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Peer-to-peer (P2P) file sharing networks are an important medium for the distribution of information goods.However, there is little empirical research into the optimal design of these networks under real-world con-
ditions. Early speculation about the behavior of P2P networks has focused on the role that positive network
externalities play in improving performance as the network grows. However, negative network externalities
also arise in P2P networks because of the consumption of scarce network resources or an increased propensity of
users to free ride in larger networks, and the impact of these negative network externalities—while potentially
important—has received far less attention.
Our research addresses this gap in understanding by measuring the impact of both positive and negative

network externalities on the optimal size of P2P networks. Our research uses a unique dataset collected from
the six most popular OpenNap P2P networks between December 19, 2000, and April 22, 2001. We find that users
contribute additional value to the network at a decreasing rate and impose costs on the network at an increasing
rate, while the network increases in size. Our results also suggest that users are less likely to contribute resources
to the network as the network size increases. Together, these results suggest that the optimal size of these
centralized P2P networks is bounded—At some point the costs that a marginal user imposes on the network
will exceed the value they provide to the network. This finding is in contrast to early predictions that larger
P2P networks would always provide more value to users than smaller networks. Finally, these results also
highlight the importance of considering user incentives—an important determinant of resource sharing in P2P
networks—in network design.
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1. Introduction
At their core, peer-to-peer (P2P) network architectures
enable resource sharing directly between autonomous
individual network users, also known as peers. Cur-
rently, these resources are most commonly files con-
taining digitized information content such as music,
movies, pictures, software, or text. However these
resources can also include storage capacity, or band-
width or computing power. A defining characteristic
of these networks is that resource availability and con-
sumption patterns on the network are determined by
individual user (peer) behavior. Thus, P2P network-
ing is different than the traditional client-server archi-
tecture where all network resources are contained
in and managed by a central server (Parameswaran
et al. 2001).

P2P networking has its origins in the early design
of many Internet architectures and protocols (Minar
and Hedlund 2001), but its recent popularity began
with the launch of the Napster network in May 1999.
Napster enabled users worldwide to share music files
compressed in MP3 format. By many accounts it was
the fastest growing application in the Internet’s his-
tory, expanding from 30 users to 25 million users in
its first 12 months of operation (Strahilevitz 2002).
Numerous P2P file sharing systems have followed
Napster, including OpenNap, Scour, iMesh, Gnutella,
eDonkey, FreeNet, BitTorrent, and DirectConnect. As
of June 2004 the most popular such network is Kazaa,
which according to Download.com has been down-
loaded over 350 million times since its introduction in
July 2000.
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Building on the success of P2P file sharing net-
works, entrepreneurs and programmers have recently
developed P2P-based networks in other applica-
tion domains. Notable examples include stream-
ing media distribution (e.g., Allcast, Blue Falcon
Networks, Kontiki, Uprizer), distributed computing
(e.g., SETI@Home), remote collaboration (e.g., Groove
Networks), enterprise information sharing (e.g., Bad
Blue, Nextpage), spam filtering (e.g., Cloudmark),
copyright-friendly content distribution (e.g., Altnet),
and decentralized data storage and archiving (e.g.,
Publius, FreeHaven).
Despite P2P’s potential as an efficient tool for digi-

tal content distribution and distributed resource shar-
ing, there has been little academic work analyzing
the impact of user behavior on its design and real-
world operation. Systematic research to address these
questions is important for a variety of constituencies,
including engineers determining the right configura-
tion and provisioning of P2P networking equipment,
protocol designers and network planners designing
user incentives to optimize network performance,
entrepreneurs developing user adoption forecasts to
support P2P business models, and intellectual prop-
erty holders seeking to develop systems to minimize
the incidence of copyright violations on P2P networks.
In this paper we study one component of P2P net-

work operation: the interplay between positive and
negative network externalities in a real-world envi-
ronment. A network externality is the marginal effect
that an additional user of a network has on existing
users, where the impact of this marginal effect is not
fully internalized by the additional user.
Most of the discussion around network external-

ities in P2P environments has focused on positive
network externalities—the marginal value marginal
users provide to the network. Positive network exter-
nalities arise when users who choose to share their
content bring new content, replicas of existing con-
tent, or other shared resources to the network. Viewed
in isolation, these positive externalities mean that
larger networks will provide more value to users than
smaller networks (e.g., Strahilevitz 2002). The impor-
tance of positive externalities on the scalability of
P2P networks has been widely discussed (e.g., Saloner
and Spence 2002, p. 54). For example, Hibbard (2001)
opines, “In conventional content delivery, every PC

that requests a file bogs down a server’s performance.
In peer-to-peer delivery, every PC that joins the net-
work improves download speeds by adding another
available cache.” Hibbard further quotes Ian Clarke,
Founder and Chief Technology Officer of Uprizer as
saying, “the bigger the network gets, the more effi-
ciently it is able to deliver content” (p. 62).
However, positive network externalities should not

be considered in isolation. P2P users can also impose
negative externalities on other members of the net-
work by consuming scarce network resources or by
an increased propensity in larger networks for users
to consume network resources without providing
resources back to the network in return. The impact of
these sources of negative externalities—while poten-
tially important to network scalability—has received
far less discussion than the impact of positive nega-
tive network externalities.
This study seeks to extend the understanding of

P2P network scalability by measuring how both pos-
itive and negative externalities vary as a function
of network size. We did this by gathering a unique
dataset from the six most popular OpenNap networks
from December 19, 2000, to April 22, 2001.1 Our data
include information on network congestion, and song
availability and replication (number of copies of the
song available for sharing on the network) for 170
randomly selected songs in 17 musical genres. These
data are useful because they allow comparison across
a set of networks with identical design but widely
varying size.
We find that the marginal benefit an additional user

provides to the network decreases with network size,
while the marginal cost they impose on the network
in terms of congestion on shared resources increases
with network size. This suggests that the optimal size
of this type of P2P network should be bounded in
many common settings—At some point the marginal
cost an additional user imposes on other network
users will be larger than the marginal value they pro-
vide. To explore this relationship further, we apply
the Erlang-B model to assess the impact of increasing
network capacity on network congestion. This model

1 OpenNap networks use the Napster protocol, which employs a
centralized searchable catalog of content to allow peers to locate
content on other peers’ computers.
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suggests that although increasing capacity may allow
more users to participate on a network, at some point
there may be little incentive for network operators to
provision this capacity because for sufficiently large
networks diminishing positive network externalities
implies decreasing the benefits achieved by adding
more capacity.
These findings contribute to the literature in three

primary ways. First, we use a high-quality and unique
panel data set to directly measure positive and neg-
ative network externalities. As observed by Varian,
while network externalities are commonly discussed
in the literature, “for most network goods, the fre-
quency of data collection is too low to capture the
interesting dynamics” (Varian 2003, p. 33). Second,
while positive network externalities in networked
environments have been commonly discussed, ours is
one of the first papers to measure the role of negative
network externalities in limiting network scalability.
Third, our analysis has implications for the operation
and design of P2P networks, an emerging and impor-
tant architecture for distributing information goods
and sharing other computing resources.
The remainder of this paper proceeds as follows.

