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Abstract 
 
The purpose of this review is to assess the evidence of healthcare benefits involving the 
application of artificial neural networks to the clinical functions of diagnosis, prognosis and 
survival analysis, in the medical domains of oncology, critical care and cardiovascular medicine.  
The primary source of publications is PUBMED listings under Randomised Controlled Trials and 
Clinical Trials.  The rôle of neural networks is introduced within the context of advances in 
medical decision support arising from parallel developments in statistics and artificial 
intelligence.  This is followed by a survey of published Randomised Controlled Trials and 
Clinical Trials, leading to recommendations for good practice in the design and evaluation of 
neural networks for use in medical intervention.  
 
MeSH terms:  Review; Randomised Controlled Trials; Clinical Trials; decision support systems; 
prospective studies; diagnosis; prognosis; survival analysis. 
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List of abbreviations 
 
AAP  Acute abdominal pain decision system 
ARD  Automatic relevance determination 
ART  Adaptive resonance theory 
AUROC Area under the ROC curve 
CART  Classification and regression trees 
CDSS  Computer-based decision support systems 
CI  Confidence interval 
CP  Capsular penetration 
TNM  Clinical staging of tumour, lymph nodes affected and distant metastasis 
ECG  Electrocardiogram 
EEG  Electroencephalogram 
EGG  Electrogastrogram 
FES  Functional electrical stimulation 
FP  False positive rate 
fPSA  Free PSA 
LDA  Linear discriminants analysis 
LogR  Multiple logistic regression 
MARS  Multivariate adaptive regression splines 
MEG  Magnetoencephalography 
MLP  Multi-layer perceptron 
MLR  Multiple linear regression 
MRI  Magnetic resonance imaging 
MRS  Magnetic resonance spectroscopy 
PET  Positron emission tomography 
PSA  Prostate specific antigen 
RCT  Randomized clinical trials 
ROC  Receiver operating characteristic  
SOM  Self-organised map  
TNM  Clinical staging from tumour size, lymph nodes affected and distant metastasis 
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1.  Introduction 
 
1.1. The context of medical decision support methodologies 
 
Artificial intelligence has been proposed as a reasoning tool to support clinical decision-making 
since the earliest days of computing (Ledley and Lusted, 1959). The theoretical and practical 
problems encountered have led to important developments in statistics and computer science, but 
it was only during the last decade of the last century that decision support systems have been 
routinely used in clinical practice on a significant scale.  Some of these involve artificial neural 
networks. However, before embarking on a specific review of neural network applications, it is 
important to consider the wider context of existing methods from artificial intelligence and 
statistical diagnostic aids, whose experience provides a framework to discuss the potential of 
novel approaches. 
 
Early computer models were intended for general clinical consultation, with the aim of 
systematising the investigation of a range of possible scenarios.  Advanced computing would 
enable physicians to concentrate where they are most needed, at the patient’s bedside, while 
specialist knowledge would be left to recall systems that can handle the ‘encyclopaedic’ aspects 
of medicine (Schwartz, 1970).  However, it became apparent that the enormous complexity 
created by interactions between clinical conditions made a comprehensive scenario analysis 
intractable.  This started a dilemma that is still current, namely the need to specialise the design of 
decision support systems to closely circumscribed medical problems, when clinicians have no 
reason to take-up computational tools unless they are useful for almost every patient in a generic 
category of clinical conditions (Shortliffe, 1993).  Worse still, it has long been recognised that a 
substantial proportion of clinical cases involve rare conditions, e.g. 15% has been reported for 
acute abdominal pain (Shepherd, 1972), which are discarded by the ruling-in of an assumed set of 
disease categories, implicitly ruling-out the rest. 
 
Computing research turned towards a formalisation of the process of model-based reasoning, on 
the heels of studies of problem-solving strategies which indicated that clinical expertise in 
difficult cases is largely reliant on causal, pathophysiological reasoning (Schwartz  et al, 1987).  
This approach was followed in MYCIN  (Shortliffe, 1976), which set the foundations for expert 
systems.  Ironically, this methodology has been most successful in prescriptive domains whose 
scope can be strictly limited, many of which are outside of medicine. Other successful products 
have developed as laboratory expert systems, which do not intrude directly into the process of 
clinical care.  One such system to diagnose the results of pulmonary function tests (PUFF) is 
reported to be have used routinely since 1977 and sold to multiple sites (Aikins et al, 1983, 
Coiera, 1997).  The clinical potential of expert systems is increasingly being realised in drug 
prescribing, for instance the project PRODIGY (Prescribing Rationally with Decision Support in 
General Practice Study) which has undergone extensive multicentre evaluation (Rogers et al, 
1999).  Note that some expert systems, notably MYCIN, use explicit measures of uncertainty and 
issue prompts for further information, generating an interactive consultation (Shortliffe, 1990). 
Explanations are provided for the prompts, by listing the information sought to specify the 
complete set of antecedents for the rules closest to firing. 
 
An alternative approach, closer to classical statistics, was to “construct and evaluate hypotheses 
by matching a patient’s characteristics with stored profiles in a given disease” (Schwartz  et al, 
1987).  This approach represents a paradigm shift from structured reasoning modelled on human 
expertise, which accesses a knowledge base consisting of operational rules, to one based on 
empirical evidence, relying on representative databases of historical data. A well-known 
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programme using this approach was INTERNIST-QMR (Miller et al, 1982). This programme 
mirrors hyptothetico-deductive reasoning (Shortliffe,1990) by assigning scores to clinical 
findings, listed by disease profiles, such that the accumulation of scores corresponded to building 
the evidence base for a clinical diagnosis. It could handle coexistent diseases, and was remarkably 
accurate from the start, given that it made strong assumptions about mutual independence of the 
predictive variables (Shortliffe, 1990).  Already, it was noted that it can be difficult to trace the 
system’s recommendations in order to adequately explain them to clinicians, in part due to their 
“reliance on hard-to-understand numerical scores in dealing with uncertainty” (Kulikowski, 
1988). 
 
Other examples of successful Bayesian models are de Dombal’s system for the diagnosis of acute 
abdominal pain (AAP) (de Dombal et al, 1972, 1984) and the GLAsgow system for the diagnosis 
of DYSpepsia (GLADYS, Davies and Owen, 1990).  In particular, AAP has been used routinely 
for several years in a clinical environment (McAdam et al, 1990, de Dombal et al, 1997).  
Structured belief networks implemented with the aid of Bayes’s theorem have outlasted the 70's 
and 80's.  Where independent Bayes was once used 30 years ago, good approximations of the 
integrals over distribution spaces are now possible with numerically intensive methods such as 
Markov Chain Monte Carlo (Neal, 1996). These developments anticipated the current confluence 
of interest on graphical models (Lunn et al, 2000) from sectors of the artificial intelligence, 
statistical modelling and machine learning communities. 
 
Nevertheless, at the end of the 80’s serious deficiencies were recognised in both expert systems 
and naïve Bayes profile -matching.  They were unable to cope with variations in disease 
presentation, both in terms of the spectrum of findings and their severity.  Nor could they deal 
with the evolution of disease over time, for instance in response to treatment, recognise how one 
disease may influence the presentation of another, or provide explanations based on patho-
physiology (Schwartz et al, 1987). Moreover, new knowledge was not readily accommodated 
without potentially disruptive consequences for the model, in violation of the very principles of 
adaptation that are characteristic expectations of intelligent systems.  These objections still apply 
today to neural networks, and must be taken into account when considering the rôle of new 
paradigms for medical decision support. 
 
A third approach to computational reasoning emerged, built around compartmentalised models of 
anatomy, physiology and pharmacology.  Model-based reasoning is expressed as coupled non-
linear differential equations or as causal probabilistic networks, for instance to simulate dynamic 
response to therapy, adapting for particular patients by fitting key parameters to small amounts of 
data (Andreassen et al, 1994).  These methods were the focus of decision modelling in the 1980’s, 
taking over from expert systems and empirical data modelling in the hope of resolving the serous 
concerns about those methods which were outlined earlier, in particular the need to accommodate 
multiple-disease diagnoses, sequential gathering of evidence over time and the perceived clinical 
trend to ‘delve deeper into the origins of disease’ (Lucas, 1997). 
 
A consensus developed that clinical advisory systems must specialise to a narrow clinical domain, 
which can be addressed at two quite different levels.  Practical systems have used shallow 
associations between observations and a fixed universe of allowed outcomes to formulate a 
phenomenology of particular classes of disease, applicable in specific clinical settings. An 
example of this approach is the Acute Physiology and Chronic Health Evaluation (APACHE 
Knaus et al, 1985, 1991, Rowan et al, 1994, Gunning and Rowan, 1999) and Simplified Acute 
Physiology Score (SAPS), which are among widely used statistically derived scoring system for 
patients receiving critical care.  Nevertheless, despite statistical studies supporting the robustness 
of these algorithms (Lemeshow and Le Gall, 1994), there is controversy surrounding their use in 
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emergency care wards.  This comes, in part, from evidence that use of severity of illness scores 
can increase mortality predictions when they use physiological variables recorded with the 
Intensive Care Information Systems (ICIS) (Bosman et al, 1998), because automatic charting 
extracts more abnormal values for most physiological variables than manual charting. 
In addition, extreme variability in the accuracy of mortality prediction across different patient 
groups (Moreno et al, 1998), has also called into question the validity of using score measures in 
making treatment decisions for individual patients (Civetta  et al, 1990, 1992). 
 
The rôle of medical decision support can now be summarised and extended in the context of a 
review of neural network applications.  Adapting from taxonomies of artificial intelligence in 
medicine (Shortliffe, 1990, Coiera, 1997) there are three general categories of application for 
neural networks in medical decision support: 
 

1. Tools for attention focusing, aiming to detect abnormalities, whether in hospital-based 
information systems or clinical laboratory systems.  Their purpose is to remind the user of 
diagnoses that might otherwise have been overlooked, or recall rarely occurring disease 
profiles. 

 
2. Patient-specific assessments and advice, started out as tools to support generic 

consultation by providing diagnostic and prognostic inferences. Given the current 
reliance on complex medical signals, inference models may be regarded as predictive 
instruments that sit alongside other medical devices.  Early approaches have been dubbed 
Greek oracle models, on account of the fact that physicians turn to them for advice but 
‘deferring to the dialogue style and recommendations of the machine’ (Shortliffe, 1993).  
An alternative, more interactive implementation of diagnostic and prognostic indices, is 
to use them as metrics to access electronic databases, in order to recall the records of 
historical cases predicted to be the most relevant to inform on a specific patient query. 

 
3. Interactive tools for critiquing and planning provide ‘black-boards’ for scenario analysis, 

allowing the clinician to gain new insights by testing hypotheses about the patient’s 
condition, and to consider the possible effects of different treatment choices.  The utility 
of this approach can be substantially enhanced by comparing the clinician’s inferences 
with those derived from historical data, by automatically requesting further information 
about the most informative indicators to resolve discrepancies between the two. 

 
1.2.  Previous surveys of medical applications involving neural networks 
 
Early reviews of medical applications of neural networks focused on potential for non-linear data 
analysis, distributed associative memory function as a was of avoiding difficulties with the 
acquisition of expert knowledge, noise tolerance due to their inherently parallel architecture, and 
adaptability to accommodate new manifestations of disease (Reggia , 1993). The thorny issue of 
performance assessment and clinical evaluation was also starting to be addressed (Ezquerra and 
Pazos, 1994).  Their rôle in the modelling of neurological and psychiatric function was also 
clearly delineated from that of decision support, where the modelling of empirical data was 
recognised to be akin to statistical pattern recognition (Reggia , 1993). 
 
A series of articles in an influential medical journal emphasised the prevalence, in clinical 
practice, of an associative memory function (Cross et al, 1995) attuned to the variability of 
disease presentations and degrees of severity which compound intra- and inter-patient effects.  In 
statistical terms, medical data typically have very low signal-to-noise ratios, as a result of the 
earlier effects combined with measurement noise, variations in clinical protocols across multiple 
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centres, and even significant geo-demographical differences between patient populations 
(Kennedy et al, 1997).  The high levels of noise typical in medical data cast a long shadow over 
the appropriateness of finely tuned non-linear models, requiring extensive, and indeed very 
expensive, performance testing to have confidence in claimed generalisation performance. 
 
The rationale for using neural networks to model the phenomenology of disease was originally to 
replicate associative memory functions that are known to be important in many familiar activities, 
even when they involve the exercise of rational judgment in complex tasks (Dreyfus and Dreyfus , 
1986).  Technologically, however, neural networks remain part of the ‘arcane subject of non-
linear statistical modelling and inference’ (Cross et al, 1995) with an intention to make this 
important and developing field accessible to non-specialist statisticians.  It may be argued that 
sound statistical principles are essential to trust the evidence base built with any data-based 
methodology, including neural networks (Schwartzer et al, 2000).  Therefore, these methods are 
best justified where they provide additional functionality to that of well-established statistical 
models, which are typically linear-in-the-parameters.  This leaves two opportunities.  One is to 
accurately map features of the data that are difficult or expensive to find in a conventional 
statistical development, typically consisting of complex interactions between particular variables 
or attributes.  The other possibility is to add substantially to the power of exploratory data 
analysis, for instance by raising hypotheses about unsuspected non-linear components whose 
explicit modelling may improve the accuracy of standard statistical methods, or by providing 
direct visualisation of complex high-dimensional data.  This review focuses on the current clinical 
application of neural networks, which is chiefly for non-linear inference, bringing-in their power 
in exploratory analysis as part of the general discussion. 
 
