Archetypical Approaches of Fast Software
Development and Slow Embedded Projects

Ulrik Eklund
Malmo University
School of Technology, Dept. Computer Science
Malmo, Sweden
Email: ulrik.eklund @mah.se

Abstract—This paper describes the problem context of soft-
ware development for mass-produced embedded systems, with
distinguishing factors such as the co-design of software and
hardware, strong focus on manufacturing aspects, supplier in-
volvement and safety-critical functionality. In this context there
is a need for a holistic model to explain the failures and successes
industrial projects, where just investigating a single dimension,
e.g. chosen ways-of-working or architecture is not sufficient.

The main contribution is a holistic model consisting of five
archetypical approaches to embedded software development,
based on a mapping study over industrial cases in literature.
The approaches range from “traditional” stage-gate projects
focusing on product qualities and large integration efforts, to
fast development in short loops by autonomous teams based
on a composable software platform. The model aligns the
processes with the architecture of the embedded software, and
the implications on the business and the organisation. The model
allows an research & development(R&D) organisation to identify
where it is positioned and to evolve its software development
approach. The model is elucidated by two empirical cases from
a Swedish company.

Keywords-embedded software; software engineering; software
architecture; business; companies

I. INTRODUCTION

Software is prevalent in many products manufactured today;
cars, washing machines, mobile phones, airplanes and satel-
lites [1]. Typically these products are developed in large and
complex industrial projects where the embedded software may
be critical for the success of the product but the manufacturing
and delivery of the product is a heavier investment than the
R&D budget. This in turn tends to drive the entire R&D
process, and software just follows the process logic of the
manufacturing setup.

Ebert & Jones [1] mentions factors contributing to the
complexity in their survey of the state of embedded software
development: “combined software/hardware systems equipped
with distributed software, computers, sensors, and actuators”
which points to the integration aspects of these systems.
They list “high demands on availability, safety, information
security, and interoperability” as typical quality attributes.
Liggesmeyer & Trapp [2] reaffirms this view stating that
embedded software is one of many elements in a product
consisting of mechanics, electrics and electronics, and soft-
ware. The also mention quality attributes such as software

Jan Bosch
Chalmers University of Technology
Dept. Computer Science and Engineering
Goteborg, Sweden
Email: jan.bosch@chalmers.se

safety, reliability and timeliness software safety, reliability,
and timeliness, which all must taken into account in the
development process. Manhart & Schneider [3] describe agile
development of software in buses at Daimler-Chrysler. They
mention for example that “equipment, functions, or parameter
sets are implemented by integrating different proportions of
third party- and OEM manufactured components” indicating
supplier involvement.

Examples like this, together with our own research [4],
allows us to describe the domain of large industrial devel-
opment of mass-produced embedded systems (MPES) by five
characteristics:

o Deep integration between hardware and software for significant

parts of the functionality

o Strong focus on manufacturing aspects of the product in the

development

« Strong supplier involvement

« Some parts realise safety-critical functionality

« Long production life-time

In our previous research of MPES development there were
significant characteristics of the studied cases that could not
be explained only by looking at the used development process
or chosen architecture [5]-[7]. For example in [5] there
was a desire to simplify the working method and develop
functionality top-down from a customer’s point of view. But
the architecture used made for cumbersome integration of sub-
systems, this together with the used development process “led
to monster documentation”. This in turn affected the abil-
ity to outsource module development, with suppliers having
difficulty in handling and meeting the specifications, which
affected cost negatively.

In the third case in [7] the goal was to share modules with
other car manufacturers to get advantages of scale, and to
outsource a significant part of module development. But the
distributed architecture meant the interfaces between the mod-
ules were complex. This in combination with the stage-gate
process used initially meant that the development effort was
underestimated. Later in the project the shorter development
iterations were introduced, which probably “saved” the project
launch date.

The complexities of the studied cases establish the need for
a holistic model to explain the failures and successes of these
and other industrial projects. We propose a model, built by

analysing existing industrial approaches of embedded software
through the four dimensions of Business, Architecture, Process
and Organisation (BAPO). These four dimensions originate
from the framework by van der Linden et al. [8], aimed at
evaluating product families. The use of BAPO allows the
construction of the model and identifies different approaches
to development of MPES products.

The main contribution of this paper is a holistic model for
aligning software development processes with the architecture
of the embedded software, and the implications these have
on the business and the organisation. The model allows an
R&D organisation to identify where it is positioned and how to
evolve its software development approach in terms of architec-
ture, process and organisation. The model is illustrated through
two industrial cases. In addition to this, the paper provides a
rich insight into the context and challenges for development
of industrial systems and their embedded software both by
empirical evidence from first-hand industrial cases and by
published literature through a mapping study.

II. RESEARCH METHODOLOGY AND PROBLEM

The paper builds an explanatory holistic model with the
properties described in Section I, through a 3-stage research
process. The first stage of the research process identifies the
research questions to be investigated:

1) What approaches to embedded software development are used

in industry?
a) How do these approaches relate to used architectural
styles?
b) What business and organisational implications does it
have for an organisation to develop software with a
specific approach?

2) How would a model over the processes and architectural styles

and their relationship to business and organisation look like?

