
Extending Grammars and Metamodels for Reuse
The Reuseware Approach

Jakob Henriksson Florian Heidenreich Jendrik Johannes
Steffen Zschaler Uwe Aßmann

Technische Universität Dresden, Fakultät Informatik, D-01062
Dresden, Germany

{jakob.henriksson|florian.heidenreich|jendrik.johannes|
steffen.zschaler|uwe.assmann}@tu-dresden.de

February 28, 2008

Preprint of paper published in
IET Software Special Issue on Language Engineering, 2008.

Abstract

The trend toward domain-specific languages leads to an ever-growing plethora
of highly specialized languages. Developers of such languages focus on their spe-
cific domains rather than on technical challenges of language design. Generic
features of languages are rarely included in special-purpose languages. One very
important feature is the ability to formulate partial programs in separate encapsu-
lated entities, which can be composed into complete programs in a well-defined
manner. This paper presents a language-independent approach for adding useful
constructs for defining components. We discuss the underlying concepts and de-
scribe a composition environment and tool supporting these ideas – the Reuseware
Composition Framework. To evaluate our approach we enrich the (Semantic) Web
query language Xcerpt with an additional useful reuse concept—modules.

1 Introduction
The ever-increasing complexity of modern-day software development asks for the con-
stant development of new languages to support specific tasks. Domain-specific lan-
guages (DSLs) are examples of such languages. For instance, the Semantic Web [1] is
an area where many specialized declarative languages have been defined to precisely
capture meaning and enable accurate description of data on the web. Examples of Se-
mantic Web languages include ontology languages (e.g. OWL [2], RDF(S) [3], SWRL
[4]) and query languages (e.g. XQuery [5], SPARQL [6], Xcerpt [7]). Software model-
ing is another important area where many declarative languages exists and where many
DSLs have appeared, especially around the Unified Modeling Language (UML) [8].

1

Light-weight dedicated composition system (LWDCS)

Tools

P1 P4P3P2Programs Output

Core language

P1
P2

P5

Define components Compose programs
Improved

Abstraction
Level

Composition
layer

Core layer

Figure 1: Layered composition system for additional abstractions.

These languages have been carefully designed and are very capable in their do-
mains of operation. The language designers focus on the domain-specific concepts
the languages are meant to support and develop them driven by specific requirements
and use-cases. However, much remains to be done regarding the technical issues of
language design. For example, some of these languages are lacking good concepts
for abstraction and encapsulation; they have insufficient support for defining reusable
components. On the other hand, it is well-known that there are many benefits to be har-
vested from component-based software development and this method is considered a
vital part of large mature systems [9]. Yet, providing good support for abstractions and
reuse concepts can be a quite complex task in its own right. Therefore, such support
is often initially neglected when new languages are being developed and only added as
an afterthought or at later stages in the development of the languages.

On the other hand, many fundamental abstraction concepts have a lot of proper-
ties that are independent of concrete languages. Hence, one can consider providing
component-based development support on a language-independent level, without ini-
tially tampering with the specifics of each individual language. This has the advantage
that the same composition techniques can be reused for many languages. More impor-
tantly, we claim that one can create a general tool framework for enabling component-
based development for a number of languages lacking such capabilities. Using this gen-
eral framework can make developing reuse abstractions for different languages more
cost-efficient and convenient than having to augment each language individually.

Users of such augmented languages should, however, not have to deal with the
technical intricacies of the reuse abstractions. Therefore, we aim for a light-weight
dedicated composition system (LWDCS1) to be layered on-top of a particular core lan-
guage and its associated tools that realize the required abstractions (see Figure 1). For
example, in Figure 1, program P1 is an instance of a particular (core) language and
usable with the associated tools (e.g. editors, compilers, interpreters etc.). Using
special operators from the LWDCS, this program can be decomposed into reusable
components. This has the advantage that some of the components can be reused in

1Pronounced low-deeze.

2

different programs (e.g. program P5). The composed programs are instances of the
core language and can be used with the core-language specific tools. The composi-
tion system is dedicated because it addresses issues for a single targeted language, and
light-weight since once developed and deployed it is operable without its users directly
being aware of it. The dedicated composition system allows for thinking of the new
and richer abstraction constructs as first-class entities in the underlying language. Such
a dedicated light-weight composition system can be developed using our composition
framework—the Reuseware Composition Framework2.

In our work we are mainly addressing declarative languages used in software mod-
eling and on the Semantic Web. It should be noted that it is not straight-forward to
transfer existing composition techniques and concepts to these declarative languages,
since existing approaches are often based on black-box component models. For declar-
ative languages, a pure black-box component model approach cannot be taken where
components are used and composed according to well-defined inputs and outputs. One
reason is that declarative languages are not only used to formulate encapsulated pro-
cessing entities, like in many general-purpose languages, e.g. C++, C#, Java. Even
though users of the language want to view declarative components as black boxes, the
underlying composition technology cannot always do so. In order for declarative com-
ponents to be reusable and deployable in different contexts, they need to be opened
up such that they can properly be adapted into the new contexts. This is also true for
any language where components are described on source-code level, e.g. as in aspect-
oriented programming in Java. For a general-purpose language such as Java, one may
view components at any abstraction level ranging from white-box to black-box. For
most languages used in software modeling and on the Semantic Web, however, we do
not have much choice.

In this work, the component model of a LWDCS, that is, the reuse abstraction
that is deployed on top of a core language, is a gray-box component model based on
program fragments. The foundations are provided by Invasive Software Composition
(ISC) [10], a composition approach attractive for two reasons:

1. The provided composition technique is very general and is applicable to many
different languages and situations.

2. It is flexible wrt. the granularity of components and symmetry of composition
[11] and can, thus, capture and realize many well-known composition approaches
(e.g. aspect orientation [12] and hyper space composition [13]).

Thus, the generality of ISC as described above gives us an appropriate foundation
to build upon and to specialize according to different situations and needs.

In this paper we describe and discuss the following issues:

• We give a formal explanation of how the gray-box, fragment-based, composition
technique provided by ISC can be made available for arbitrary languages.

• We present a framework and tool that can make the general composition tech-
nique available for an arbitrary language given its grammar or metamodel.

2Available at http://www.reuseware.org.

3

http://www.reuseware.org

• We describe how the framework allows for specific requirements of certain lan-
guages to be addressed by developing special-purpose composition operators
dealing with these issues.

This paper is an extension of our previous work [14, 15]. Here we extend our work
by making the full connection between language extensions (to enable the composi-
tion technique from ISC) and dedicated composition systems (LWDCS). This includes
explaining how specialized composition operators may be developed for specific lan-
guages and how component models should be refined to accommodate them.

