, workspace set-up etc..

The next subsections will present a short-list of process elements (process subdomains), thus con-
stituting a smalltaxonomy for such. These elements must be covered by a core PML, or by a
collection of sub-PMLs. Such a division implies a core process model and many sub-models. As
will be shown in section 3, such partial models could reside on separate model repositories or
-servers.

In our opinion, thecore PML must support the followingsix process elements:activities, ar-
tifacts, roles, humans, production tools, andsupport for evolution (meta-process). The re-
maining process elements should be covered by sub-PMLs outside the core PML, but with clear
interfaces both ways.

2.3.1 Activities (core)

Concurrent and cooperating activities are the heart of any process. They can be at almost any
granularity level, and are usually associated to roles that can be filled by certain users and/or tools.
Artifacts constitute the operands (inputs/outputs) of activities, so the core PML must contain a
Data Manipulation Language (DML) to access such artifacts.

EPOS offers a predefined root task type (L1), that can be subtyped (L2) to express different model
instances of tasks (in short: tasks). A task type is a normal object type but with special semantics
attached to type-level attributes, such as PRE, POST, CODE, FORMALS and DECOMPOSITION
(L1). External activities are modelled by cooperating and parallel transactions, containing internal
tasks as co-routines. A task is runnable if its PRE-condition evaluates toTrue . The tasks stand in
a chained and decomposed network, and is connected to artifacts, tools and users. A Planner tool
helps in building such networks.

In SPADE [BFG93], an extended Petri-net formalism is used (L1) and with clustering of natural
net units (L2). In Marvel [BK92], activities are described by a dual model: production rules
resembling types (L1) and a separate network formalism (L3) to connect the rules and to attach
the artifacts.

2.3.2 Artifacts (core)

The artifacts describe the product in question. In a reflective system, all process model fragments
can be considered artifacts.

The product model will usually contain a basic data model, a product schema, and instances of the
latter. At least product composition and dependencies must be described. We generally advocate
an object-oriented paradigm (cf. CORBA [Obj92] and ODMG [Cat94]), in spite of lack of final
standardisation.

On modelling of artifacts, we face a strategic choice. One alternative is to model a product as
mere placeholders (like in Process Weaver,L3), in order to be independent of the actual product
workspace. Another alternative is to model the product rather extensively as in EPOS, Adele and

6

Marvel. The latter allows some planning of project breakdown and suggestion of cooperation/
propagation protocols, all essential for process modelling. (Note, that Process Weaver is being
coupled to Adele in the PERFECT ESPRIT project.)

EPOSDB has a structurally object-oriented data model, being extended by the SPELL PML to full
object-orientation. SPELL is used to define a system-defined product schema (L2), supporting
hierarchic families with own interfaces and bodies. Some utility tools utilise this product model
and an external product description language is defined (aL3 sub-PML), see below on workspace
organisation in Section 2.3.8.

2.3.3 Roles (core)

A role defines responsibilities and rights for users that play that role.

In EPOS, a role is modelled as a separate model fragment, specifying certain access rights. Roles
are then indicated by type-level attributes in task types (L2), and a task instance can only be
connected to a user that can fill this role. No other semantics is utilised for roles, e.g. as in PWI.

2.3.4 Humans: Users and Groups (core)

A humanuseror process agent can fill a set of roles. He can also be a member of severalgroups,
possibly nested, representing either project teams or line organisations.

In EPOS, users are modelled asPerson instances, having a dynamic role-set (L2). This is
checked against the role specification of the task, currently being performed by the user. No such
groups are p.t. implemented.

2.3.5 Production Tools (core)

The tool model must specify how such tools can be accessed and controlled. We must distinguish
between batch and interactive tools, and be able to handle call-backs from both.

In EPOS, a production tool is modelled as a low-level task type, specifying I/O, command line
formats, options etc. (L2). A tool is started by sending a detailed message from the task’s CODE
part. The response is returned through an extra task input, and causes the internal task to be
reactivated.

SPADE offers more flexibility to describe tool behaviour as a cluster of Petri-net transition nodes
(still L2).