Section 2 provides background on P2P networks and
reviews the relevant IS, computer science, economics,
and social psychology/groups literatures as they
relate to our study. Section 3 presents a model of pos-
itive and negative externalities in P2P networks, and
develops sufficient conditions for the optimal size of
P2P networks to be bounded. Section 4 discusses our
methodology and data. Section 5 presents our empiri-
cal results and discusses the limitations and potential
generalizability of our study. Section 6 concludes the
paper and identifies areas for future research.

2. Background and Literature
2.1. Architecture
Network architectures can be summarized along two
axes: the degree of decentralization of the network
content and the degree of decentralization of the cata-
log of this content (Figure 1). The degree of decentral-
ization of network content reflects whether the content
is stored in a central location (improving direct man-
agement of the content), or is stored in a distributed
manner separately by the individual nodes/peers
(caching content within the network, eliminating a

Figure 1 Taxonomy of Content Distribution Architectures
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single point of failure for content distribution, and
offloading bandwidth burden to the edge of the net-
work). The degree of decentralization of the catalog
of content reflects whether this catalog is stored in a
central location (increasing the accuracy and reliabil-
ity of the catalog), or is stored in a distributed manner
separately by the individual nodes/peers (improving
flexibility and eliminating a single point of failure for
directory services).
By definition, P2P networks reside in the shaded

region of Figure 1 corresponding to distributed con-
tent. As noted in the figure, P2P networks can be
categorized into three general types depending on
the degree of centralization in the catalog of con-
tent.2 At one end of the spectrum, Napster and Open-
Nap networks have a single central catalog of content
for the entire network. At the other end, in Gnutella
Version 0.4, each node catalogs its own content; thus,
the catalog is completely distributed within the net-
work. The Kazaa and Gnutella Version 0.6 architec-
tures fall in between—sharing design elements from
both the centralized and distributed architectures. We
describe each architecture category in more detail
below.

Centralized P2P Architectures. The two most pop-
ular and well-known centralized P2P architectures
are Napster and OpenNap. Shortly after Napster’s

2 Some emerging P2P network architectures could reasonably be
cataloged as having a “hybrid” content distribution where content
is served from both a central server and from the edges of the
network. Centerspan’s C-Star One content delivery network and
Blue Falcon’s stream media distribution systems are examples. For
simplicity, these architectures are left out of our figure in favor of
the more common and established network architectures.
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introduction in May 1999, a group of programmers
began work to reverse engineer the Napster proto-
col and create an open source implementation of the
server. The first version of this open source Napster
server, dubbed OpenNap, was made available in
January 2000.3 Individuals could use the server soft-
ware to create their own “Napster-like” networks that
could be accessed by a variety of clients conform-
ing to the Napster protocol. Many individuals did
so, creating hundreds of networks competing along-
side Napster. These networks were distinct and sep-
arate from each other and from Napster’s closed
network.4

As noted above, OpenNap networks operated with
a particular hierarchy. During our data collection
period, each network contained one designated server
that maintained a centralized catalog of all the con-
tent on the network. To gain access to the network,
an OpenNap user operating a peer would choose a
server from a directory of available OpenNap servers
(e.g., those listed on Napigator.com). The peer main-
tains a connection to this central server for the dura-
tion of the user’s presence on the network. Because
these servers have limited capacity for simultaneous
connections with peers, this creates a potential source
of congestion.
Functionally, the protocol for both the Napster

and OpenNap networks is nearly the same. After a
user logged into the network, their peer would
perform the following steps (Figure 2). First, it would
upload a list of the names, sizes, and encoding
speeds of the files it is sharing (if any), along with
its IP-address and the (self-reported) speed of its con-
nection. Any subsequent changes to its shared files
are immediately uploaded, keeping the central cata-
log current. Second, to locate a file, the user places a
keyword query against this catalog database. Third,
the database returns a list of any matching results.
This list includes the name, length, encoding speed,
and provider for each file. The client program issues

3 See http://opennap.sourceforge.net/.
4 During our study period, a user searching one OpenNap network
would not see users logged into the other networks. Most impor-
tantly, actions taken by Napster, in an effort to remove copyrighted
materials late in our study, did not impact the availability of con-
tent on the OpenNap networks we studied.

Figure 2 Napster/OpenNap Network Operation
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a ping request to each provider and sorts the list in
ascending order by the amount of time it took to
receive a pong (response) message from the provider,
using this time as a proxy for the congestion at
the peer. Fourth, the user chooses one of the peers
from the list and initiates a download. This down-
load request may be accepted or queued by the peer
computer providing the content. Peers accept simul-
taneous downloads up to a user-specified limit and
queue any additional download requests. Once the
download request is accepted, the requesting peer
computer downloads the content directly from the
providing peer.
Two additional points are important to our anal-

ysis. First, under the default sharing settings, the
requesting peer becomes a provider of all content they
download (in addition to any content they initially
brought to the network). In this manner, content is
auto-replicated on the network in proportion to its
popularity. More popular content will be downloaded
by—and therefore available from—more peers than
less popular content. Second, although Napster and
OpenNap clients share files in their download direc-
tory by default, users can turn off this default set-
ting. Users who turn off sharing consume network
resources without providing resources in return. They
hamper the auto-replication characteristic of these
networks. We refer to these peers as free-riders in the
remainder of the paper.

Decentralized P2P Architectures. Unlike central-
ized networks, decentralized P2P networks have no
hierarchy. In Gnutella 0.4, the most popular decen-
tralized architecture, peers are connected in a “web,”
with each peer connected to approximately three
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other peers. Because there is no central server, peers
maintain separate catalogs of their own content. To
locate content in the network, peers pass a query to
each of the peers to which they are connected. In
turn, these peers pass the query to the peers to which
they are connected (eliminating any peers who have
already received the request). Each peer who receives
the query checks to see if they have the desired con-
tent, and if so, returns a reply to the initiating peer
along the original query’s path.
In principle, this protocol could allow queries to

reach every node in the network. However, the
Gnutella protocol limits the depth that queries can
propagate through the network by including a “time
to live” (TTL) parameter in each query message. This
TTL parameter takes on a maximum value of seven.
Each peer who receives a query message decrements
the TTL value and only forwards queries when the
TTL is greater than zero. The TTL effectively limits
the size of the network each node can reach to about
10,000 nodes.5

Hybrid P2P Architectures. Hybrid P2P architec-
tures such as Gnutella 0.6 and Kazaa contain design
elements from both centralized and decentralized
architectures. As in centralized architectures, peers
(a.k.a. leaf nodes) connect to “local” centralized
servers (a.k.a. ultrapeers or supernodes). The connec-
tion between a leaf node and an ultrapeer is similar to
the connection between peers and centralized servers
in centralized P2P networks: Leaf nodes upload a list
of the content they are sharing, ultrapeers maintain a
catalog of content for all their leaf nodes, and queries
from the leaf nodes are sent to the ultrapeer. However,
unlike centralized P2P networks such as OpenNap,
ultrapeers are connected to each other in a structure
comparable to the decentralized networks. If an ultra-
peer cannot adequately satisfy a query issued by one
of its leaf nodes, it can forward this query to the
ultrapeers it maintains connections to and they in
turn can forward the query to their interconnected
ultrapeers. While this design innovation increases the
scalability of hybrid networks versus decentralized
networks, the forwarding of queries among ultrapeers
is still limited by a TTL parameter. Thus, as with

5 See the Gnutella 0.4 protocol at http://rfc-gnutella.sourceforge.
net/ for more details.

decentralized networks, the number of leaf nodes that
can be reached from any particular leaf node is explic-
itly limited.

