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A b ~ t r ~ ~ t -  A new public-key (two-key) cipher scheme is pro- 
posed in this paper. In our scheme, keys can be easily generated. 
In addition, both encryption and decryption procedures are 
simple. To encrypt a message, the sender needs to conduct a 
vector product of the message being sent and the enciphering 
key. On the other hand, the receiver can easily decrypt it 
by conducting several multiplication operations and modulus 
operations. For security analysis, we also examine some possible 
attacks on the presented scheme. 

Index Terms- Public keys, private keys, cryptosystems, Dio- 
phantine equation problems, integer knapsack problems, one-way 
functions, trapdoor one-way functions, NP-complete. 

I. INTRODUCTION 

N (61, Diffie and Hellman proposed their pioneering idea I of public key cryptosystems. In a public key system, each 
user IT uses the encryption algorithm E ( P K , , , M )  and the 
decryption algorithm D(PR, ,C) ,  where P K ,  is the public 
key, PR,,, is the private key of U and M and C are the 
texts to be encrypted or to be decrypted, respectively. Each 
user publishes his encryption key by putting it on a public 
directory, while the decryption key is kept secret by himself. 
Suppose that user il wants to send a message to user B. 
First, A finds the public encryption key, namely PIG,, for B 
from the public directory. Then A encrypts the message M 
to C: by C = E(PKb, M )  and sends C to B. On receiving 
C ,  B can decode it by computing M = D(PRt,. C). Since 
PRb is private for I?, no one else can perform this decryption 
process. Therefore, for practical purposes, the encryption and 
decryption algorithms E and D have to satisfy the following 
three requirements. 

1) U(PX,, .  E(Pfi’,. M ) )  = M 
2 )  Neither of algorithms E and D needs much computing 

3) To derive the associate PR, from the publicly known 

A number of public-key cryptosystems have been proposed 
[ I ] ,  [ 3 ] ,  [7]. 191, [ 171, [20]-[22], 1261. These systems can be 
put into two categories. One is based on hard number theoretic 
problems such as factoring, taking discrete logarithms, etc.; 

time. 

PKtL is computationally infeasible [5] .  
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while the other is related to NP-complete problems such as 
0/1 knapsack and so on. To construct cryptosystems based 
on these computationally hard problems, secret “trapdoor” 
information is added such that a one-way function is invertible. 
A function F is called a one-way function if and only if the 
computation of F ( T )  is easy for all :L: in the dornain of F ,  
while it is computationally infeasible to compute the inverse 
F-l(y) given any in the range of F ,  even if E’ is known. 
It is a trapdoor one-way function if the inverse becomes easy 
when certain additional information is given. This additional 
information is used as a secret decryption key. 

In this paper, a new public-key cipher scheme is proposed. 
By the use of our scheme, the generating steps of keys are 
simple. Both the encryption and decryption procedures can 
be completed efficiently. Our cipher scheme is based upon the 
Diophantine equations [ 18 1. In general, a Diophantine equation 
is defined as follows: We are given a polynomial equation 
f ( ~ ,  5 2 , .  . . ! x,) = 0 with integer coefficients and we are 
asked to find rational or integral solutions. Throughout this 
paper, we shall assume that the solutions are nonnegative. For 
instance, consider the following equation: 

k . 1  + ~1x2 f 7.1;s + k ~ q  = 78. 

The above equation is a Diophantine equation if we have 
to find a nonnegative solution for this equation. In fact, our 

.xq) = (2 ,5,1:  9). Another example of 
a Diophantine equation is 

32::1:2 + 43.13:23:3 + 513 = 105. 

Diophantine equations are usually hard solve. In [ 141, it was 
proved that the problem of deciding whether there are positive 
integer solutions for 

rrz; + jj.2 - y = 0. 

where a, [l and y are positive integers, is NP-complete [4], 
[SI. Some specific cases of Diophantine equations and their 
computational complexities were studied in  [24[, 1251. 