2.3.6 Support for Evolution or Meta-process (core)

Due to the human-oriented nature of the software process, we have an inherent cause for evolution
during process enactment. This means that most previous lifecycle phases must be repeatable
“on-the-fly”. Thus the core PML must offer support for evolution of at least the process model,
both technically (e.g. by reflection or interpretation) and conceptually (by a defined meta-model).
Evolving anenactingmodel is known as “pulling the rug” from telecommunication switches,
relying on dynamic linking and special hardware.

7

The available PML mechanisms to support model evolution differ, e.g. by predefined facilities
(delayed subtask expansion in MELMAC [GJ92],L1), by a fully reflective PML (as in EPOS,
SPADE, and PWI –L2), by another language (as in Marvel,L4), or ad-hoc (Process Weaver, no
support). Note, that parts of the process model may exist in many different (translated) forms in a
PSEE and its environment, cf. Section 2.3.10. Thus, to have reflection or interpretation in the core
PML, as implemented by some PSEEs, is grossly insufficient.

However, none of the PSEEs deal explicitly with evolution of the real-world production process,
also being an enacting and concurrent body.

2.3.7 Projects (non-core)

A project contains a variety of domain-specific information. A project model thus might include: a
workplan with sub-activities/-projects, responsible for activities, overall goals and inputs/outputs,
available resources, time estimates, work records (time sheets, logs etc.), quality model (Sec-
tion 2.3.9), cooperation patterns between projects, and connection to workspace transactions and
versioning (Section 2.3.10). Such project information is revised almost daily (i.e. it is highly
“versioned”!), both to record ongoing work and to make adjustments based on this.

Evidently, some of this information (L3) overlaps with or is translatable down to the core process
model (L2).

In EPOS, a project model fragment is of theproject task subtype (L2). It is connected 1:1 to a
PSEE repository transaction (L3).

2.3.8 Work Context of a Project (non-core)

This includes a production workspace and the available production tools.

A production workspace (e.g. files or a CASE-tool repository) is the external representation
of a configuration, which again is a requested part of the total, versioned product. A mapping
and check-out/check-in between the internal PSEE repository and the external workspace may
be needed. Theproduction tools have possibly been instrumented with interfaces to the process
tools.

An EPOS production workspace is a set of files checked out from the EPOSDB repository through
a Workspace Manager, which has a special check-out tool and an EPIT production description lan-
guage (L3). The configuration specification and the mapping from the repository to the workspace
is described in special languages (L3 andL4), being a part of the previous project model (Sec-
tion 2.3.7). In case of overlapping workspaces, the Cooperation Manager must be activated (Sec-
tion 2.3.11). Production tools (e.g. compilers, editors) can then work on these files, guided by
the PSEE. Before transaction commit, the modified files must be brought back through a similar
check-in tool.

2.3.9 Product Quality and Process Performance (non-core)

A product quality model includes operational goals of product quality and associated metrics,
e.g. review and test status [IS94]. Theprocess performance modelfor process quality expresses
compliance to the stated process model, e.g. wrt. deadlines, budget, and user roles.

EPOS has none of this now, but this is being worked upon in two PhD theses.

8

2.3.10 Versioning and Transactions (non-core)

Versioning at least of the production workspace is needed, and likewise with some support for long
transactions. Whether such support should be extended to also encompass the PSEE repository is
an open issue.

The chosenversioning modelshould allow transparent versioning during a transaction. It should
be orthogonal to the process model, so that the same versioning can apply uniformly to all process
model fragments. Note, that there are parts of the process support, that cannot easily be subjected
to formal versioning and transactions. We can mention configuration tables in BMSes, “shell-
envelopes” around production tools, or extra triggers in production workspaces.

EPOS rely on Change-Oriented Versioning [L+89] [Mun93], giving uniform versioning. Process
modelling and versioning work well together (L4). On the one hand, a particular version of a
partial product can be checked out into the workspace before the process starts, using EPOSDB
facilities and the added check-out tool (Section 2.3.8). On the other hand, the EPOS process model
is itself a first-class artifact, and can be stored, versioned and reused by the same versioning model.

In Adele2 [BEM93], the product model instances (product descriptions) are supported by one
versioning model. For the product schema and for the activity/tool model, other facilities are used
to achieve evolution, e.g. special delegation paths and roles (meaning versioned types).