By 1995 there were close on 1,000 citations of neural networks in the biomedical literature (Baxt, 
1995), mostly describing studies on historical data, often small sets on which the predictive 
accuracy was tested.  Certain medical domains were identified to have potential for diagnostic 
support, at least on the basis of accuracy in single site trials.  An example is pre-screening of 
patients who present to emergency units with acute chest pain, to try to identify those who are 
most likely to have suffered Acute Myocardial Infarction (AMI).  Studies involving 706 patients 
returned sensitivities and specificities from 80% to 96% (Baxt and White, 1995), compared with a 
large study of physician’s performance that claimed an overall sensitivity and specificity of 88% 
and 71%, respectively (Goldman et al, 1988).  Most of these papers used current neural network 
methodologies, almost invariably the multi-layer perceptron with ‘early stopping’ to prevent 
over-fitting.  A particularly interesting methodological study concerned the influence of input 
variables on the response of a network trained to recognise high risk of AMI. This sensitivity 
analysis uses the bootstrap to correct for small sample bias and shows that the bias is significant 
(Baxt and White, 1995).   
 
Other promising areas included image analysis and radiography, recovery from surgery and 
prostate, breast and ovarian cancer, and clinical pharmacology.  However, there was little 
evidence that clinicians would be interested in developing the prototypes further.  Given the 
apparent reluctance of clinicians to readily embrace computer-based decision support (Johnston et 
al, 1994), it is necessary to demonstrate a greater appreciation of the broader clinical needs served 
by decision support, as well as the results from related studies with alternative methodologies. 
 
The third paper in the same series was concerned with applications in pathology and medical 
laboratories (Dybowski and Gant, 1995).  It is recognised that statistical and neural network 
methods are ideally suited for cytopathology.  Typical diagnostic procedures require he 
assessment of profiles of cytological features, for example in fine needle aspirates from breast 
lumps or Paponicolau slides from cervical smears (Koss, 1989).  Neural networks were also being 
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developed to identify malignancies in breast and lung with techniques from clinical chemistry, 
which combines serum-derived tumour markers, plasma indices and nuclear magnetic resonance 
spectral measurements. 
 
The Lancet papers pointed out that a contemporary benchmark study, the Statlog project 
(Comparative Testing of Statistical and Logical Learning, Michie et al, 1994), showed neural 
network methods to be less accurate than traditional statistics or decision-tree methods for 15 of 
22 data sets, three of which consisted of medical data (Wyatt, 1995).  This study was intended to 
relate the performance of 23 discrimination algorithms to characteristics of the data.  Some of its 
results confirmed expectations, for instance, linear and logistic discriminants performed similarly 
and did better than quadratic discriminants except when there differences in the dispersion of 
different categories, and that naïve Bayes works best when the indicator variables are 
approximately independent of one another.  Other results were more surprising. The ‘locality’ of 
the decision surfaces of the multi-layer perceptron made it similar to a rapid implementation of k-
nearest neighbours, which is consistent with a localised associative memory function. 
 
In an attempt to ensure that the results of this large collaborative effort were comparable across 
the participating centres, and to make a systematic benchmark of a large range of databases 
practicable, the methods were applied in ‘standard’ form with relatively little optimisation to each 
dataset.  This protocol afforded only limited control of over-fitting, to which these methods are 
known to be prone.  In relation to medical applications, the authors noted that only a few methods 
can handle missing data or have the capacity for incremental learning, and machine learning 
algorithms are the most transparent.  Furthermore, the lack of compensation for differences in 
class prevalence, i.e. heavily skewed data, resulted in the Radial Basis Function (RBF) network 
on occasions performing worse than the guessing line, while on another example with fewer input 
variables and a balanced data set it outperformed back-propagation, and it was the best classifier 
overall for the DNA dataset.  So, more detailed benchmarks were needed. 
 
A detailed comparison of multi-layer perceptron, rule induction methods (Quinlan’s ID3) and 
conditional independence Bayes, applied to the diagnosis of acute abdominal pain, gave similar 
accuracy for all three methods (Schwartz et al, 1993).  This time, each methodology was carefully 
optimised for maximum performance on a ‘hold-out test ‘set comprising 30 cases, from a total 
design sample of 276.   No separate sample was provided to validate the out-of-sample 
performance estimate. The clinicians’ initial diagnostic impressions were compared with the 
computer-based predictions from the various methods, in the diagnosis of appendicitis against 
other serious illness and non-specific pain.   There were a total of 41 binary indicators, with the 
ubiquitous missing values coded as separate attributes. The sensitivity and specificity in the 
differential diagnosis of appendicitis versus the rest indicated that the optimal threshold settings 
for the MLP and ID3 had similar sensitivity to the doctors but were less specific. The benchmark 
Bayes classifiers were slightly less sensitive than the MLP, for the same specificity, but all 
inference methods had much poorer specificity than the doctors. This result is not uncommon, 
because numerical classifiers tend perform best in the detection of particular clinical conditions, 
which are well circumscribed, but are poor for characterising diffuse, generic conditions. 
 
A further insight into the diagnostic value of the different procedures may be derived by 
factorising the ratio of the true positive to false positive ratios, to characterise how the 
discriminator improves on the guessing line.  This defines a boosting factor between the 
prevalence and the positive predictive value (PPV) of the tests, given by 
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Pr(class) and Pr(~class) denote the prevalence within and outside of the diagnostic class of 
interest.  The boosting factors calculated from the sensitivity and specificity values quoted in 
(Schwartz et al, 1993) are 1.1, 1.2, 1.4 and 1.8, for naïve Bayes, ID3, back-propagation and the 
doctor’s initial diagnosis, respectively.  The doctors have the clearest gain over the guessing line. 
 
Also of interest is the poor overlap between the models selected by optimising each of the three 
radically different methodologies.  This indicates that, as much as the relevant variables may 
reflect their inherent symptomatic value, their selection is partly an artefact of the different 
structures of the discriminant models.  
 
A further detailed benchmark was carried out on a database of 41,021 cardiac patients admitted to 
1,081 hospitals in 15 countries (Ennis et al, 1998).  The prevalence of death within 30 days of 
admission was 7%, therefore the class membership is heavily skewed towards survivors.  This 
study followed a detailed design of an effective logistic regression model, with the consequence 
that some of the predictive variables were composite indices coding for non-linearities in the data, 
including interaction terms, and there were no missing values as they had been imputed.  The first 
effect militates against the benefit of an additional generic non-linear model.   
 
Generalised additive models, CART and MARS are alternative generic non-linear statistical 
models also included in the benchmark study.  Each model was optimised for the design dataset, 
which comprised separate subsets for training and parameter tuning, with a further holdout 
sample of size 13,610 for performance estimation.  The multi-layer perceptron architecture 
comprised an additional layer of direct connections between the input and response nodes, 
forming a linear model in parallel with the hidden-unit non-linearities.  All unregularised multi-
layer perceptron networks showed clear evidence of over-fitting, namely a split early on between 
the mean log-likelihood for the training and tuning, or testing, datasets.  This effect is often 
indicative of a poor signal-to-noise ratio masking any non-linearities that are not be already 
modelled in the predictor variables.  The study concludes that non-linear algorithms have limited 
applicability in clinical settings, possibly because the signal-to-noise ratio tends to be low.  This 
may result in linear models with interactions asymptotically approximating the Bayesian 
optimum, with little potential for improvement with generic non-linear models. 
 
So far, the extensive retrospective benchmark studies reviewed have reported no significant 
differences between the accuracy of neural network models and that of alternative, simpler 
inference algorithms, including logistic regression.  In contrast, the multi-layer perceptron, 
appears to perform as a sub-optimal generic modelling tool.  Nevertheless, the interest on 
highlighted by recent reviews of applications to critical care (Hanson and Marshall, 2001), 
surgery (Drew and Monson, 2000, Golub et al, 1998), staging of prostatic cancer (Montie and 
Wei, 2000), and physical medicine and rehabilitation (Ohno-Machado and Rowland, 1999). 
 
1.3. Scope of the review of publications 
 
In order to make a vast subject manageable, the survey specialises on applications to the key 
medical domains of oncology, critical care and cardiovascular medicine, as well as the clinical 
functions of diagnosis, prognosis and survival analysis. 
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This focus leaves out important application domains, which merit surveys of their own.  For 
instance, mature applications of decision support in medicine often require a combination of 
several modules operating at different levels, from pattern recognition to supervisory reasoning.  
This survey provides a snapshot narrowly focused to neural networks, to the exclusion of hybrid 
methods such as neurofuzzy systems (Szczepaniak et al, 2000).  There are also specialist domain 
areas linked to signal processing that merit focused reviews, such as image processing and time 
series analysis, including developments in Independent Components Analysis (ICA) for artefact 
removal and feature extraction (Lisboa et al, 2000a).  Yet another growing application area 
closely linked to biomedicine is bioinformatics (Shi et al, 2000). 

2. Survey of applications 
 
The purpose of the review of publications is to assess the evidence for improvements in 
healthcare arising from the involvement of artificial neural networks in medical intervention.  It is 
generally accepted that the most reliable method of determining the effectiveness of a new 
intervention is to conduct a systematic comparative study with a Randomised Controlled Trial 
(Jadad and Rennie, 1998). With regard to neural network applications, evidence of impact on 
healthcare outcomes has also been reported in some observational studies, therefore data 
collection consisted of a search of publications involving neural networks listed in the PUBMED 
database (www.ncbi.nlm.nih.gov/PubMed) under Randomised Controlled Trial (RCT) or Clinical 
Trial (CT).  Additional publications of particular interest are also reviewed in the discussion of 
each medical domain.  It is recognised that other, equally meritorious, studies will inevitably have 
been omitted.  Nevertheless, the additional papers provide an indication of significant emerging 
technical developments. 
 
Medical decision support is different from other medical interventions, such as the introduction of 
new prescription drugs, because it involves the exercise of clinical judgment, which can 
substantially affect the study design (Hunt  et al, 1998, Ohmann  et al, 1999).  For these reasons, 
a new framework is required to assemble evidence in support of a 'complex intervention', whether 
it is implemented by means of organisational changes to the delivery of healthcare, through the 
introduction of new clinical protocols, or by adopting computer-based decision support systems 
(CDSS).    
 
A flexible framework for design and evaluation of complex medical interventions was recently 
suggested (Campbell  et al, 2000).  This framework can be used to guide the introduction of new 
decision support systems, as shown in Fig. 1.  Note that each stage feeds directly into a 
specification for the next with the overall the objective being, not to test a neural network, 
inference model or any other individual system module, but to assess the outcomes of the 
intervention as a whole, and demonstrate its merits against a current intervention.  This step of 
comparing with an accepted standard is necessary, not just for clinical acceptance, but also as an 
essential requirement for certification of medical devices, whose definition includes free-standing 
software that serves a diagnostic purpose affecting patient care (Lisboa, 2001), through a process 
that involves formal assessment by an independent certification body. 
 
In reviews of evidence of healthcare benefits arising from medical decision support, it is 
customary to distinguish between improvements in clinician performance and changes in patient 
outcome. While clearly linked, the two effects do not always correlate well. For this reason, some 
surveys filter RCTs and CTs through a system to score the rigour in study design.  This filtering 
was deliberately not carried out in this review, in order to gain a wider perspective of clinical 
applications of neural networks with a critical assessment of the merits in current practice.   
 



 10

The publications are mapped out by medical domain and clinical function in Tables 1 and 2.  The 
domains of oncology, critical care and cardiology are those where RCTs are prominent, with CTs 
used for a wide range of medical applications.  Most of the studies cited are concerned with 
diagnostic or prognostic inference, with only one RCT directly addressing survival. 
 
Published reviews of computer-based clinical decision support have concluded that the most 
promising systems are for drug dosing and preventive care (Hunt  et al, 1998, Weiner and Pifer, 
2000).  They serve to alert against adverse effects from prescription drugs, or to promote greater 
compliance with practice guidelines in health maintenance activities such as vaccinations and 
mammography.  One review paper notes that computer-aided evaluation of mammograms already 
helps to cut the number of missed lesions by half without increasing the false positive rate 
(Weiner and Pifer, 2000) though it incurs additional costs in terms of time, training and 
equipment.   
 