A famous Diophantine equation problem is Hilbert’s tenth 
problem [ I  I ] ,  which is defined as follows: Given a system 
of polynomials Pi :c2 .  . . , x,, ), 1 5 i 5 VI,, with integer 
coefficients, determine whether i t  has a nonnegative integer 
solution or not. In [ 15) and [23], it was shown thal the Hilbert 
problem is undecidable for polynomials with degree 4. It was 
shown in [I61 that the Hilbert problem is undecidable for 
polynomials with 13 variables. Curari and lbarra [lo] also 
proved that several Diophantine equations are in  NP-complete 
class. 
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Finally, we sketch the organization of this paper as follows. 
Underlying mathematics is described in Section 11. The gen- 
eration of the system, encryption and decryption algorithms, 
will appear in Section 111. Section IV investigates the security 
of our cipher scheme. We also show that in order to break our 
system, one has to solve some specific Diophantine equations. 
Finally, conclusions are made in Section V. 

11. THE UNDERLYING MATHEMATICS 

In this section, we describe the mathematics on which the 
new cryptosystem is based. Let w be some positive integer and 
the domain 2) be a set of positive integers in the range of [O, w]. 
Let w = 2' - 1, where b is some positive integer. Assume that 
a sending message M with length nb bits is broken up into 
n pieces of submessages, namely ml, m2, . . . and mn. Each 
submessage is of length b bits. In other words, we can represent 
each submessage by a decimal number rni and nr; in V. 

Suppose that 71 pairs of integers (y1 ,  k l )  ~ ( q 2  ~ k2) ~ . . ., and 
( y n  , k,)are chosen such that the following conditions hold: 

1)  4;'s are painvise relative primes; i.e., (q;?  q j )  = 1 for 

2) ICi > iii for i = 1 ,2 ,  .. . ! n,. 
3) yi  > ICiw(qL mod k i ) ,  and qi mod ICi # 0, for i = 

1 ,2 , . " ,n  . 
These n, integer pairs ( q ; ,  k; ) 's  will be kept secret and used 
to decrypt messages. For convenience, we name the above 
three conditions the DK-conditions since they will be used 
as deciphering keys. Note that for the generating of pairwise 
relatively primes, one can consult [2]. Furthermore, the fol- 
lowing numbers are computed. First, compute Ri = q2 mod 
ki and compute Pi's such that two conditions are satisfied: 1) 
P; mod q; = R;, and 2) PJ mod q; = 0 if i # j .  Since qi's 
are pairwise relatively primes, one solution for Pi's satisfying 
the above two conditions is that P; = Qib, with 

i # j .  

Qi = nqi 
j # i  

and b; is chosen such that Qib; mod qi = Ri. Since Qi 

and qz are relatively prime, bi's can be found by using the 
extended Euclid's algorithm [ 5 ] .  Note that the average number 
of divisions performed by the extended Euclid's algorithm 
for finding b; is approximately 0.843 . In(q;) + 1.47 [13]. 
Secondly, compute N; = [qa/(IC;Ri)l for i = 1 , 2 , . . .  ,n. 
Finally, compute 

n 

s i  = PiN, mod Q ,  where Q = n q,. (1) 
i=l 

That is. we have a vector S = (SI, s2,. . . , s,) with each 
component computed as above. 

After this, S can be used as the enciphering key for 
encrypting messages. By conducting a vector product between 
M = ( n b 1 ,  m2.. .. , m,) and S = (SI, sa, ... , sn); Le., 

n 

C = E(S ,  M )  = M * S = m , ~ ,  ( 2 )  
2 = 1  

a message M is transformed to its ciphertext C ,  where * 
denotes the vector product operation. Conversely, the ith com- 
ponent mi in M can be revealed by the following operation: 

m;=D((q; ,k ; ) ,C)= Lk;C/q;J modk, for , i = 1 , 2 . . - . , n .  
(3) 

Theorem 2.1 shows that (3) is the inverse function of (2). The 
following lemmas are helpful in the proof of the theorem. 