The second stage, described in detail in Section III, is a
mapping study identifying published industrial cases relevant
to the research questions above.

The last stage of the process builds a qualitative model,
described in detail in Section IV. The model articulates
viable approaches an R&D organisation takes to embedded
software development. The model is also elucidated through
two industrial cases in Sections IV-A1 and IV-B1. These first-
hand cases were captured at Volvo Car Corporation (VCC) in
a qualitative manner. The case studies took advantage of the
fact that the first author was native to the case company at the
time (as defined by [9]), and acted as a participant/observer.

III. MAPPING STUDY OF DEVELOPMENT APPROACHES

The mapping study surveyed existing literature with the aim
to identify industrial cases relevant to the research question.
The study was performed similarly to a systematic literature
review [10], with a focus on the steps emphasized below:

1) Planning of the mapping study

o Establish the need of a review
o Define the search questions

o Define the review protocol

« Evaluate the protocol

2) Conducting the mapping study

o Identify relevant cases

o Choose primary papers based on relevance in case de-
scription

o Asses qualities of chosen papers

o Extract relevant categories of development approaches
and architectures from the chosen papers

o Synthesise the results

3) Reporting the mapping study

A. Define Search Questions

The aim was to identify and model the relationship between
business, architecture, process and organisation when develop-
ing embedded software, and we iteratively refined the search
queries until we ended up with the final phrase used in the
Scopus article database.

(TITLE-ABS-KEY (software)
AND

(TITLE-ABS-KEY (embedded)
AND

(TITLE-ABS-KEY (architecture) OR TITLE-ABS-KEY (integrats) OR

TITLE-ABS-KEY (composx) OR TITLE-ABS-KEY (platform))
AND

(TITLE-ABS-KEY (agile) OR TITLE-ABS-KEY (process))
AND

(TITLE-ABS-KEY (project) OR

TITLE-ABS-KEY (companx))
AND

(TITLE-ABS-KEY (case studx))

OR TITLE-ABS-KEY ({S/W}))

OR TITLE-ABS-KEY (automotive))

TITLE-ABS-KEY (industrx) OR

Search phrase 1: Search phrase used in Scopus.

We limited the search to the last ten years (2003-2012),
and excluded everything not within the Subject Areas of
Computer Science, Engineering or Business, Management and
Accounting. This initial search resulted in 117 papers.

B. Review Protocol

From the list of 117 papers we applied the inclusion and
exclusion criteria in Table I. These criteria were applied in two
rounds, the first round by just reading the abstracts, which left
53 papers. The second round evaluated the full papers, and
this resulted in 23 papers, of which the authors were involved
in 4 papers [6], [11]-[13].

C. Quality Assessment

We were looking for examples of where an organisation
develops a system with embedded software in an industrial
context and the range of development approaches and different
styles of architectures used therein. We therefore selected case
studies as a search criterion since we wanted empirical studies
“that investigates a contemporary phenomena within its real-
life context...” [14]. A number of papers claimed to do a case
study without providing any information about the context of
development, e.g. the purpose of the system. Nor did they say
anything about about the organisation doing the development,
e.g. was it done by an industrial team, PhD students, or a mix
of academic and industrial participants? We classified these
papers as academic proof-of-concept prototypes, and therefore
excluded according to EC1. These papers were a significant
part of those excluded resulting in the final set of 23 papers.

Table I
USED INCLUSION & EXCLUSION CRITERIA.

Inclusion criteria

IC1 Papers, technical reports, theses, industry white papers and
presentations describing industrial software development ap-
proaches and architectures for embedded systems.

1C2 If a search result contained several cases each case were
counted separately.

Exclusion criteria

EC1 | Studies that did not report on projects in an industrial context,
e.g. student projects, open source communities, prototypes
developed in academia, etc.

EC2 | Studies only focusing on hardware development

EC3 | Studies only evaluating specific tools, notations or other mod-
elling techniques

EC4 | Studies only evaluating testing or other verification practises,
such as formal methods

EC5 | Survey papers over other papers

EC6 | Textbooks and proceeding summaries

EC7 | Material not accessible either freely through the world wide
web or through available library resources

EC8 | Material not in English, Swedish or Dutch

EC9 | If a case was published several times only the most recent was
included

Our insider knowledge allowed us to identify when multiple
papers described the same case, e.g. developing a new car year
model on an existing platform at Volvo Car Corporation [6],
[15]-[17], or the continuous evolution of a heavy vehicle
product line [6], [18].

D. Study results and limitations

The final selection of papers resulted in 28 cases presented
in 23 papers. Each case were categorised on how they ad-
dressed the dimensions of business, architecture, process and
organisation (BAPO).

A limitation is the difficulty to asses if other, not found,
industrial cases would expand or alter the resulting model.
Another limitation is the scope of found cases, the search
query finds cases which call themselves “embedded”, but this
defintion is probaly not uniform which affects the applicability
of the resulting model across various domains. A third limita-
tion is that few papers had information on all four categories
when describing the cases.