These wide ranging studies do not report any evidence of benefits arising from inference-based 
decision support despite the routine use, for instance, of several severity of illness scores, notably 
the Glasgow coma score and APACHE III, the Bayesian decision support systems mentioned.  
One reason for these omissions is the strict protocol used to select acceptable evidence for the 
reviews, typically requiring the use of a CDSS in a clinical setting by a healthcare practitioner 
with assessment by a prospective study against a concurrent control (Hunt et al, 1998).  While 
that specification of evidential studies is understandably rigorous, it can be too fine a sieve to 
fully appreciate the different rôles of statistical modelling and CDSS. An example of a substantial 
system that is not mentioned in these reviews is AAP.  In a letter responding to a survey of 
computer-assisted diagnosis that similarly omitted this system (Kassirer, 1994) de Dombal 
pointed out that an eight-centre trial in the United Kingdom involving 16,737 patients with acute 
abdominal pain showed approximately a 20% improvement in the diagnostic accuracy of the 
doctors with almost a 50% reduction in the rates of perforation and negative laparotomy (de 
Dombal, 1994; de Adams et al, 1986).  A separate study showed comparable results maintained 
over 12 years (McAdam  et al, 1990) and this was followed by an international study of 15,000 
patients from 64 hospitals in the European Community (De Dombal et al, 1993).   
 
Some of these systems are discussed in connection to the review of applications in specific 
medical domains in the following sections. 
 
2.1.  Oncology 
 
2.1.1. Models for inference and visualisation 
 
A list of papers addressing three of the most prevalent cancers is presented in Table 3.  The 
results reported show considerable discriminatory power for quantitative modelling of disease 
with composite indices comprising indicators that are available in routine tests.  This highlights 
an emerging rôle for quantitative models for decision support in evidence-based medicine. 
 
However, the neural networks tested are generally built around the original implementation of the 
multi-layer perceptron, with few publication using any form of regularisation of the objective 
function, for instance weight decay (Khotari et al, 1996).  One study carried out performance 
estimation with the bootstrap methodology (Baxt and White, 1995) but internal cross-validation 
without the use of an additional validation dataset is still very much used to estimate 
generalisation performance.  While this becomes robust for large sample sizes, it is known to 
return optimistic estimates of misclassification error.  These methodological issues are returned to 
in the discussion of critical design considerations in section 4. 
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Studies of prostate cancer concern the elimination of false positive Prostate Specific Antigen 
(PSA) results and the development of prognostic indicators for confirmed cases. PSA 
concentration is a sensitive but unspecific test for disorders of the prostate.  The aim of the study 
is to increase the specificity without sacrificing the sensitivity, by combining measurements of 
free PSA and prostate volume, with the outcomes from a digital rectal examina tion in men aged 
55-67 years with total serum PSA concentrations of 4-10 ng/mL (Finne et al, 2000).  The 
reduction in false positives was estimated by leave-one-ut cross-validation, at clinically relevant 
levels of sensitivity 80-99%. The overall conclusion is that either MLP and LogR could reduce 
the number of biopsies significantly better than using free PSA.  Other studies claim that reducing 
false positives for PSA measurements below 4 ng/mL is also possible with neural networks 
(Stamey et al, 1998). 
 
The other studies address prognostic risk for confirmed diagnoses, and are both contained in a 
single paper. PSA is again used, this time combined with clinical staging to predict the likelihood 
of lymph node spread (LNS) (Gamito et al, 2000).  For capsular penetration (CP), PSA and 
clinical staging are further combined with PSA velocity and the sum of the Gleason scores for the 
two most commonly found histological patterns.  This is a substantial study showing good 
practice in the use for validation of an external data set collected from 660 patients, who are 
additional to the design data from 4,133 patients that were used for training and testing, or tuning, 
of the classifiers.  Once again, the overall conclusion is that accurate objective inference is 
possible for the likelihood of LNS or CP, although the MLP is not assessed against a benchmark 
linear classifier.  The performance of this staging score is also not compared with alternative 
scores combining clinical stage, Gleason score and PSA levels, for instance Partin tables (Blute et 
al, 2000). 
 
Cervical cytology studies have generated landmark papers evaluating Neural Network-Assisted 
(NNA) review of Pap smear slides with the PAPNET Testing System. In 1995 this support 
system gained Federal Drug Administration (FDA) approval for secondary screening.  It is 
arguably the first concrete medical application of artificial neural networks patented, filed in 1988 
and granted in 1990 (Rutenberg, 1990).  It also reported the first case-control study where 
negative smears were re-evaluated using manual microscopic re-screening and PAPNET re-
screening (Rosenthal et al, 1993).  As a retrospective study, it did not merit inclusion in formal 
reviews of the evidence of benefit from CDSS in medicine. 
 
The PAPNET system (Mango, 1994) identifies for visual inspection the most atypical 64 single 
cells and 64 clusters among the thousands present in Papanicolaou stained slides taken from 
cervical smears. This system uses a two-tier architecture with different levels of resolution for 
initial and final classification.  The first tier filters out debris and other unwanted image segments, 
while the second employing specialist networks for single cell identification and cluster 
identification.  The networks are unregularised multi-layer perceptrons trained by back-error 
propagation, whose reliability depended entirely on the richness and diversity of samples made 
available for training and validation. Image features were derived from intensity histograms.  In 
early clinical trials, the agreement between inferences made with PAPNET and a subsequent 
histological diagnosis was 38% for severe dysplasia, 35% for carcinoma-in-situ and 72% for 
suspected invasive carcinoma (Boon and Kok, 1995).  This compared with 40% , 20% and 62%, 
respectively, with conventional screening, indicating that the computerised method may 
significantly improve detection accuracy for the most severe cytological abnormalities. As with 
AAP twenty years previously, a simple statistical algorithm within a well-structured model has 
proved to be surprisingly effective and robust.  It is clear that the acceptance of PAPNET by 
laboratory cytologists required more than the performance demonstrated in clinical trials. 
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Several aspects of the system have contributed to its sustained adoption for routine use. First of 
all, it addresses an issue where there was an identified need to improvement (Koss, 1989; 
Sherman and Kelly, 1992).  Secondly, the overriding design priority was to substantially improve 
the sensitivity of diagnostic cell identification, by comparison with trained cytologists, and thus 
reduce the highest-cost errors caused by false negative tests. The poor specificity, which is 
invariably traded for improved sensitivity, is managed by referring a set number of images for 
manual inspection. By rôle specialisation, neural networks thus found a practical purpose for 
routine use alongside trained cytologists in clinical laboratories.  Thirdly, the system promotes 
user acceptance by integrating seamlessly into the standard testing protocol (Mango, 1997). 
 
Arguably the largest-scale, and most detailed studies of any medical applications of neural 
networks have been carried out with this system. NNA re-screening of node negative smears 
produced a statistically significant improvement in yield compared with conventional unassisted 
re-screening, where the term yield refers to the percentage of re-screened negatives reclassified as 
abnormal (Mango and Valente, 1998).  This conclusion is consistent with an early landmark study 
(Boon and Kok, 1993) and a large multi-centre study (Koss et al, 1997) showing that assisted re-
screening could catch cancers that human re-screening missed.  A recent CT of inter-observer 
variability among five cytotechnologists (Sherman et al, 1998) showed that it remained high even 
with NNA screening.  Referral of patients with consensus abnormal readings showed a sensitivity 
of 51% with 31% referrals, which was raised to 95% sensitivity by including also patients with 
consensus equivocal readings but with 79% referrals. 
 
Since the early trials and subsequent studies reviewing thousands of cases, which demonstrate a 
potential health benefit arising from an improvement in clinician performance, the capital 
intensive nature of this technological aid has caused a heated controversy with regard to the cost 
benefit of using PAPNET (O’Leary et al, 1998, Radensky and Mango, 1998).  While it is 
estimated to have a cost per life-year saved that is less than widely used interventions for other 
conditions such as mammography and PSA (Schechter, 1996), this technology is reported to be 
more efficient when laboratories read in excess of 50,000 smears per year raising logistical 
problems for widespread use (Cuzick and Sasieni, 1999). 
 
Nevertheless, the PAPNET system is now being considered for primary screening of cervical 
cancer.  A report of the PRISMATIC team (Prismatic Team, 1999) reports good agreement with 
conventional primary screening across seven gradings, together with better specificity and faster 
processing.  Another RCT with seven year follow-up in a mass screening programme 
(Doornewaard  et al, 1999) also agrees that PAPNET has similar diagnostic value to conventional 
screening, on the basis of AUROC confidence intervals of 78-82% and 77-81% for conventional 
and PAPNET screening of dysplasia, respectively.  Derivatives of PAPNET are also being 
applied to the detection bronchogenic carcinoma, from smears of sputum (Koss et al, 1996), 
oesophageal cancer (Koss, 2000) and urithelial carcinoma of the bladder, from bladder washings 
(Vriesema  et al, 2000). 
 
In breast cancer, there is interest in surrogate measurement of lymph node status (Naguib  et al, 
1996) and for identification of pre-cancerous breast (Simpson  et al, 1995). It is clear from these 
early studies that the quality of data, in particular the occurrence of missing values, is a 
significant bottleneck for the application of pattern recognition.  McGuire  et al, 1992, carried out 
a detailed analysis of the prognostic factors influencing predictions of relapse in axillary node-
negative patients and propose a framework to use this prognostic information directly to inform 
treatment decisions.  The purpose of this interim study was to further rationalise adjuvant 
treatment decisions for a patient cohort who are generally at low risk of relapse. Its findings were 
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that the MLP was sensitive in the detection of the most prevalent group, comprising patients with 
good-prognosis. 
 
Another study of particular interest addressed the automated cytodiagnosis of fine needle 
aspirates of the breast from ten cytological features together the patient’s age.  A prospective data 
set comprising 322 collected by multiple observers was used to validate a MLP model optimised 
from a design data set with 692 cases collected retrospectively by a single observer (Cross et al, 
2000).   The sensitivities and positive predictive values at a specificity where there were no false 
positives, were 79% and 100% when estimated for the MLP from an independent test subset of 
the design data.  However, these values fell to 67% and 91%, respectively, when the model was 
applied to the external validation data.  The 31% drop in sensitivity was considerably worse than 
the 10% drop observed for logistic regression, from 82% to 72% for the same datasets.  This 
shows that inter-observed variability is a major contributing factor to the effectiveness of 
automated cyto-diagnosis of fine needle aspirates of the breast, but also highlights the critical rôle 
for external validation of clinical decision support systems. 
 
In a related study, a new unsupervised neural network architecture was proposed for the 
visualisation of medical data (Walker et al, 1999).  The growing cell structure is a dynamic two-
dimensional map that grows according to a similarity measure, producing colour maps that 
highlight the distribution of input variables in relation to the prevalence of disease at different 
locations in the map.  With the use of Bayes’ theorem, probability distributions estimated with the 
Parzen window are converted into class membership probabilities, yielding similar discriminatory 
performance as logistic regression for breast cytology.  Putting aside the evidence of the AUROC, 
the colour maps of the input features provide a powerful visualisation tool to assess correlations 
between them and with the externally imposed category label. 
 
Some of the less prevalent cancers have also been the subject of study with neural networks and 
they are listed in Table 4.  A study by Kothari et al, 1996, on cell categorization in acute leukemia 
was the only clinical trial listed to use regularisation of the objective function.  Nevertheless, the 
discrepancy between a negligible training error and a 10% generalisation error, found with 
various sets of explanatory variables, indicates that either the sample size or choice of design 
sample makes it insufficiently representative of the test distribution, or the regularisation 
parameter was underestimated.  Bryce et al, 1995 and Bugliosi et al, 1994 are the only trials 
directly concerned with prognostic models for survival, as a measure of treatment. Bryce et al, 
1995 use complete records with two-year follow-up from 116 randomised patients in a Phase III 
clinical trial comparing hyper-fractionated radiotherapy with or without concurrent systemic 
treatment. Glass and Reddick, 1998, explore the relatively new modality of contrast enhanced 
MRI to non-invasively measure a key feature of invasive tumours, the extent of necrosis.  
Features of interest are identified by a Self-organised map (SOM) and classified by a MLP.  
Bugliosi et al, 1994, applied the MLP but also a holographic model, carrying out automatic 
variable selection.  In particular, 132 further patients were excluded for key missing variables. 
 
2.1.2.  Survival analysis 
 
Survival analysis is an important of medical statistics, frequently used to define prognostic 
indices for mortality of recurrence of a disease, and to study outcome of treatment.  While these 
methods are applied in virtually every medical domain, applications are particularly prevalent in 
oncology.  It has been recognised in the medical literature that neural networks have much to 
contribute to the modelling of cancer survival (Burke  et al, 1997, Lundin et al, 1999), on the basis 
of early studies comparing the MLP with the Tumour, Nodes and Metastasis (TNM) clinical 
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staging system recommended by the World Health Organisation.  Initial fied time models were 
also applied to other areas such as AIDS-related mortality (Ohno-Machado, 1997). 
 