Lemma 2.1: 
Let a and b be some positive integers where b > a. Then 

Proof Let rx/bl = c for some integer c. Then x /b  5 

(4) 

On the other hand, if z 2 nb/ (h  - a ) ,  then ( b  - u)z 2 ab; 
that is, 

( a z / b  + a )  5 x. ( 5 )  

Combining (4) and (5 ) ,  we have that a[z/b1 < x if z 2 
ab/@ - a) .  0 

kiRiW l - q z / ( w & ) l .  

for all z, cz[z/bl < z if z 2 ab/ (b  - a ) .  

c < (z /b  + 1). We have 

nc < (u:c/b + a ) .  

Lemma 5.2: 
Let Ri := qi mod k;. Then kiR;mi[q;/(kiRi)l mod k;q; = 

Prooj. Let a = Rim;, b = kiRi, and x = qi. Since 
q; > k;R;w, we know that qi > IC;RSm;/(Ri(k; - mi)). 
That is, x 2 ab/ (b  - u) is satisfied. By applying Lemma 
2.1, it can be seen that R;rri;[q;/(klR;)l < y,,. Therefore, 
ICiR;ma[q;/(k;l&)l mod kiq; = IC;Ri7rL;[q;/(kjl~i)l. 0 

Lemma 2.3: 
Let mi"s, ICi's, and q i ' s  be chosen such that the DK- 

conditions are satisfied. Let R; = q; mod IC; .  Then 
LkRim; [<Ii/(kRi)l/qiJ = mi. 

Proof: Let 6 = Lk; Rim; [q2 /(  IC; Ri)l / q ; ] .  It can be easily 
seen that the following two inequalities hold: 

(6) 8 < LkiRi.n,,;(qi/(kiRi) + I)/%] 

and 

6 L lkin;mi(si/(ICini))/~iJ. (7) 

Furthermore, the right-hand side of (7) is identical to m i  and 
that of (6:) is Lm; + kiRirni/qi]. On the other hand, since 
mi is an integer and kiR;ma/q7 < 1, the right-hand side in 
(6) becom'es [mi + k;R;m;/q;] = m,. Combining these two 
inequalities, we obtain that m; 5 6 < m i .  Finally, we have 

0 
Theorenz2.1: Let ( q l , k l ) , ( q 2 , k 2 ) , . . . ,  and ( q n ! k n )  be n 

pairs of positive integers satisfying the DK-conditions. Let the 
vector S be computed by applying (1). Then (3) is the inverse 
function of (2). That is, a message enciphered by (2) can be 
decrypted by (3). 

Prooj: Let us prove the theorem by the following two 
steps. First, from ( l ) ,  define 3, = PiNi; we have a vector 
S = ( S 1 , S 2 , . . . , S n ) ; i . e  ., s i = S i  m o d c E , f o r . i = 1 , 2 , . - . , n .  
Let C' = M * S = m;s; = Cy=, m,PiNi. Since 
Pi's satisfy the following two conditions, 1) Pi mod qa = qi 
mod ki = Ri; and 2 )  Pj mod qi = 0 if i # , j ,  k;C' mod 

6 = mi, since 6 is an integer. 

- 
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n 

s=J&i 
,=I 

then C’mod Q = (E:& m , S , )  mod Q = ((m131 mod (2) + 
. . . + ( 7 1 7 ~ ~ % ~ ~  mod Q)) mod Q = ( m l ( S 1  mod Q)+. . -+m,(%, 

mod Q ) )  mod Q = ( c m , . s , )  mod Q = C mod Q. That 

is, C’ I C‘(mod Q). Let C’ = C + .tQ. for some positive 
integer z .  We have Lk,C/q,j mod k ,  = ([k,(C’ - z Q ) / q l J  
mod k ,  = ( Lk,C’/yzJ - k,zQ,) mod k ,  = [ k z C ’ / q z ~  mod k,. 

0 

n 

1=1 

In other words, rrr,  = Lk,C/y,] mod k, .  

111. THE CONSTRUCTION AND USAGE OF THE CRYPTOSYSTEM 

In this section, how the new cryptosystem is created and 
used is described. First, an informal description is given. Then 
algorithms for constructing the cryptosystem, encrypting mes- 
sages, and decrypting messages, respectively, are presented. 