1.1 Problem Scenarios
In the following we give examples of important issues of DSLs in the fields of the
Semantic Web and in software modeling that need to be addressed in the near future.
These are also issues we address using the techniques and tools presented in this paper.

The Semantic Web

At the core of the Semantic Web lies a notion of duality: data annotation and its ac-
cess. Annotating data with semantical information results in the possibility for software
agents to process and to make better sense of the otherwise “dead” data. Accessing the
annotations allow for the agents to draw conclusions and reason over the underlying
data in order to make decisions, for example when realizing complicated web-services.
To annotate data, metadata languages are needed (ontology-based languages), and for
accessing the data query languages must be available. As the use of semantic informa-
tion on the web becomes common-place, ontologies will inevitably grow in size and
queries will become more complicated due to the existence of, and the need to integrate
and process, many different data schemata, in contrast to the single-schema situation in
traditional databases.3 At the same time, an incredible amount of different languages
are being developed for these different purposes, but few actually bother to provide suf-
ficient levels of abstraction and reuse constructs as first-class concepts. To tackle this
situation, a more generic approach of realizing component-based development must be
made available on the Semantic Web.

Software modeling

As Model-driven Software Development (MDSD) are playing an increasingly impor-
tant role in developing software systems it is crucial to provide means to compose
models and transform them, both from more abstract to less abstract representations
(vertically) and to different representations on the same level of abstraction (horizon-
tally). It is obvious that new languages and tools for transformation, composition and
weaving of models are needed. Transformation languages like Query / View / Trans-
formations (QVT) [16] and ATL [17] are addressing these needs. Unfortunately, these
languages do not provide built-in concepts for reuse, something which is vital to tackle
complexity. This holds especially true in product-line engineering where models are

3The Web is inherently heterogeneous.

4

utilized for expressing core and variable parts of software systems. The models are
growing in size and are often formulated upon different metamodels. While the first
issue demands for increased scalability, the latter results in more complex model trans-
formations. One feature of metamodels and transformation languages that alleviates
complexity in models and model transformations is built-in support for reuse. There-
fore it is useful to introduce a generic approach for realizing reuse in a—preferably—
language-independent way.

The remainder of this paper is structured as follows. Section 2 deals with prelim-
inaries, motivating why we build upon ISC and introduces Xcerpt in more detail. In
Section 3 we explain how we can enable the ISC composition technique for any formal
(context-free) language through grammar extension. In Section 4 we make the connec-
tion between such extended language grammars and component models in dedicated
composition systems realizing abstractions for languages. As an example of such an
abstraction we introduce modules into Xcerpt. To properly realize such a dedicated
composition system we explain what dedicated composition operators are in Section 5
and describe how they can be defined. Section 6 presents the implemented framework
which can be used to develop the dedicated composition systems. Finally, in Section 7
related work is referenced and Section 8 concludes the paper and presents directions
for future work.

2 Preliminaries
Before we describe our formalism in Section 3, we give a brief introduction to ISC and
motivate why we build upon, and extend, ISC. As we are going to apply and demon-
strate our techniques on the Web query language Xcerpt, we introduce the language in
the second part of this section.

2.1 Invasive Software Composition
ISC is a grey-box composition approach where components—or fragment compo-
nents4—are static, source-code entities with well-defined interfaces using the notion
of hooks. A hook is essentially a location in a component which may be replaced
by another component by using ISC composition operators. As such, the hooks of
a component define its composition interface. Intuitively, the replacement of a hook
with some existing component constitutes the basic composition technique of ISC. This
rather loose and general composition technique has both advantages and disadvantages.
The advantage is that the composition technique is very general and realizable for any
language used to author the components. In particular, in Section 3 we describe how
an arbitrary language can be made subject to this composition technique. The disad-
vantage is that the technique is primitive in its description, that is, application of the
technique only constitutes a low-level composition step. The realization of a needed
abstraction will often require a set of such low-level composition steps to be executed

4We will make no difference between the terms fragments and components in this paper—a component
is a fragment component (or simply fragment).

5

as a unit in a high-level composition step. That is, describing compositions on the level
of ISC is cumbersome and provides no level of reuse of commonly used operations.
We will return to this issue in Section 4 where we discuss composition operators. In
particular, we will address and explain how we can remedy this short-coming in Sec-
tion 5. As such, we exploit the versatility of the available composition technique, but
improve upon its limitations.

2.2 Xcerpt
Xcerpt is an XML and RDF query and transformation language. In contrast to simi-
lar languages like XQuery [5] and XSLT [18], Xcerpt follows the logic programming
paradigm (rule-based and declarative) and clearly separates query and construct parts
of programs.

An Xcerpt program consists of a finite set of Xcerpt rules. The rules of a program
are used to derive new (or transform) XML data from existing data (i.e. the data being
queried). In Xcerpt, two different kinds of rules are distinguished: construct rules and
goal rules. Construct rules are used to produce intermediate results and takes the form:
CONSTRUCT head FROM body END. Goal rules make up the output of programs
and looks like: GOAL head FROM body END. Intuitively, the rules are to be read:
if body holds, then head holds. Formally, head is a construct term and body is a
set of query terms joined by some logical connective (e.g. or or and). A rule with an
empty body is interpreted as a fact, i.e. the rule head always holds.

While Xcerpt works directly on XML data, it has its own data format for model-
ing XML documents. Xcerpt data terms model XML data. Data terms use a square
bracket notation but there is a one-to-one correspondence between the two notions.
The data term book [title ["White Mughals"]] and the XML snip-
pet <book><title>White Mughals</title></book>, for example, model
the same data. The data term syntax makes it easy to reference XML document struc-
tures in queries.

Xcerpt query terms are used for querying data terms and intuitively describe pat-
terns of data terms. Query terms are used with a pattern matching technique to match
data terms.5 Query terms can be configured to take partiality and/or ordering of the
underlying data terms into account during matching. Square brackets are used in
query terms when order is of importance, otherwise curly brackets may be used. E.g.
the query term a [b [], c []] matches the data term a [b [], c []]
while the query term a [c [], b []] does not. However, the query term
a { c [], b [] } matches a [b [], c []], since ordering is said to be
of no importance in the query term. Partiality of a query term can be expressed by
using double instead of single brackets. Query terms may also contain logic vari-
ables. If so, successful matching with data terms results in variable bindings used
by Xcerpt rules for deriving new data terms. For example matching the query term
book [title [var X]]with the XML snippet above results in the variable
binding {X / "White Mughals"}. Construct terms are essentially data terms
with variables. The variable bindings produced by query terms in the body of a rule

5Simulation unification, see [19] for details of this technique.

6

can be applied to the construct term in the head of the rule in order to derive new data
terms. In the rule head, construct terms including a variable can be prefixed with the
keyword all to group the possible variable bindings around the specific variable.