The principal differentiating characteristic of survival modelling compared with conventional 
class discrimination is the overriding presence of censorship.  Censorship occurs when a patient is 
lost to follow-up without event of interest taking place.  In a cancer mortality study, for instance, 
the event of interest might be death ascribed to breast cancer, with a period of study involving 
follow-up over five years.  Any patient who is lost to the study within five years of recruitment, 
whether by something as innocuous as changing address or as serious as death from an un-related 
cause, is considered censored.  These inter-current deaths may be particularly difficult to define, 
as cardiac arrest may be due to systemic damage inflicted during cancer therapy and, as such, the 
original cancer could legitimately be considered as a contributing factor to the death.  
Furthermore, all patients reaching the limit of the period of study are deemed censored at the 
point of maximum follow-up.  The term censorship indicates that there is no way of knowing for 
certain what the outcome for those patients would be had they remained in the study.  Treating 
these data as missing, excluding censored patients from the study or employing ad hoc  
techniques, will incur substantial bias in the estimation of survival, which are readily 
demonstrated with simulated data (Brown et al, 1997). 
 
Several approaches have been proposed to modify the MLP in order to capture the effects of 
censorship. The motivation for doing so comes from the strict assumptions made in routinely used 
survival models that are linear in the parameters.  Taking as an example the proportional hazards 
method, also called Cox regression, the assumption is made that for any combination of 
covariates, the hazard ratio is strictly proportional to that of a selected baseline population. What 
appears to be a disastrously restrictive assumption is in fact approximately observed in many 
clinical situations which, combined with the use of a linear prognostic index, makes this model 
overwhelmingly the most commonly used in large-scale medical statistical studies.  As a result, 
direct MLP extensions of proportional hazards have been proposed (Faraggi et al, 1997, Ripley et 
al, 1998) which maintain the separation between the dependence on time and on the patient 
specific vector of covariates, resulting in non-linear proportional hazards models. 
 
A more efficient representation of time is to include it as a covariate, serving as an input index to 
condition hazard estimates made by a single output unit. This approach has been proposed by 
several authors (Ravdin et al, 1992, De Laurentiis et al, 1994, Liestøl et al, 1994), and is 
thoroughly described by the Partial Logistic Artificial Neural Network (Biganzoli et al, 1998) as a 
non-linear extension of a logistic regression estimator of the hazard rates (Efron, 1988) that arises 
naturally as the discrete time implementation of the proportional hazards model (Collett, 1994).  
This neural network model of survival has proved to be very stable in monthly studies over 
follow-up periods of several years, releasing the proportionality of the hazards assumption and 
fitting non-linear effects (Laurentiis et al, 1994, Biganzoli et al, 1998, Lisboa et al, 2000b).  It 
also generates a prognostic index that can be interpreted in the same way as for the proportional 
hazards model, and is amenable to regularisation within the evidence framework of MacKay 
(MacKay, 1992) provided that account is taken of the highly skewed target distributions over time 
arising from very low hazard ratios in the time intervals (Lisboa et al, 2000b). 
 
The main reported application of these models is mortality and recurrence following surgery for 
breast cancer.  The practical importance of this work is to inform clinicians and patients regarding 
treatment.  An early study of uncensored data for 5-year mortality from breast cancer and 
colorectal cancer, showed that the MLP predictions have a significantly better AUROC in each 
case than assigning each patient to the average survival for patients in the same TNM stage 
(Burke et al, 1997).  A later study comparing the MLP with LogR also for mortality prediction, 
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gav comparable predictive performance for the two methods and indicated that good prediction 
was possible while omitting nodal status (Lundin et al, 1999).    Two separate analyses of breast 
cancer recurrence used non-proportional hazards models where a conventional MLP replaces the 
linear risk score in Cox regression.  One study found no significant difference in predictive 
accuracy of relapse within staggered fixed time periods (Ripley et al, 1998).  The other study 
modelled contra-lateral recurrence of breast cancer, focusing on the structure of the prognostic 
index generated from the neural network and cross-checking it with stratified Cox regression 
(Mariani et al, 1997).  This showed non-linear interactions between covariates which merit 
further clinical analysis.  For example, low oestrogen was found to be protective in most patients, 
as is generally believed to be the case, but it appears to have the reverse effect in patients aged 45 
or less.  And, progesterone levels showed an interaction with histology, predicting a greater 
hazard of contra-lateral recurrence for patients with various types of ductal carcinoma, but a 
lower hazard for those with lobular carcinoma. 
 
Overall, neural networks have not been clearly demonstrated improve upon the predictive power 
of proportional hazards, in breast as in other forms of cancer (Groves et al, 1999). However, an 
important conjecture is that classical and neural models of survival should be used as 
complementary, rather than rival tools (Biganzoli et al, 1998).  In particular, one may feed low-
order interaction terms onto the other, and both need to look more closely at common causes of 
error, namely the omission of key prognostic variables and the categorization of continuous scales 
(Schmoor and Schumacher, 1997).  This is especially important in view of the remarks made in 
the methodology section concerning variable selection with neural network models. 
 
2.2.  Critical care monitoring 
 
The few papers related to critical care listed in Table 5 are concerned with peri- and neo-nates. 
Predicting length-of-stay is increasingly important, and  it is the focus of a comparative study of 
the MLP and multivariate linear regression (MLR) (Zernikow et al, 1999).  A tota l of 40 first-
day-of-life items were made available, together with the date of discharge. The paper concludes 
that even first-day-of-life data may contain sufficient information to usefully predict individual 
length of stay. 
 
An earlier study to predict the likelihood of intra-cranial haemorrhage in pre-term neonates, with 
gestational age less than 32 weeks and birth weight below 1500g (Zernikow et al, 1998), again 
found the MLP to be superior to a benchmark linear model, this time LogR.  This was on the 
basis of the AUROC, as well as the sensitivity measured over a range of clinically relevant 
specificities from 75% to 95 % in 5% steps.  However, the neural network used 13 variables 
where stepwise LogR identified only 5.  Given that stepwise regression is commonly found to 
select too many variables and hence be prone to over-fitting, and neither model was regularised, it 
is possible that the results reported are optimistic. An important related area is neonatal 
monitoring of fetal distress.  Loss of oxygenation to the brain during labour results in acidic traces 
that can be monitored by the pH of the umbilical artery (Stock et al, 1994).  This study lists the 
performances of networks with increasing complexity, without regularisation, showing the effect 
of over-fitting.  The paper also raises the issue of skewed class label distributions, which is 
considered again in section 4. 
 
Features extracted from EEGs have also been used to make statements about levels of 
abnormality, with potential for use as an early warning system in the paediatric intensive care 
unit.  An example of this is an expert system with neural network and fuzzy logic elements, which 
was found to agree with an expert to within two from seven possible abnormality levels (Si et al, 
1998).  While all of these studies point towards potential for automated decision support systems 
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for an array of critical care applications, further evidence is still required from more widespread 
validation involving multi-centre trials, before these systems can be considered for routine use. 
 
APACHE II is a severity of injury score in current use in intensive care units, although 
evaluations of its impact on patient outcome has not been uncontroversial.  In particular, a multi-
centre prospective cohort study involving 2,962 patients with one year follow-up showed that the 
severity of injury index does not always correlate well with measures of the extent of disability a 
year after discharge (Thornhill et al, 2000).  This is an example of performance assessment not 
correlating well with patient benefit, instead showing greater than expected disability levels in 
patients admitted with an apparently mild head injury.  Other lifestyle factors also had a 
significant influence on outcome.  A direct comparison was carried out between predictions of 
mortality status at discharge for 8,796 patients from adult intensive care units, made by an 
unregularised MLP and a LogR classifier combining the APACHE II score, post-emergency 
operation status and a disease category coefficient (Wong and Young, 1999).  The network inputs 
consisted of the 12 physiological variables that go into the calculation of the APACHE II score, 
together with post-emergency operation status, the patient's age and chronic health history The 
results show comparable accuracy for the two methods, on the basis of the Lemeshow-Hosmer χ2 
statistic typically used to assess mortality predictions by grouping data into predicted mortality 
groups in 10% intervals.  This method highlights differences in calibration between the two 
methods, showing that APACHE II was closer to the calibration line in the mid-range and the 
MLP in the upper mortality range.  This means that the meaning of a prediction of a particular 
percentage of deaths is over-estimated by APACHE when it is small and under-estimated when it 
is large, whereas the MLP over-estimates everywhere except in the top range. 
 
2.3.  Cardiolovascular medicine 
 
Early diagnosis of acute myocardial infarction (AMI) in patients presenting at emergency wards 
suffering from severe chest pain, has attracted considerable interest for the application of pattern 
recognition.  The main intention is to use biochemical markers from a blood sample, to predict 
the outcome of protein measurements whose results take several hours to obtain.  The earlier AMI 
is detected so the sooner blood-thinning medication may be administered at a time when it has the 
largest effect in reducing the severity of the resulting damage to heart muscle.  Several studies 
focus on this theme. 
 
In an early study, Ellenius  et al, 1997 followed-up the diagnosis of a patient with a minor AMI 
from the time of infarct, by monitoring the rise in the concentration of biochemical markers and 
identifying the stage at which the MLP, and each of three expert clinicians, could confirm the 
diagnosis.  This unusual approach to system evaluation showed the model detecting AMI and 
later predicting the size of the infarct, simultaneously with the earliest firm indications by the 
experts. 
 
A large-scale study of automated interpretation of 12-lead electrocardiograms for detection of 
AMI, was carried out with a cohort of patients presenting to a single hospital over a 5-year period, 
comprising 1,120 confirmed cases and 10,452 controls.  A 20 s trace was represented by six 
automatically generated ST-T measurements from each of the 12 leads, providing inputs to 72 
input units of a MLP with a single hidden layer (Hedén et al, 1997), controlled for over-training 
by early stopping tuned with eight-fold cross-validation.  The same cross-validation procedure 
was used for performance estimation, showing a 15.5% (CI 12.4-18.6%) sensitivity improvement 
over rule-based criteria used by computersized electrocardiographs at the emergency department, 
with 95% specificity.  A smaller improvement of 10.5% (CI 7.2-13.6%) was found over the 
detection rate for AMI by expert cardiologists, who were restricted to reading the ECGs in the 
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absence of contextual information such as personal data and clinical findings at the initial 
examination, reducing the specificity to 86.3%. The comparison with the computerised rule -based 
criteria represent a 50% increase in boost-factor from approximately six to nine, whereas in the 
comparison with clinicians the change is by 20% at a likelihood gain of around 3.5. The 
improvements deteriorate at higher specificities, but these results have nevertheless been reported 
enthusiastically in medical journals (Josefson, 1997, Fricker, 1997).  The authors point out that 
the system would be of particular value to junior doctors in emergency rooms, and the next stage 
is to integrate additional contextual information such as patient history and findings of clinical 
investigations.  Some of these ideas are pursued further in the work described next. 
 
An advanced methodological study of AMI detection in emergency departments with neural 
networks, comprises a sequence of papers by Baxt and collaborators.  Early papers to optimise the 
accuracy of the neural network predictions (Baxt, 1992) were followed by a careful analysis of 
the effects of individual clinical inputs on the network decision (Baxt, 1994), and the application 
of rigorous practical methodologies for sensitivity analysis (Baxt and White, 1995).  Of particular 
interest is the use of the bootstrap to correct for finite-size effects, causing bias in the sensitivity 
estimates derived from the training data, a sample with 706 observations. This bias is significant 
enough to change the rank-order of importance of the clinical inputs.   
 
The analysis of input effects by calculating bias-corrected sensitivities in Baxt and White , 1995, 
ranked new variables higher than certain indicators commonly used by expert clinicians.  The 
resulting model is consistent with another study of variable selection for the prediction of AMI 
(Dreiseitl et al, 1999) comparing LogR, Bayesian neural networks (Neal, 1996) and rough sets.  
Several variable selection methods suited to each modelling approach were also applied to a set of 
500 records, selecting from 43 variables.  Multiple variable selection runs were carried out with a 
training data consisting of 335 patient records, optimising the results for a test set comprising the 
remaining 165 records.  Only one variable, ST elevation, was selected by all methods.  This is 
recognised as clinically very relevant, but three other variables commonly used by experts were 
not selected by any of the models, namely history of diabetes mellitus, severe chest pain and pain 
duration.  The results of both studies are consistent with respect to these variables, suggesting that 
while they may be sensitive to AMI, they have poor specificity. 
 
The initial studies were followed by a prospective comparison between the detection rates by 
cardiologists and the MLP for a cohort of 1,070 patients aged 18 and over presenting with 
anterior chest pain, again, to a single hospital (Baxt and Skora, 1996).  This is an observational 
study in which the clinicians and decision system separately reviewed the same patients, therefore 
it was not listed in PUBMED as a Controlled Trial.   It does not qualify as an evaluation of 
clinician performance, since the trial does not involve clinicians in the loop, or of patient 
outcome, as the decision support was not used to inform clinical decisions.  Nevertheless, it 
claims arguably the largest increase in performance by a neural network system compared with 
expert clinic ians, boosting the likelihood of making a correct decision by factors of 24 and 4.7, 
respectively, over the prevalence. 
 