2.2. Literature
The literature on network externalities has focused
on two types of externalities—direct and indirect. The
classic example of a direct network externality is a
telephone network, where the utility of the network to
the individual increases with the number of users that
the individual can talk to. An indirect network exter-
nality arises when the utility of a product increases
with the number of users because, for instance, the
quality of the product is higher or there are more
complementary products available (Katz and Shapiro
1986, 1994; Farrell and Saloner 1987).
While direct network externalities have been

widely discussed in the context of telecommunica-
tions, they have been difficult to empirically measure
in this setting because of the limitations of available
data, which are typically either time-series or cross-
sectional (Varian 2003). If the data are time series,
then it can be difficult to disentangle network effects
from other unrelated changes (e.g., falling equipment
prices). If the data are cross-sectional, then it can be
difficult to determine whether regional differences are
attributable to peer group effects (differences in pref-
erences) or network externalities.
In the context of indirect network externalities,

most empirical studies have confirmed theoretical
expectations with regard to their impact on consumer
demand, product adoption, and switching costs. For
example, several papers have found that positive net-
work effects increase consumer willingness to pay
and, as a result, increase market price. This has been
demonstrated in the context of spreadsheet software
(Gandal 1994, Brynjolfsson and Kemerer 1996) and
video cassette recorders (Park 2003). Positive network
effects have also been shown to influence switch-
ing costs and platform adoption of telecommunica-
tions equipment (Economides and Himmelberg 1995,
Augereau et al. 2003, Forman and Chen 2003), bank-
ing networks (Saloner and Shepard 1995, Kauffman
et al. 2000), and consumer electronics equipment
(Dranove and Gandal 2003, Goolsbee and Klenow
2003, Gandal et al. 2000).
Our work differs from prior empirical work on

indirect network externalities in three primary ways.
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First, we empirically measure negative network exter-
nalities in addition to positive network externalities.
To the best of our knowledge, we are the first to
empirically analyze the impact of both positive and
negative network externalities. Second, we are able
to collect panel data where the cross-sectional obser-
vations are made across networks using exactly the
same server software and protocol design. Thus, the
nature of these data solves some of the data problems
mentioned above for studies using only time-series or
cross-sectional data alone. Third, we analyze network
externalities in the context of P2P networks, which
are a new and important architecture for distributing
information goods and are differentiated from many
of the existing contexts in which indirect network
effects arise. Specifically, in P2P networks, partici-
pants take on dual roles of consumers and providers
of resources, the consumption and provision of these
scarce resources is heterogeneous across peers, and
resources (e.g., CPU cycles, bandwidth, content) are
served from the edges of the network. This is in
contrast to a more traditional telecommunications
environment where the scarce resources (bandwidth,
switching capacity) are provided centrally and sepa-
rately from consumption decisions, and where con-
sumption of the scarce resource is more homogeneous
across users.
Our work is related to three additional types of

literature. The first type concerns the motivation of
participants in online forums. This analyzes the ben-
efits online groups can provide to each other in
the form of ties to a community, social support,
and access to community resources (e.g., Kraut and
Attewell 1993, Constant et al. 1996). More recently,
several papers have analyzed personal motivations
for online group participation, concluding that moti-
vations appear to be driven primarily by altruism and
reciprocity (Wasko and Faraj 2000, Gu and Jarvenpaa
2003, Subramani and Peddibhotla 2002).
In the online forum literature, our paper is most

closely relates to Butler (2001) who develops a
resource-based model of social interaction in online
communities. He applies this model to data from
ListservTM communities on the Internet, finding that
larger networks have both advantages and disadvan-
tages in attracting and retaining members. Advan-
tages derive from increased potential interactions

with other participants. Disadvantages derive from
fewer opportunities to participate, reduced opportu-
nities to form personal relationships, and lower levels
of contribution.
Our work differs from this literature in three ways.

First, unlike most online forums mentioned above,
user identity in P2P networks is obscured from other
users, thus eliminating explicit reciprocity as a pri-
mary motivating factor for content provision. Second,
our data allow us to empirically compare the oper-
ation of similar networks with different numbers of
users. Third, our data allow us to extend Butler’s
(2001) work to analyze in more detail how positive
and negative externalities impact optimal group size.
The second type of literature relevant to our study

is the economics literature pertaining to public and
club goods (Samuelson 1954, Buchanan 1965). The ser-
vices provided over P2P networks have some of the
characteristics of public goods (Krishnan et al. 2003),
so in general we would expect to see underprovi-
sion of content. The underprovision of public goods
is likely to be exacerbated by the voluntary nature of
contributions to P2P networks. In a typical public or
club goods setting, individuals are compelled to con-
tribute to support the public good through taxation
and the club through payment of dues if they wish to
join. In contrast, contributions in P2P networks have
been voluntary contributions of content or resources
by members.
The underprovision may be mitigated to some

degree by another feature of the P2P environment—
Consumers become contributors by default. In the
public and club goods environments, indirect network
effects arise from cost sharing of a fixed resource
base with a greater number of people. In contrast, in
P2P environments, additional consumers expand the
resource base by bringing more content. Further, if
free-riding is not an issue, the content available per
person does not fall. This unique feature of P2P net-
works means that in an ideal case the heaviest con-
sumers of network resources can also be among the
most valuable contributors.
Given concerns about the underprovision of con-

tent caused by free-riding in P2P networks both in
theory and in practice (e.g., Adar and Huberman
2000), a type of literature in computer science has
arisen to address this problem. The focus has been
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on providing participants with explicit incentives
to provide content and other resources. Researchers
have demonstrated that network pricing (Cole et al.
2003), micropayment systems (Golle et al. 2001), repu-
tation systems (Lai et al. 2003), autonomous club for-
mation (Asvanund et al. 2003), and admission control
systems (Kung and Wu 2003) are all feasible solutions.
The drawback of all of these systems is that they may
add considerable protocol overhead to the operation
of P2P systems.
The third type of literature is closely related to

the second, but focuses on addressing current prob-
lems of free-riding and associated congestion at the
protocol level. Researchers have shown that network
performance can be enhanced through improved
indexing schemes (Stoica et al. 2001), the use of
ultrapeers to reduce traffic load on low bandwidth
peers (Kirk 2003), caching to improve the efficiency
of content retrieval (Bhattacharjee et al. 2003), and
intelligent linkage promotion based on similarity of
interests (Sripanidkulchai et al. 2002). As with the
explicit incentives discussed in the previous para-
graph, each of these imposes additional overhead and
so has its own cost as well.
Our work differs from these two literatures in its

focus on measuring the extent of free-riding and asso-
ciated congestion. In contrast, the second and third
literatures take free-riding as a given and ask for
a given level of free-riding whether or not changes
in the protocol or the incentive structure can dimin-
ish or completely eliminate the problem. Without a
more complete understanding of the empirical prob-
lem, however, the incentive or protocol approaches, if
implemented, may not have the desired outcome.