1GOAL
authors [var X]

3FROM
book [[author [var X]]]

5END

7CONSTRUCT
book [title ["White Mughals"], author ["William Dalrymple"]]

9END

Listing 1: The construct rule defines some data about books and their authors and the
goal rule queries this data for authors.

An example Xcerpt program querying a bibliography fact base is shown in Listing
1, resulting in the data term authors ["William Dalrymple"]. For a more
complete and in-depth introduction to Xcerpt, please consult [7].

The reuse abstraction directly available in Xcerpt is on the level of rules. Rules
can be chained together where the output from one rule is used as input to another. As
such, rules may be reused and configured together in new ways. Other kinds of reuse
are not offered. For example, there is no way to reuse query terms or any other smaller
syntactical entities supported by the language. Neither is it possible to reuse larger sets
of rules, each of which contribute to supply some required service. We will remedy this
situation by introducing a new abstraction in Xcerpt in Section 4.1: modules, which
will allow Xcerpt programmers to define reusable rule sets. The module concept will
be offered by a LWDCS, based on the fragment component model of ISC.

3 Formalism – Grammar Extensions for Composition
In this section we describe how it is possible to enable the versatile composition tech-
nique of ISC for any formal language. This means that we define how a language can
be extended as so to be able to describe fragments to allow for the technique to operate
on them.

Before defining our notion of fragments and how they can be specified in more de-
tail, we briefly look at context-free grammars, as the principal formalism for describing
the syntax of formal languages. Fragment components and ISC can also be used for
languages based on metamodeling, but initially we focus on grammar-based languages
to simplify our explanations.

Formally, a context-free grammar (CFG) is a 4-tuple [20]:

G = (Vt, Vn, Pr, S)

where Vt is a finite set of terminals, Vn a finite set of non-terminals, Pr a finite set of
production rules Vn → (Vt ∪ Vn)∗ and S ∈ Vn the start symbol. Each production
rule Vn → (Vt ∪ Vn)∗ can be used to rewrite Vn by (Vt ∪ Vn)∗. A language L is
context-free if there exists a context-free grammar G that generates it. Intuitively, a

7

context-free grammar G of a programming language L defines a (possibly infinite) set
of programs that conform to G. Most programming languages can be defined by a
context-free grammar, and we only deal with such languages here.

1XcerptProgram = XcerptStatement+;
XcerptStatement = GoalQueryRule | ConstructQueryRule;

3

ConstructQueryRule = "CONSTRUCT", ConstructTerm, ("FROM", QueryTerm)?,
5"END";

GoalQueryRule = "GOAL", ConstructTerm, ("FROM", QueryTerm)?,
7"END";

9QueryTerm = StructuredQt | ...
ConstructTerm = ...

Listing 2: A selection of the production rules for Xcerpt.

EBNF [21] is a textual notation for context-free grammars. As an example, the
production rules Pr of a context-free grammar describing the syntax of a subset of the
Xcerpt language is given in Listing 2 in EBNF syntax (based on a grammar given in
[22]). The symbols ? and | have their standard EBNF meaning. The start symbol
for this grammar is assumed to be XcerptProgram. Intuitively, this means that
any valid program of the grammar can be derived starting from the symbol Xcerpt-
Program by successively applying production rules until no more non-terminals are
contained in the resulting string.

A program P of a language L defined by the grammar G is a set of syntactically
well-formed statements wrt. G. More specifically, the program P can be derived from
G using its defined production rules starting from the start symbol S. We introduce the
notion of grammatical types, which forms the foundational formalism for our notion
of type-safe compositions. We therefore say that P is of grammatical type S.6

Definition 1 (Grammatical types) Given a string T and a context-free grammar G,
every non-terminal vn ∈ Vn that T can be derived from is a grammatical type (wrt. G)
of T .

As a consequence, the grammatical type of any program derived from G is S,
the start symbol of G. For example, for the grammar in Listing 2, we say that the
type of a valid program is XcerptProgram. According to Definition 1, strings can
have more than one grammatical type. In particular this is the case when a gram-
mar G contains production rules with choices, for example, on Line 2 in Listing 2
where the non-terminal XcerptStatement is defined. A string that can be derived
from the non-terminal GoalQueryRule can also be derived from the non-terminal
XcerptStatement.

As a further example, consider the program in Listing 3. The program queries
a bibliography database biblio.xml, extracts information about titles and authors
and then constructs the result in a specific way, as seen in the construct term of the goal
rule. The string representing the program can be generated starting from three different
non-terminals in the grammar in Listing 2: XcerptProgram, XcerptStatement,
GoalQueryRule. Hence, its set of grammatical types includes these non-terminals.

6Whenever we refer to the type of a fragment, we shall mean its grammatical type.

8

GOAL
2results [all result [

var Title, all var Author
4]]

FROM
6in { resource { "file:biblio.xml", "xml" },

bib [[book [
8var Title -> title [[]],

authors [[
10var Author -> author [[]]

]]
12]]]

}
14END

Listing 3: An Xcerpt program querying a bibliography database for authors and titles.

In ISC, programs are composed from fragments of code, or so-called partial pro-
grams. Partial programs are not complete programs in themselves, but can describe
specific concerns in more complete programs. Partiality of a program can stem from
two different sources.

in { resource { "file:biblio.xml", "xml" },
2bib [[book [

var Title -> title [[]],
4authors [[

var Author -> author [[]]
6]]

]]]
8}

Listing 4: A partial Xcerpt program: a query term.

First, given a grammar G one may specify partiality of a program P wrt. G by
exchanging the start symbol S of G to S′ ∈ Vn \ {S}. By using a start symbol
other than S, we effectively derive a new grammar G′, defining a sub-part of a valid
G-program. Such a partial program is, consequently, of grammatical type S′. For
example, Listing 4 is a partial program wrt. the original Xcerpt grammar. In fact it is
the Xcerpt query term from Listing 3 and the type QueryTerm belongs to its set of
grammatical types. Therefore, it is a valid program wrt. the original Xcerpt grammar
where the start symbol has been changed to QueryTerm.

Second, partiality of a program can also come from within a specific sub-part as it
was defined above. A partial program may also be underspecified “inside”; that is, at a
deeper nesting level. For example, a partial program consisting of a goal rule in Xcerpt
might be underspecified by leaving out the query term, thus allowing the rule to be
configurable wrt. the query term (see Listing 5). To allow for such underspecifications,
we introduce the notion of a variation point. A variation point is a place-holder for
some partial program that is still unspecified.

Definition 2 (Variation point) A variation point v(vn, I) represents the uninstanti-
ated non-terminal vn ∈ Vn from a grammar G. The grammatical type of a variation
point v(vn, I) is vn. I is an identifier associated with the variation point.