Thetransaction modelshould be nested and allow pre-commit cooperation. Preferably, the PSEE
repository should contain an instrumentable transaction model, with “hooks” into the process
model in case of certain events. EPOS has extensive support for cooperating transactions, where
high-level cooperation protocols (L3) are translated down to e.g. operational triggers and task net-
works. Similar has been demonstrated by Adele. EPOS also provides some planning tools for
transaction (or project) breakdown, scheduling, and cooperation [CHL94].

2.3.11 Cooperation (non-core)

We have two basic modes of cooperation:sequential, e.g. by normal work or review chains, or
parallel, e.g. upon workspace overlap.

For sequential cooperation, the normal EPOS task networks are used, also across transactions.
For parallel cooperation, EPOS has a Cooperation Manager that helps in setting up high-level
cooperation policies (L3) between projects/transactions. These are then translated into more low-
level support (triggers, task networks, inter-transaction propagation – i.e.L2), using the extended
transaction concept of EPOSDB (Section 2.3.10).

Using roles to express interaction diagrams has been investigated by e.g. PWI, but not by EPOS.

2.4 PMLs and Tool/User Interaction Paradigm (non-core)

This deals partly with how and to what degree the process support intervenes with the user’s
normal way of working, called thetool view(or PSEE tool coupling). This is only relevant in the
last lifecycle phases.

It also deals with how parts of the process model should appear through auser view, both concep-
tually and graphically. This applies in all lifecycle phases, but especially in the last ones.

9

2.4.1 Tool View (non-core)

The tool view deals with how much the process support “perturbates” the production process. We
can identify at least two different tool views or work modes [FG94]:

1. In most existing PSEEs, the user has atask-oriented viewof the process: The user is directed
by the PSEE. That is, most tool activations are strictly controlled and invoked through a
central process support interface. That means that all relevant production tools must be
enveloped.

2. More preferably, the user needs agoal-oriented view: After setting a goal, he can move
freely in the process space to achieve the goal. The process support will listen to events
in the production process, and give guidance based on this. Again, the production tools
must be (invisibly) enveloped, or all relevant accesses to the production workspace must be
trapped to inform the PSEE.

The tool view often gets embedded in the PSEE, both conceptually and technically, although this is
hardly ever explicitly expressed in the PML (thusL1). Is might have been possible for the user to
select between the two above alternatives (assistance vs. control), and even to do this dynamically
(!).

EPOS allows either manual or automatic activities to be expressed in SPELL. The former are
approved through an agenda, that contains runnable activities withTrue PRE-conditions (partly
L2).

The Marvel Process Engine only approves user actions (L1), but cannot itself initiate actions
behind the user’s back, not even recompilations.

2.4.2 User View (non-core)

The user view or user interface is a crucial, but often neglected part of many PSEEs, including
EPOS. This fact is amplified by the delicate balance between “control” and “assistance”, cf. the
previous subsection. However, the problem of displaying complex and heterogeneous information
to users with different levels of competence and goals, are shared by most computerised systems
[Mye89].

The general paradigm of user interfaces is that we should splithow is works(internal model, e.g.
in C or Prolog) fromhow to do it(external view) – i.e.L3 or evenL4. Some aspects to consider
are: uniformity of presentation and interaction, easy comprehension of presented information, and
flexible choice of presentation formats (filters, viewers). For instance, the external view could
be a task network, while the internal activity model is rule-based – or inversely! Cf. also the
ECMA roaster model [ECM91], where the user interface is made separate. This separation has a
tactic consequence: first we should define by fast prototyping the interface on the user’s premises
and based on familiar concepts according to his role. Then we may consider to implement this
interface by some suitable technology.

Much research has been devoted to expressing multiple and possibly incompatible model views
to the user. The views can be conceptual (using ViewPoints [NKF93]) and/or graphical (using
Smalltalk’s Model-View-Controller [GR83]). For the latter, [Fol83] recommends showing simply
the entities and their relations and operations.

EPOS provides the user with an activity network and an agenda. The network is a simple print-out

10

of the internal data of the process engine. A viewing filter between the engine and the user is
needed, providing alternate views according to user roles.

2.5 General PML Demands (core)

Analysability : A PML, as most modelling languages, should be sufficiently formal to allow pre-
cise modelling, analysis and simulation. Most PMLs have this property, including the EPOS
SPELL.