3. Empirical Hypotheses
The central hypothesis that we explore in this paper
is that positive and negative network externalities
cause the optimal size of OpenNap networks to be
bounded. In this section, we use an analytic model
to derive sufficient conditions for this hypothesis to
hold.
First, let N be the number of users in the network.

Each user provides value to other network mem-
bers by providing access to new songs or additional
copies of songs already on the network, which ceteris
paribus will increase variety and reduce the expected

download time. Consistent with the definition of net-
work externalities, positive network externalities arise
because the range of content available and the num-
ber of copies of each piece of content is positively
correlated with the number of users on the network.
Likewise, users impose costs on other network mem-
bers by increasing congestion in the form of expected
login, query, and download times. Negative external-
ities arise as congestion is correlated with the number
of users.
Thus, assume an individual user’s utility from

using the network is given by the sum of the utility
from the availability and replication of a vector of con-
tent that they are interested in �F �, and the (dis)utility
of a vector of congestion effects they face �C�:

U�F �N��C�N��=UF �F �N ��+UC�C�N��� (1)

Modeling utility as separable in consumption and
congestion is a good fit for P2P networks. For these
networks, the value of the content can be modeled as
independent of congestion, i.e., a song downloaded in
5 seconds will sound the same as a song downloaded
in 30 seconds. This formulation would not, however,
be applicable in a setting where the value of the con-
tent was time sensitive (e.g., stock quotes) or could be
degraded due to congestion (e.g., streaming media).
Network externalities in such settings would make
useful areas for future research.
Consistent with the definitions of content and con-

gestion, let users be better off when more content
variety or more replicas of content are provided by
the network, and worse off when network congestion
increases:

	U/	f > 0 (2)

	U/	c < 0� (3)

In these equations, f is an element of the content vec-
tor F , and c is an element of the congestion effects
vector C.
Furthermore, consistent with our discussion above,

content and congestion will (weakly) increase in the
number of network users N . Each user will bring
either no content (free-riding), new content, or addi-
tional replicas of existing content to the network:

	f /	N ≥ 0� (4)
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Likewise, with regard to congestion, new users will
(weakly) increase congestion measures, which in our
setting include login time, query time, and download
times:6

	c/	N ≥ 0� (5)

Finally, assume that U is concave in f and c:

	2U/	f 2 ≤ 0 (6)

	2U/	c2 ≤ 0� (7)

Concavity in f would hold if users have a dimin-
ishing marginal utility from more content and more
replicas of content. Concavity in c would hold if
users had increasing marginal disutility from conges-
tion, consistent with the standard intuition that the
marginal utility of lost time increases as more is lost,
because higher opportunity cost activities are pre-
cluded as the margin is pushed inward.7

Under these assumptions, we can characterize
how utility varies with network size (i.e., 	U/	N ,
	2U/	N 2) as a way to understand the impact of net-
work externalities on optimal network size. Optimal
network size will be bounded if 	U/	N is posi-
tive for small N (a necessary condition for networks
to form at all), and 	2U/	N 2 is strictly negative.
Under these conditions, for sufficiently large net-
works, the marginal value a user provides to the net-
work �	U/	N� will be negative, and thus the network
would be better off if that user were not allowed to
join.
To show that these two conditions hold, we first

note that under our utility function (1),

	U/	N = 	U/	f · 	f /	N + 	U/	c · 	c/	N (8)

6 Our model could be extended to include congestion from fake
files on P2P networks. In May 2002, various artists and recording
companies started flooding P2P networks with “fake” files labeled
as popular music (Avery 2002, Warner 2002). While this practice
falls outside of our data collection period, it could be included in
our model as a congestion effect. An increase in the number of
fake files on the network would reduce each user’s utility because
they would have to initiate more downloads to find their intended
content, thus Equation (3) should hold. To the extent that record
companies (weakly) target larger networks for more copies of fake
files, Equation (5) would hold and our model would retain the same
interpretation.
7 We thank an anonymous referee for this insight.

	2U/	N 2=	2U/	f 2 ·�	f /	N�2+	U/	f ·	2f /	N 2

+	2U/	c2 ·�	c/	N�2+	U/	c ·	2c/	N 2� (9)

Next, observe that by (2) and (4) the first term of (8) is
positive, and by (3) and (5) the second term is neg-
ative. Finally, observe that by (2), (3), (6), and (7) for
	2U/	N 2 to be strictly negative it is sufficient to show
that the following are true, where (10) corresponds to
the statement of Hypothesis 1 and (11) corresponds
to our statement of Hypothesis 2:8

	2f /	N 2 < 0 (10)

	2c/	N 2 > 0� (11)

Thus, to show that optimal network size is bounded,
it is sufficient to show that the following two
hypotheses are true:

Hypothesis 1. For all measures of value, the marginal
value an additional user brings to the network decreases in
network size.

Hypothesis 2. For all measures of cost, the marginal
cost an additional user imposes on the network increases
in network size.

To test Hypothesis 1, we measure the collective con-
tent on the network in terms of availability and repli-
cation. Availability measures the number of unique
songs that are provided on the network. Replication
measures the number of copies of each song that
is available on the network. Replication is a partic-
ularly important measure of network behavior. As
noted above, OpenNap clients were configured to
share downloaded songs by default, auto-replicating
the song for the network.
Auto-replication allows a P2P network to effi-

ciently meet download demand from users because
the replication of songs on the network will scale
in proportion to the song’s popularity. The value of
replication is that it helps distribute the load on the
providers if multiple users choose to download songs
simultaneously. It is important for replication to scale
consistently with network size for download perfor-
mance to scale well. However, to the extent that users

8 In fact only one of the inequalities in (10) and (11) needs to hold
strictly for 	2U/	N 2 to be strictly negative.
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change the default sharing setting of OpenNap clients
to disable, file sharing network scalability will be
reduced.
To test Hypothesis 2, we measure the cost of access-

ing content on the network in terms of login conges-
tion, query congestion, download attempt congestion,
and download speed congestion. These measures of
the negative network externalities reflect the steps in
user interaction with centralized P2P networks where
the congestion or delays may take place (Figure 2).
These variables are discussed in more detail below.