Listing 5 shows the goal rule from Listing 3, where we have replaced the concrete

9

query term with a variation point for the non-terminal QueryTerm: <<myVarPoint
: QueryTerm>>. This allows us to vary the query term used in this rule, or seen
another way, allows us to reuse the desired query term in other rules. Here we use the
character sequences << and >> to markup the variation point and myVarPoint is the
identifier for the specific variation point.

GOAL
2results [all result [

var Title, all var Author
4]]

FROM
6<<myVarPoint : QueryTerm>>

END

Listing 5: An underspecified partial Xcerpt program with one variation point.

To enable processing of partial programs containing variation points, we need to
extend their grammar to include syntax for the variation points. Therefore, we intro-
duce variation point syntax as non-terminals (we use Vv to denote a set of variation
points):

Definition 3 (Context-free reuse grammar) A context-free reuse grammar for a con-
text-free grammar G = (Vt, Vn, Pr, S) is a context-free grammar

GI = (Vt, Vn ∪ Vv, PrI , SI)

transformed via the function GI = τ(G) where SI ∈ Vn (possibly SI 6= S) and for
each vp ∈ Vv there is a non-terminal n ∈ Vn such that vp = v(n, I), v is a variation
point for n. For any reuse grammar GI , we call G the core grammar of GI .

τ fulfils two properties. First, τ is preservative, meaning that any string that can
be derived from SI wrt. G can still be derived from SI wrt. grammar GI . Second, τ
is type preservative. This means that τ transforms the production rules Pr of G such
that each vp ∈ Vv is introduced in rules of PrI with the requirement that vp is only an
alternative for its corresponding n ∈ Vn (according to vp = v(n, I)).

The transformation function τ , thus, extends a core grammar for a language L into
a corresponding reuse grammar describing a language used for writing partial programs
(fragments) of L. The composition technique of ISC can thus be applied to such frag-
ments. τ is a generalizing grammar transformation in the sense of [23]. Intuitively, if
variation points for some grammatical type are introduced, we only extend the produc-
tion rules of the core grammar such that the variation points become valid alternatives
for partial programs of that type.

Thus, a partial program may be specified by freely choosing a start symbol SI ∈ Vn

and using a set Vv of variation points for a subset of Vn.
Listing 6 is provided as an example of how the production rules of the (core) Xcerpt

grammar from Listing 2 are transformed via τ to allow for replacing a concrete query
term with a variation point. In the production rules defining ConstructQueryRule
and GoalQueryRule, the reference to QueryTerm is replaced by a grammatical
choice. Such a choice allows for the specification of a variation point—v(QueryTerm,I)—
as an alternative to a concrete query term.

10

1XcerptProgram = XcerptStatement+;
XcerptStatement = GoalQueryRule | ConstructQueryRule;

3

ConstructQueryRule = "CONSTRUCT", ConstructTerm,
5("FROM", (QueryTerm | v(QueryTerm,I)))?, "END";

GoalQueryRule = "GOAL", ConstructTerm,
7("FROM", (QueryTerm | v(QueryTerm,I)))?, "END";

9v(QueryTerm,I) = "<<", I, ":", "QueryTerm", ">>";

11QueryTerm = StructuredQt | ...
ConstructTerm = ...

Listing 6: Reuse grammar production rules including a variation point for
QueryTerm.

In general there are two basic approaches for deriving a context-free reuse grammar
GI from a context-free core grammar G via τ :

1. Introduce variation points in Vv of GI for every non-terminal in Vn of G (i.e.
|Vn| = |Vv| and ∀vn ∈ Vn : ∃v(vn, I) ∈ Vv). In this case, we call GI a
universal extension of G.

2. Introduce variation points for a well-chosen subset of non-terminals in Vn of G
(i.e. Vv ⊂ Vn). In this case, we call GI a tailored extension of G.

We argue that tailored extensions are more interesting since they can provide com-
position opportunities for specialized purposes. Furthermore, they disallow the vari-
ability of certain constructs in fragments, thus supporting encapsulation. We will make
use of such a tailored extension when we develop a dedicated composition system for
Xcerpt. We will return to these issues in Section 4.

Definition 4 (Fragment) A fragment is a partial program wrt. a context-free grammar
G and a valid program wrt. a context-free reuse grammar GI = τ(G). The grammati-
cal type of such a fragment is SI .

The variation points contained in a fragment form its composition interface. Varia-
tion points in such a composition interface can be subject to composition, that is, they
can be replaced by other fragments. The composition technique used during compo-
sition is subject to type restrictions. That is, it is enforced that the type of a variation
point and the type of the fragment to replace it, match. Definition 5 specifies what type
restrictions are enforced and what matching of grammatical types mean. It should be
clear that the types involved are derived from the underlying core grammar and its set
of non-terminals.

Definition 5 (Type safety) Let G be a context-free core grammar, F1 and F2 frag-
ments valid wrt. GI = τ(G) and v(vn, I) a variation point in F1. Let GT2 ⊆ Vn be
the set of grammatical types of F2. Then the composition technique can be applied to
F1, F2, and v(vn, I), iff vn ∈ GT2; that is, if the grammatical types of the variation
point and the replacement fragment match.

11

Anchor Hook

Xcerpt L3 …

Upper-level
component
model

Reuse
languages Java

Slot

Variation
Point

Figure 2: A common upper-level component model, reused across languages and al-
lowing for language-independent composition executions.

For example, the grammatical types of the query term in Listing 4 are {QueryTerm,
StructuredQt}. Replacing the variation point in Listing 5 with the fragment in
Listing 4 is type safe. This is the case since the type of the variation point belongs to the
set of grammatical types of the fragment (QueryTerm ∈ {QueryTerm,StructuredQt}).
Trying to replace the same variation point with the fragment in Listing 3 will result in a
type error (since QueryTerm 6∈ {XcerptProgram,XcerptStatement,GoalQueryRule}).
By enforcing type safe composition, it is guaranteed that the result of a composition
will always be a valid partial program wrt. the underlying core grammar.

3.1 Role of Metamodels for composition
EBNF is just one notation for describing (context-free) formal languages. Another
formalism for describing languages is provided by metamodeling. Languages such
as EMOF [24] and Ecore [25] can be employed for this purpose.7 From a language
specification perspective, describing languages in EBNF and its textual syntax is ar-
guably easier, but metamodeling provides higher expressiveness and more flexibility.
For example, modern tools and software development frameworks such as the Eclipse
Platform8 provide good support for metamodeling, model-based code-generation for
parsers etc. Metamodeling also provides the possibility to reference upper-level meta-
models where common concepts can be reused across metamodels (see Figure 2).