An earlier, multi-centre trial involving emergency departments in six hospitals, compared three 
quite different modelling structures for classification, namely rule induction, LogR and the MLP, 
for the prediction of acute cardiac ischaemia (ACI), comprising AMI and unstable angina 
pectoris, from 8 variables available within the first 10 minutes of emergency care (Selker et al, 
1995).  The variables represent patient history, together with features extracted from a clinical 
examination and an electrocardiogram.  The MLP had noticeably poorer calibration than the other 
methods. It also suffers from being more difficult to interpret.  It was concluded from this study 
that the choice of database decision support method should be made on the basis of specific 
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application needs rather than on the premise that any of the methods tried is intrinsically more 
powerful than the others.  Nevertheless, the results obtained indicate that an important limitation 
of the predictive performance for this clinical outcome is the availability of reliable data, rather 
than the need for more algorithmic development. 
 
An altogether different application is to predict the likelihood of patients developing transiet 
myocardial ischaemia during a period with ambulatory Holter monitoring, using parameters form 
a previously recorded 12-lead resting ECG (Polak  et al, 1997). This is an example of a study 
where the MLP trained by back-propagation was out-performed by a linear discriminants analysis 
(LDA) and an alternative model to the MLP, the adaptive logic network.  The poor performance 
by the MLP, which in principle has enough flexibility to emulate the other two, could be due to 
substantial over-fitting.  The adaptive logic network is an early derivative of the MLP where all 
nodes are forced towards the hard-threshold limit, thus assuming a Boolean logical function.  
Constraints can then be applied to explicitly control qualitative features of the model, for instance 
the convexity of the decision boundaries. 
  
Turning now to diagnostic radiology, a study of myocardial images to quantify coronary heart 
defects from perfusion scintigrams consisted of developing a classifier with images from 135 
patients from one hospital, and testing it in another (Lindahl et al, 2000).  This external validation 
is a key stage in the evaluation of improvements in clinician performance arising from the 
deployment of a decision support system, since anything from the quality of equipment to 
acquisition protocols may vary between clinical centres ostensibly performing equivalent tasks.  
The sensitivity of the MLP was found to exceed that of alternative rule -based detection 
algorithms including some derived from the Cedars-Emory quantitative analysis software, CEqual 
(de Sutter et al, 2000).  In an earlier study of the influence of decision support on the 
interpretation of bull's-eye scintigrams by clinicians, the images were independently classified by 
three experts twice with, and twice without advice from the neural network (Lindhal et al, 1999). 
Overall, there was significantly less inter- and intra-observer variability in detection of presence 
against absence of coronary disease and classification into two from four categories than without 
support, with corresponding increases in diagnostic accuracy measured by the AUROC. 
 
Georgiadis et al, 1995, is another rare study aiming at a systematic characterisation of intra-
observer, inter-observer and intra-subject variability. In this carefully conducted feasibility study 
of automated embolus detection in patients with prosthetic heart valves, also derived from 
Doppler ultra-sound measurements, no significant difference was found between the 
microembolic counts of different observers, among three separate counts by the same observer, or 
between human observers and a MLP.  In addition, repeat examinations of the same patient were 
also consistent, indicating that the detection of microembolic signals in this patient cohort is a 
reproducible technique. 
 
In a separate application, Doppler ultra-sound waveforms were used to detect proximal, distal and 
multi-segmental stenosis at the site of the common femoral artery (Smith  et al, 1996).  Promising 
results were obtained with an MLP by sub-sampling the waveforms of blood-velocity over time, 
but only in the discrimination of healthy from diseased and not into the four initial categories.  
This approach was significantly more accurate than a Bayesian classifier using PCA scores. In an 
unrelated study, Goodenday et al, 2000 applied an image recognition network directly onto 
perfusion scintigrams.  The network used the principles of overlapping localised receptive fields 
familiar from the Neocognitron, but even then difficulties were experienced with changes in 
position and scaling between the images. 
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2.4.Other applications 
 
The remaining publications describing medical neural network applications listed in PUBMED 
Randomized Controlled Trials or Clinical Trials are in the areas listed below: 
 

• Diagnosis (Pesonen, 1997, Goodey et al, 2000, Sonke  et al, 2000, Grus and Augustin, 
1999, Kemeny et al, 1999, Smith et al, 1998, Leon and Lorini, 1997, Gurgen et al, 1995, 
Kimberley et al, 1994) 

 
• Outcome of treatment (Modai et al, 1996, Dombi et al, 1995, Michaels et al, 1998) 
 
• Physiological measurement: 

 
o MEG (Gaetz,1998), visual evoked potentials (Liestritz et al, 1999) and EEG 

(Anderson et al, 1998, Baumgart-Schmitt et al, 1998 et al, 1997, Winterer et al, 
1998,  Heinrich et al, 1999, Grozinger et al, 1998, Guterman et al, 1996)  

o Other measuremens (Taktak et al, 2000, Liang et al, 2000, Chen et al, 2000, 
Tafeit et al, 1999, Kol et al, 1995, Barnhill et al, 1995) 

 
• Radiology (Bakken et al, 1999, Park et al, 1998, Szabo et al, 1996, Horwitz et al, 1995) 

 
• Pharmacokinetics (Chen et al, 1999)  

 
• Physical medicine and rehabilitation (Chang et al, 2000, Riess and Abba, 2000, Wu and 

Su, 2000, Savelberg and De Lange , 1999,  Simpson and Levine, 1999,  Patterson and 
Draper, 1998,  Kiani et al, 1997, Abbas and Triolo, 1997, Chang et al, 1997) 

 
A useful diagnostic benchmark for decision support systems is acute abdominal pain.  Here, 
neither neural networks (Bounds et al, 1988, Horace Mann and Brown, 1991, Pesonen, 1997) nor 
machine learning methods (Ohmann et al, 1996) have had much impact.  Unregularised MLPs 
were benchmarked against linear discriminants, LogR and cluster analysis, with the outcome that 
none of the methods applied were found to be superior to each other, or to independent Bayes.  
Study design was typical of early prototype applications and much more divorced from 
integrating into the clinical decision process than de Dombal's approach.  In particular, one of the 
most revealing aspects of de Dombal's system is seldom built into today's prototypes. This 
consists of two additional steps in the feedback to the clinician.  The first is a comparison 
between the model outcomes, and two ranked diagnoses indicated by the clinician.  De Dombal’s 
advisory system uses this information to advise further tests that are the most likely to resolve the 
discrepancy between the two sets of clinical decisions, providing the required evidence to re-
assess the clinical decision.  Secondly, the model suggests a list of possible rare diseases, to alert 
the clinician in obscure cases, obviating the need to carry 'encyclopaedic' knowledge about the 
wide range of possible manifestations of a disease.  It is somewhat surprising that this diagnostic 
system, which in a large multi-centre study reduced the residual diagnostic error for this 
notoriously difficult condition by 40% nearly two decades ago (de Dombal et al, 1993) and 
integrated well with routine clinical practice, is not more widely known. 
 
Response to treatment was the subject of a RCT comparing interventions by expert clinicians 
with those guided by a decision support system, using a different architecture from those met 
previously in this review, the Adaptive Resonance Theory (ART) network.  This is potentially the 
model of choice for generic medical applications, since a common expectation of an ‘intelligent 
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system’ would include the need for incremental learning and transparency of interpretation, at 
least by providing access to category prototypes.  Treatment recommendations were made for 26 
schizophrenic and 28 unipolar depressed patients, by randomly allocating to choice of 
intervention to the consensus of two senior psychiatrists, or the recommendations made by an 
ART network trained on a set of 211 historical cases all of whom had improved during 8 weeks 
of treatment (Modai et al, 1996).  The recommendations from ART were similar to those from 
practicing psychiatrists, with no contra-indicated treatments suggested, although two incomplete 
treatment suggestions were removed from the study. Similar hospital lengths of stay were 
experienced by both sets of patients.  
 
The length of stay of rib fracture patients and their ICU days and mortality were also predicted, 
training on 522 patients and testing on a further 58 patients, both sets randomly allocated from a 
pool of 580 cases.  Although this is a retrospective observational study, it was listed under RCT. 
Several MLPs were trained which showed encouraging predictive accuracy (Dombi et al, 1995).  
More importantly, their weights were examined to identify main input effects, raising hypotheses 
which could be followed-up by conventional statistical modelling.  
 
A particularly interesting controlled trial is a comparative assessment of three primary-to-
secondary care referral strategies for patients with third molars (Goodey et al, 2000).  This is a 
true multi-centre control study, involving 32 primary care dental practitioners who were randomly 
allocated to current practice (the control group), neural network-based decision support, or a 
paper-based clinical decision algorithm.  The referrals of 107 patients were assessed by a panel of 
experts against a gold standard consisting of criteria from the National Institutes of Health.  The 
control group’s figures for accuracy, sensitivity and specificity (0.83, 0.97, 0.22) display 
significantly better accuracy and sensitivity than either the neural network (0.67, 0.56, 0.79) or 
the clinical algorithm (0.73, 0.56, 0.93), albeit with much poorer specificity.  The study 
recommended integration into primary care of paper-based guidance, as the best overall 
compromise.  Separating the effect of prevalence from the raw ROC figures, the boosting factors 
for the control, neural network and clinical table groups were 1.2, 2.7 and 8.0, respectively, 
indicating a greater discriminatory effect as a result of the selected referral guidance approach. 
 
The remaining clinical trials listed in Table 2, describe applications to medical domains outside 
the focus of this review.  The neural network methodologies employed in electro-physiological 
measurement mostly rely on the standard MLP applied to signal representations generated by 
principal components analysis or the coefficients of auto-regressive models, with the exception of 
one study using wavelet networks. (Heinrich et al, 1999).  The choice of medical application 
reflects the increasing use of EEG and evoked potentials for diagnosis and monitoring of a wide 
range of conditions.  While the predictive accuracies reported are encouraging, few systems have 
been tried in routine use in a clinical setting, notably one reported elsewhere for sleep analysis 
(Davies et al, 1999).  
 
Other physiological measurements also generate complex signals whose interpretation is fertile 
ground for decision support. Reported CTs address areas of current practical relevance, including 
monitoring of fetal distress (Kol et al, 1995) and artefact detection in SaO2 and TcPO2 (Taktak et 
al, 2000), analysis electrogastrograms (EGG) to detect delayed gastric emptying (Liang et al, 
2000, Chen et al, 2000), visualisation of sub-cutaneous fat in patients with diabetes mellitus 
(Tafeit et al, 1999), and establishing a correlation between bone demineralisation measured by x-
ray absorptiometry and a composite serum index (Barnhill et al, 1995). 
 
The emphasis in the clinical trials with neural networks listed under radiology is on functional, 
rather than morphological, imaging. Relatively new modalities such as PET (Szabo et al, 1996, 
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Horwitz et al, 1995) and MRS (Bakken et al, 1999, Park et al, 1998) have considerable potential 
to characterise metabolic characteristics of in vivo tissue, but often result in complex signals with 
difficult quantitation.  In particular, the analysis of in vivo MRS is currently undergoing rapid 
development, including source identification with non-linear signal processing (Lee et al, 2000). 
 
In pharmacokinetics, a RCT addressed the wide inter- and intra-subject variability that hamper 
predictions of drug concentrations in blood.  A retrospective study of tracolimus levels in 32 liver 
transplant patients (Chen et al, 1999) concluded that the blood concentration of this anti-rejection 
drug is accurately predicted by a MLP.  This paper adopts a genetic algorithm as a generic 
methodology to optimise model design through variable selection.  
 
A number of CTs in the area of physical medicine and rehabilitation cluster around the 
assessment of high-dimensional complex signals used, for instance, in gait analysis (Chang et al, 
2000, Wu and Su, 2000), non-linear control of functional electrical stimulation (Riess and Abbas, 
2000, Abbas and Triolo, 1997 and Chang et al, 1997).  The remaining studies relate to non-linear 
mapping of insole pressure patterns into a grouped-reaction force (Savelberg et al, 1999), activity 
detection in ambulatory monitoring (Kiani et al, 1997), and wheelchair propulsion (Patterson and 
Draper, 1998) and navigation (Simpson and Levine, 1999). 

3. Impact of medical decision support with artificial neural networks  

There are seven trials of neural network-based decision support systems (CDSS), involving one to 
twenty one thousand patients. The most impact to date has been in cervical cytology, where 
PAPNET has arguably established a new standard for sensitivity in detection of dysplasia 
(Prismatic team, 1999, Doornewaard et al, 1999, Mango and Valente, 1998).  The other large 
studies show promise to identify patients at low risk of lymph node spreading in prostate cancer 
(Gamito et al, 2000), predicting lengh-to-stay of neonates in pediatric intensive care units 
(Zernikow  et al, 1998), early detection of acute myocardial infarction (Selker et al, 1995) and 
prediction of transient ischaemia during ambulatory ECG monitoring (Polak et al, 1997).   