Understandability: A PML should be user-oriented and easy to comprehend. This may assume
informality to some extent, or separate presentation languages (L3). However, most PMLs are too
low-level and technical, including the EPOS SPELL.

Modularisation : It should offer modularisation features to support grouping and protection, and
sub-model constructs to facilitate reuse on a rather high level, e.g. as sub-schemas (L2). This point
is further elaborated in the next section on interoperability (L3 andL4). EPOS allows models to
be organised in task hierarchies, e.g. according to projects.

2.6 A Short Summary

A short summary of the core and non-core process elements and their sub-PML design approaches
discussed in this Section can be found in Figure 1, along the “Process Elements” dimension. Note,
that many PSEEs do not conform to the recommended core PML design, asL1 andL2 constructs
are used to express non-core process elements.

3 A General Perspective on PML Design: Interoperability

As mentioned, we may need a core PML and a set of sub-PMLs to cover the variety of process
elements, or to interface to existing and domain-specific models, their modelling tools and model
repositories. In most PSEEs, all the (sub)models are stored in a common repository, so it is worth
to consider segmentation also of this repository.

Figure 2 shows a general PSEE architecture with a segmented repository, or rather a collection
of model servers. A relationship model server could be added to store inter-model references.
The segmentation could be conceptual with all sub-models still residing in a single repository,
or physical with some sub-models in separate repositories. This means that the associated PSEE
tools become tools in their own right, not just local procedures in a common process tool. Note
that the ECMA CASE environment architecture is applied throughout, with separate database-,
tool- and user interfaces.

In our opinion, most of these sub-models should, at least representationally, be defined by a(struc-
turally) object-orienteddata model. The models should be accessible to the PSEE tools through a
standard object-oriented database interface, as defined by CORBA or ODMG.

This section considers interoperability between the different sub-models and the PSEE tools, and
between these and the production workspace/tools. The emphasis is on the implication to PML
design.

11

Bus/CORBA

project
 model

 work
context
 model

quality
 &
perfor−
mance
 model

coop.
model

version
 &
trans.
 model

process
engine

project
tools

quality
 &
perform.
 tools

work−
space
 &
 tool
manager

PSEE Repository

evolu−
tion
tools

version
 tools

tool integration

monitoring

Production
 Tools

DML for Files/DB

production
workspace

UI to CASE Tools

BMS

protocol
genera−
tor &
interpre−
tor

Common Tool/User Interface for PSEE

activities
artifacts
tools
roles
humans

meta
mo−
del

PSEE
Tools

core model
 tool/
 user
 view

Check−
in/out

Figure 2: PSEE Architecture with Segmented Repository.

3.1 Interoperability Between the Core Model and the Other Sub-models

3.1.1 Core vs. Project Model

As mentioned, interoperability between the core model and the project sub-model can be achieved
by theL3 strategy of PML design. This is done in EPOS and Process WEAVER.

However, often an existing project management tool must be incorporated into the PSEE, and this
tool is often instrumented to the client organisation. In this case, EPOS must give up most of its
project sub-model, and try to integrate (stillL3 level) with the former. In Section 3.2 we will
present a real-world example of this.

3.1.2 Core vs. Work Context Model

The PSEE repository is almost always a software engineering database (DB), preferably object-
oriented. We can identify three possible combinations of the PSEE repository and the production
workspace:

1. PSEE Repository vs. File System:
As mentioned before, one alternative is to do check-out and check-in of files from the PSEE
repository as part of a transaction, and to ensure some level of mutual consistency during
this transaction. All this require specifications in and translation from aL3 PML.

Another alternative is to rely on avirtual file system, where all file accesses are trapped

12

and mapped directly onto the PSEE directory, cf. PCTE [BGMT88] or ClearCase [LL93].
Transparent versioning is also easy to arrange with such a solution.

2. PSEE Repository vs. own Sub-Repositories:
The “cleanest” combination is that the production workspace is a sub-database of the core
PSEE repository. However, CORBA and ODMG technologies are immature, hence few
production tools have adapted to these so far.

Of PSEEs, Adele and EPOS have made the workspaceconceptuallya sub-database of a
single repository. Most DBMS commands can then be carried out in this workspace, while
external tools can continue to work on checked-out external files.