Figure 2 shows upper-level component model modeling concepts reused in every
dedicated composition system. An example of such a concept is the notion of a varia-
tion point. There are also other refined types of variation points, e.g. slots, hooks, and
anchors. A slot is a variation point that can be replaced by a fragment once. A hook is a
variation point that can be replaced by a fragment multiple times. An anchor is another
kind of variation point for accessing fragments within fragments, a notion important
in model composition (see Section 4.2). The advantage with using upper-level models
is that tools can be implemented where compositions are executed by only inspecting
fragments’ references to the upper-level model. As such, the tooling can partly be re-
alized language independently, a great advantage from an implementation perspective.

7When we refer to a metamodel, we shall mean an EMOF/Ecore metamodel.
8Via the Eclipse Modeling Framework [25].

12

3.1.1 Grammars as Metamodels

To move from grammars to metamodels we need a generation methodology for this
transition. For language descriptions, we make a clear separation between the abstract
and concrete syntax. This is motivated by the fact that several concrete syntaxes can be
mapped to one abstract syntax, which is the case for Xcerpt, for example. Furthermore,
such a separation is convenient since the abstract syntax specification of a language
directly corresponds to its hierarchy of grammatical types. Here, we are going to focus
on abstract syntax.

We choose a two-phased generation approach (a similar approach is presented in
[26]) consisting of a normalization phase and a generation phase.

1. Normalization phase This phase re-writes the grammar in preparation for being
transformed into a metamodel.

(a) Production rules that contain combination of choices and aggregations are
split into several rules, such that each rule either contains only choices (|)
or aggregations (,). This process is also referred to as rule splitting. The
new (non-terminal) constructs are named Aggregation (resp. Choice)
followed by the original construct name and a unique number.

2. Generation phase This phase transforms each kind of production rule in the
normalized grammar into a part of the resulting metamodel.

(a) All rules. Each production rule head (that is, left-hand-side non-terminal)
is translated into a metaclass named after the name of the rule head.

(b) Choice rules. Grammar production rules containing only choices are trans-
lated into inheritance relationships with the rule head metaclass as parent
class.

(c) Aggregation rules. Grammar production rules representing aggregations
are translated into composite aggregations between the right-hand-side meta-
classes and the rule head metaclass as the composite metaclass.9

(d) Terminal rules. If the (non-terminal) symbol corresponds to a set of char-
acter strings, integer values, or boolean values, then an attribute is added to
the relevant metaclass with the corresponding primitive type (i.e. String,
Integer, or Boolean). Otherwise, the symbol is translated into feature-
less metaclass named after the symbol.

All metamodels that result from the above transformation have the following prop-
erties: 1) Inheritance is only utilized to express grammatical types, not for feature
inheritance. No parent metaclasses have features (i.e. attributes or operations). 2) All
aggregations in the generated metamodel are composite aggregations. Hence, every
instance of the metamodel has a tree structure. Figure 3 exemplifies this approach by
showing a metamodel corresponding to the abstract syntax part of the Xcerpt reuse
grammar from Listing 6.

9Since we focus on abstract syntax, sequentiality of aggregations in grammars does not need to be pre-
served.

13

Xcerpt
Program

Xcerpt
Statement

v(Query
Term, I)

Query
Term

+

ChoiceConstruct
QueryRule1

ChoiceGoal
QueryRule1

Goal
QueryRule

Construct
QueryRule

11

Construct
Term

Structured
Qt

1 1

Figure 3: Reuse metamodel corresponding to the (abstract syntax) reuse grammar in
Listing 6 after being transformed according the two-phased grammar-to-metamodel
algorithm.

4 Component Models and Beyond
In Section 3 we introduced the formalism for enabling ISC to be applied to any lan-
guage. That is, we explained how it is possible to extend a language grammar (or
metamodel) such that certain language constructs are variable and their instances can
be left unspecified in reusable components. The composition technique of ISC can thus
be applied to such components.

Composition systems Before introducing composition operators that exploit the com-
position technique that can be made available for arbitrary languages, we re-connect
with the idea of composition systems as introduced in Section 1 and visualized in Fig-
ure 1. Recall that we realize additional abstractions for different languages via compo-
sition.

A composition system can be seen as a triple consisting of a composition language,
component model and composition technique [10]. We shall deal with composition
languages a little later, but as already mentioned, the composition technique we build
on is the one from ISC. The component model must properly describe what components
look like and how they may be accessed. It should be clear that, on the level of ISC, the
required component model for a particular language is captured in the reuse grammar
as formally introduced in Section 3.

We argue that a dedicated composition system should be constructed as a refine-
ment of a generic composition system, where the triple comprising the system is spe-
cialized for the task at hand - indeed tailored (see Figure 4). As can be seen from
Figure 4, the dedicated composition language is adapted for the specialized task and
refined from a more general-purpose language. Furthermore, the dedicated component

14

Refined
language

Dedicated
composition
system

Dedicated
Comp. model

Dedicated
operators

Composition
language

Upper-level
Comp. model

Composition
technique

Generic
composition
system

UseInheritsRefines

Dictates requirements

Figure 4: A dedicated composition system realizing a specific abstraction construct is
created as a refinement from a generic composition system.

model references an upper-level component model where general (invasive) composi-
tion system concepts are modeled. Finally, instead of including a general composition
technique and generic operators in the dedicated composition system, it is shipped with
a set of predefined, specialized, composition operators. We shall now spend some time
discussing the available composition operators in ISC.

Composition operators In order to use components and to put them together into
useful programs (or models), we need composition operators implementing the com-
position technique. ISC distinguishes two primitive composition operators that differ
in how they use the provided composition technique.

1. Bind replaces a slot in a fragment with a suitable fragment once, disabling the
possibility of further applying operators on the slot. That is, the slot is removed.

2. Extend replaces a hook in a fragment with a suitable fragment once, but enables
the possibility to apply other operators on the same hook. That is, the hook
remains in the fragment.

Both primitive operators realize the type-safe composition technique (see Defini-
tion 5).

An implementation of the primitive operators transforms abstract syntax trees (ASTs)
of fragments. In these trees each variation point is a node, and each fragment is a tree
with a clearly identified root node. If the primitive operators are applied on ASTs, that
is, on fragments written in a language that is described by a context-free grammar, then
the realization of the operators can be described as follows:

1. Bind replaces a node in an AST that represents a slot with the root node of a
suitable fragment. Because fragments are always trees, the fragment tree can

15

not be bound to several variation points. Thus, if the same tree is bound several
times, then it is copied.

2. Extend inserts the root node of a suitable fragment as a sibling to the hook node
in a tree. As such, the operator enables the possibility of applying other operators
on the same hook. That is, the hook remains in the fragment. Again, if the same
tree is bound several times, it is copied.

