Robot Control and the Evolution of
Modular Neurodynamics *

Frank Pasemann'! Uli Steinmetz} Martin Hiilse! Bruno Laral

'Max-Planck-Institute for Mathematics in the Sciences
D-04103 Leipzig

fTheorieLabor, Universitit Jena
D-07740 Jena

Abstract

A modular approach to neural behavior control of autonomous
robots is presented. It is based on the assumption that complex inter-
nal dynamics of recurrent neural networks can efficiently solve com-
plex behavior tasks. For the development of appropriate neural con-
trol structures an evolutionary algorithm is introduced, which is able
to generate neuromodules with specific functional properties, as well
as the connectivity structure for a modular synthesis of such mod-
ules. This so called ENS3-algorithm does not use genetic coding.
It is primarily designed to develop size and connectivity structure of
neuro-controllers. But at the same time it optimizes also parame-
ters of individual networks like synaptic weights and bias terms. For
demonstration, evolved networks for the control of miniature Khepera
robots are presented. The aim is to develop robust controllers in the
sense that neuro-controllers evolved in a simulator show comparably
good behavior when loaded to a real robot acting in a physical en-
vironment. Discussed examples of such controllers generate obstacle
avoidance and phototropic behaviors in non-trivial environments.

*In: Theory in Biosciences, 120, 311-326, (2001).

1 Introduction

The widespread recurrent structures found in biological neural networks im-
ply the possibility of complex neural dynamics and, in fact, oscillatory and
chaotic activity has been observed frequently in brains [8], [11], [12], [25].
This suggests that complex dynamics plays an important role for specific
brain functions, and especially for cognitive processes. Although dynamical
approaches to cognition date back to the cybernetics era (e.g. [4]), and there
is a tremendously increasing amount of specialized data available from the
neuro sciences, it still remains an open question to which extent and through
what kind of mechanisms oscillatory and chaotic dynamics can contribute
effectively to the cognitive abilities of living organisms.

It seems obvious that also artificial neural networks with higher infor-
mation processing capabilities will use complex neurodynamics of a large
collection of neurons, and — as their biological counterparts [3] — a modular
structure of these systems should be appropriate. Thus, the basic hypothesis
of the approach to cognitive systems adopted here states that cognitive abil-
ities of biological or artificial systems are founded on the complex dynamical
properties of modular neural networks.

Following such an approach implies to understand the emergent dynami-
cal properties of such a network in terms of interacting smaller subnetworks.
But that this may become a very difficult task is suggested by the observa-
tion that already small artificial neural networks with recurrent connectivity
inherit complex dynamical features [36], [31], [28]. These are, for example,
variable oscillatory modes including chaos, and the existence of many dif-
ferent accessible modes at the same time. The dynamical properties even
of small neural networks are almost unprdictable by a mathematical theory.
So, even if one knows, what kind of dynamical output should be generated
for a specific behavior, a desired recurrent network is almost impossible to
construct - and for the general case of networks and behaviors, there are even
no learning rules so far.

Furthermore, if one thinks about these small neural networks as basic
building blocks for larger systems, i.e. using them as interacting modules,
things become even worth, because the (recurrent) coupling of non-linear sub-
systems can lead to many undesired or unexpected behaviors of the composed
system. But it is exactly the emergence of such unpredictable attributes on
which our hope to find interesting brain structures rests. Thus, to be able to
find some examples pointing to the appropriateness of the modular neurody-
namics hypothesis we are interested in the development of artificial systems
acting in a sensori-motor loop. Simulated or real robots which have to sur-
vive in a changing environment provide an optimal means to study network

structures and dynamics dealing successfully with situations where temporal
sequences of sensor data have to be processed in a behavior-relevant way.
Therefore experiments are made in the spirit of a synthetical approach to
neural systems based on ideas coming from fields like embodied cognition
[29], artificial life [18], [1], dynamical systems and modular recurrent neural
networks. Evolutionary computation techniques will be used as has been
suggested for instance in [5], [15], [10], [13], [24].