Despite the limitations it is still possible to draw some
general qualitative conclusions: The common way of working
is to follow a sequential order of activities, which is char-
acterised as a V-model [19] or as a stage-gate process [6],
[20]. Some papers describe cases of agile development, either
for a system as a whole [11] or by individual teams within
the organisation [20]. When described, most case architectures
focus on enabling product quality attributes, usually domain-
specific such as safety, cost and variability in the automotive
domain [13], security in defence [21], and dependability in
space [22]. Some organisations utilise a product line ar-
chitecture to enable tailoring of the system to a particular
customer [23], [24]. An important architectural issue is the
integration of modules or sub-systems to a working whole [6],
[12], [18], [25].

We can conclude that there is no single approach of how
software in embedded systems is developed, but there is rather

i Minimise
Business: | customer Minimise teghnology risk
risk
Architecture: Featur_e_—oriented, _Qualit_y-driven,_
composition of parts integration-centric
Iterative, Sequential,
Process: evolution of Planned,
product content stage-gates
- Project
g hierarchy,
Organisation: Autonomous development teams central
control
A B (o D E
= =
Range of R&D approaches
Figure 1. Model over the five identified archetypical R&D approaches when

developing embedded software.
a range of various approaches.

IV. APPROACHES TO DEVELOP EMBEDDED SYSTEMS

The last stage of the research process resulted in a model
able to answer the research questions in Section II. By
evaluating how the cases are aligned in the four dimensions
of BAPO we identified five archetypical R&D approaches that
are feasible within industrial contexts, archetypical in the sense
they are the original pattern or model of which all development
approaches of the same type are representations or copies.
These five approaches constitute the model (Figure 1). The
model is described with a narrative of each approach, starting
from the right (E) since this is where most cases are. The
28 cases also imply an evolution of how an organisation can
move along the range of the five R&D approaches, from
right to left in our model (from E to A). We saw no case
in the mapping study describing an organisation evolving in
the opposite direction.

Primarily the model is explanatory in the sense it conveys
how industrial projects align their concerns of business, archi-
tecture, process and organisation, thus is an empirical instance
of the BAPO framework in [26]. Secondary, the model can be
prescriptive in two ways; it suggest to an organisation how
others align the BAPO concerns, and it suggest a path of
evolution to alternative R&D approaches.

A. Approach E: Rorqual Organisations

Organisations using this approach run development projects
demanding a lot of investment in technology during R&D,
both what goes into the product and what technology is
required to manufacture it. This can be considered the standard
practice at which MPES software is developed, with six cases
clearly falling into this category (described in papers [6], [13],
[15]-[17], [19], [21], [27], [28]). An additional twelve cases
(in papers [22], [23], [25], [29]-[31]) fall either into this
category or category D.

Business: One major business driver is to minimise the risk
associated with the technology investments. Software may not

even be considered as a major risk compared to e.g. hardware
or manufacturing investments.

Architecture: The architectures and technology used for sub-
systems and their embedded software optimise the desired
product requirements rather than being concerned with the
difficulty for the organisation to develop and maintain them
them. As a result much of the architecting effort is spent on
integration issues.

Process: The process model used is a stage-gate model [32].
The project planning follows a template based on calendar
time, which has evolved from experiences from previous
projects. Gate progression corresponds to design artefacts, e.g.
user requirements, system requirements, system & software ar-
chitecture, component requirements, software implementation
(i.e. code), and verification & validation, i.e. a V-model even
if the artefacts can be updated as the project progresses.

Organisation: The development organisation is functionally
structured, clustering domain specialists together. The organ-
isation resembles a hub with spokes with a central systems
engineering or architecture team responsible for the complete
product properties, new or updated features are negotiated
along the spokes before incorporated in the product. Coordin-
ation of involved teams is done through synchronisation of
processes. It is common practice to outsource part of the
electronics and software development to subcontractors.

1) Example: Development Project of an Infotainment Sys-
tem.: VCC decided to deliver a new generation of infotainment
systems to extend its competitive position. The development
organisation had to deal with several prerequisites which
had a major effect on the project: The systems were to be
sold by more than one brand within Ford Motor Company
and some developed components were to be shared between
brands (both hardware and software) while maintaining a
brand-specific HMI. This was to leverage sourcing with other
(unrelated) components from suppliers. There was also a
desire to minimise the requirements elicitation effort in terms
of spent man-hours. The project changed it setup midway
since the initial development approach had problems delivering
according to schedule. A post mortem analysis was done to
identify the major factors influencing the architecture and
the causal relationships between them and the used process.
Management at the concerned department at VCC ordered the
study to learn from this case. The case is previously published
in [7].

Business: The main business driver to develop a completely
new system was to “keep up” with the technological evolution
and competitive pressure within the in-vehicle infotainment
domain. The release of the new system coincided with the
release of a new car model, the Volvo S60 to leverage
marketing.

Architecture: The architecture changed, unintentionally,
compared to the previous generation infotainment system.
Some of the most complex customer features were distributed
between two electronic control units (ECUs), which led to
a complex interface shared between two software suppliers.
The architecture was based on established technologies in the

automotive domain, e.g. Media Oriented Systems Transport
(MOST) [33] for communication buses, while the application
interface on top of this did not follow standard MOST services.
The main driver for the separation of HMI to one ECU while
having the core functionality in another ECU was to allow
sharing of the latter ECU between different car brands while
allowing for a brand-specific HMI.