The primitive composition operators can be used in two ways. First, they can be
used in composition programs to describe compositions of fragments. To formulate
such composition programs we need a composition language. Since the primitive op-
erators exist independently of concrete core languages, such a composition language
can be generic. Furthermore, it can assume different forms—for example, it can be
script-like or declarative, either with textual or graphical syntax. Second, they can be
used to realize specific abstraction concepts for certain languages. This is achieved by
using the primitive operators for implementing suitable composition operators in the
dedicated composition system addressing these issues.

Even realizing simple abstractions can require components to be modified and
transformed in several ways and in different locations. The intention of a dedicated
composition system is to allow users to think of the additional abstraction constructs as
first-class entities. Thus, if its realization requires a collective effort by several primi-
tive composition operators, it is of importance to be able to encapsulate that sequence
of operators as an atomic reusable unit. We will call such an atomic unit a complex
composition operator.

The introduction of complex composition operators requires our notion of compo-
nent model to be defined accordingly (see relationship between dedicated operators
and dedicated component model in Figure 4). In particular we need to combine the
notions of a composition program and an expression in the reuse language. In order to
give users the impression of a new first-class construct, complex composition operators
must be invokable directly from a program in the reuse language. Additionally users
must not be required to indicate target variation points as explicit parameters to these
calls. We therefore introduce the notion of inline composition. This means that com-
plex composition operators invoked from a reuse language program implicitly define a
variation point, which they also modify.

Before we look at these issues in detail, we walk through two examples. First, we
present an application of our techniques to Xcerpt. We will introduce the notion of a
module in Xcerpt and explain how this abstraction—the possibility of reusing useful
rule-sets across programs—can be realized using our composition technique. Second,
we show an example of aspect weaving for models.

4.1 Modules for a Web Query Language – Xcerpt
Xcerpt does not, at the time of writing, allow for a set of rules to be collected into
a reusable module, like in other logic programming systems, e.g. XSB10. Here we

10http://xsb.sourceforge.net

16

http://xsb.sourceforge.net

describe how this can be achieved by realizing the module concept as a first-class con-
struct in a LWDCS layered on top of Xcerpt and its query engine (see Figure 1). We
refer to [27] for more details on Xcerpt modules.

MODULE rdfsEngine_subClassOf
2CONSTRUCT

public rdfsengine [
4output [

inferredSubClassOf [
6all subClassOf [var Subclass, var Superclass]

]]]
8FROM

or {
10declsubclassof [var Subclass, var Superclass],

and {
12declsubclassof [var Subclass, var Z],

declsubclassof [var Z, var Superclass]
14} }

END
16

CONSTRUCT
18declsubclassof [var Subclass, var Superclass]

FROM
20public rdfsengine [

input [
22explicitsubclassof [var Subclass, var Superclass]

]]
24END

Listing 7: An Xcerpt module in the file /subclassof.mxcerpt for inferring
implicit subclass-of relationships in an ontology.

Modules allow developers to encapsulate a set of rules as a unit such that they may
be reused across programs and users. Without having modules as first-class constructs
in the language and having tool support to handle them, the only possibility of reusing
rules is by copy-and-paste between programs. This complicates maintenance and shar-
ing of rules on the Web.

IMPORT /subclassof.mxcerpt AS rdfsengine
2

GOAL
4hassubclass [all var Super]

FROM
6in rdfsengine (

rdfsengine [[
8output [[

inferredSubClassOf [[
10subClassOf [var Sub, var Super]

]]]]]]
12)

END
14

CONSTRUCT
16to rdfsengine (

rdfsengine [
18input [

explicitsubclassof [var Subclass, var Superclass]
20]]

)
22FROM

owl [[
24Class {

17

id { var Subclass },
26subClassOf {

attributes { about { var Superclass } }
28}

}]]
30END

32CONSTRUCT
owl [

34Class [id ["SportsEquipment"]],
Class [id ["TennisRacket"],

36subClassOf [about ["SportsEquipment"]]],
Class [id ["WilsonTennisRacket"],

38subClassOf [about ["TennisRacket"]]]
]

40END

Listing 8: An Xcerpt program making use of the module

As an example, we show an Xcerpt module providing simple reasoning capabilities
for ontology documents. Ontologies are nowadays commonly used on the Semantic
Web for modeling domain information. A common use of such ontologies is to arrange
the central concepts of the modeled domain in a class hierarchy. Ontology reasoners
are often employed to infer information contained in such ontologies, e.g. to derive
implicit subclass-of relationships.

The rules in Listing 7 describe a reusable Xcerpt module, which can be used as
a simple inference engine for computing such implicit information without employ-
ing the full force of an ontology reasoner. This Xcerpt module is stored in the file
/subclassof.mxcerpt.

The second rule in Listing 7 functions as an input rule to the module, creating
a view over the data which is to be reasoned on. The first rule, on the other hand,
computes the implicit information contained in the view of the second rule, and as
such functions as an output rule for the module. The input and output nature of the two
rules is reflected by the introduced public keyword in the query and construct terms
of the rules, respectively. When not specified, the visibility of the terms is drawn from
the default value on Line 1 (here private). The visibility of rule terms are used to
enforce module encapsulation, an important property we will return to shortly.

The program in Listing 8 makes use of the module shown above and consists of
three rules. The first (goal) rule makes up the output of the program, the second rule
constructs a view over an ontology to be provided to the module and the third rule
encodes a (simplified) OWL [2] ontology as a fact (the rule lacks a body). For the
sake of simplicity, the ontological data is directly encoded in the program. The given
ontology describes sports articles and their subclass-of relationships.

Several constructs that do not belong to Xcerpt, but are injected into the reuse
language, are used in the module and the program above. In the module, these are
the module declaration construct (Line 1) and the visibility constructs (private and
public). In the importing program, these are the module import construct (Line 1),
the in-module construct (Line 6) and the to-module construct (Line 16). The module
import construct declares a module, associates it with a short convenient name and
makes the rules from the module available to the importing program (IMPORT). The in-
module construct queries data from the module and the to-module construct produces

18

input data for the module.
As a module consists of a set of rules, they should all be included in the import-

ing program at composition-time, such that they are available to the Xcerpt interpreter
when the composition result is executed. However, properly realizing the module sys-
tem is more subtle and complicated than just executing the merger of different rule-
sets. In order to allow modules to be encapsulated, one must ensure that inappropriate
rule dependencies do not occur when programs and modules are merged and executed.
That is, programs should only have access to certain rules in imported modules, and
vice versa. This encapsulation can be realized by transforming the heads and bodies of
the rules of the imported module in appropriate ways.

In fact, the introduced constructs (import, in-module and to-module) are specifically
developed complex composition operators and the visibility constructs (public and
private) are used as mark-up to guide the operators at composition-time such that
the encapsulation of the modules is properly realized.