First, each user picks n pairs of parameters (41,  k l ) ,  ( 4 2 .  k2) ,  

. . ., and ( y l l ,  k n )  such that the DK-conditions are satisfied. 
Afterward, 

Qi = n43 
3 f z  

and IV, = [ y , / ( k l ( q z  mod I C l ) ) ]  are computed, and b,’s are 
integers chosen such that Q,b, mod 4, = q, mod k,, for 
1 = 1.2:..,n. Let P, = Q,b, and 5 ,  = P,N, mod Q, for 
i = 1.2. . . , 71,  where 

n 

Therefore, a vector S = ( S I ,  -52 ,  . . . ~ sTL)  is obtained. Then the 
n-tuple S of integers is published and used as the public key 
of the cryptosystem for enciphering messages. 

The chosen parameters (41 .  k l ) ,  ( q 2 .  k2) ; .  ., and (y,, kIL)are 
kept and used as the private key to decipher messages received. 
Specifically, let user A be the sender and user B be the 
receiver, and let A be sending a message represented by 

M = (rri1, m 2 ,  . . . . mTL) ~ 

where 7rr, is a b-bits submessage represented by a decimal 
number in the range of [0, Zb - 11. Then (ml ,  m2,.  . . . m,) is 
enciphered by (2) into an integer C. Afterward, the integer C 
is sent to user B as the ciphertext of the original message M .  
On the receiving of integer C, user B IS able to convert C 
into { r r t , 1 , 1 1 ~ 2 ~  . . . , 1 1 1 , )  by applying (3). 

Algorithm 
Step 1. 

Step 2. 

Step 3. 

Step 4. 

Step 5. 

Step 6. 

Step 7. 
Algorithm 

Step 1. 

Step 2. 

Step 3. 
Algorithm 

Step 1. 

Step 2. 

3.1-Key Generating for  Each User U: 
Pick n pairs of positive integers ((11, k ~ ) ,  ( q 2 ,  k ~ ) ,  
. . ., and ( y P 1 ,  kn) such that the DK-conditions are 
satisfied. 
Compute R; = qz mod k ,  for i = 1 , 2  . . . . ,  n. 
Compute 

Qi = 
32, 

and N ,  = [ q l / ( k l R z ) l ,  for 7 = 1 . 2  . . . . .  n, and 
compute 

n 

i=l 

Compute hi’s such that Q,b, mod q, = Ri for 
i = 1 , 2 , .  . . , n.. This can be done by the extended 
version of Euclid’s algorithm. 
Compute Pi = Qib;  and s; = PiN, mod Q for 

Publish the encryption key PK, = (SI. s2 , . . . , s,) 
for user C‘. 
Keep the private decryption key PR, = 

Keep Pi, Q ; ,  h i ,  N;, and Q in secret or erase them. 
3.2-Encryption Procedure for Sender A: 

Encrypt M = (ml,mz:...,m,,) by (2);  Le., 
G = E ( S . M )  = S * M .  

Send out the integer C as the ciphertext of 
message M .  
Exit. 
3.3-Decryption Procedure for  Receiver B: 
Compute the ith component mi of message M by 
computing mi = D((qi,  k i ) ,  C) = LklC/q;] mod 

Exit. 

i 1 1,2 , . . . ,71  . 

( ( 4 1 ,  k l ) ,  ( 4 2 ,  k 2 ) ,  . . . l  ( Y n ,  k ) )  in secret. 

k; ,  1 5 i 5 71. 

In the following, let us illustrate the processing of the 
presented cipher scheme by a simple example. 

Example 3.1: Consider a simple case with 7~ = 3. Let 
( q 1 . h )  = (104.6), (y2 ,kz )  = (147,8), and ( q 3 , k 3 )  = 
(121,7). Then R1 = 41 mod k l  = 2, R2 = 42  mod k~ = 3, 
and R3 = 43 mod k.3 = 2. Let D = {0.1,2,3} with w = 3. It 
can be verified that the DK-conditions are satisfied in this case. 