4. Data
To empirically test these hypotheses, we collected data
from six OpenNap networks on network congestion
characteristics and content availability for 170 songs.
As noted earlier, these networks use an open source
version of the protocol used by the Napster network.
Apart from that, these networks were entirely separate
from each other and from the Napster network.
The OpenNap networks used in the data col-

lection were the most popular networks listed by
Napigator.com at the beginning of our collection
period. We selected six networks because below this
rank the size of the listed networks dropped signifi-
cantly. The 170 songs were selected at random from
the full repertoire of all popular artists in 17 separate
genres listed at Amazon.com. We used Amazon.com’s
listings after determining that it had one of the most
comprehensive publicly available databases of music

Table 1 Summary Statistics

Variable Obs. Mean St. dev. Min Max

Login congestion, query congestion, and song availability
User count 323 3�118�00 2�283�00 68�00 8�618
Server count 323 7�00 3�40 1�00 15
Song availability 83�640 0�54 0�50 0�00 1
Song availability (broadband connection) 83�640 0�45 0�50 0�00 1
Song replication (number of copies of a song) 83�640 11�00 30�00 0�00 555
Song replication (broadband connections) 83�640 6�00 21�00 0�00 460
Login congestion (login time, seconds) 323 3�00 8�00 0�00 71
Query congestion (query time, seconds) 323 10�00 17�00 13�00 90

Download attempts and speed
User count 13 2�620�00 687�00 1�458�00 3�588
Download attempt congestion (number of 582 2�85 4�37 1�00 45

attempts before download starts)
Download speed congestion 582 32�00 33�00 0�00 200

(average download speed, kbps)

content available on the Internet. Our data were
collected every 18 hours from December 19, 2000, to
April 23, 2001, and include user count, server count,
login congestion, query congestion, song availabil-
ity, song replication, and broadband song replication
(Table 1).
User count measures the number of users on the

network at the point in time when our data collection
agent logged into the network. Server count measures
the number of mirrored central catalog servers used
by the network. Each of these pieces of information
are passed to clients at login.
Login congestion measures the difficulty of log-

ging on to the network. We measure login conges-
tion as the amount of time it took to successfully log
in to the network. As noted in §2.1, the server has
a fixed capacity for simultaneous connections with
clients. Because of this, we expect login congestion to
be low initially and to quickly rise as network size
approaches server capacity.
Query congestion measures the amount of time

it takes to receive a query response from the cen-
tral server. When users perform search queries for
a file, they place traffic demand on the centralized
servers that perform database searches, potentially
degrading network performance for other users. This
may happen in two ways: Having more users may
increase the size of the database containing users’
file listings, and having more users may generate
more simultaneous search queries that the centralized
servers must process.
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These query responses allowed us to measure song
availability and replication. Song availability is a
binary variable for whether any copies of a partic-
ular song are available on the network, and broad-
band song availability is a binary variable measuring
whether any copies of a particular song are available
from peers reporting that they have a broadband con-
nection. Similarly, song replication is the number of
different peers who have copies of a particular song,
and broadband song replication is the number of dif-
ferent peers who have copies of a particular song
available over a broadband connection.
These data were collected using an automated soft-

ware agent written for this purpose. The agent imple-
mented the OpenNap protocol and was specifically
designed to mimic the actions of typical users. This
agent was also designed to have a negligible impact
on network performance by spreading out content
queries over time and by only downloading a small
portion of songs when determining download speeds.
We chose popular artists because song availability

was very low for a random selection of songs from
all artists. The main drawback of this approach is that
some tracks may become less popular over our data
collection. However, the content was selected from the
full repertoire of the artist (not just their most recent
album) and only a few tracks were recent releases.9

We also developed control variables to mark sig-
nificant announcements made by Napster during our
study period (see Table 2). In our regressions, Time
Period I refers to the period from December 19,
2000, to January 29, 2001, when Napster announced
that they were planning to start a subscription ser-
vice sometime during the summer of 2001. Time
Period II refers to the period from January 29, 2001,
to March 2, 2001, when Napster started filtering
copyrighted tracks from its service. Time Period III
refers to the period from March 2, 2001, to April 23,
2001. It is important to note that the aforementioned

9 For all genres except emerging artists the list of best-selling artists
did not change over the data collection period. We further checked
the sensitivity of our results to changes in popularity by referencing
the 36 most popular album charts tracked by Billboard at the begin-
ning and end of our sample period. We found five songs that were
contained in albums that moved off the Billboard album charts dur-
ing our sample period. Eliminating these songs from our analysis
did not change any of our results.

Table 2 Key Data Collection Dates

December 19, 2000 Initial data collection starts (login congestion,
query congestion, song availability/replication)

January 29, 2001 Napster announces subscription service, planned
to start in summer 2001 (End of Time Period I)

March 2, 2001 Napster starts filtering copyrighted tracks from its
servers in response to court order
(End of Time Period II)

March 28, 2001 Collection of download attempt and download
speed congestion starts

April 23, 2001 End of data collection

announcements by Napster had no impact on the
operation of the OpenNap networks in our study.
However, these announcements did have a sec-
ondary impact in that many former Napster users
joined OpenNap networks immediately following
these announcements, and these variables allowed us
to control for such changes.
We collected an additional dataset on download

congestion and speed from March 28, 2001, to April
19, 2001 (Tables 1 and 2). This dataset includes infor-
mation on the size of the network and two additional
measures of the congestion a user would face when
trying to download a song. The first measure, down-
load attempt congestion, is the number of download
attempts our agent had to make (starting with the
listing with the lowest ping time) before finding a
peer who did not queue the download request. As
noted in §2.1, P2P peers can define a maximum num-
ber of simultaneous downloads they are willing to
serve. Requests above this value are then queued for
subsequent processing.10 The second measure is the
download speed (in kbps) our agent observed when
downloading the song. Download speed will vary, in
part, based on the speed of the peer’s connection to
the network and the number of simultaneous down-
loads it is serving.