Listing 9 shows two rules that can be used to test the encapsulation properties of the
module system when added to the rules in Listing 8. Clearly the second rule in the mod-
ule (Listing 7) constructs data terms with the label declsubclassof. The first goal
rule above tries to access the internal module data by simply matching the label. The
second rule attempts the same, but uses the provided in-module composition construct.
When executing the rules above using the Xcerpt engine, the result from the first rule
is No results, while the second rule produces the data term access allowed
[], as expected.

The details of how the module system is implemented are discussed in Section 5.

GOAL GOAL
2intrusion_achieved [] access_allowed []

FROM FROM
4declsubclassof [[]] in rdfsengine (

END declsubclassof [[]]
6)

END

Listing 9: Testing the encapsulation capabilities of the new module system.

4.2 Aspect Weaving for a Modeling Language – Ecore
Instead of first extending a grammar and then transforming it to a metamodel as shown
in the previous section, we can also consider directly applying the language extension
formalism on metamodels. This can be done for metamodels that conform to the struc-
tural implications of the metamodels transformed from grammars (see Section 3.1).

In this section we illustrate the usefulness of metamodel extension to realize sep-
aration of concerns in form of aspects in modeling. Aspect-Orientated Programming
(AOP) [12] is a well-known reuse formalism supporting separation of cross-cutting
concerns in software systems. Code realizing these concerns can be kept separate from
the core implementation and instead woven into the (object-oriented) implementation
upon request. Examples of systems supporting such techniques are AspectJ [28] and
AspectC++ [29]. Here we show how a similar technique can be realized for the mod-

19

FileSystem

name
content

FSFile

name
content

FSFolderroot

files

FileSystem FSFile

FSFolder

subFolders

Figure 5: Core classes model a file system.

observers

subjects
update()

Observer

attach(Observer)
detach(Observer)
notify()

Subject

Observer

Subject

Figure 6: Aspect classes model the
observer pattern.

eling language Ecore [25] using a dedicated composition system.
Consider the example below where the structure of a file system (see Figure 5)

and an Observer pattern [30] (see Figure 6) are modeled in Ecore. The Subject
and Observer classes are aspect classes. We can weave them into the file-system
model to add subject–observer roles to it. Both models conform to an extended Ecore
metamodel, the ReuseEcore metamodel.

Elements that are variation points are visualized by attached circles in the figures,
where the variation points FileSystem, FSFile, and FSFolder are hooks and
the variation points Observer and Subject are anchors that can be accessed as an
extension to a hook or a replacement for a slot.

In the composition system we realize, EClasses can act as aspect classes, model-
ing a certain aspect that can be inserted into other EClasses—core classes. Aspects
are woven into a core class by taking the following steps: 1) copy all EStructuralFeatures
and all EOperations contained in the aspect class into the core class; 2) if an aspect
class references another aspect class (e.g., as the eType of an EReference), the
reference is changed into a reference to the core class that aspect class is woven into
within this composition step; 3) if there is more than one such core class, multiple
copies of the same reference, each pointing at a different core class, are bound.

The aim is to hide these details from the users of the developed LWDCS. Thus, a
user of the particular LWDCS only has to define which aspect classes are woven into
which core classes.

The weaving can be encapsulated in a dedicated composition operator (see Section
5). To call the composition operator, a small dedicated and refined composition lan-
guage (the ecoreweaving language) is defined (cf. Figure 4). Notice that this differs
from the Xcerpt example where the composition language is an integral part of the
reuse language. Listing 10 shows a composition program specifying the weaving.

1//find the metamodel that defines the language reuse ecore
language recore : http://www.reuseware.org/ReuseEcore;

3

//load the core
5fragmentlist recore.EPackage coreFs = /FileSystem.recore;

7//load the observer aspect
fragmentlist recore.EClass observer = /ObserverAspect.recore;

9

//weave using the EcoreWeaving composition operator
11weave (

20

coreFs[name="filesystem"].eClassifiers[name="FileSystem"] <--
13observer[name="Observer"],

coreFs[name="filesystem"].eClassifiers[name="FS.*"] <--
15observer[name="Subject"]

);
17

//print back the composition result
19print coreFs to /FSObs2.ecore;

Listing 10: A composition program written in the dedicated ecoreweaving composition
language.

First, the two model fragments from Figures 5 and 6, modeled in the extended Ecore
language ReuseEcore, are loaded (see Lines 5 and 8). Then the dedicated composition
operator (weave) is called, accepting pairs of aspect classes and core class lists as
arguments (see Lines 11–16). Note that the arguments are fragments contained in
the loaded fragments (e.g., core classes in the files system package). They can be
addressed because they are variation points (as illustrated in Figure 5 and 6). Finally,
the composition result is printed to a file (Line 19).

This example hinted at how an LWDCS can be utilized to introduce new reuse ab-
stractions in a modeling language. We will continue to investigate other abstractions
for modeling languages and continue to refine the current methods to make these tech-
niques directly available to modelers.

5 Complex Composition Operators and Refined Com-
ponent Models

As argued, the composition technique of ISC is very flexible and this characteristic is
one of its advantages. The flexibility is achieved through the provision of primitive
composition operators. An important disadvantage of these, as also mentioned in Sec-
tion 2.1, is that they are only able to express low-level composition steps. To fully real-
ize a useful abstraction, for example the module system presented in Section 4.1, sev-
eral such low-level composition steps must be joined together into an atomic unit. This
encapsulation of a set of low-level operators allows for reusing high-level composition
steps—as high-level complex composition operators. Figure 7 illustrates schematically
how the complex operators are defined in terms of the available primitive operators and
how different complex operators are defined for different languages and purposes. It
shows two operators explained in Section 4.1—to-module and import—and how they
can be implemented using the generic composition operators provided by ISC.

For the realization of module encapsulation in the module system, possible de-
pendencies between rules must be controlled. That is, a rule in a module should not
depend on a rule of the importing program in the composition result unless explicitly
desired. This separation of rules is realized by the notion of stores. Data constructed by
rules in a specific module is re-directed into its store. Thus, to access data constructed
by a module, its store needs to be accessed. Access to different stores is granted via
special-purpose constructs (to-module and in-module) realized as complex composition
operators. Listing 11 shows the definition of the to-module composition operator. The

21

to-module() import()

Primitive
composition
operators

Complex
composition
operators

bind extend
*

From generic
composition system

= encapsulated component

Set of dedicated
composition
operators for
language Xcerpt

1

…

Language: Xcerpt L2 L3 L4

1
1

Figure 7: Dedicated complex composition operators are defined in terms of the generic
primitive composition operators provided by ISC.

construct is intended to be used in programs importing a module to construct data that
will be read and accessed by rules in the module (see Section 4.1). One thing to notice
about complex composition operators is that they may not only encapsulate a sequence
of primitive operators, but also fragments. That is, some composition operators require
internal fragments for the implementation of the (abstraction) construct it is realizing.