Since Q1 = 17787, Q 2  = 12584, and Q 3  = 15288, 
and Q = 1849848, if bl = 70, b2 = 114. and b3 = 98 
are chosen, we have PI = Q l h l  = 1245090, and P2 = 
Q 2 b 2  = 1434576, P3 = Q 3 h 3  = 1498224. Moreover, 
since N1 = [ql / (k lR1)1 = 9, Nz = [42/(k2R2)1 = 7 ,  
and N3 = [ q 3 / ( k 3 R ~ ) 1  = 9, we have S I  = PlN1 mod 
Q = 106722, 5-2 = P2N2 mod Q = 792702, and s3 = 
P3N3 mod Q = 535080. In other words, a vector S = 
(106722,792792.535080) is obtained. 

Now, we assume that user A wants to send a message 
M ,  say represented by binary string 111101. Let M be 
broken up into three submessages with length 2-bit; Le., 
M = (11,11,01) or A4 = ( m l . n , 2 , m 3 )  = ( 3 , J . l )  in 
decimal representation. il also computes C = (ml ,  r r L Z , m 3 )  * 
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(s1,s2.s3) = 3233622 and sends the integer C to B instead 
of sending the original message M .  

When B receives the integer C ,  he can reveal the original 
message Mby applying (3) on the received integer C. He will 
obtain 

7131 = LklC/ql] mod kl  
= 10; x 3233622/104] mod 6 
= Ll9401732/104J mod 6 

= 186555 mod 6 = 3,  

m 2  = Lk2C/q2] mod k2 

= 18 x 3233622/137] mod 8 
= 125868976/147] mod 8 

= 175979 mod 8 = 3 .  

m3 = Lk3C/q3] mod kg 
= 17 x 3233622/121] mod 7 
= 122635354/121] mod 7 
= 187069 mod 7 = 1. 

That is, (ml? m2,7n3) = ( 3 , 3 ,  l ) ,  or the corresponding binary 
strings (11.11. Ol), is obtained. By concatenating the three 
submessages together, the original message M = (111101) is 
thus revealed. 

Iv. SECURITY OF THE CRYFTOSYSTEM 

In this section, we investigate the security of the proposed 
method. Since there exists no technique to prove that a given 
encryption scheme is absolutely secure, the only approach 
available for us is to see whether anyone can think of a way to 
break it [21]. In the following, we examine some possible at- 
tacks on the cryptosystem from the viewpoint of a cryptanalyst. 
Two possibilities are considered. First, the cryptanalyst tries 
to decipher an intercepted ciphertext. Second, the cryptanalyst 
does not decipher a ciphertext directly, but tries to determine 
the secret decryption key. With this key, he will have the same 
capability as the legitimate message receiver for deciphering 
messages. 

A.  Brute Force for Deciphering the Ciphertext 

With the publicly known encryption key S and the inter- 
cepted ciphertext C, a cryptanalyst may try to decode the 
Step 1 in Algorithm 3.3 without knowing the private key PRb 
of the legitimate receiver. To decrypt the ciphertext in this 
case, he has to solve the following problem. For convenience, 
we call it the linear Diophantine equation problem. Let S = 
{ s l  : 1 = 1 , 2 , .  . . . n} be a set of given positive integers 
and C be a positive integer. The linear Diophantine equation 
problem is to determine a sequence of nonnegative integers, 
M = (rnl,mz ,....m,), such that 

&,s, = c. 
2=1 

We shall prove that the linear Diophantine equation problem 
is NP-complete. It can be reduced from the integer knapsack 
problem, which has been proved to be in the class of NP- 
completeness [8]. For better understanding, we present the 
integer knapsack problem briefly here. 

Integer Knapsack Problem [a]: Given an ri-tuple S of pos- 
itive integer, S = (SI. s 2 ,  . . . , ,s7,), and two positive integers e 
and f, determine whether there is a sequence of nonnegative 
integers, M = (ml.  r n 2 , .  . . . mT1), such that 

71 

and such that 

n 

a = 1  

Theorem 4.1: The linear Diophantine equation problem is 
NP-complete. 