3. PSEE Repository vs. separate DB(s):
This resembles the first alternative in Section 3.1.2, but we normal check-out and check-in
against the PSEE repository is not realistic. We must therefore create a “shadow” product
model in the PSEE repository, as for the first alternative and as in the example in Section 3.2.
Generally, this brings up the question of federated databases, but this is not dealt with for
obvious reasons.

In all these three combinations, an object-oriented paradigm seems appropriate for the PSEE-
internal artifact model, i.e.L3.

3.1.3 Core vs. Quality/Performance Model

The product quality model is largely independent of the core model, while the performance model
is more tightly linked.

3.1.4 Core vs. Versioning/Transaction Model

Our EPOS experience advises uniform and transparent versioning to the entire PSEE repository in
a transaction context. However, most standard DBMSes or file systems do not offer such. Thus,
the next-best solution is special versioning of certain parts of the repository or only for a file-based
production workspace.

Versioning/transaction description languages (L3/L4) and tools are therefore pervasive technolo-
gies. They are linked to the core process model and also to the project and cooperation model.

3.1.5 Core vs. Cooperation Model

Cooperation is rather enhanced by interoperability, but the basic cooperation model should not be
affected. An increasing number of groupware or workflow systems are also becoming available,
with own languages (L3/l4) and paradigms. To make these accessible in the context of a PSEE
will be a challenge.

3.1.6 Core vs. Tool View Model

The prevailing tool interaction technology is to use point-to-point (e.g. CORBA) or broadcast
message servers (e.g. FIELD) to let tools cooperate in a flexible way. By proper enveloping, tools
need not be aware of that they are “coordinated”, nor do the PSEE’s tool model or Process Engine

13

be bothered by low-level details here. This means that tool descriptions are partly represented in
the PSEE tool model and partly in BMS-internal configuration tables (L3).

Interactive tools like Emacs are difficult to handle, partly because they can do almost anything.
It is, however, possible to trap and instrument their file accesses, or to rely on more fine-grained
tool-tool interfaces.

3.1.7 Core model vs. User View Model

As mentioned, the User View or User Interface (UI) model is a critical part for a PSEE. The
underlying linguistic paradigm of a PML is judged not crucial for a good UI (L4).

There are large savings by using existing technologies for user interfaces, as exemplified by X and
Motif, UIMSes, graphical browsers and editors, and report generators. Thus, the interface between
the User Interface and the PSEE tools should be standardised (L3?). Then we can more easily use
standardised user interface technologies, and plug new process tools to the PSEE user interface.

3.2 An Example of a Segmented PSEE

The SYSDECO software house in Oslo has developed and is selling a 4G-tool called Systemator,
running on Unix workstations. Using this 4G-tool, applications can be written in a special Sysdul
language. From Sysdul “programs”, Systemator can generate complete user applications against
a given, commercial database.

Sysdeco is also developing customer applications in Systemator on behalf of customers, say in
Project X. They use no computerised project management system to support such projects. A
MicroSoft/Project tool on PCs is in use only by Project Managers, first to make a coarse plan
– with activities, schedules and personnel – and then to manually record ongoing activity status
(time sheets etc.). Most project data are recorded on paper. A quality model is defined, but again
followed up manually.

Below, we will recapitulate the projected design of a PSEE demonstrator to offer more automatic
support for such development projects. The work is done at NTH by a student project group,
lead by Geir Magne Høydalsvik [Hø94]. For this demonstrator, Sysdeco insists on using only
commercially available tools and databases for this, including their own Systemator tool. Thus,
there is initially no room for EPOS.

Figure 3 shows the projected and segmented PSEE for this project support. The part drawn in
slender lines represents the PSEE, while the part drawn in the bold or dotted lines represents
a possible generalisation using an extended EPOS. Thus, the projected PSEE has the following
components, where the actual PML being used is indicated asL::::

1. Systemator 4G-tool, utilising LSY SDUL and generating applications against aproduct
databaseon top of the Ingres DBMS. This is the same as before, but triggers must be in-
serted in the database (expressed inLINGRES DML) to send messages to Process WEAVER
upon certain events.