The combined application of neural networks and evolutionary algorithms
turned out to be a very effective tool for general problem solving [33]. It was
also shown to generate interesting classes of robot behaviors (see e.g. [23]).
Instead of standard genetic algorithms, here an EN S3-algorithm (evolution
of neural systems by stochastic synthesis) [27] is used. It is applied to net-
works of standard additive neurons with sigmoidal transfer functions and
sets no constraints neither on the number of neurons nor on the connectivity
structure of networks. It develops network architecture and optimizes param-
eters like weights and bias terms simultaneously. In acquiring both network
topology and parameter optimization at the same time it is similar to the
GNARL algorithm [2]. In contrast to genetic algorithms it does not quan-
tize network parameters, and it was tested successfully for some non-linear
control problems [27].

For the solution of extended problems (more complex environments, more
complex sensori-motor systems, more complex survival conditions, etc.) the
synthesis of evolved neuromodules forming larger neural systems can be
achieved by evolving the coupling structure between modules. Of course,
modularity is generally supposed to be a good design strategy for artificial
systems. On the other hand, investigations in the context discussed here
can shed a light also on mechanisms underlying the evolutionary origin of
modularity [9]. We suggest that ENS? is better suited for evolving modular
networks for embodied cognitive systems than genetic algorithms, because
it can make use of primarily undefined recurrent connectivity and therefore
can chose from a practically infinite reservoir of dynamical mechanisms and
features to solve survival tasks.

2 The ENS? evolutionary algorithm

The ENS? evolutionary algorithm was designed to develop neural control
systems for autonomous agents acting in a given - perhaps dynamically
changing - environment. In general, it is used to study two types of problems
at the same time: First, what type of internal dynamical properties of neural
networks are used to solve a given behavioral task. Second, what type of

(recurrent) connectivity structures are able to generate this behavior rele-
vant dynamics. Here we use ENS? to control specific behaviors of Khepera
robots [21].

Because ENS? develops structure and optimizes parameters simultane-
ously, one has to decide only the type of neurons to use. The number N, of
input and N, of output units is provided by the definition of the problem.
They are not changed by the algorithm. Input nodes will always be used as
buffers. All non-input neurons will be supposed to be of the standard ad-
ditive type with sigmoidal transfer function. But every other neuron model
may be implemented as well. Nothing else is determined, neither the num-
ber of internal units nor their connectivity, i.e. self-connections and every
kind of recurrences are allowed, as well as excitatory and inhibitory connec-
tions, with only one restriction: Because input units are only buffering data,
no backward connections to input units are allowed. Weights are real valued
and also real valued bias terms are use, but may be avoided if anti-symmetric
transfer functions, like tanh, are used for neurons.

The ENS? algorithm is initialized by a population of ”empty” networks;
i.e. they consist only of input and output neurons without any hidden neu-
rons and connections. Having chosen the average number n of neuromodules
in a population p, the evolutionary process is determined by submitting a
population p(t) with n(¢) individuals at time t to a variation-evaluation-
selection cycle, i.e. p(t +1) = S EV p(t). The parents are copied and the
copies are mutated according to the variation operator V. This operator can
be written as a product V' = V; -V, and it provides both, structural muta-
tions as well as parametric mutations. The operator V; acts by insertion and
deletion of neurons and connections according to fixed per-neuron and per-
connection probabilities. Parametric mutations V, are realized by perturbing
the values of weight and bias terms with random numbers drawn from a user
defined interval due again to fixed probabilities. All this parameters can be
controlled on-line by the user during the evolution process.

The evaluation operator E is defined problem-specific, and it is usually
given in terms of a fitness function, which associates to every neuromodule
a real value. After evaluating the performance of each individual network
in the population p(t) the number of network copies passed from the old to
the new population - the off-spring - depends on the selection operator S.
It realizes the differential survival of the varied members of the population
according to evaluation results.

In consequence of this selection process the average performance of the
population will tend to increase. Thus, after repeated passes through the
variation-evaluation-selection cycle populations with networks solving the
problem can be expected to emerge.