Process: The initial process approach was typical for wa-
terfall development, with the software specifications for each
ECU being reused from the previous generation to minimise
the effort in writing new specifications. Initially the focus
was on component development, i.e. on each ECU with its
deployed software. The project progress was initially measured
in implemented customer features, in spite of the component-
focus, this meant that delivery of infrastructure software ne-
cessary for integration and testing was initially de-emphasized.
It was difficult to plan and manage the integration occasions
necessary for validation and verification since there was no
overall view of feature realisation.

Organisation: All software was to be outsourced while in
the previous system generation the software for the main ECU
was developed in-house at VCC. This meant new development
practices of working with supplier had to be established.

The project in this case started at the rightmost E position,
but without performing some key elements common to suc-
cessful projects in this position, e.g. a clear architecture. The
project changed approach midway with shorter sprints with
a limited set of features verified after each sprint rather than
planning against large integrations. The setup of the teams
changed, from being focused on component development to
cross-functional teams focused on feature development. These
changes were vital in keeping the launch date.

B. Approach D: Autonomous Teams

This category is where individual teams are allowed to
define their own ways-of-working to facilitate speed, short
iterations and delivery quality. This can be seen in domains
where by necessity the full product development project cannot
move as fast as the individual development teams. Three cases
were found that clearly fall into this category [20], [34].

Business: The organisation as a whole is focused on phys-
ical delivery of a product (or thousands of products) to the
customer, so the ability of individual teams to continuously
deploy new software is not seen in the business. Project risk
management is focused on minimising technological risks.

Architecture: The architecture of the product is tailored
towards satisfying product qualities, requiring a lot of ar-
chitecting effort spent on defining, verifying and maintaining
interfaces, as well as integration of subsystems throughout the
project.

Process: Since the overall R&D approach used in the
organisation is governed by a stage gate process, or V-model,
effort is spent on aligning the practices of the individual teams
to the overall process, as described by [20]. The short iterations
on the module level are never visible in the large stage-
gate process, since the deliveries are still planned towards

A ”
Requirements analysis<--= Product validation

System & architecture System test
design

\ /

Module design<---= Module

"The agile
loop”

Software coding

Figure 2. The fast-looping iterations of individual teams are isolated to a
small part of the overall V-process of the large project.

scheduled integration points. If the teams adopt e.g. any agile
software practices these are only seen at a module or sub-
system level, where the short iterations take place, as described
in Figure 2.

Organisation: The initiative for the teams to be more self-
directed in terms of development practices usually comes from
the teams themselves, e.g. they want to adopt agile practices
from XP or Scrum [20]. This means these teams are more or
less isolated in their approach compared to other teams they
are interacting with.

1) Example: Climate Control Software: The case concerns
in-house development of climate control software at VCC,
where it was outsourced for the previous generation cars. The
target car is not in production at the time of publication. The
study was performed to provide feedback to software process
improvements at VCC, and is previously published in [7].

It was the team themselvs that wanted to use agile practices,
so the initiative came from the “grass-roots” of the organisa-
tion. The upper management of R&D approved this for the
following reasons:

« Shorter lead-times: Having the ability to introduce new features
in a controlled manner with the right quality close to launch date
of new year models.

« Better to have 80% of the desired software with really good
quality than 100% so-and-so.

o Increase in competence: Focus on development teams with
continuous learning and improvement will increase the level
of competence among the employees.

o Attractive workplace: There are reports of other organisations
introducing agile methods having more satisfied employees.
Software engineers learn these methods at universities today,
it will be easier to recruit and retain competent people.

o A natural progression of the software process improvements
already being implemented.

The software runs on a hardware platform with basic
software delivered hardware supplier of the HVAC (Heating,
Ventilating, and Air Conditioning) Most of the algorithms are
developed in Simulink from which C code is generated. Both
the control software and the standardised basic software are
based on the AUTOSAR software architecture [35] and the
interfaces to other systems, including HMI, are stable.

The development team applies most of Scrum practices
[36] [37] since this was a natural evolution of present team
practices, especially in the light of going from outsourcing to
in-house development. The team adjusted their sprint schedule

to suit the integration events of the complete electrical system.
An unforeseen benefit seen already after three sprints was
better prediction of future gate fulfilment compared to previous
ways-of-working.

The governance structure was simple with few different
concerned stakeholders. The product owner resides at the in-
terior department, in cooperation with one person from product
planning at VCC. The development team of nine persons and
the Scrum master are part of the electrical department with
extensive domain expertise of climate control.

This case is a typical description of an isolated team trying
to achieve shorter feedback loops within a large industrial
project, i.e. using a D approach. The team defined their way-
of-working, while still meeting the overall stage-gate process.
Contributing factors to the success was a stable architecture,
especially in the interfaces to other sub-systems, and good
domain knowledge among the developers.

C. Approach C: Adaptive Processes

At this position an organisation adapts its overall product
development process to utilise the possibilities software offers
compared to hardware development and manufacturing. This
does not seem to be a common position for an organisation to
operate at, none of the found cases mention e.g. continuous
deployment from autonomous teams, but one case describes
how software and hardware development “work according to
different methodologies (which) makes it harder to synchron-
ize the work between them.” [38].

Business: The development is focused on technology and
technological innovation while still preserving key product
quality attributes common in the domain.