2. A MicroSoft/Project tool, initially used by a Project Manager to produce a coarse project
plan, resembling a Gannt diagram. This initial plan is printed out in some intermediate,
legible format (LMS=P). This plan is then manually extended into a full project model (in

14

project
planner

project
manager

project
plan
schedule
.......

process
model

process
engine

P.Weaver

Ingres DB Ingres DB

project
 DB

production
 DB

software
engineer

manual processing

EPOS
process
 model

trans−
lator

pro−
cess
editor

process
engine
of EPOS

Ingres DB

application
 batabase

produced
application
software

(++quality model)

project tools Systemator

(files)

(files)

BMS tool(gen. by
Systemator)

SYSDULL

LINGRES_DML LINGRES_DML

SYSDULL

LX

LMS/P

L
PW

LEPOS

New PSEE Production Process

MS/Project
LBMS

Figure 3: Design of a PSEE for Project Support

"LX"), including an enhanced quality model. Probably,"LX" will not be an entirely formal
language.

3. Project tools, using a project database also implemented by Ingres. These tools will ini-
tially be generated by the same Systemator tool (and expressed inLSY SDUL). The project
database must similarly be instrumented by triggers (inLINGRES DML).

These tools will first be used to install the full project/quality model. Later, the develop-
ers themselves will be filling in quality and performance data during normal development.
Likewise, product data are being fetched from the product database, possibly through trig-
gers.

4. Process WEAVER, being the Process Engine and using files as its process model repository
(in LPW). Process WEAVER will communicate both with the project tools and their project
database, and with Systemator and its product database. Its process model will be manually
made, based on the full project/quality model.

5. A Broadcast Message Server(configured byLBMS), to link Process WEAVER with the
other tools and databases.

6. Various graphical presentation languages (LUI), not elaborated further.

All of these languages are classified asL3 languages wrt. a core PML, perhaps with exception of
LPW being an enactable PML in its own right.

Our first observation is that this PSEE design fits very well with the general PSEE architecture
from Figure 2. Let us then consider how more advanced process modelling techniques such as
EPOS can be applied to improve (or enrich) the projected PSEE.

15

We can rather build a complete process model in a possibly extended SPELL (LEPOS), based on
the extended process/quality model. This combined and more high-level process model can then
be translated into the above sub-models in their actual sub-PMLs, thus replacing the current man-
ual processing. Indeed, we need a powerfulPSEE meta-toolor CASE tool for process modelling.
This should be able to build, translate, install and maintain a set of distributed and heterogeneous
process models, used by partly commercial and standardised process tools! Note a possible boot-
strap (meta-process), as the goal of the application project could be to make a new version of the
project tools!

We can also use our EPOS process engine (in dotted lines of the figure) to instrument the produc-
tion process. Of course, in this case we have to achieve interoperability with the existing project
model.

4 Conclusion

Until recently, much research in process modelling has been focussed on different linguistic
paradigms for the core PML, in order to findthe correct one. This paper addresses the “one
or many PMLs” question from a broader point of view.

To recapitulate: there is a big variety of process phases and elements to be covered, although we
focus only on the Imnplementation and Enactment phases. We must also interface towards actual
production tools/workspaces. Different user roles have different needs, also wrt. work modes and
user interfaces.

There are many technical arguments behind choosingone core PML(L1/L2 approach) anda set of
sub-PMLs(L3/L4 approach). However, the decisive factor in choosing the “federated” or “inter-
operable” approach, is that wehave toadapt to a myriad of relevant through alien languages, tools,
and databases. All of these must somehow be incorporated into or interfaced against the PSEE.
That is, the PSEE developers simply do not control the PML design space. Thus, interoperability
against standard or existing subsystems is anabsolute must, specially since process support should
be an add-on to existing computerised production tools, not a hindrance.

We even claim that the choice of the underlying linguistic paradigm for such a core PML (which
must cover the short-list in Section 2.3) is not so important. What really counts is:

� Standardisation:
Use of standard support technologies: Unix/MS-DOS, C++, CORBA or OBMG, X/Motif,
new workflow systems, etc. etc.. Reuse is a keyword here.

� Interoperability :
Making PSEE components interact smoothly with other process and production models and
tools. Modularisation, open systems and above standardisation are keywords here.

� Tool view (PSEE coupling):
The PSEE should “perturbate” a software production environment in a minimal way. The
main goal of the PSEE should be to give flexible enactment support at the appropriate level,
e.g., control, automation, guidance, reasoning, explaining etc..