2.1 Evolving modular neuro-controllers

For developing modular neuro-controllers in a sensory-motor loop we will use
ENS? as follows: Suppose for a given agent there is given a task a defined by
fitness functions F,. Let A denote a neuro-controller which solves this task.
One now may want to generate an extensive behavior 3, given in terms of a
fitness function Fj, which presupposes that the system is able to solve task
as well. Task § may involve also additional signal inputs and outputs to be
processed. Then there are three possibilities to use ENS® for the generation
of this type B of neuro-controller:

1. Trivially, one may start from scratch using the fitness function Fjg; i.e.,
one does not use modules A at all, and the initial population is the
standard one; i.e., it has networks with no internal neurons and no
connections.

2. Restricted module expansion: The initial population consists of modules
A, with an extended number of unconnected input and output neurons
if task 3 is demanding it. The architecture and parameters of modules
A stay fixed during the following evolution process. Thus, the modules
A will be fixed subnetworks of evolving larger networks B which now
may use additional connections and internal neurons.

3. Semi-restricted module expansion: Same as module expansion, but now
only the architecture of A is fixed; parameters, like synaptic strengths
and bias terms are subjected to the variation operator V.

4. Free module expansion: Same as module expansion, but neither the ar-
chitecture nor the parameters of modules A are fixed during the evolu-
tion process. Thus, modules A may not leave any trace in the resulting
network B.

The suggestion is that semi-restricted module expansion may be most
effective because the original structure pertain visible during the evolution
process but their plasticity will allow a better adaptation to a newly devel-
oping structure. More generally, if module A is already a combination of
submodules A; and A, then ENS3 will generate larger systems C, con-
taining A; and A, as subsystems. In this case ENS? will probably evolve
couplings between neurons of modules A; and Ay as well as some additional
control structure. It is expected that in this way one can evolve more com-
plex behaviors following a hierarchical sequence of more and more acquired
behaviors. This is somehow in the spirit of the subsumption architecture
approach [7], [29], but here different techniques are used.

5

The different modification strategies listed above are implemented in
the ENS? program, and they are used to develop multi-functional neuro-
controllers for Khepera robots. The resulting structures and the effectiveness
of the generating processes may then be compared. An example of the re-
stricted module expansion using ENS? can be found in [19]. In the following
only the trivial method is explored for generating a phototropic behavior in
an environment with light sources hiding behind obstacles. The resulting
actions resemble obstacle avoidance with added light seeking behavior.

An especial point for the successful evolution of modular neural systems is
to keep the fitness functions as simple as possible. This means that preferably
only one task should be encoded in a fitness function. To evolve an extended
behavior, it is therefore favorable to start with a population of modules which
have already established specific functional behaviors. The ”plasticity” of
the underlying neural networks then should guaranee the interplay with and
adaptation to the newly developing structures.

3 Evolved networks for Khepera control

The Khepera robots [21] are miniature cylindrical robots (diameter of 55
mm, figure 1). The basic configuration of the robot has 8 Infra Red (IR)
sensors (6 at the front of the robot and 2 at the rear), and two wheels, each
controlled by a DC motor with an incremental encoder (10 pulses per mm of
advancement of the robot). Each sensor can be used in two modalities: as a
proximity sensor (by emitting and measuring the reflected Infra Red light),
and as a light sensitive sensor (by measuring the Infra Red component of the
environment light).

Figure 1: Principle design of the Khepera robot.

The signals of the light and proximity sensors are preprocessed for the

inputs to the neuro-controllers. The implemented preprocessings realize the
following conditions: Values of proximity sensor are between —1 and 1 and
increase with decreasing distance between sensor and obstacle. Light sensors
generate values between —1 and 0, decreasing with increasing light intensity.

To control the two motors of the Khepera with positive and negative
signals standard additive neurons with transfer function tanh are used; and
all bias terms are set to zero. Hence, the time-discrete activity dynamics of
the controller neurons is given by

n

a;(t+1) Z w;; tanh(a;(t) +szklk t)y, i=1,....n, (1)
j=1 k=1
where n is the number of controller neurons, m the total number of inputs
(i.e. buffer neurons), a; denotes the activity of neuron i, and I the k-th
input signal. Synaptic weights from controller units j and input units & to
unit ¢ are denoted by w;; and wj,, respectively. The same neuron model is
chosen for all hidden and ouput neurons of the controllers.