5. Empirical Analysis of the
Network Externalities

5.1. Positive Network Externalities
In this section, we empirically investigate how both
availability and replication vary with the number of
users on a network. Our regression results for

10 Note that peers still respond to ping messages even after reaching
the maximum number of simultaneous downloads.



Asvanund et al.: Empirical Analysis of Network Externalities in Peer-to-Peer Music-Sharing Networks
Information Systems Research 15(2), pp. 155–174, © 2004 INFORMS 165

Table 3 Regression Results for Positive Network Externalities

1 2 3 4 5 6

Regression model Logit-linear Logit-log Logit-polynomial OLS-linear OLS-natural log OLS-polynomial

Dependent variable Availability Replication

ln(user_count) 0�467 4�63
�8�05e-03� �0�0735�

user_count 1�82e-04 1�74e-03
�4�05e-06� �3�27e-05�

user_count′ 4�72e-05 0�003
�1�27-e05� �4�17e-05�

user_count′2 −1�51e-07 −2�77E-07
�6�47e-09� �1�64e-08�

user_count′3 9�03e-12 −1�71e -12
�5�04e-13� �1�27e -12 �

broadband −0�481 −0�486 −0�485 −4�74 −4�73 −4�74
�0�0117� �0�0118� �0�00118� �0�111� �0�111� �0�11�

Time [2] Yes Yes Yes Yes Yes Yes
Genre [16] Yes Yes Yes Yes Yes Yes
Network [5] Yes Yes Yes Yes Yes Yes
Number of 166�770 166�770 166�770 166�770 166�770 166�770

observations
(Pseudo) R2 0�247 0�253 0�252 0�186 0�191 0�199

Notes. Standard errors are in parentheses. Values in brackets denote the number of fixed effect variables. The ′ character denotes that the variable is centered.
Italicized coefficients are insignificant �P = 0�05�.

availability are presented in the first three columns of
Table 3. Availability is measured as a binary value,
where zero indicates that the song is not available
and one indicates that that song is available. With
binary data, ordinary least squares will not, in gen-
eral, produce estimates confined to the 0-1 interval,
making the results unreliable and difficult to inter-
pret. Either the probit model, based on the normal
distribution, or the logit model, based on the logistic
distribution, is typically used in such circumstances.
Given that the mean of the dependent variable is near
0.5, the estimates from the two approaches yield sim-
ilar results. We present estimates of these equations
using the logit model.
Our specifications for availability are given below

for song i on network j at time t. These specifications
represent three common functional forms: linear, log-
arithmic, and polynomial. The three functional forms
allow us to compare model fit for different relation-
ships between the number of users and availability.
Logit-linear: Availabilityijt = user_countjt + Dbroad-

bandijt +Dtime_IIt +Dtime_IIIt +Dgenrei+Dnetworkj +
�ijt .

Logit-log: Availabilityijt = ln�user_count�jt + Dbroad-
bandijt +Dtime_IIt +Dtime_IIIt +Dgenrei+Dnetworkj +
�ijt .
Logit-polynomial: Availabilityijt = user_count′jt +

user_count′2jt +user_count′3jt +Dbroadbandijt+Dtime_IIt+
Dtime_IIIt +Dgenrei +Dnetworkj + �ijt .
In the foregoing equations, user_countjt is the user

count on network j at time t. In the polynomial
specification user_count′jt indicates the centered user
count.11 We performed centering to reduce multi-
collinearity that may occur among the polynomials.
Dbroadbandijt is a 0-1 indicator of whether song i is
available via a broadband connection on network j at
time t. Dtime_IIt and Dtime_IIIt are indicator variables
for Time periods II and III. Dgenrei and Dnetworkj are
dummy variables for the 17 song genres and the 6
networks, respectively.
The replication equations are similar to the avail-

ability equations; however, because replication is a
count of the number of copies, the equations are esti-
mated using ordinary least squares.

11 user_count′jt = user_count−user_countjt .
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OLS-linear: Replicationijt = user_countjt + Dbroad-
bandijt +Dtime_IIt +Dtime_IIIt +Dgenrei+Dnetworkj +
�ijt .
OLS-log: Replicationijt = ln�user_count�jt + Dbroad-

bandijt +Dtime_IIt +Dtime_IIIt +Dgenrei+Dnetworkj +
�ijt .
OLS-polynomial: Replicationijt = user_count′jt +

user_count′2jt +user_count′3jt +Dbroadbandijt+Dtime_IIt+
Dtime_IIIt +Dgenrei +Dnetworkj + �ijt .
Results for both sets of regressions are presented in

Table 3. In all cases, the coefficient on user count is
positive, indicating that both availability and replica-
tions are increasing with the number of users. Note
that the log and polynomial specifications have higher
R2 measures than the linear specifications, suggesting
that they offer a better fit.
The concavity of availability in network size is con-

sistent with expectations and suggests that the prob-
ability that a user contributes to network resources
is either constant or decreasing in network size.
Figures 3 and 4 show these results graphically for
the Pop, Jazz, and Emerging Artist genres. Consis-
tent with Hypothesis 1, the marginal value a user
provides to the network in terms of availability and

Figure 3 Availability Regression Result∗
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∗ In each case, we used the coefficients for the specification that provided the best fit. User count was allowed to vary from 0 to 8,000 users and all other
variables were set to their respective sample averages.

replication decline with network size. The concav-
ity of replication with network size is particularly
interesting given that, as noted above, in the absence
of free-riding we would expect replication to scale
linearly with network size. The results shown are
consistent with an increase in free-riding caused by
larger group size, users with a greater propen914sity
to free-ride selecting the more popular networks, or
both.

5.2. Negative Network Externalities
Negative network externalities may be reflected in
four measures: (1) an increase in the number of login
retries necessary to access the network, (2) longer
query times, (3) an increase in the number of queued
download attempts, and (4) longer download times.
We use four separate regressions to analyze how
these measures change with the number of users
on a network. The first two measures of congestion
were collected at the same time we collected the data
on availability. As noted above, our data on down-
load congestion and speed were collected between
March 28, 2001, and April 19, 2001 (Tables 1 and 2).
Obviously it would have been better to collect these
data at the same time as the other data. That said,
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Figure 4 Replication Regression Result
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we conducted tests using the longer data set to deter-
mine whether the relationship between availability,
replications, congestion, and user count changed dra-
matically across the three time periods. In all cases,
our results for the individual time periods were con-
sistent with the full data set. This suggests that while
we might have achieved higher or lower coefficients if
we had data on download congestion and download
time for the earlier periods, our core results almost
certainly would still hold.
Both (1) login retries and (3) download attempts are

count data. Count data can be estimated by ordinary
least squares, but are typically estimated using the
Poisson model, which accounts for the discrete nature
of the data. We use the Poisson model to estimate
download attempts data. In the case of login retries,
we use a zero-inflated Poisson regression model to
control for the fact that below network capacity, no
retries are necessary. In essence two processes gener-
ate the login retries data. One determines the num-
ber of retries when the system is not at capacity, and
the other determines how many retries are neces-
sary when the system is at capacity. The zero-inflated
Poisson regression is appropriate for this type of data
because it estimates the two generating processes sep-
arately: the probability that there is no congestion