Architecture: Similar to the previously described positions;
the architecture of the product is tailored towards satisfying
product qualities.

Process: The process adaptation can take many forms, but
a typical measure is to adjust the schedule to the size and
scope of what is being developed, and as a result the software
and hardware development processes are usually decoupled.
This in turn enables software deployment independent of the
hardware manufacturing, even to the point of deployment post-
manufacturing.

Organisation: Even more so compared to the previous
approach the teams are self-directed, both in their ways-of-
working and also in defining the deployment date for their
deliverables.

D. Approach B: Architecture for Composition

This approach is not very common either, only two cases
falls into this category [11], [12].

Business: The business is focused on minimising risk with
technology investments, i.e. the R&D organisation has adapted
its architecture, processes and organisation to fast development
in short iterations, but the product management and business
model is still “traditional”, focusing on delivering and getting
paid for each product.

Architecture: The main difference compared to the previous
approaches is a shift in what qualities are emphasized when
designing the architecture. In previous approaches there is
an emphasis on product qualities discernible at run-time,
including cost of ownership, but at this approach qualities
affecting the speed, effort and cost of the development are
weighted against the former two categories. Typical quality
attributes driving the architecture are composability, deployab-
ility, maintainability and configurability. These are not imme-
diately discernible for the end user, but facilitate desired ways
of working for the development organisation and their teams.
There is still value in the product-centric quality attributes,
and some may still be vital in heavily regulated domains, but
organisations balance these against the development-centric
attributes. Typically the architecture style is application- or
component-based on top of a supporting software platform
providing both infrastructure mechanisms and domain-specific
services utilised in new innovations. The software platform
provides hardware abstractions of sensors and actuators and
also executes control over which features can access various
hardware. The platform evolves on a different, usually slower,
schedule compared to the products utilising it, and may be
supplied by a separate organisation than those developing
products.

Process: The process is similar to the previous approach,
with the organisation as a whole develop software in short
iterations and likely applying continuous integration of soft-
ware.

Organisation: Similar to the previous approach teams are
self-directed.

E. Approach A: Marlin Organisations

There is just one case that describes an organisation working
with this R&D approach [12]. This case is borderline of what
can be called an embedded system, describing mobile smart
phones. Nevertheless this category is important as it may be
a forerunner to more “open” embedded products utilising a
development approach through an open software ecosystem.

Business: One of the major business drivers in this category
is to minimise the risk associated with offering the wrong
product or developing undesirable features. Software is seen
as a major differentiator in the ability to attract and maintain
customers, and therefore short leadtimes from idea to deploy-
ment is needed to stay competitive.

Architecture: The architectures used optimise the ability
to develop products and features with the shortest possible
leadtime. Typical properties of the architecture are to emphas-
ise modularity and composability of software from different
teams. Standardised platforms are the norm, either industry-
wide encompassing 3rd parties or developed within the large
organisation.

Process: The process model used is highly iterative aiming
to take small development steps and validate these in each
evolution, in some cases with real customer feedback. Activit-
ies such as requirements elicitation, design, implementation
and verification & validation are done within each short

iteration. Planning follows a template based on continuous
evolution of the product instead of calendar time. For software
development a wide-spread agile process such as XP or Scrum
can be used.

Organisation: The organisation consists of self-directed and
self-organised teams containing cross-functional competences
of product management, architecture, design & implement-
ation and testing, capable of invention and launch of new
features. The teams operate autonomously and coordination
and integration of interfaces is ensured by the underlying
platform and its architecture, allowing the teams to choose
their own process and activities. Development of new features
realised by software is not outsourced since this is seen as a
highly competitive skill.

V. RELATED WORK

[26] presents a systematic literature review of alignment
between the four dimension of BAPO, and conclude there
is a research gap on alignment of BAPO software product
development. The short paper does not prescribe any model
for organisations to aid alignment or adjust misalignment. The
model in Figure 1 described how companies have aligned their
BAPO concerns in the framework of Betz and Wohlin.

[39] presents the “stairway to heaven”, a pattern over
how companies evolve their software development practices.
A comparison by their five steps with the model in Figure 1
shows almost a 1-to-1 mapping, with “Traditional develop-
ment” corresponding to E in the model, “Agile R&D organiz-
ation” to D, “Continuous integration” to C, and “Continuous
deployment” and “"R&D as an experiment system” to A.
The two models complement each other since they have a
different focus: The “stairway to heaven" describes how the
software development iterations shortens and involve customer
collaboration, while the model presented here describes how
the process dimension relates to the other dimensions of
business, architecture and organisation.

There are frameworks to analyse software processes such
as the Zachman framework [40] and others based on this, for
example [41] and [42]. The former of these two is similar
to what is proposed here, but has a narrower scope on
just software processes. The latter does not define concrete
approaches and therefore does not support identification of
“where to be”. Both frameworks provide some dimensions
used to analyse an organisation, but does not propose any
possible positions or movements along those dimensions.

[43] use a framework approach to analyse and optimise
IT-systems and business processes for mobile business-to-
employee-applications for large workforces. They give both
some example cases and provide some typical usages of the
framework, e.g. understanding business objectives, calculating
return on investment, analyse requirements, and model and
optimise processes.