Following the philosophy of the artificial life and embodied cognition ap-
proaches, for fitness functions only quantities will be preferred which are
accessible for the agent (robot) itself. No coordinates or observer dependent
quantities should enter if possible. For the following experiments an average
population size of 30 individuals is chosen. The time interval for evaluating
these individuals was set to 2000 simulator time steps. There was also a stop-
ping criterion for the evaluation of an individual: It was terminated when
bumping into an obstacle. Furthermore, the size of resulting networks can
be influenced by adding cost terms for neurons and connections to a given
fitness functions. Experiments with the EN S3-algorithm will be used to test
such an assumption.

Environments for evolution and testing of neuromodules where constructed
using the tools of the Khepera simulator [20]. For tests with the physical
robots real walls and movable obstacles where used. The goal was to evolve
networks in the simulator in such a way that when loaded to the physical
robot they produce a comparable behavior in the physical world. This was
achieved for instance by gradually increasing the number of obstacles in the
simulated worlds during the evolution process, by introducing for instance
walls at angles of around 45 degrees or narrow passages.

3.1 The first experiment: obstacle avoidance

The simplest behavior an autonomous robot should master is obstacle avoid-
ance, and there exist many solutions to this problem, from Braitenberg ve-
hicles [6] to neural network controllers [30], [14], [22]. Thus, the first goal

7

a) b) | |

Figure 2: Two example environments used for incremental evolution of robot
controllers. a.) A simple one, and b.) a more challenging one.

is to evolve a network which allows the Khepera robot to move in a given
environment as long as possible without hitting any obstacle. For solving it,
the eight infra-red proximity sensors of the Khepera are used; six in the front
and two in the rear of the robot. Thus, initially the individual neuromod-
ules have only eight linear input neurons as buffers and two nonlinear output
neurons.

The fitness function F,, which implements the given problem simply states:
For a given time T go straight ahead as long and as fast as possible. This is
coded in terms of the network output signals out; and outy as follows. First
the quantities m; and msy are defined by

if out; <0 then m; =0, else m;=out;, 1=1,2.

Then the fitness function is defined by

by = Z; ki - (ma(t) +ma(t) — ko - [ma(t) —ma(t) |, (2)

with appropriate parameters k; and ks.

Starting the evolution with simulated robots in a simple environment like
the one shown in figure 2, it takes around 100 generations (depending on
the parameter settings of the ENS? programme) to get individuals having
satisfactory fitness values. Although generating a comparable good robot
behavior, the corresponding neural networks can differ in size as well as in
their connectivity structures.

The development of brain size (number of neurons and number of connec-
tions) of a typical evolutionary process in one and the same environment can

be followed in figure 3. At the beginning robots do not move or are spinning
around having only one wheel active, but already after a few generations the
first robot is moving slowly on a straight line. After thirty generations the
fittest robots are exploring the accessible space, moving faster on straight
lines and turning when near a wall. During this phase networks are still
growing in general. The irregular development of network size corresponds
to the different initial conditions from which robots in every generation have
to start; they are more or less difficult to cope with. At around generation
65 the number of hidden neurons stabilizes around networks with no internal
units and around 16 synapses.

196,709
—o_perf

s_perf
——nheurons
—=synapsi=s

Figure 3: The performance of simulated robots and the development of net-
work size during an evolutionary process.

To make the simulator solutions more robust in the sense, that they can
control the real robot in its very different physical environment with equally
good efficiency, we change the simulator environments to gradually having
more obstacles or walls including for instance walls at 45 angles. Example
environments used for the evolution are shown in figure 2.

In figure 4b a typical path of a simulated robot in one of the environments
is depicted. The paths for the left and the right wheels start at the point
marks and end at the cross marks. It can be seen, that the robot turns
left as well as right in different situations. It achieves this by turning the
corresponding wheel backwards for a short moment.