(zero inflation) and, conditional on congestion, the
number of retries needed (Poisson) (Lambert 1992).
Our specifications for these regressions are as

follows:
ZIP-Inflated: Probability of no login congestionjt =

user_countjt + server_countjt +Dtime_IIt +Dtime_IIIt +
Dnetworkj + �jt .
ZIP-Poisson: Number of login retriesjt=user_countjt +

server_countjt+Dtime_IIt+Dtime_IIIt+Dnetworkj +�jt .
Poisson: Number of download attemptsijt =

user_countjt +Dnetworkj +Dgenrei + �ijt .
Both (2) query times and (4) download times are

estimated using ordinary least squares regressions,
where the dependent variable is the log of query
time or the log of download time. We estimated each
of these relationships by using the same three func-
tional forms for user count that we used in the pos-
itive externalities case: linear, log, and polynomial.
In the interest of space, we report the regression
with the best fit. The variables in the regressions are
the same as in the previous set of regressions, with
one exception. In the case of download speed, we
created 10, 0-1 indicator variables corresponding to
the 10 self-reported connection speeds displayed in
OpenNap query results (i.e., 14.4 kbps, 28.8 kbps,
33.6 kbps, 56.7 kbps, 64K ISDN, 128K ISDN, Cable,
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Table 4 Regression Results for Negative Network Externalities

1a 1a 2 3 4

Regression Login inflated Login Poisson Query time Download attempts Download speed

Method Zero-inflated Poisson OLS Poisson OLS

Data period December 2000–April 2001 March–April 2001

Dependent variable Prob. no congestion # of login retries Log(query time) # of download attempts Log(download time)

user_count −7�1e-04 2�8e-04 4�7e-04 4�17e-04 −4�1
�1�7e-04� �4�9e-05� �−7�3e-05� �−6�9e-05� �1�98�

server_count −0 �056 0 �0085 −0�079
�0 �064� �0 �148 � �0�029�

Time period [2] Yes Yes Yes
Network [5] Yes Yes Yes Yes
Song genre [16] Yes Yes
Connection speed [10] Yes
Observations 323 323 323 582 582
(Pseudo) R2 0�45 0�12 0�18

Notes. Standard errors are in parentheses. Values in brackets denote the number of fixed effect variables. Fixed effects are suppressed for simplicity. Italicized
coefficients are insignificant �P = 0�05�. “Yes” means control variables are included for the specified dependent variables.

DSL, T1, and T3 or greater). Our specifications are as
follows:
OLS-Log: Log(Query Time)jt = user_countjt +

server_ countjt + Dtime_IIt + Dtime_IIIt + Dnetworkj +
�jt .
OLS-Linear: Log(Download time)ijt=user_countjt

+Dgenrei +Dconnectionijt + �ijt .

Figure 5 Congestion Summary

0

50

100

150

200

250

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

User Count

Se
co

nd
s

Login Congestion Query Congestion

Download Attempt Congestion Download Speed Congestion

December 2000 – April 2001

March 2001 – April 2001 

Table 4 presents the results of the regressions. Con-
sistent with Hypothesis 2, in all of the cases, conges-
tion is increasing in network size at an increasing rate.
The relationship between user count and conges-

tion is shown graphically in Figure 5, which projects
our results in terms of length in seconds. To display
each measure on a common figure (with the y-axis
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measuring seconds), we assume that each login retry
and download attempt takes 12 and 15 seconds,
respectively, and convert the observed download
speed (kbps) into the amount of time necessary to
download a 5MB file over a cable modem. These
assumptions reflect the average values in our empir-
ical analysis and are made for graphical simplicity
only.

5.3. The Impact of Increasing Server Capacity
Our empirical results are consistent with Hypo-
theses 1 and 2, which in turn suggest that network
utility is concave in the number of users and that the
optimal network size is bounded in the number of
users. One question that may arise from this analysis
is how these bounds will change as capacity is added
to the network.

P (login congestion)= �C/c!
∑c

i=0��i/i!� � (12)

The Erlang-B equation models the probability of con-
gestion in a central switch with call handling capacity
c and � = �/�, where � and � are Poisson random
variables denoting the average number of users who
arrive at a network each day ��� and the service rate
for each connection ���. In our setting, the call han-
dling capacity c corresponds to the servers’ capacity
to maintain multiple connections. The service rate �
is the duration of time that peers stay on the network,
and � is the rate at which peers arrive at the network.
We calibrate the model parameters as follows. Our

empirical data indicate that on average users hold
a connection for 12 hours, therefore � = 2 connec-
tions per day. We use two capacity sizes: c = 4�000
(approximately the mean network size in our data),
and c = 6�000 (a larger network in our data). To
model increases in arrival rate resulting from increas-
ing capacities, we allow � to vary between 0 and
40,000 users per day.
Given the probability of congestion from the

Erlang-B model, we model the number of retries
before a successful login as a geometric random vari-
able. A geometric random variable corresponds to
the expected number of Bernoulli trials before suc-
cess. It is directly applicable to our environment
where users face a blocking probability, derived by
our Erlang-B model. The average number of retries is
given by the mean of the geometric random variable

(Wackerly et al. 2001):12

E(login retries)= 1
1− P (login congestion)

� (13)

Figure 6 illustrates the results of this analysis. For any
given arrival rate, it is clear that as capacity increases,
both measures of congestion decrease. However, as
the arrival rate increases, the same levels of conges-
tion recur in the higher capacity network. Further, as
noted in §5.1, the additional users attracted by the
additional capacity provide value in terms of avail-
ability and replication at a diminishing rate.
Together this analysis suggests that for the central-

ized P2P architecture, while additional server capac-
ity will allow more users to join the network, for a
sufficiently large network the marginal benefit these
additional users will bring to the community may
not justify the cost of the additional capacity. This is
particularly true because additional users add value
to the network at a diminishing rate. Thus, with the
arrival of new users, congestion on this larger net-
work will eventually rise to the same levels as before,
with potentially little gain in value from replication
or availability. Further, additional capacity does not
solve the primary user-level problems demonstrated
above: increasing free-riding, increasing download
attempt congestion, and decreasing download speed
with larger networks. Additional server capacity also
raises new sources of congestion, such as the over-
head cost necessary to maintain mirrored copies of
the central database across multiple servers. In sum,
while increased capacity may increase the optimal
size of a network, it is unlikely to eliminate the upper
bound on optimal network size altogether.