The characteristics used to distinguish between “Tradi-
tional approaches” and “Internet/intranet development” in [44]
spans the same range of software development approaches
as Figure 1. The two approaches could be interpreted as

a simplification of the five positions proposed above. The
mitigation strategies of the deadly risks would then suggestions
of how to evolve along the spectrum of positions.

[45] explores the context of agile development, providing
an analysis framework, but has no explicit prescription on how
to introduce agile development outside what he calls “the agile
sweet-spot”. In essence he explores in depth approach D above
and how suitable it is for various types of development. [46]
identifies a set of six limitations with agile development. They
are of concern when developing software with approach D
above. [47] describes how to scale agile practices, specifically
program management and product backlog administration, in
large organisations with several development teams contribut-
ing to the final product. This would correspond to evolving
from approach D to C in the model above.

VI. CONCLUSIONS

Fast development is a competitive advantage also for MPES
products. But when the manufacturing-driven development
process also is applied to software development it may cause
outdated functionality at time of product introduction. Several
studies report on successful implementation of agile meth-
ods in development of software systems with strong user
interaction, e.g. web-based shops [48], [49]. However, in the
domain of MPES iterative development aiming at minimising
the risk of delivering unused or unwanted user features is the
uncommon exception. In this paper, we provided an overview
of the problem context of software development of MPES,
with distinguishing factors such as the co-design of software
and hardware, strong focus on manufacturing aspects, supplier
involvement and safety-critical functionality. The complexity
of the projects in this domain suggests a need of a holistic
model to choose a suitable approach of software development.
We performed a mapping study to identify industrial software
development approaches, and could identify a model consist-
ing of five distinct approaches. They ranged from “traditional”
stage-gate projects focusing on product qualities and large
integration efforts, to fast development in short iterations by
autonomous teams based on a composable software platform.

The first key contribution of the paper is the model of five
archetypical approaches of embedded software development,
all which have been used in industry. The model describes
how the concerns of business, architecture, process and or-
ganisation were aligned in found projects. The model was
elucidated by two empirical cases from Volvo Car Corpor-
ation. The second contribution is the empirically grounded
insight that successful software projects have aligned their
business, architecture, software processes and organisation,
while misalignment seems to cause difficulties even though
each dimension in isolation seems reasonable. A first-hand
case was presented were the dimensions were not aligned,
which caused difficulties in the project. The third contribu-
tion is the fact the mapping study suggests a direction of
how organisations evolve from one approach to another. The
evolution is driven both by extrinsic factors, such as changed
business and innovation goals, and by intrinsic factors such as

the inherent complexity in managing and integrating the work
of an increasing number of development teams.

ACKNOWLEDGMENT

This work has been financially supported by the Swedish
Agency for Innovation Systems (VINNOVA) and Volvo Car
Corporation within the partnership for Strategic Vehicle Re-
search and Innovation (FFI).

REFERENCES

[1] C. Ebert and C. Jones, “Embedded software: Facts, figures, and
future,” Computer, vol. 42, no. 4, pp. 42-52, 2009. [Online].
Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
5054871 &isnumber=5054856

[2] P. Liggesmeyer and M. Trapp, “Trends in embedded software engineer-
ing,” IEEE Software, vol. 26, no. 3, pp. 19-25, 2009.

[3] P. Manhart and K. Schneider, “Breaking the ice for agile development
of embedded software: An industry experience report,” in Proceedings
of International Conference on Software Engineering. Washington,
DC, USA: IEEE, 2004, p. 378-386. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=998675.999442

[4] J. Bosch and U. Eklund, “Eternal embedded software: Towards
innovation experiment systems,” in Proceedings of the International
Symposium On Leveraging Applications of Formal Methods, Verification
and Validation, ser. Lecture Notes in Computer Science, vol. 7609.
Heraclion, Crete: Springer, 2012, p. 19-31. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-34026-0_3

[5] U. Eklund and C. M. Olsson, “A case study of the architecture business
cycle for an in-vehicle software architecture,” in Proceedings of the Joint
Working IEEE/IFIP Conference on Software Architecture & European
Conference on Software Architecture. Cambridge, UK: IEEE, 2009, pp.
93-100. [Online]. Available: dx.doi.org/10.1109/WICSA.2009.5290795

[6] U. Eklund and H. Gustavsson, “Architecting automotive product lines:
Industrial practice,” Science of Computer Programming, 2012. [Online].
Available: http://dx.doi.org/10.1016/j.scic0.2012.06.008

[71 U. Eklund and J. Bosch, “Applying agile development in mass-
produced embedded systems,” in Agile Processes in Software
Engineering and Extreme Programming, ser. Lecture Notes in Business
Information Processing, vol. 111. Malmo, Sweden: Springer, 2012,
pp. 31-46. [Online]. Available: http://www.springerlink.com/content/
n90815g481713091/

[8] F. van der Linden, J. Bosch, E. Kamsties, K. Kinsild, and
H. Obbink, “Software product family evaluation,” in Proceedings of
the Software Product Line Conference, ser. Lecture Notes in Computer
Science, vol. 3154. Springer, 2004, pp. 110-129. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-28630-1_7

[9] T. Brannick and D. Coghlan, “In defense of being “Native”,

the case for insider academic research,” Organizational Research

Methods, vol. 10, no. 1, pp. 59-74, 2007. [Online]. Available:

http://orm.sagepub.com/cgi/content/abstract/10/1/59

B. Kitchenham and S. Charters, “Guidelines for performing systematic

literature reviews in software engineering,” Keele University and

University of Durham, Tech. Rep. EBSE-2007-01, 2007. [Online].