The network solutions, which generated the desired behavior for simulated
as well as for real robots, turned out to be astonishingly small. Many of them
did not even use internal neurons; they use only direct connections from
inputs to the output neurons. For example, the fully connected network

a) | | b) S —E

Figure 4: a.) A simulator environment and b.) a robot path (left and right
wheels) in this environment for 3000 time steps.

of figure 5 was not only effectively avoiding obstacles in the simulator as
well as in real world environments, but it was also able to navigate out of
narrow channels, turned in small angled corners, and found its way out of
dead ends. The explanation for this efficient behavior can be found simply
in the excitatory self-connection w?® of one of the output neurons. The value
of this connection is larger than 1 and therefore this neuron is working as an
hysteresis element [26], jumping forward and backward between two states
at different sensor input configurations. In fact, the turning angle of the
robot is proportional to the value of this self-connection. This was verified
by changing the positive self-excitation w® > 1 by hand, and loading the
manipulated network again back to the real robot. For large values of w® the
robot starts to rotate if it looses ”sight” contact to walls. Although there
are more recurrences involved — the other output neuron has an excitatory
self-connection and the output neurons themselves are recurrently coupled —
their weights are not strong enough to generate oscillations or more complex
internal dynamics.

Observing the actions of the real robots in there environments, the im-
pression is that they do not only avoid obstacles but that they also show an
exploratory behavior. Letting the robot move in a given environment, after
a while it will have visited almost all areas within reach; it moves through
small openings in the walls, wanders through narrow corridors and even turns
in dead ends. This can of course not be achieved by a pure wall following
behavior, as it is usually learned by robots.

10

Figure 5: An evolved, almost fully connected network without internal neu-
rons generating an effective obstacle avoidance behavior also for the real
robot. Input signals 0 to 5 are coming from the front proximity sensors,
inputs 6 and 7 from the rear proximity sensors.

3.2 The second experiment: Phototropism

The second fundamental behavior may be called phototropism, finding food,
or the like [17], [35], [32]. In general this will be implemented as a gradient
following behavior. Here the goal of the experiment is to approach a light
source as fast as possible and stay there "eating”, i.e. with face to the light
source. For this second experiment in addition to the 8 proximity sensors the
8 light sensors of the Khepera are used; i.e., now there are 16 sensor inputs.

To find an appropriate solution we use the following fitness function stat-
ing: For a given time T and a given environment "eat” as much light as
possible. This is coded as follows

F::; ks -ing(t) + ky - |ing(t) —in.(t)], (3)

where k3 and k4 are appropriate parameters, and iny and in, are given in
terms of the inputs [0], ..., i[7] to the additional light sensors by

ing :=4[0] +i[2] +4[3] +i[5], in, =1i[6] +[7].

Thus, for determining the fitness we use only four of the six front light sensors
and the two light sensors at the rear. But the proximity sensors are still used
to generate the terminating ”bump”-signal.

11

Figure 6: Evolved network with phototropic behavior doing obstacle avoid-
ance as well.

The following experiment does not make use of obstacle avoiding modules,
but starts from scratch, now with all 16 sensors as inputs and two output
units driving the motors as before. Recall that the two sensor types have
different preprocessing: proximity sensors generate signals in the interval
(—=1,1), the light sensors give only negative values in (—1,0). The evolu-
tion process is started for simulated robots in an environment with a few
light sources spread over an environment without obstacles. We then gradu-
ally make the environmental boundary conditions more challenging; i.e., the
number of light sources is reduced and some obstacles are added.

Again there were reasonable solutions of different network size and struc-
ture. One of the networks with only a few connections but with an remark-
ably good performance is shown in figure 6. Its architecture has the often
observed configuration of output neurons: They are recurrently connected
(an odd 2-loop) and one output neuron (19, driving the left motor) has a
"super-critical” excitatory self-connection wjy, = 1.09 > 1. The two hidden
neurons, 20 and 21 together with the output neuron 18 (driving the right mo-
tor) act in an odd 3-loop. The hidden neuron 20 has also a ”super-critical”
excitatory self-connection w3, = 1.2 > 1. Remarkable are also the inhibitory
back-projections from the output neurons to the hidden neurons. Both types
of signal inputs (proximity and light sensors) have connections to the hidden
neurons as well as to the output neurons. But this connectivity structure is
again highly un-symmetric. The leftmost proximity sensor is not even con-

12

o 4,1]
/) T

Figure 7: Different paths of a light seeking robot in simulator environments:
a.) without obstacles and b.) with many obstacles.

nected. Although this network has not the optimal performance it ”survives”
in simulated environment with high fitness. But also the real robot in the
physical environment finds a light source (a small lamp) and follows it, when
it is moved.