The studies of neural network assisted cytology compare with conventional cytological screening 
as the control intervention (Prismatic team, 1999, Doornewaard et al, 1999, Mango and Valente , 
1998).  Other true control trials are for response to treatment of head & neck carcinoma (Bryce et 
al, 1998), treatment advice in schizophrenia and depression (Modai et al, 1996) and referral from 
primary to secondary care in dental practice (Goodey et al, 2000).  All of these studies advise the 
use of neural networks in a clinical supporting rôle, on the basis of improvements in patient 
performance, rather than by direct evaluation of changes in patient outcome. 
 
Almost all of the of the comparative trials are prospective and assess the performance of users 
external to the designers of the CDSS, but only six of them are multicentre trials (Goodey et al, 
2000, Gamito et al, 2000, Doornewaard et al, 1999, Mango and Valente, 1998, Prismatic team, 
1999, Selker et al, 1995).  Frequently, the criteria for RCT listing appears to have been random 
allocation to design and validation datasets, rather than the mandatory allocation to active or 
control interventions. For neural networks to be taken seriously by clinicians as inference models, 
it is essential to integrate them into systems that stand-up to the gold standard of clinical 
evaluation, namely multi-centre RCTs. This is widely regarded to be a key milestone for the 
evaluation of any type of medical decision support, since it validates against the vagaries of inter-
patient and inter-centre variability.   
 
Yet, almost all of the publications listed in the survey are observational studies with retrospective 
data, pitting the multi-layer perceptron (MLP) against multivariate logistic regression (LogR).  In 
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most of the studies listed in PUBMED as clinical trials, there is no attempt to separate a design 
dataset, used for training and parameter tuning, or testing, from a validation set used for 
performance estimation.  This is know to result in optimistic assessments of performance 
(Tibshirani, 1996, Efron and Tibshirani, 1997) and undermines claims to generality, that is to say 
generalisation to out-of-sample data. 
 
As with the evaluation of any new intervention, decision systems must eventually be assessed by 
a trial that is patient, rather than clinician based.  However, the need for further external 
evaluation of patient benefit must not detract from the substantial achievements made with neural 
networks in the first two decades since they became widely known, which is relatively recently in 
comparison with symbolic systems and even more with so compared with linear statistical 
inference.  It is also notable that evidence is continuously mounting towards the power of 
quantitative modelling to evidence difficult decisions in a very wide range of clinical and medical 
laboratory applications.  Moreover, neural networks are showing their worth in exploratory 
studies to uncover important un-modelled non-linear interactions, and to provide effective 
visualisation of complex high-dimensional data. For instance, self-organised maps (SOM) may 
gradually fill a niche in the specific characterisation of subtle transitions in disease indicators 
marking qualitative changes in the grading of disease, for example in tumours. 
 
With regard to methodological issues, in many of the applications reported there are further steps 
to clarify the model structure and improve the robustness of the conclusions that add little 
additional complexity to the study.  In particular, regularisation of the objective function, for 
instance using weight decay (Bishop, 1995, Ripley, 1996), is a straightforward way to protect 
against the major curse of universal non-linear maps, which is over-fitting of the data (Astion et 
al, 1993).  Another key element of all forms of statistical analysis, whether linear or not, is a close 
inspection of the sensitivity of the model response to variations in the value of the predictor 
variables.  This has to be done with care, since it will influence model selection (Tibshirani and 
Knight, 1999).  An additional element of complexity involving systematic re-sampling (Baxt and 
White, 1995) serves to remove bias from small sample estimates of the response sensitivity  of the 
model, and the same bootstrap process will also substantially improve estimates of generality 
(Tibshirani, 1996, Efron and Tibshirani, 1997).  In performance evaluation for differential 
diagnosis, the Receiver Operating Characteristic (Hanley and McNeil, 1982) is the de facto  
standard, but it is regrettable that scant attention is given to the usually skewed nature of the data, 
either by reporting the boost afforded over prevalence, or during training, by directly maximising 
predictive power rather than accuracy (Lisboa et al, 2000b). 
 
Neural network applications in oncology have been formally reviewed in a statistical journal, 
with critical results (Schwartzer et al, 2000).  In this paper, uncritical use of the very flexibility 
that underpins the non-linear mapping capabilities of neural networks, is shown to generate 
implausible functions resulting in under-estimation of the misclassification probabilities leading 
to 'exaggerated claims' the potential for neural network models for diagnosis and prognosis. The 
paper identifies frequently made mistakes in applications of artificial neural networks, including 
over-optimistic claims of generalisation performance, training large networks with small data 
samples, use of inadequate statistical benchmarks and lack of significance in the comparison of 
performance results for neural networks against alternative, often simpler, statistical or rule -based 
models.  It is also pointed out that survival models have been too naïve, sometimes consisting of 
single time-point models which ignore censorship.  
 
Other reasons for the poor take-up of decision support in routine practice are listed in a more 
general commentary about statistical prognostic models (Wyatt and Altman, 1995).  A common 
criticism is that clinical factors modelled may have little impact on decisions about treatment, use 
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model structures that lack credibility because they violate well-established clinical precepts of 
cause-and-effect pathways, or are insufficiently validated.  The immediate conclusion is that 
many published models report prototypes but need further research before clinical adoption 
(Haynes, 1990).  This remains current for medically related neural network systems, where good 
practice could be improved by attending to certain methodological considerations that are 
summarised in the next section.  
 
4. Methodological considerations for neural networks in medical applications 
 
Artificial neural networks are characterised by their ability to model complex systems but several 
shortcomings of their use arise from lack of robustness in controlling this flexibility.  In a parallel 
development, the analysis of increasing complexity in statistical inference led to the proposal of 
baseline criteria for good practice in the design of clinically relevant models (Concato  et al, 
1993, Altman and Royston, 2000). These recommendations are now incorporated into a blueprint 
for the design of complex decision systems, which is reviewed here with reference to neural 
networks in medicine, drawing from the critical analysis in the preceding sections. 
 
4.1 Clarify the purpose of the study 
 
Even a cursory overview of medical neural network prototypes indicates how they are taken to be 
synonymous with inference.  This is not necessary, nor is it where most of the benefit of these 
methods can be derived, when they are set alongside the plethora of available statistical and 
knowledge-based methodologies. Altman and Royston, 2000 recognise different categories of 
prognostic studies, and their comments apply also to diagnostic modelling: 
 
• Pragmatic studies have the purpose of providing direct advice that will affect decisions about 

treatment.  It is, therefore, essential to pre-specify the performance levels at which this support 
becomes useful, as well as to quantify discriminant power in the most robust possible way. 
These studies should ideally fulfil the requirements for Phase II exploratory trials, by 
involving multiple clinical centres to ensure that the performance estimates obtained may be 
used to specify, not just the  protocol but also the sample sizes required for a Phase III RCT.  
Sample size estimation for neural networks is an area of current research, but practical 
methods have been published (Chan  et al, 1999). 

• Exploratory studies aim to generate new understanding about the condition and may consist of 
visualisation of the generation of hypothesis for inference models.  One example is to generate 
hypothesis about important interactions between covariates, which can be tested with standard 
medical statistical methodologies.  Another is to understand where the variables selected by 
the model fit in relation to prior knowledge from the medical domain. 

 
Above all, it is essential to be clear about the purpose of the study, and specify in advance what 
aspects are expected to the valuable to support subsequent studies. 
 
4.2. Model design 
 
In the application of neural networks, good practice in model design is critical.  There are 
standard tools to control for over-fitting, some of which also help in variable selection. 
 
4.2.1. Network regularisation  
 
The vast majority of applications reviewed here use what could be termed first generation neural 
networks.  These rely for their generalisation on a parsimonious design with few hidden nodes, 
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and early stopping by reference to a test dataset as the means to prevent overtraining (Caruana et 
al, 2001).  However, using too few hidden nodes can reduce the variance of the predictions at the 
cost of significant bias due to insufficient complexity in the model.  It follows that simpler 
interpolation is achieved by using many hidden nodes but imposing direct regularisation of the 
objective function, the simplest of which would be weight decay (Bishop, 1995, Ripley, 1996).   
   
A development of this approach is to use Bayesian estima tion of the hyperparameters, usually by 
assuming broad unimodal normal distributions that are well represented by just their mode, called 
the evidence framework (Mackay, 1992, Bishop, 1995).  This is a practical and robust 
methodology for neural network design, which has the advantage of providing control for large 
networks with reproducible results that do not require extensive hand-tuning (Husmeier et al, 
1999).  However, care must be taken to ensure calibration for unbalanced data, which is typical of 
medical applications and especially acute in survival modelling (Lisboa, 2001). The third 
generation of neural networks consists of implementing the full Bayesian integrations by 
importance sampling with efficient Markov Chain Monte Carlo algorithms (Husmeier et al, 1999, 
Neal, 1996).  This has the further advantage of more accurately predicting distributions of the 
posterior, or of regression inferences, even in the presence of skewed data.   
 
Further developments of neural networks for inference optimise radically different principles 
from penalised log-likelihood.  For instance, support vector machines are based on the precepts of 
structural risk minimisation, rather then directly estimating the empirical error.  They are reported 
to provide greater robustness for small sample sizes, features that are especially relevant for 
medical applications (Cherkassky and Muller, 1998). Another research direction for medical 
neural networks aims to identify when inferences should be made at all, as they are not reliable 
for new observations that lie outside of the multi-dimensional support of the design data.  This is 
the area of novelty detection (Campbell and Bennett, 2001), where methodologies are being 
developed with a rôle that is orthogonal to the response modulation by the confidence terms in the 
evidence approximation. 
 
In a parallel development to the use of neural networks for inference, models for visualisation and 
clustering have also been embedded into increasingly rigorous theoretical statistical frameworks .  
Visualisation is a powerful tool to gain understanding of the phenomenology of disease, although 
its use tends to be confined to decision support for diagnosis or prognosis.  An example of a 
flexible neural network method for visualising the distribution of indicator variables over the 
decision space is the Growing Cell Structure technique (Walker et al, 1999). This is a self-
organised model whose usefulness in visualisation is matched by good performance in clustering 
an externally imposed category labe l, mirroring similar characteristics for the conventional SOM 
(Dreiseitl et al, 1999).  An implementation of a topographic clustering algorithm regularised 
within a Bayesian framework similar to the evidence approximation, is the Generative 
Topographic Mapping model (Bishop et al, 1998). Other generative approaches have been 
developed also for signal processing, specifically for blind signal separation (Cardoso, 1999) 
which rapidly becoming a de facto  standard in advanced signal processing and is extensively 
applied to the detection of sources in electrophysiological measurements (Lisboa  et al, 2000a), as 
well as the identification of sources in static complex signals (Lee  et al, 2000). 
 
4.2.2.  Variable selection 
 
It is also important to consider that the benefit of the capability for universal function 
approximation is realised only when there are unsuspected non-linear interactions between the 
predictor variables, for instance where the precise form is unknown or their effect changes in 
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complex ways in different areas of pattern space.  This requires at once careful variable selection 
and detailed interpretation of the relationships between the covariates and the model predictions. 
 
The GUSTO trial also applied a Bayesian regularisation framework using the evidence 
approximation (MacKay, 1992) with separate weight decay regulators for each predictor variable 
(MacKay, 1995, Neal, 1996).  This is known as Automatic Relevance Determination (ARD) 
because large values of weight decay hyperparameter indicate a narrow distribution of the 
posterior probabilities for the weights around the prior value of zero, while smaller values relax 
the posterior distribution of the weights further away from the prior, indicating a covariate that is 
effective in discrimination.  This provides useful indicators to use in variable selection which, for 
neural networks, is notoriously unstable resulting in multiple candidate models that also differ 
from those selected by linear statistics (Dreiseitl et al, 1999). 
 
A useful yardstick for the estimation of sample sizes for exploratory studies is to require the 
number of observations to be in the range of 5 to 10 times the number of available (rather than 
selected) covariates.  This is because given enough random variables, there will be some that 
correlate with any given sequence of labels. In the case of artificial neural networks, the effective 
number of degrees of freedom is not straightforward to estimate, but this can be done with the 
evidence approximation using factors related to the regularisation hyper-parameters (MacKay, 
1992, 1995). Recently other, more generic methods are also being proposed for estimation of the 
effective number of parameters in linear and non-linear models (Tibshirani and Knight, 1999). 
 
4.3. Validation: support for learned intermediaries  
 
One of the most important legal doctrines that apply to the use of decision support systems in 
medicine is the doctrine of learned intermediaries (Braham and Wyatt, 1989).  This requires 
clinicians to understand the operation of the system well enough to be able to take responsibility 
for the results of its use.  From a system designer's perspective, the need to explain the model is a 
necessary step in validation, by scrutinising the agreement between the inference model prior 
clinical understanding of the data (Lisboa, 2001).  Similarly, in exploratory studies the most 
useful result is often, not whether a particular methodology increases diagnostic or prognostic 
accuracy, but why it appears to do so. In general, whatever the model accuracy in statistical 
terms, doctors will be reluctant to use it to inform their patient management unless they believe in 
the model and its predictions (Altman and Royston, 2000).  Therefore, it is essential to test all 
relevant clinical data for inclusion in the model, ensuring that data are accessible and reliable, and 
preferably already routinely acquired.  Other considerations are also important in maintaining the 
integrity of the data representation, for instance avoiding the introduction of arbitrary thresholds 
for continuous variables, or ignoring censorship in prognostic models, either of which is prone to 
introduce bias in the model predictions. 
 