Available: http://www.dur.ac.uk/ebse/guidelines.php

U. Eklund and J. Bosch, “Introducing software ecosystems

for mass-produced embedded systems,” in Proceedings of the

International Conference on Software Business, ser. Lecture

Notes in Business Information Processing. Cambridge, MA,

USA: Springer, 2012, pp. 248-254. [Online]. Available:

http://dx.doi.org/10.1007/978-3-642-30746-1_20

H. Hartmann, T. Trew, and J. Bosch, “The changing industry structure

of software development for consumer electronics and its consequences

for software architectures,” Journal of Systems and Software, vol. 85,

no. 1, pp. 178-192, 2012.

R. A. McGee, U. Eklund, and M. Lundin, “Stakeholder identification

and quality attribute prioritization for a global vehicle control system,”

in Proceedings of the Fourth European Conference on Software Archi-
tecture: Companion Volume. Copenhagen, Denmark: ACM, 2010, pp.

43-48.

R. K. Yin, Case Study Research: Design and Methods, 3rd ed.

Publications, 2003.

(10]

(11]

[12]

[13]

[14] Sage

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

J. Axelsson, “Towards a process maturity model for evolutionary archi-
tecting of embedded system product lines,” in Proceedings of the Fourth
European Conference on Software Architecture: Companion Volume.
ACM, 2010, p. 36-42, ACM ID: 1842764.

N. Mellegard and M. Staron, “Characterizing model usage in
embedded software engineering: A case study,” in Proceedings of the
European Conference on Software Architecture: Companion Volume.
Copenhagen, Denmark: ACM, 2010, pp. 245-252. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1842800

J. Axelsson, “Evolutionary architecting of embedded automotive product
lines: An industrial case study,” in Proceedings of the Joint Working
IEEE/IFIP Conference on Software Architecture & European Conference
on Software Architecture. Cambridge, UK: IEEE, sep 2009.

D. Sundmark, K. Petersen, and S. Larsson, “An exploratory case study
of testing in an automotive electrical system release process,” in Pro-
ceedings of the IEEE International Symposium on Industrial Embedded
Systems, Visteras, Sweden, 2011, pp. 166-175.

G. Selim, S. Wang, J. Cordy, and J. Dingel, “Model transformations for
migrating legacy models: An industrial case study,” in Proceedings of
the European Conference on Modelling Foundations and Applications,
vol. 7349. Lyngby, Denmark: Springer, 2012, pp. 90-101. [Online].
Available: http://www.springerlink.com/content/d136557677552666/

D. Karlstrom and P. Runeson, “Integrating agile software development
into stage-gate managed product development,” Empirical Software
Engineering, vol. 11, no. 2, pp. 203-225, 2006. [Online]. Available:
http://www.springerlink.com/content/1r77g17h388472nm/abstract/

S. Miiller, P. Kremmergaard, and L. Mathiassen, “Managing cultural
variation in software process improvement: A comparison of methods
for subculture assessment,” IEEE Transactions on Engineering Manage-
ment, vol. 56, no. 4, pp. 584-599, 2009.

F. Rosa, R. Miniscalco, F. Rame, and F. Torchia, “An on-board software
approach to manage a complex space mission and its FDIR: the herschel-
planck case study.” Edinburgh, Scotland: European Space Agency,
2005, pp. 341-344.

H. Gustavsson and J. Axelsson, “Architecting complex embedded
systems: An industrial case study,” in Proceedings of the
IEEE International Systems Conference. 1EEE, 2011, pp. 472—
478. [Online]. Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=
&arnumber=5929054&isnumber=5929032

S. Pantsar-Syvidniemi, J. Taramaa, and E. Niemeld, “Organizational
evolution of digital signal processing software development,” Journal
of Software Maintenance and Evolution, vol. 18, no. 4, pp. 293-305,
2006.

H. Hartmann, M. Keren, A. Matsinger, J. Rubin, T. Trew, and T. Yatzkar-
Haham, “Using MDA for integration of heterogeneous components
in software supply chains,” Science of Computer Programming, 2012.
[Online]. Available: http://dx.doi.org/10.1016/j.scico.2012.04.004

S. Betz and C. Wohlin, “Alignment of business, architecture, process,
and organisation in a software development context,” in Proceedings
of the ACM-IEEE international symposium on Empirical software
engineering and measurement. ACM, 2012, p. 239-242. [Online].
Available: http://doi.acm.org/10.1145/2372251.2372295

K. Kim, H. Kim, and W. Kim, “Building software product line from
the legacy systems "experience in the digital audio & video domain",”
in Proceedings of the International Software Product Line Conference.
IEEE, 2007, pp. 171-180. [Online]. Available: http://ieeexplore.ieee.
org/stamp/stamp.jsp?tp=&arnumber=4339266&isnumber=4339240

E. Johansson, J. Nedstam, F. Wartenberg, and M. Host, “A qualitative
methodology for tailoring SPE activities in embedded platform
development,” in Proceedings of the Conference on Product-Focused
Software Development and Process Improvement, ser. Lecture Notes
in Computer Science, vol. 3547. Oulu, Finland: Springer, 2005,
pp. 39-53. [Online]. Available: http://www.springerlink.com/content/
t9qa6bqx2ue78dh2k/

P. Wallin, S. Johnsson, and J. Axelsson, “Issues related to development
of E/E product line architectures in heavy vehicles,” in Proceedings of
the Annual Hawaii International Conference on System Sciences, HICSS.
Big Island, HI, USA: IEEE, 2009, pp. 1-10.