5.4. Limitations and Generalizability
Several limitations of our study deserve further dis-
cussion. First, three external factors could affect our
conclusion that users of larger networks were also
more likely to free-ride. It is possible that the RIAA’s
legal actions against Napster during our time period
caused an increase over time in the proportion of

12 Note that in the data collected, the agent repeatedly tried to log
in without any wait time. Thus, the retry attempts may not be
independent, as assumed by the geometric model. Nevertheless,
the model should yield generally consistent results when compared
to our data.
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Figure 6 Illustration of Increasing Capacity on Login Congestion
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OpenNap users who free-ride. It is also possible that
Napster users are more likely to free-ride than Open-
Nap users and the influx of Napster users in our
later time periods led to an increase in free-riding.
Finally, it is possible that users who are more likely
to free-ride are also more likely to search out the
largest OpenNap network, or alternately that smaller
networks are more likely to identify and remove free-
riding users.
However, we have reason to believe that these

potential limitations are not driving our result that the
propensity to free-ride increases in larger networks.
First, all of our results still hold if the regressions

are run within each individual time period. Because
the time periods mark important announcements in
the RIAA’s legal case, and in Napster’s subsequent
restructuring, the fact that our results hold within
time periods (in addition to across time periods) sug-
gests that the RIAA’s legal actions and the influx of
former Napster users are not driving our results. Sec-
ond, it is important to note that throughout our data
collection, the RIAA was only targeting network oper-
ators with legal action, not individual peers—and that
most of their energies were focused on the Napster
network, not OpenNap. Thus, individual peers had
little reason during this timeframe to turn off sharing
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for legal reasons (Kiron 2001). Finally, our data col-
lection software agent, which did not share files, was
never blocked from an OpenNap network, suggesting
that the networks in our sample, whether large or
small, did not police users to remove free-riders.
A second limitation of our study is that our results

should be interpreted as applying to centralized P2P
architectures. Analyzing positive and negative net-
work externalities in decentralized and hybrid archi-
tectures would be a useful area for future research.
However, the design of each of these architectures is
consistent with our findings. As noted in §2.1, the
designers of the major decentralized and hybrid net-
works have limited the effective size of the network
each peer can reach by limiting the time-to-live param-
eter on interpeer and interultrapeer queries. Relaxing
this time-to-live parameter would increase the num-
ber of other peers a particular user could reach and
therefore increase each peer’s likelihood of finding the
content they sought. A natural explanation for limit-
ing the time-to-live parameter is that at some point
the marginal benefit of increased network reach to a
particular user does not justify the marginal cost that
their query would impose on the network. This inter-
pretation is entirely consistent with our finding that
the optimal network size of a centralized P2P network
architecture is bounded because the marginal value
additional users provide to the network decreases in
network size, while the marginal cost they impose on
the network increases in network size.
Finally, our results should be interpreted as apply-

ing to consumer P2P file sharing networks. These
networks are increasingly being used in corporate set-
tings (e.g., Deloitte and Touche’s use of NextPage for
knowledge management, [Fontana 2002]) and in non-
music sharing settings (e.g., Virgin Record’s use of
Blue Falcon for streaming media, [Schonfeld 2002]),
and the positive and negative network externalities in
these settings may differ from our environment.

6. Discussion
P2P networks are an important architecture for the
distribution of information goods and show promise
to become an important medium for resource sharing
in other domains. However, in spite of their potential
importance, there has been little empirical research

into the impact of user behavior and network design
on the operation of these networks.
Our research seeks to bridge this gap by measuring

the impact of positive and negative network exter-
nalities on the scalability of OpenNap P2P networks.
Much of the early discussion of P2P network scal-
ability has focused exclusively on positive network
externalities, concluding that larger P2P networks will
always provide better performance. Using data gath-
ered from the six most popular OpenNap networks
from December 2000 to April 2001, we find that this
is not necessarily the case. In our data, the marginal
value that an additional user brings to the network
declines in larger networks, and the marginal cost that
an additional user imposes on the network increases
in larger networks. Together, these results suggest that
the optimal size of this centralized P2P network is
bounded—at some point the marginal cost an addi-
tional user will impose on other users will be larger
than the benefit they provide.
It is important to note that in P2P environments

where the optimal network size is bounded, network
designers retain a variety of options to improve net-
work scalability and performance. First, in centralized
P2P networks, increased server capacity has the abil-
ity to relax congestion constraints, increase (though
not without bound) the optimal size of the network,
and thereby improve network performance to indi-
vidual users. Network operators can use our methods
to measure how the value and costs that additional
users impose on other network members change with
additional capacity, and they can use these calcula-
tions to determine when the expense of additional
capacity would be justified by the resulting increase
in network performance.
Similarly, in hybrid and decentralized networks,

network operators can choose the reach of the net-
work to optimize performance. As noted in §2.1,
while many popular hybrid and decentralized net-
works appear to function as a single network, they are
in fact designed such that the number of other users
an individual peer can reach is limited by the time-
to-live packet on their queries (typically set to seven).
By limiting network reach in this way, network opera-
tors are able to balance the benefits the individual peer
receives from being able to query more users against
the costs that this increased reach imposes on other
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nodes who have to process these queries. The optimal
size of parameters determining the reach of the net-
work may change over time. The value of increased
reach to an individual peer will increase with diversity
of content shared on the network and user preferences
for this content. Likewise, the cost imposed on other
members of the network in processing extra queries
will decrease as the bandwidth and processing power
available to these peers increase. Network designers
can consider these factors when initially designing the
network and should periodically revisit their choices
to ensure that their networks are operating efficiently.
An effective limit on the size of local networks also

suggests that network operators should ensure that
users are clustered with other users sharing similar
content interests. In many popular P2P networks (e.g.,
Kazaa and Gnutella), users are randomly assigned to
a position in the network. Recent research suggests
that query performance can be improved by enabling
users to identify and join subnetworks consisting of
other users who have similar interests (Asvanund
et al. 2003).
Finally, our results suggest that the increased

propensity of users to free-ride in larger networks
is an important factor limiting network scalability.
This finding, while initially surprising, is consistent
with findings in the public economics literature that
free-riding worsens with group size for the private
provision of public goods in more general environ-
ments. For P2P networks, free-riding limits scalability
because it damages the auto-replication characteristic
of P2P networks discussed in §2.1. Auto-replication
supports scalability because content on the network is
available in proportion to its popularity and because
the consumption of network resources through down-
loads is balanced by the provision of network
resources through sharing. Because free-riding lim-
its auto-replication and network scalability, network
operators should consider designing user incentives
to reduce the propensity of free-riding. Some poten-
tial incentives include decreased search, login, or
download performance for free-riders (Krishnan et al.
2003) or, where appropriate, monetary payments in
exchange for consumption of network resources (Cole
et al. 2003, Golle et al. 2001).
A related implication of our results is that copyright

holders seeking to limit unauthorized file sharing

may wish to adopt strategies that increase free-riding
on P2P networks. Recently, copyright holders appear
to be moving away from strategies that focus solely
on shutting down the networks themselves. The prob-
lem with focusing solely on shutting down networks
is that, because of the nature of network externali-
ties, the number of networks (or Kazaa and Gnutella
local subnetworks) is quite large. Furthermore, shut-
ting down individual networks does little to change
user behavior: Individual users simply look for new
networks where they can trade files.
The more recent strategy adopted by copyright

holders of bringing legal action against violators may
be more successful even though the proportion of
users who are targeted is a small fraction of the total
number of users. The success of this strategy depends
on raising the implicit cost of sharing for users by
raising their legal risks. Increased sharing costs will
then raise their propensity to free-ride and may ulti-
mately reduce the utility offered by “illicit” file trad-
ing over P2P networks enough to make the legitimate
purchase of the music an attractive option for users.
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