A useful tool to constructively compare linear and non-linear models and to explain the influence 
of covariates on model response, is to carefully analyse the profiles of input variable distributions 
in prognostic groups, or calibration segments in diagnosis. Another useful step is to analyse the 
input-response characteristics of the selected variables using sensitivity analysis.  A caveat of this 
approach is that small sample effects introduce considerable bias into naïve estimates of input 
effects, but established methods to compensate for that bias already exist (Baxt and White, 1995). 
In this paper, the bias-corrected sensitivities of a MLP for AMI prediction show new significant 
variables, in rales and jugular venous distention.  All significant effects are in directions which 
accord with clinical expectation.  Several of the predictor variables were found to have bi-modal 
distributions of the re-sampled bootstrap statistics of input effects, indicating the presence of 
contextual effects characterised by the other variables. The discovery of unexpected interactions 
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between covariates is key to understanding the predictive value of neural networks compared with 
alternative methodologies.  Some of these interactions may be low-order and can, therefore, be 
ported into linear-in-the-parameters statistical models that already carry the confidence of 
clinicians, thus gradually enhancing existing tools in a controlled manner.  An alternative 
approach where theoretical foundations are the subject of active research is rule extraction from 
trained neural networks (Hayashi  et al, 2000). 
 
4.4. Benchmarking against a suitable alternative 
 
Another common regulatory requirement is to demonstrate that a new technology performs at 
least as well as an alternative method which is substantially equivalent to that used in systems that 
have been previously certified.  In the case of the MLP, the obvious benchmarks are MLR in 
regression, and LogR for classification, and for survival modelling it is the proportional hazards 
model.  In order to gain the confidence of the statistical community it may be necessary to 
demonstrate parity with linear-in-the-parameters models, where non-linearities are explicitly 
coded-in.  This leaves out only unexpected interactions between covariates, whose presence in 
small samples of typically noisy medical data, may be difficult to demonstrate. 
 
One of the most frequent criticisms of neural network prototypes is the excessive claims of 
performance benefit made without apparent regard for the significance of small differences 
between the performance achieved with alternative methods (Schmoor and Schumacher, 1997).  
For inference models, this is not a justifiable omission since accepted tests exist to monitor the 
significance of differences occurring by chance, such as McNemar’s test on discordant pairs 
(Schmoor and Schumacher, 1997 and Ripley, 1996). 
 
4.5.  Robustness in performance evaluation 
 
The sources of uncertainty that reduce the ability to maintain performance results from one 
patient cohort to another are many and varied, including within-patient variation, between-patient 
variation, case mix differences which involve different confounding factors for each cohort, as 
well as instrumentation and protocol differences between clinical centres.  Consequently, studies 
need to clearly distinguish between: 
 
• internal validation, where a design sample is used to train and tune the model parameters (test 

sample) but new data (validation sample) are used for performance estimation,  
• temporal validation using later data from the same clinical centre, and 
• external validation where the data come from entirely different clinical centres not involved in 

the model design.  
 
Whereas modelling studies start use retrospective data, phase II exploratory studies normally 
require prospective data and phase III clinical trials require the prospective application of the 
system to large numbers of subjects across multiple centres. 
 
When sample sizes are small, cross-validation is sometimes used for performance estimation, 
although a more robust method would be to use the bootstrap (Tibshirani, 1996, Efron and 
Tibshirani, 1997, Jain et al, 2000).  It can be emphasised that optimistic performance claims are a 
big barrier to the take-up of neural networks by the medical community. Careful variable 
selection, together with appropriate regularisation, benchmarking and robust performance 
estimation will make research findings less impressive, but more meaningful. 
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One aspect of performance evaluation that is routinely observed in the papers reviewed, is the 
analysis of results within the Receiver Operating Characteristic (ROC) framework (Hanley and 
McNeil, 1982).  What is less commonly done is to separate out also the effect of prevalence of 
different diseases (Hilden, 2000), which significantly affects estimates of accuracy.  This is 
important because poor calibration may be masked by a good AUROC, since the latter aggregates 
inferences made either side of the decision threshold (Lisboa et al, 2000b).  Predictive power may 
be factorised by combining the sensitivity and specificity at the operating decision threshold to 
calculate the boost over the guessing line, shown in equation (1). 
 
4.6. Comparative trials 
 
The design of comparative trials to evaluate the changes to expert intervention with and without 
access to a decision support system, is fraught with difficulties (Ohmann  et al, 1999, Hunt  et al, 
1998).  For example, in a controlled prognostic trial of the management of acute abdominal pain, 
involving 558 patients, the clinician's own diagnostic performance was significantly enhanced (de 
Dombal et al, 1974).  In particular, the proportion of appendices that perforated before operation 
fell from 36% to 4%.  A later study with a further 295 patients concluded that after a two-month 
learning period the system proved more accurate in its diagnoses than unaided clinicians, and 
during the first five months of using the system the unaided clinician's performance rose from 
73% to 84%, the so-called checklist effect, also known as the Hawthorne effect (Adams  et al, 
1986, Randolph 1999).  This effect is important because it can obscure the contribution of 
decision support systems even when clinician performance is improved, in effect reducing the 
statistical power of the RCT.  Adams et al, 1986 give guidelines for minimizing the checklist 
effect and to ascertain the significance of the results obtained, allowing for different patient 
statistics in the experimental and control groups as well as the pooling of multiple clinical centres. 
For a more complete discussion of the technical issues surrounding the design of RCTs, see 
Campbell et al, 2000. 
 
Altman and Royston, 2000, also make a distinction between valuable studies and those that are 
merely valid.  This harks back to the very specification of the purpose of the study and the 
relationship between inference making and its effect on patient management (Murray et al, 1993).  
In relation to the publications reviewed here, it is noteworthy that none dealt directly with 
changes in patient outcome, which do not always readily follow improvements of clinician 
performance (Johnston et al, 1994).  These are factors which merit detailed consideration at the 
start of any study into clinical decision support, alongside the realisation that improvements may 
also be achieved, sometimes more effectively, by non-technological means.  This is important 
because clinicians will typically accept the value of additional training more readily than 
equivalent benefits arising from technological aids.  For instance, a redesign of the processes for 
the interpretation of radiographs in the emergency department was found to reduce tenfold the 
rate of false negative errors, such as missed fractures or foreign bodies, even from a starting base 
as 3% (Espinosa and Nolan, 2000).  Taking an example where neural network-based decision 
support has been successful, the 42% reduction in UK mortality rates from cervical cancer 
between 1987 and 1997, has been achieved by across the board systematic improvements to care, 
covering call and recall systems, education and training for smear takers and cytologists, even an 
awareness of the need to audit the screening histories of all cases that pass through the detection 
filter to result in invasive cancer (Cuzick and Sasieni, 1999). For these reasons, it is necessary to 
appreciate the complete clinical picture before targeting the introduction of new computer-based 
systems. 
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5.  Conclusions 

Artificial neural networks have been identified alongside the bootstrap, Bayesian modelling using 
Gibbs sampling (Lunn  et al, 2000), generalised additive models and CART as new trends in 
medical statistics (Altman, 2000).  Although none of these methods is in widespread use, neural 
networks have had a clinical impact in specific areas, notably cervical cytology and early 
detection of AMI, where large-scale prospective multicentre studies have been carried out.  More 
generally, rapid developments in instrumentation, communication and data storage, will ensure 
that increasingly complex signals will become routinely available in digital form.  Coupled with 
pressures for greater accountability of clinicians and a shift towards systemic approaches to the 
management of medical error, these developments will ensure that the practical rôle for 
automated decision support in medicine will continue to grow (Wilson et al, 1995, Weingart et al, 
2000, Barach and Small, 2000, Reason, 2000). 
 
Neural network inference has been most useful for closely circumscribed tasks where there are 
significant interactions between covariates.  This has applications in tasks that require attention 
focusing, such as the detection of a few abnormal cells in a large number of cells present in a 
slide.  The range of prototypes already reported in the medical literature is evidence of the 
potential of intelligent medical instruments for multivariate prognostic or diagnostic inference, 
and to provide practical visualisation of high-dimensional signals.  Besides their rôle in 
supporting evidence-based predictions and to reduce information overload, generic non-linear 
models are also useful in exploratory data analysis, by generating hypotheses about complex 
terms that may be integrated in a controlled manner into standard statistical models. 
 
However, the potential for further use of statistics and pattern recognition in medicine, is not 
specific to neural networks.  It is increasingly important to demonstrate  good practice in their 
design and in verification and validation, and to benchmark them against structurally simpler 
models that have been appropriately optimised.  Currently, the claims made in too many 
prototype studies are not robust.  This is not unique to neural networks, indeed it is reminiscent of 
the early use of linear discriminants analysis (LDA) (Lachebruch, 1977) and, arguably, even of 
the general state of mainstream applications of statistical techniques in medicine (Altman and 
Goodman, 1994, Wyatt, 1995).   
 
There are other important factors that limit the take -up of intelligent decision systems generally, 
namely the need to design systems that address real clinical needs, and which are more readily 
integrated into the routine data-management environment of the user (Potthof et al, 1988, 
Shortliffe, 1993).  Achieving this has been the hallmark of the few successful neural network 
applications that have made it into routine clinical use. 
 
Schwartz, 1970, predicted that by the year 2000 computers would ‘have an entirely new rôle in 
medicine, acting as a powerful extension of the physician’s intellect’.  While this prediction is far 
from being realised for artificial intelligence tools in general clinical consultation, it has been true 
of developments in medical instrumentation.  Over the last decade, inference-based decision 
support systems have started to emerge in routine clinical use on a significant scale.  Some of 
these are purely statistical (APACHE II, Rowan  et al, 1994, AAP, De Dombal, 1984, GLADYS, 
Davies and Owen, 1990), and PAPNET (Koss, 2000) involved first generation neural networks.    
 
In the future, the rôle of computers in medicine will be substantially extended along several 
directions .  These range from patient management, with the development of application service 
providers and knowledge-based decision support systems, through increased sophistication in 
electronic systems for data acquisition, storage and transmission, spurred-on by a gradual 
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acceptance of industry standards such as extensible mark-up languages, onto the emergence of 
radically new applications in telemedicine and self-care.  In the global context of healthcare as a 
commodity, decision support is likely to become a necessity rather than an optional extra, just as 
advanced electronic instrumentation is today.  Neural networks have a niche to carve in clinical 
decision support, but their success depends crucially on better integration with clinical protocols, 
together with an awareness of the need to combine different paradigms in order to produce the 
simplest and most transparent overall reasoning structure, and the will to evaluate this in a real 
clinical environment. 
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Figure 1. Continuum of evidence, adapted from a generic model for complex healthcare 
interventions (Campbell et al, 2000). 
 
Table 1. PUBMED entries involving neural networks listed under Randomised Controlled Trials 
(RCT). 
 
Table 2. PUBMED entries involving neural networks listed under Clinical Trials (CT). 
 
Table 3. RCT and CT with neural networks applied to prostatic, cervical and breast cancer. 
 
Table 4. RCT and CT with neural networks in oncology. 
 
Table 5. RCT and CT with neural networks in critical care. 
 
Table 6. RCT and CT with neural networks in cardiology  
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Type of trial Outcome Typical design 

   

Pre-clinical: Theory Rationale for decision support Identify best practice for each 
component of the intervention 

 ò 
 

Phase I:  Modelling Mechanism by which the system 
components influence healthcare 
outcomes and how they interact 

Analysis of case studies 

 ò 
 

Phase II: Exploratory trial Specification for a replicable 
intervention and assessment of 
its effectiveness 

Clinical trial typically comprising 
a multi-centre study 

 ò 
 

Phase III: Definitive trial Comparison of outcomes 
between the trial intervention 
and a standard intervention 

Randomised controlled trial 
rigorously designed to avoid 
implementation bias 

 ò 
 

Phase IV: Long term  
                follow-up 

Post-market surveillance Systematic reporting of healthcare 
outcomes including adverse 
effects 

 
Figure 1.  
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Table 1.  
 