The behavior generated by this network can be read from figures 7a and
7b: In a simulator environment free of obstacles the robot turns towards the
light source if it comes near to it. But figure 7a also shows that it turns away
from the source if the light comes from its left side. It moves straight if no
light source is around. In an environment with obstacles, like the one shown
in figure 7b, it follows a kind of random walk without hitting an obstacle
until it finally finds the light source and stays there.

4 Discussion

Although the presented results are only preliminary, they clearly indicate
that the FN.S3-algorithm is able to generate interesting solutions to control
problems in the domain of autonomous robots. The problems considered
in this paper are of course simple ones, and their different neural network
solutions have been discussed in several places, as cited above. But also for
these simple problems we learned from the EN S3-solutions, that generated
networks can be smaller than the usual feedforward controllers [30] or more
elaborate controllers [14], and that internal dynamical effects may provide
surprising additional ”tricks” to solve control tasks. This is, for instance,
the case in the first example, where a simple hysteresis element enabled the
system to leave dead ends or sharp corners.

13

Another lesson to learn from these first experiments is the fact that there
is no simple structure-function relationship for neuro-controllers. This can
be deduced from the observation that evolved networks of different size and
of different structure solve problems equally good; i.e., they have the same
fitness with respect to a given problem. This can be studied, because EN S3
neither fixes the number of neurons and of connections, nor the type of
connectivity structure in advance. Size and structure of neuro-controllers
depend crucially on cost terms for neurons and connections in the fitness
function. For the tasks discussed above, for instance, networks with up to
10 internal neurons and more than 200 connections evolved, all having more
or less the same good performance as the small networks presented in the
sections above. They use very different recurrent structures (e.g. loops of
different lengths). To study the functional role of the corresponding non-
trivial internal dynamical properties of these networks will be the goal of
further investigations.

Dynamical properties of recurrent networks for robot control have been
analysed for instance also in [16]. To be able to correlate neuron activities
of the evolved controllers with the dynamical sensor input and motor out-
put signals, corresponding data can be visualized during the action of the
simulated or real robot using the simulator interface. Using this part of the
ENS3-program one can test different hypothesis’ about the functional role
and behavioral relevance of recurrent network structures and their dynamical
properties.

Furthermore, the ENS? program is completed with a tool [37] giving a
graphical output of evolved network structures. Using this tool, parameters
like synaptic weights can be changed and connections can be deleted or added
by hand. The modified networks then can be loaded again back into the
simulator for the control of the robot. Thus, kind of lesion experiments can
be performed, the role of internal oscillators for behavior generation can be
studied, and specific dynamical properties may be implemented and tested.
This will extend the experimental feasibility to study the role of internal
dynamics in systems developing cognitive abilities.

The above described experiments suggest that using an appropriate simu-
lator for a robot and developing a behavior in terms of incremental evolution,
i.e. with gradually increasing complexity of the environmental boundary con-
ditions, ENS?® will produce networks, which are surprisingly robust in the
sense that the real robots manage to solve the tasks under very different
physical boundary conditions. Having controllers of different size and with
different connectivity structure at hand, we also learned that larger networks
in general are not more robust than small ones, like those presented here.

Finally, the approach can be used to study and analyse also theoretical

14

issues of artificial evolution like correlation of fitness landscapes, the role of
neutral networks, and the like. Furthermore, implementing an operator L for
individual learning during a generation in the EN S3-algorithm will allow the
discussion of phenomena like the Baldwin effect [34]. Learning in the sense of
parameter optimization is no simple task in this context, because, following
the ALife approach to autonomous systems, there is no teacher signal, no
definite procedure to solve a task, and the general recurrent structure of the
networks is a further obstraction to the known learning procedures. Future
work will therefore concentrate also on the developement of behavior oriented
learning rules for complex adaptive systems.

References

[1] Adami, C. (1998), Introduction to Artificial Life Springer Verlag, New
York.