Proojl Suppose that there exists an algorithm, called 
procedure X(S, C), with inputs S and C‘, and output “yes” or 
“no,” which can solve the linear Diophantine equation problem 
in polynomial time. By applying procedure X ( S ,  C), we can 
also solve the integer knapsack problem in polynomial time. 
Procedure I K ( S .  e ,  , f )  is as follows: 

procedure I K ( S ,  e .  f )  
boolean : flag 
for I = t‘ to f do 

endfor 
if flag = true then print (’there exists a solution’) 
else print (’there is no solution’) 
endif 

if X(S, I )  = ”yes” then flag = true 

endprocedure 

Therefore, the integer knapsack problem is reduced to the lin- 
ear Diophantine equation problem with the reduction process 
done in polynomial time. Finally, using the fact that the linear 
Diophantine equation problem is in NP and the fact that the 
integer knapsack problem is NP-complete, we have that the 
linear Diophantine equation problem is NP-complete. 0 

B. Brute Force to Reconstruct the Secret Decryption Key 

On the other hand, a cryptanalyst may not be interested in 
deciphering the intercepted ciphertext. He may try to reveal the 
decryption key that is kept private by the receiver. Knowing 
this secret key, he will be able to decipher any message sent to 
the receiver as he wants. Nevertheless, how can he determine 
the private decryption key? That is, how can he reconstruct the 
secret key by knowing the public key? Specifically, he has to 
solve the following problem: Given rt integers s1: s2,. . . , snr 
find the corresponding n pairs ( ql , k1 ), ( q2,  k 2 ) ,  . . . ( qn , I C n ) .  
We assume that the key generilting procedure is known to 
him. From Step 2 to Step 4 in Algorithm 3.1, since s; = P;N; 
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mod Q and P, mod q, = R,, he can deduce that s, E R,N, 
(mod q, )  for i = 1 .2 , .  . . . n. In other words, the following 
equations are obtained: 

where 

R; = q; mod I C ; ,  1 5 *i 5 n. (8) 

Equation (8) can be rewntten as 

s,  = q , x ,  + R, [q,/(IC,R,)1, for some z,. 1 5 z 5 n. (9) 

Let v, = [qz / ( /czRz) l .  Then v, - 1 < y,/(k,&) 5 w, and 
IC,&(u, - I )  < q7 5 IC,R,u,. We have 

qz = k ,R , (vz - l )+yr ,  with 15 y p  5 k,R,. .1 5 z _< n. (10) 

Substituting (10) into (9), we obtain the following equations 

k,R,(v, - l ) ~ ,  + yZzt  + R,w, - S, = 0 

with 

Equation (1 1) is a system of n Diophantine equations with 
degree 4 and has variables ki,  &, v;, xi, and yi, for 1 5 i 5 n. 
Our job of breaking the cipher system consists of the following 
steps: 

Step 1. Find I C ; ,  Ri, u;, xi, and yi satisfying ( l l ) ,  for 
l l i < n .  

Step 2. Calculate qi by using (10). 
Step 3. Check whether pi’s are relatively prime. If they 

are not, go to Step 1. Otherwise, we have found 
at least one possible solution in the form of 

Step 4. Randomly generate a message M = 
1(ml:rr i2 ,  .. . ! 7 n n ) .  Encrypt hl by the Step 4 
in Algorithm 3.2 into an integer C. 

Step 5. Decrypt C into M” by Step 1 in Algorithm 3.3 
using the TL pairs ( ( 4 1 ,  h), ((12, k 2 ) ; .  -,(qn! I C n ) )  
obtained. 

Step 6. If MI‘ and the M generated in Step 4 are equal, 
stop; otherwise go to Step 1 again. 

Up to now, there seems to be no easy way of executing Step 
1 (solving a Diophantine equation with degree 4). Even if we 
succeed, there is no guarantee that the qi’s found by us are 
relatively prime to one another. Therefore, it seems difficult 
to break our system in this way. 

l:(ql, kl)>(QZ. w. ‘ ’ .,(qn, kn)). 

by the following exhaustive searching steps. 
Step 1. Compute t i ,  for i = 1: 2. ...: n, as follows 

s 2 :  ’ .  . , sa-l! Sifl,.. ’ , s n )  ti = 
gcd(s1, ~ 2 ,  ... . ~ - 1 ,  s;, si+i,.  .. , s,) 

where gcd denotes the greatest common divisor. 
Step 2. Compute r;j  = j . si mod t i ,  for j = 1 ,2 , .  . . ~ w. 

and i = 1,2,...,n, , where 7u = 2” - 1 if each 
submessage is of length b bits. 