 
  

Oncology 
 

 
Critical care 

 
Cardiology 

 
Other 

Diagnosis 
and staging 

Prostatic cancer: 
Gamito et al, 2000  
Finne et al, 2000 
Cervical cancer: 
Doornewaard et al , 
1999 
Breast cancer: 
Naguib et al, 1996 
Acute leukemia: 
Kothari et al, 1996 
 

Intracranial 
haemorrhage in 
neonates: 
Zernikow et al, 1998 

AMI: 
Ellenius et al, 1997 
Baxt and White, 
1995 

Appendicitis: 
Pesonen, 1997 

Outcome 
prediction 

Response to therapy 
in head & neck cancer: 
Bryce et al, 1998 
Recurrence of breast 
cancer in axillary node-
negative patients:  
McGuire et al, 1992 

Length-of-stay  
in preterm neonates: 
Zernikow et al, 1999 

 Tracolimus blood levels:  
Chen et al, 1999 
Effect of treatment in 
schizophrenia and 
depression: 
Modai et al, 1996 
Rib fracture injury: 
Dombi et al, 1995 
 

Radiology MRI of osteosarcoma: 
Glass and Reddick, 
1998 

 Perfusion 
scintigraphy for 
detection of 
coronary stenosis: 
Goodenday et al, 
1997 
Doppler 
microembolic signal 
counts in patients 
with prosthetic heart 
valves: 
Georgiadis et al, 
1995 
 

 

Physiological 
monitoring 

   Fetal surveillance during 
labour from fetal ECG: 
Stock et al, 1994 
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Table 2.  
 
 

 
Clinical 
function 

 
Oncology 

 
Critical 

care 
 

 
Cardiology 

 
Neurology  

 

 
Other 

Diagnosis 
and staging 

Cervical 
cancer: 
Prismatic team , 
1999 
Mango et al, 
1998 
Sherman et al, 
1997  
Pre-cancerous 
breast: 
Simpson et al, 
1995 
 

 Transient ischaemia: 
Polak et al, 1997 
Acute ischaemia: 
Selker et al, 1995 

Embolus detection in stroke: 
Kemeny et al, 1999 
Spontaneous EEG:  
Anderson et al, 1998 
Sleep EEG:  
Baumgart-Schmitt et al, 1998 
et al, 1997 
Quantitative EEG:  
Winterer et al, 1998 
Ventilation mode 
recognition: 
Leon and Lorini, 1997 

Referral methods 
for patients with 
third molars: 
Goodey et al, 
2000 
Bladder outlet 
obstruction: 
Sonke et al, 2000 
Tear protein 
patterns: 
Grus and 
Augustin , 1999 
Haemodialysis:  
Smith et al, 1998 
Ovulation time: 
Gurgen et al, 1995 
Pure tone 
thresholds: 
Kimberley et al, 
1994 
 

Outcome 
prediction 

Multiple 
myeloma: 
Bugliosi et al, 
1994 

   Stone growth  
after lithotripsy: 
Michaels et al, 
1998 
 

Radiology   Myocardial 
perfusion images: 
Lindahl et al, 2000 
Detection of 
stenoses from 
Doppler ultrasound 
waveforms: 
Smith et al, 1996 
 

MRS of epilepsy: 
Bakken et al, 1999 
PET of 5-HT reuptake sites: 
Szabo et al, 1996.  
PET in Alzheimer’s: 
Horwitz et al, 1995 
 

MRS of muscle: 
Park et al, 1998 

Physiological 
monitoring 

 EEG in  
Pediatrics: 
Si et al, 1998 

 Single trial PVEP: 
Liestritz et al, 1999 
Heinrich et al, 1999 
Correlation of EEG and 
MEG: 
Gaetz et al, 1998 
Lorazepan and sleep EEG: 
Grozinger et al, 1998 
Evoked potentials in 
multiple-sclerosis: 
Guterman et al, 1996 
 
 

Oxygenation in 
infants:  
Taktak et al, 2000 
EGG of gastric 
empting: 
Liang et al, 2000 
Chen et al, 2000  
Subcutaneous 
adipose tissue: 
Tafeit et al, 1999 
Nonstress tests  
in obstetrics: 
Kol et al, 1995 
Bone 
dimeneralization: 
Barnhill et al, 
1995 

Other Gait patterns: Chang et al, 2000, Wu and Su, 2000 
Ground reaction force: Savelberg et al, 1999 
Wheelchair navigation: Simpson and Levince, 1999 
Wheelchair propulsion: Patterson and Draper, 1998 
Daily motor activity: Kiani et al, 1997 
FES: Riess and Abbas, 2000, Abbas and Triolo , 1997, Chang et al, 1997 
 

 

Table 3.  
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Reference No.  of 

subjects 
 

Clinical function Performamce 
assessment 

Conclusions 

Prostatic 
cancer 
 

    

Gamito et al, 2000  
 

4,133 Prediction of risk of lymph node 
spread (LNS) from age, race, PSA, 
PSA velocity, Gleason sum and TNM 
 

External 
validation 
(n=660) 

98% accuracy in detection of 
low risk of LNS with a MLP 

Gamito et al, 2000  
 

409 Predicting capsular penetration (CP) 
with the same explanatory variables  
as above 
 

Train/test 84% accuracy in detection of 
CP with a MLP  

Finne et al, 2000 
 

656  
 
 

Elimination of false-positive PSA 
results by combining total PSA, 
proportion of free PSA, digital rectal 
examination and prostate volume 

Leave-one-out  At clinically relevant 
sensitivities MLP and LogR 
reduce the number of false-
positives significantly better 
than the proportion of free 
PSA 
 

Cervical cancer 
 

  
 

  

Prismatic team, 1999 NNA Assessment as a primary screening 
tool for categorization of cervical 
smears adequate for reporting as 
negative, mild, moderate or severe 
dyskaryosis, invasion, glandular 
neopplasia and borderline nuclear 
changes  

External 
validation 
(n=21,700)  

89.9% agreement across all 
classes was found between 
PAPNET and conventional 
primary screening, with 
similar sensitivity (82 cf. 
83%), with PAPNET having 
improved specificity (77 cf. 
42%) and faster processing 
(3.9 min. cf. 10.4 min) 

Doornewaard et al, 
1999 
 

NNA Assessment as a primary screening 
tool for  the early detection of cervical 
dysplasia 

External 
validation 
(n=6,063) 

PAPNET testing has similar 
diagnostic value to 
conventional screening of 
Pap smears, with AUROC 
95% CIs of 78-82% for 
control and 77-81% for 
PAPNET  
 

Mango et al, 1998  NNA Comparison of yield in re-screening 
of node-negative PAP smears between 
NNA and conventional unassisted 
cytology  

External 
validation 
(n=10,000)  

PAPNET returned a yield of 
6.2% versus 0.6% for 
manual re-screening 

Sherman et al, 1997 NNA Evaluation of an ancillary tool to 
clarify the status of atypical smears 
with borderline abnormalities, 
comparing the results of 5 trained 
cytologists 

External 
validation  
(n=200) 

Consensus PAPNET results 
of abnormal were predictive 
of abnormal histological 
findings at follow-up 

Breast cancer 
 

    

Naguib et al, 1996 
 

81 Prediction of the lymph node 
involvement with surrogate 
measurements of the primary tumour, 
by combining SOM and MLP layers 

Train/test/ 
validation 

Neural networks are 
sensitive for predicting 
lymph node positive patients 

Simpson et al, 1995 91 Identificat ion of pre-cancerous from 
normal breast based on thermal 
profiles combined with progestorone 
and steroid measurements 

Train/test Sensitivity and specificity 
above 90%  for LDA and 
MLP for aged matched 
patients 

McGuire et al, 1992 199 Prediction of the the likelihood of a 
relapse within 5 years in axillary 
node-negative patients 

Train/test The MLP was more specific 
than conventional analysis 
for the identification of low-
risk patients 

Table 4.  
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Reference No.  of 

subjects 
 

Clinical function Performamce 
assessment 

Conclusions 

Head and neck  
 

    

Bryce et al, 1998 
 

95 Survival prediction following 
treatment for squamous cell 
carcinoma 

Cross-validation MLP modelled uncensored 
survival better than LogR, 
with AUROC 95% CIs of 
78% ± 5% and 67% ± 5% 
respectively (p=0.07) and 
better than clinical staging 
alone (60% ± 7%, p<0.02) 
 

Osteosarcoma 
 

    

Glass and Reddick , 
1998 

43 Assessment of percentage of necrosis 
from dynamic contrast enhanced MRI 
in a two-step process involving 
segmentation with SOM and 
quantification with MLP 
 

Train/test/ 
validation 

The predicted percentage of 
necrosis and 
histopahological analysis 
correlated with a Spearman 
rank coefficient of 0.617 
(p<0.001) 

Acute leukemia 
 

    

Kothari et al, 1996 170 Categorisation into subcategories 
based on lineage and differentiation in 
antigen expression with 28 available 
covariates 
 

Train/test MLP regularised with 
weight decay generalised 
with 10% misclassification 
error from lineage or 
differentiation 

Multiple 
myeloma  
 

    

Bugliosi et al, 1994 
 

172 Prediction of survival from patient 
characteristics at onset at response to 
induction therapy. 

Train/test Although test performance is 
perfect, this study is 
recognised to be preliminary 
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Table 5.  
 

Reference No.  of 
subjects 

 

Clinical function Performamc
e assessment 

Conclusions  

Neonates 
 

    

Zernikow et al, 1999 2,144 Predicting length-of-stay in preterm 
neonates from 40 first -day-of-life items 

Train/test/ 
validation 

First -day-of-life data is 
predictive of length-of-stay of 
pre-term neonates with  
correlation CIs of 0.85-0.90 
for MLR and 0.87-0.92 for 
MLP 
 

Zernikow et al, 1998 890 Intracranial haemorrhage in neonates 
from admission data 
 

Train/test  AUROC 0.935 for MLP and 
0.884 for LogR.  MLP more 
accurate than LogR (p=0.001) 
with also better sensitivity 

Si et al, 1998  74 Warning system for the pediatric 
intensive care unit (PICU) about EEG 
abnormalities 

Cross-validation Expert system based on neural 
networks and fuzzy logic 
agreed with an expert for 45% 
EEG sections and predicted 
with 1 of 7 levels of 
abnormality in 91% 

Stock et al, 1994 113 Prediction of umbilical artery pH from 
13 fetal ECG features 

Train/test  The predictions from a MLP 
correlated with measured pH 
significantly better than those 
form MLR 
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Table 6.  
 

Reference No.  of 
subjects 

 

Clinical function Performamc
e assessment 

Conclusions  

AMI 
 

    

Ellenius et al, 1997 
 

88 Early diagnosis or exclusion of AMI 
and staging of infarct from 
biochemical markers 
 

Train/test  MLP approach could provide 
useful support for assessment 
of patients with suspectd AMI 

Baxt and White, 
1995 
 

706 Detection of AMI in emergency 
departments, from  et al, 19 variables 
representing patient history, clinical 
findings and ST -T measurements taken 
from the ECG 

Bias-corrected 
sensitivity 
analysis using the 
bootstrap 

Potential for large bias is 
present in direct measurements 
of input effects, and a 
methodology is proposed to 
remove this bias 

Ischaemia 
 

    

Polak  et al, 1997 1,367 Prediction of transient ischaemia 
during ambulatory Holter monitoring, 
from a resting 12-lead ECG.  
Univariate t -tests were used to inform 
model selection 

Train/test  LDA and adaptive logic 
networks were superior to the 
MLP to predict the likelihood 
for the occurrence of 
ischaemic episodes 

Selker et al, 1995 3,453 Clinical indicators available within 10 
minutes of emergency department care 
were used to predict AMI and unstable 
angina pectoris, in a real -time clinical 
setting 

External 
validation 
(n=2,320) 

Limiting the inputs to 8 
readily available variables, 
AUROCs for LogR, CART 
and MLP were 0.887, 0.858 
and 0.902, respectively.  Each 
is a clinically useful predictor 
of clinical outcome 

Radiology  
 

    

Lindahl et al, 2000 135 Detection of coronary disease from 
myocardial perfusion scintigrams 

External 
validation (n=68) 

At a clinically relevant 
specificity the sensitivity of a 
MLP was significantly better 
than one of six clinical criteria 
and two CEqual-based criteria 

Goodenday et al, 
1997  

42 Diagnosis of coronary stenosis from 
radionuclide myocardial perfusion 
scintigraphy, using a hierarchical 
unsupervised image-recognition neural 
network modelled on the neocognitron 
 

Train/test  Identification of coronary 
artery stenosis from 
unprocessed clinical images 
was good and compared 
favourably with alternative 
computer-based methods, but 
some difficulties were 
encountered with rotation and 
scale invariance 

Smith et al, 1996 219 Detection of stenosis at the site of the 
common femoral artery, distinguing 
waveforms from proximal, distal and 
multi-segmented sites 

Cross-validation Separation of stenosis 
sufferers from healthy controls 
was possible and more 
effective with an MLP than 
with a Bayesian classifier. 

Georgiadis et al, 
1995 

73 Detection of microembolic signals in 
patients with prosthetic heart valve by 
means of a single transcranial Doppler 
ultra-sound 30 minute session 

Train/test  There were no significant 
differences beween signal 
counts detected by a MLP or 
by trained observers from 3 
centres 

  

 