� User view (user interface):
The process agent should be presented a comprehensible view of his current work context,
with proper connections to the co-workers’ activities. Been given this, the agent can (more)
intelligently execute and relate to his own role in the overall process.

16

� Easy user-level evolution of the process model:
Again, the goal is to provide an understandable view of the model, so that this can be
changed by the process agents themselves, if and when needed.

Acknowledgements

Thanks go to colleagues in the PROMOTER project, and to the local teams behind EPOS.

References

[ABGM92] P. Armenise, S. Bandinelli, C. Ghezzi, and A. Morzenti. Software Process Representation
Languages: Survey and Assessment. InProc. 4th IEEE International Conference on Software
Engineering and Knowledge Engineering, Capri, Italy, June 17-19. 31 pages, June 1992.

[ACF94] Vincenzo Ambriola, Reidar Conradi, and Alfonso Fuggetta. Experiences and Issues in Build-
ing and Using Process-centered Software Engineering Evironments, September 1994. Internal
draft paper, Univ. Pisa / NTH, Trondheim / Politecnico di Milano, 26 p.

[BBFL94] Sergio Bandinelli, Marco Braga, Alfonso Fuggetta, and Luigi Lavazza. The Architecture of
the SPADE Process-Centered SEE. In[War94], pages 15–30, 1994.

[BEM93] N. Belkhatir, Jacky Estublier, and Walcelio Melo. Software Process Model and Work Space
Control in the Adele System. In[Ost93], pages 2–11, 1993.

[BFG93] Sergio Bandinelli, Alfonso Fuggetta, and Carlo Ghezzi. Software Process Model Evolution in
the SPADE Environment.IEEE Trans. on Software Engineering, pages 1128–1144, December
1993. (special issue on Process Model Evolution).

[BGMT88] Gerard Boudier, Ferdinando Gallo, Regis Minot, and Ian Thomas. An Overview of PCTE and
PCTE+. InProc. of the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Prac-
tical Software Development Environments, Boston, Massachusetts, November 28–30, pages
248–257, 1988.

[BK92] Naser S. Barghouti and Gail E. Kaiser. Scaling Up Rule-Based Development Environments.
International Journal on Software Engineering and Knowledge Engineering, World Scientific,
2(1):59–78, March 1992.

[C+94] Reidar Conradi et al. EPOS: Object-Oriented and Cooperative Process Modelling. In Anthony
Finkelstein, Jeff Kramer, and Bashar A. Nuseibeh, editors,Software Process Modelling and
Technology (PROMOTER book), pages 33–70. Research Studies Press/John Wiley & Sons,
1994.

[Cat94] Rick G. G. Catell. Object Data Management: Object-Oriented and Extended Relational
Database Systems. Addison-Wesley, 1994.

[CFF94] Reidar Conradi, Christer Fernstr¨om, and Alfonso Fuggetta. Concepts for Evolving Software
Processes. In Anthony Finkelstein, Jeff Kramer, and Bashar A. Nuseibeh, editors,Software
Process Modelling and Technology (PROMOTER book), pages 9–32. Research Studies Press/
John Wiley & Sons, 1994. Also as EPOS TR 187, NTH, 9 Nov. 1992, 26 p., Trondheim.

[CFFS92] Reidar Conradi, Christer Fernstr¨om, Alfonso Fuggetta, and Robert Snowdon. Towards a Ref-
erence Framework for Process Concepts. In[Der92], pages 3–17, 1992.

[CHL94] Reidar Conradi, Marianne Hagaseth, and Chunnian Liu. Planning Support for Cooperating
Transactions in EPOS. InProc. CAISE’94, Utrecht, pages 2–13, June 1994.

[CLJ91] Reidar Conradi, Chunnian Liu, and M. Letizia Jaccheri. Process Modeling Paradigms. In
Proc. 7th International Software Process Workshop – ISPW’7, Yountville (Napa Valley), CA,
USA, 16–18 Oct. 1991, IEEE–CS Press, pages 51–53, 1991.

[Der92] Jean-Claude Derniame, editor.Proc. Second European Workshop on Software Process Tech-
nology (EWSPT’92), Trondheim, Norway. 253 p.Springer Verlag LNCS 635, September 1992.