[2] Angeline, P.J., Saunders, G.B. and Pollack J.B. (1994), An Evolutionary
Algorithm that Evolves Recurrent Neural Networks, IEEE Transactions
on Neural Networks, 5, 54—65.

[3] Arbib, M A, Erdi, P., and Szentdgothai, J (1998), Neural Organization
- Structure, Function, and Dynamics, MIT Press, Massachusetts.

[4] Ashby, W. R. (1952), Design for a Brain, Wiley, New York.

[5] Beer, R. D., and Gallagher, J. C. (1992) Evolving dynamical neural
networks for adaptive behavior, Adaptive Behavior, 1, 91-122.

[6] Braitenberg, V. (1984), Vehicles: Experiments in Synthetic Psychology,
MIT Press, Cambridge, MA.

[7] Brooks, R. A. (1986), A robust layered control system for as mobile
robot, IEEE Journal of Robotics and Automation, RA-2, 14-23.

[8] Buzsaki, G., Llinés, R., Singer, W., Berthoz, A., and Christen, Y. (Eds.)
(1994), Temporal Coding in the Brain, Springer Verlag, Berlin.

[9] Calabretta, R., Nolfi, S., Parisi, D., and Wagner, P. (1998), A case
study of the evolution of modularity: towards a bridge between evolu-
tionary biology, artificial life, neuro- and cognitive science, in: Adami,
C., Belew, R. K., Kitano, H., and Taylor, C. E. (Eds.), Artificial Life
VI, Proceedings of The Sixth International Conference on Artificial Life,
MIT Press, Cambridge.

15

[10]

[11]

[12]

[15]

[16]

[17]

18]

[19]

Cliff, D., Harwey, I., and Husbands, P. (1993), Exploration in evolution-
ary robotics, Adaptive Behavior, 2, 73-110.

Duke, W., and Pritchard, W.S. (Eds.) (1991), Proceedings of the Con-
ference on Measuring Chaos in the Human Brain, World Scientific, Sin-
gapore.

Elbert, T., Ray, W.J., Kowalik, Z.J., Skinner, K.E., Graf, K.E., and
Birbaumer, N. (1994), Chaos and physiology: deterministic chaos in
excitable cell assemblies, Physiological Review 74, 1-47.

Floreano, D. (1997) Ago ergo sum, in: Mulhauser, G (Ed.), Evolving
Consciousness, J. Benjamins, Amsterdam.

Gaussier, P., and Zrehen, S. (1994) A topological neural map for on-line
learning: Emergence of obstacle avoidance in a mobile robot, in: CIliff,
D., Husbands, P., Meyer, J.-A., and Wilson, S. (eds.), From Animals
to Animats I1I: Proceedings of the Second International Conference on
Stmulation of Adaptive Behavior, Cambridge, MA: MIT Press-Bradford
Books, pp. 282-290.

Husbands, P., and Harwey, 1. (1992), Evolution versus design: Control-
ling autonomous robots, in: Integrating perception, planning and action:
Proceedings of the Third Annual Conferences on Artificial Intelligence,
IEEE Press, Los Alamitos.

Husbands, P., Harwey, 1., and Cliff, D. (1995), Circle in the Round:
State Space Attractors for Evolved Sighted Robots, in: Steels, L. (ed.),
The Biology and Technology of Intelligent Autonomous Agents, NATO
ASI Series, Series F: Computer and Systems Sciences, Vol. 144, Springer,
pp. 222-257.

Kodjabachian, J., and Meyer, J. A. (1998) Evolution and development
of neural controllers for locomotion, gradient-following, and obstacle-
avoidance in artificial insects, IEFE Transactions on Neural Networks,
9, 796-812.

Langton, C. G. (1989) Artificial Life, in: Langton, C. G. (Ed.) Artificial
Life, Addison-Wesley, Redwood City CA.

Lara, B., Hiilse, M., and Pasemann, F. (2001) Evolving different neuro-
modules and their interfaces to control autonomous robots, MPI-MIS-
Preprint 21, accepted paper for "The 5th World Multi-Conference on

16

[20]

[21]

22]

Systemics, Cybernetics and Informatics” (SCI2001), July 22-25, 2001,
Orlando, Florida USA, Proceedings.