Step 3. Compute hi = C mod f ; ,  for i = I ,  2, . . ,71.  

Step 4. Search h; for i = l,Z,...,n, , from the set 
{ r l ; , T z i  , . . . , rwi} .  If h; = r k i ,  then m,; = k .  

From the above procedure, n i i  seems to be deducible 
from C and (SI, ~ 2 , .  . . , sn). However, if we decompose the 
message into submessages of length 100 bits each; Le., b = 
100, then w = 21°0 - 1. This number has magnitude of value 
about lo3’. If we use a computer that can test lo6 numbers 
per second. It requires about 2.7 x years to complete the 
search for each hi. The Step 4 of exhaustive searching in the 
above algorithm will be extremely impossible. 

v. CONCLIJSION AND DISCUSSION 
A new public-key cryptosystem is investigated in this paper. 

The motivation of this attempt is trying to use real numbers 
for its dense property. However, if real numbers are used 
as keys, several disturbing problems, such as representation 
and precision will be encountered. With the help of integer 
functions, the possibility of using an integer as a key is 
increased significantly. That is, for a cryptanalyst who tries 
to break the cipher, he has to conduct an exhaustive search on 
a long list of integer numbers. 

Further, we would make some discussion on the parameters 
used in the presented cipher scheme. By using a concept 
similar to that of block cipher [ 5 ] ,  a sending message of length 
n b  bits will be broken into n pieces of submessages with 
each b bits long. The time complexity needed to compute 
y;’s will be proportional to n2 as R increases [ 2 ] .  When 
q i ’ s  are determined, ki’s can be chosen from 2) and 3) in 
the DK-conditions. Thus the time required to choose ki’s is 
proportional to n. Further, the time needed to find hi’s grows 
at the rate of n(1ogn) when qi’s and ki’s are determined. 

From Section IV, we know that the execution time required, 
for a cryptanalyst to solve the corresponding problems, in- 
creases when n increases. Theoretically, the security of the 
presented scheme will be increased as 71 is large. For inatance, 
when n = 100 and b = 100, it will be rather difficult to solve 
the problems presented in Section IV. Further. let us estimate 
how large the C value is. We consider that the number of 
bits needed to store the product of the first TL prime numbers 
is proportional to n(logn,). Then the number of bits required 
to represent si is proportional to n(1ogn). In other words, 
the number of bits to represent a C value is proportional to 
b + n(1og n) + (log n),  where b is the number of bits in each C. Attack Due to the Greatest Common Divisor of s i ’ s  

Another ciphertext attack is to observe the greatest com- 
mon divisor of st’s. On intercepting the ciphertext C and 
the publicly known s1 , sa,. . . , sn, the cryptanalyst hopes to 
decrypt C into M as in the Step 1 of Algorithm 3.3. Since the 
cryptanalyst has no legitimate ( q z ,  k,)’s, m, may be obtained 

submessage. Since a sending message is of length b n  bits. We 
conclude that the ciphertext expansion rate of the presented 
scheme is O(1og n). 

Finally, we would like to point out that the advantage of the 
presented scheme is that the encryption and decryption steps 
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are relatively easy. For encryption, it requires n multiplication [24] S. P. Tung, “Computational complexities of diophantine equations with 
operations and n addition operations. For decryption, n mul- 
tiplication operations and n modulus operations are needed. 

parameters,” J.  Algorithms, vol. 8, 1987, pp 324-336. 
[25l S. P. Tung, “Complexity of sentences over number rings,” SIAM J.  

Comourina. vol. 20. No. I .  Februarv 1991. DD. 126143. 
Thus, from the viewpoint of computation time, our algorithm 
is rather efficient. 

1261 H. 6. W i l h n s ,  “A modification of fhe RSA’public-key encryption pro- 
cedure,” IEEE Tram. Information Theon, vol. 26, 1980, pp. 726729. 
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