17

[ECM91] ECMA. A Reference Model for Frameworks of Computer Assisted Software Engineer-
ing Environments. Technical report, European Computer Manufactoring Association, 1991.
ECMA/TC33 Technical Report, Nov. 1991, Draft Version 1.5.

[Fer93] Christer Fernstr¨om. Process WEAVER: Adding Process Support to UNIX. In[Ost93], pages
12–26, 1993.

[FG94] Alfonso Fuggetta and Carlo Ghezzi. State of the Art and Open Issues in Process-Centered
Software Engineering Environments.Journal of Systems and Software, 26(1):53–60, July
1994.

[FH93] Peter H. Feiler and Watts S. Humphrey. Software Process Development and Enactment: Con-
cepts and Definitions. In[Ost93], pages 28–40, 1993.

[Fol83] J. D. Foley. Managing the Design of User Computer Interface.Computer Graphics World,
pages 47–56, December 1983.

[GJ92] Volker Gruhn and R¨udiger Jegelka. An Evaluation of FUNSOFT Nets. In[Der92], pages
196–214, 1992.

[GR83] Adele Goldberg and Dave Robson.Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983. 714 pp.

[Hø94] Geir Magne Høydalsvik. Programmering Prosjektarbeid, Forslag til Prosjektoppgave. (In
Norwegian, Working note for PhD thesis), August 1994.

[IS94] IEEE-Software. Special Issue on Measurement-based Process Improvement.IEEE-Software,
July 1994.

[JC93] M. Letizia Jaccheri and Reidar Conradi. Techniques for Process Model Evolution in EPOS.
IEEE Trans. on Software Engineering, pages 1145–1156, December 1993. (special issue on
Process Model Evolution).

[L+89] Anund Lie et al. Change Oriented Versioning in a Software Engineering Database. InWalter
F. Tichy (Ed.): Proc. 2nd International Workshop on Software Configuration Management,
Princeton, USA, 25-27 Oct. 1989, 178 p. In ACM SIGSOFT Software Engineering Notes, 14
(7), pages 56–65, November 1989.

[LL93] Paul H. Levine and David Leblang. Software Configuration Management: Why is it needed
and what should it do? InProc. of 4th International Workshop on Software Configuration
Management (SCM-4), Baltimore, pages 174–179, May 1993.

[Lon93] Jacques Lonchamp. A Structured Conceptual and Terminological Framework for Software
Process Engineering. In[Ost93], pages 41–53, 1993.

[LSS94] Odd Ivar Lindland, Guttorm Sindre, and Arne Sølvberg. Understanding Quality in Conceptual
Modelling. IEEE Software, pages 42–49, March 1994.

[Mun93] Bjørn P. Munch. Versioning in a Software Engineering Database — the Change Oriented
Way. PhD thesis, DCST, NTH, Trondheim, Norway, August 1993. 265 p. (PhD thesis NTH
1993:78).

[Mye89] Brad A. Myers. User-Interface Tools: Introduction and Survey.IEEE Software, 6(1):15–23,
January 1989.

[NKF93] Bashar Nuseibeh, Jeff Kramer, and Anthony Finkelstein. Expressing the Relationship between
Multiple Views in Requirements Specification. InProc. 15th IEEE Int. Conf. on Software
Engineering (ICSE), May 1993.

[Obj92] Object Management Group, 492 Old Connecticut Path, Framingham, MA 01701, USA.OMG
CORBA Common Object Request Broker Architecture – Specification, January 1992.

[Ost93] Leon Osterweil, editor.Proc. 2nd Int’l Conference on Software Process (ICSP’2), Berlin. 170
p. IEEE-CS Press, March 1993.

[Rob94] Ian Robertson. An Implementation of the ISPW-6 Process Example. In[War94], pages 187–
206, 1994.

18

[SC92] H. G. Sol and R. L. Crosslin, editors.Dynamic Modelling of Information Systems 2. North-
Holland, 1992.

[vV92] Kees M. van Hee and P. A. C. Verkoulen. Data, Process and Behaviour Modelling in an
Integrated Specification Framework. In[SC92], pages 191–218, 1992.

[War94] Brian Warboys, editor.Proc. Third European Workshop on Software Process Technology
(EWSPT’94), Villard-de-Lans, France. 274 p.Springer Verlag LNCS 772, February 1994.

epos/papers/pml-ewspt95.tex

liu/PMseg/liu.tex

19