Michel, O., Khepera Simulator Package version 2.0: Freeware mo-
bile robot simulator written at the University of Nice Sophia-Antipolis

by Oliver Michel. Downloadable from the World Wide Web at
http://wwwi3s.unice.fr/~om/khep-sim.html

Mondada, F., Franzi, E., and Ienne, P. (1993), Mobile robots minitur-
ization: a tool for investigation in control algorithms, in: Proceedings of
ISER’ 93, Kyoto, October 1993.

Mondada, F. and Floreano, D. (1995), Evolution of neural control struc-

tures: Some experiments on mobile robots, Robotics and Autonomous
Systems, 16, 183-195.

Nolfi, S., and Floreano, D. (2000), Evolutionary Robotics: The Biology,
Intelligence, and Technology of Self-Organizing Machines, MIT Press,
Cambridge.

Nolfi, S. (1998), Evolutionary robotics: Exploiting the full power of self-
organization, Cnnection Science, 10, 167-183.

Pantev, C., Elbert, T., and Lutkenhchner B. (Eds.) (1995), Oscillatory
Event-related Brain Dynamics, Plenum Press, London.

Pasemann, F. (1993), Dynamics of a single model neuron, International
Journal of Bifurcation and Chaos, 2, 271-278.

Pasemann, F. (1998), Evolving neurocontrollers for balancing an in-
verted pendulum, Network: Computation in Neural Systems, 9, 495—
511.

Pasemann, F. (1998), Structure and Dynamics of Recurrent Neuromod-
ules, Theory in Biosciences, 117, 1-17.

Pfeifer, R., and Scheier, C. (2000), Understanding Intelligence, MIT
Press, Cambridge.

Pfeifer, R., and Verschure, F. M. J. (1993), Designing efficiently navigat-
ing non-goal-directed robots, in: Meyer, J.-A., Roitblat, H., and Wilson,
S. (eds.), From Animals to Animats II: Proceedings of the Second Inter-
national Conference on Simulation of Adaptive Behavior, Cambridge,
MA: MIT Press-Bradford Books, pp. 31-38.

17

[31]

32]

[33]

[34]

[35]

Renals, S., and Rohwer, R. (1990), A study of network dynamics, Jour-
nal of Statistical Physics, 58, 825-848.

Scutt, T. (1994), The fife neuron trick: Using classical conditioning
to learn how to seek light, in: Cliff, D., Husbands, P., Meyer, J.-A.,
and Wilson, S. (eds.), From Animals to Animats III: Proceedings of
the Third International Conference on Simulation of Adaptive Behavior,
Cambridge, MA: MIT Press-Bradford Books, pp 264-370.

Schaffer, J. D., Whitley, D., and Eshelman, L. J. (1992), Combination of
genetic algorithms and neural networks: A survey of the state of the art,
in: Whitley, D., and Schaffer, J. D. (Eds.) International Workshop on
Combinations of Genetic Algorithms and Neural Networks - Proceedings
COGANN-92, IEEE Computer Society Press, Los Alamitos, CA.

Turney, P., Whitley, D., and Anderson, R. (1996) Evolution, learning,
and instinct: 100 years of the Baldwin effect, Editorial for the Special
Issue: The Baldwin Effect, Fvolutionary Computation, 3.4.

Verschure, F. M. J., and Pfeifer, R. (1993), Categorization, representa-
tion, and the dynamics of system-environment interaction: a case study
in autonomous systems, in: Meyer, J.-A. Roitblat, H., and Wilson, S.
(eds.), From Animals to Animats II: Proceedings of the Second Interna-
tional Conference on Simulation of Adaptive Behavior, Cambridge, MA:
MIT Press-Bradford Books, pp. 210-217.

Wang, X., and Blum, E. K. (1995), Dynamics and bifurcation of neural
networks, in: Arbib, M. A. (Ed.), The Handbook of Brain Theory and
Neural Networks, MIT Press, Cambridge, Massachusetts.

Drawing Graphs with VG, http://lsiibm15.epfl.ch/
graph drawing.html, 07.06.2001.

18