[30]

(31]

[32]
(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

A.-E. Rugina, D. Thomas, X. Olive, and G. Veran, “Gene-auto: Auto-
matic software code generation for real-time embedded systems,” in
Proceedings of DAta Systems In Aerospace Conference. European
Space Agency, 2008.

A. Winkler, L. Giinther, G. Machel, and M. Schade, “Reuse of the core
EPM EGSE in the ground segment,” in Proceedings of Data Systems in
Aerospace Conference. Edinburgh, Scotland: European Space Agency,
2005, pp. 465-468.

R. Cooper, “Stage-gate systems: A new tool for managing new
products,” Business Horizons, vol. 33, no. 3, pp. 44-54, 1990.

M. Cooperation, “Media oriented systems transport (MOST),” 2008.
[Online]. Available: http://www.mostcooperation.com/

F. Mafakheri, F. Nasiri, and M. Mousavi, “Project agility assessment:
An integrated decision analysis approach,” Production Planning and
Control, vol. 19, no. 6, pp. 567-576, 2008.

S. First, J. Mossinger, S. Bunzel, T. Weber, F Kirschke-
Biller, P. Heitkdmper, G. Kinkelin, K. Nishikawa, and
K. Lange, “AUTOSAR - a worldwide standard is on the
road,” in International VDI Congress Electronic Systems for

Vehicles, Baden-Baden, Germany, 2009. [Online]. Available: http:
/Iwww.autosar.de/download/papersandpresentations/ AUTOS AR %20- %
20A%20Worldwide%20Standard%20is %200n%20the %20Road.pdf

K. Schwaber, “Scrum development process,” in Proceedings of the ACM
Conference on Object Oriented Programming Systems, Languages, and
Applications, 1995, pp. 117-134.

H. Kniberg, Scrum and XP from the Trenches. C4Media,
2007. [Online]. Available: http://www.crisp.se/bocker-och-produkter/
scrum-and- xp-from-the-trenches

A. Shatil, O. Hazzan, and Y. Dubinsky, “Agility in a large-scale system
engineering project: A case-study of an advanced communication system
project,” in Proceedings of the IEEE International Conference on
Software Science, Technology, and Engineering. 1EEE, 2010, pp. 47—
54.

H. Holmstrom Olsson, H. Alahyari, and J. Bosch, “Climbing the
“Stairway to heaven”,” in Proceeding of the Euromicro Conference on
Software Engineering and Advanced Applications, Cesme, Izmir, Turkey,
2012.

J. A. Zachman, “A framework for information systems architecture,”
IBM Systems Journal, vol. 26, no. 3, pp. 276-292, 1987.

J. Lonchamp, “A structured conceptual and terminological framework
for software process engineering,” in Proceedings of the International
Conference on the Software Process, Berlin, Germany, 1993, pp. 41-53.
J. Feller and B. Fitzgerald, “A framework analysis of the open
source software development paradigm,” in Proceedings of the
International Conference on Information Systems, 2000. [Online].
Available: http://dl.acm.org/citation.cfm?id=359723

V. Gruhn and A. Kohler, “Analysing and enhancing business processes
and IT-systems for mobile workforce automation: a framework
approach,” in Proceedings of the 2007 Euro American conference
on Telematics and information systems. ACM, 2007, pp. 26:1-26:8.
[Online]. Available: http://doi.acm.org/10.1145/1352694.1352721

D. Reifer, “Ten deadly risks in internet and intranet software develop-
ment,” IEEE Software, vol. 19, no. 2, pp. 12-14, 2002.

P. Kruchten, “Contextualizing agile software development,” Journal
of Software: Evolution and Process, 2011. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/smr.572/abstract

D. Turk, R. France, and B. Rumpe, “Limitations of agile software
processes,” Systems Engineering, vol. 43, pp. 43—46, 2002.

M. Laanti, “Implementing program model with agile principles in
a large software development organization,” in Proceedings of the
International Conference on Computer Software and Applications.
Turku, Finland: IEEE, 2008, pp. 1383-1391. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4591786&tag=1

D. Goodman and M. Elbaz, “"It’s not the pants, it’s the people in
the pants" learnings from the gap agile transformation - what worked,
how we did it, and what still puzzles us,” in Proceedings of the Agile
Conference. 1EEE, 2008, pp. 112-115.

M.-W. Chung and B. Drummond, “Agile at yahoo! from the trenches,”
in Proceedings of the Agile Conference. IEEE, 2009, pp. 113-118.