The first statement in the operator definition declares such an operator-internal frag-
ment (see Lines 3–7) containing a construct term with a variation point (cTerm). This
fragment is used to re-direct the constructed data to the appropriate store. The con-
struct term (in the composition program) on which the operator is executed is passed
as a parameter (constructTerm) to the operator and is bound to the variation point
(cTerm) using the primitive operator bind. Finally, the resulting construct term is re-
turned, replacing the location where the operator was executed with the newly produced
construct term. This is an example of an inline composition as discussed in Section 4.
As such, the constructed data is properly re-directed to the appropriate store. The same
technique can be used for re-directing queries in the realization of the in-module con-
struct. The import construct in turn re-directs all queries and data constructions in the
imported module. The details are however not further discussed here.

1define composer modularxcerpt.ToModule(moduleName, constructTerm) {

3fragmentlist xcerpt.ConstructTerm ctWrapper =
’store [modul ["’ + ->moduleName + ’"],

5visibility ["public"],
<<cTerm>>

7]’.mxcerpt;

9bind cTerm on ctWrapper with constructTerm;

11return ctWrapper;
}

Listing 11: Definition of the to-module composer used in the Xcerpt module system.

From a usage perspective, an Xcerpt module can be seen as a black-box with an
input rule and an output rule. As such, the component interface is well understood

22

by users of the LWDCS realizing the module system. The composition interface of
a module component, however, cannot be considered as a black-box, as previously
argued. As explained, the realization of the module system transforms query and con-
struct terms to enforce proper module encapsulation. The possibility of transforming
these rule parts must be reflected in the relevant component model.

On a practical level, it is not desirable for module programmers to know the specifics
of how the module system is implemented. Rather, module programmers should only
have to define reusable modules and declare which rules should be accessible to im-
porting programs and which rules should be fully encapsulated, that is, not accessible
at run-time. Thus, one should not require the module programmers to open up their
modules in a very composition-specific way.

Using the grammar extension techniques presented in Section 3, one could make
the constructs ConstructTerm and QueryTerm variable and thus produce a can-
didate component model for the realization of the system. However, such a component
model would only allow for the declaration of slots as alternatives for concrete query
and construct terms. Such a component model would disallow complex composition
operators transforming rules in the required way. To achieve a balance between ease
for users and correctly accessed components, we create component models in a more
refined way than was so-far described. This is a direct result of the introduction of the
possibility to define complex composition operators. Notice that this does not invali-
date the previously described component models, but builds on-top and refines them.

When an abstract construct C of some language is made variable, the refined
method transforms the grammar of the language such that either i) a slot (with con-
crete syntax) is allowed to be defined in its place, or ii) a default concrete instance of
C can directly be programmed into its place. In any respect, in the abstract syntax
description of the reuse grammar, C is referencing the upper-level component model
and is specified to be a variation point. Thus, the component model captures both the
possibility to define explicit variation points (slots) and to directly provide an instance
belonging to the same syntactical category as C. What is important is that the relevant
location in a fragment is accessible wrt. the component model—part of the composi-
tion interface of the fragment.

6 Composition Framework Implementation
This section describes the Reuseware Composition Framework that implements the
concepts described above. The framework can be used to develop LWDCSs realizing
abstractions for different languages. For example, the above- described module system
for Xcerpt was developed using the framework. The framework itself can be used
independently of other technology. To simplify usage, we have also built a frontend in
the form of a set of plug-ins for the Eclipse Platform [31].

The framework consists of two distinct parts. The first part provides tooling for
defining new LWDCSs, including facilities to extend languages and to define com-
plex composition operators. The second part provides support for using so-defined
LWDCSs; that is, support for defining fragments and executing compositions. In the
following we go through the process of defining and using a LWDCS realizing the

23

module system for Xcerpt from Section 4.1.

6.1 Generating a LWDCS
As a basis for developing a new LWDCS, we require a description of the core language—
in our case Xcerpt. The Eclipse Modeling Framework is used to generate a Java code
representation of the Ecore metamodel. Utilizing the ANTLR tool set [32], a parser
and a printer are generated based on the concrete syntax description.

The abstract and concrete syntax grammars of Xcerpt can be derived by separating
concrete from abstract elements in the (partial) grammar from Listing 2. Additionally,
each reference to a production rule in the abstract syntax grammar is tagged with a role
name (rolename : NonTerminal). These names are then used in the definition
of the concrete syntax.11 The production rule for GoalQueryRule (Line 6 in Listing
2), for instance, is split into an abstract and a concrete form. The abstract syntax
production rule looks as follows:

GoalQueryRule = goal:ConstructTerm, query:QueryTerm?;

This abstract syntax rule is then annotated with its concrete syntax using the notion
of role names in the following manner:

GoalQueryRule ::= "GOAL" goal ("FROM" query)? "END";

After the grammars of the original language have been defined in the tool, they
can be extended for reuse. Currently, such extensions are done manually, but it would
also be possible to generate them (semi-)automatically (see Section 8 for a discussion).
The newly introduced production rules are annotated with concepts from the upper-
level component model such that they can be identified during grammar-to-metamodel
transformation.

Figure 8 visualizes the extended grammars of Xcerpt that use annotations to iden-
tify non-terminals that describe variation points. Such annotations are done in the ab-
stract syntax grammar by using the non-terminal name followed by ==> and the name
of a metaclass from the upper-level component model, such as componentmodel.Slot
or componentmodel.Hook (see Section 3.1).

These new production rules are placed in a separate file. The complete extended
grammar then consists of the original grammar as modified by these additional produc-
tion rules. Non-terminals defined elsewhere can be referred to using the Language.NonTerminal
notation. Thus a separation between core language and reuse extension is reflected on
the grammar files.

Note, that a concrete syntax definition has to be provided for the reuse language.
However, such definitions do not have to differentiate between core and extended pro-
duction rules, since the parsers are generated from the complete reuse language defini-
tion.

Based on these specification the LWDCS can now be generated. Figure 8 shows
the result of the automatic generation process—labeled “generated code”.

11Assigning role names also improves the result of the grammar-to-metamodel transformation, since they
can be transformed to reference names.

24

Generated code

Definition of core and reuse languages Concrete syntax reuse grammar

Abstract syntax reuse grammarExtension of core language

Figure 8: Grammar of Modular Xcerpt – LWDCS development in Reuseware.

6.2 Executing composition
Once a LWDCS is generated, it can be deployed and activated inside the Eclipse Plat-
form. In our case, fragments written in the core language Xcerpt and its reuse extension
are now understood by the tooling and variation points inside fragments can be recog-
nized and addressed for composition. Compositions are executed by merging abstract
syntax trees of fragments and using a generated printer to obtain a concrete program as
result. Since grammatical types are represented in the language metamodel and in the
generated code, type-safe composition is ensured.

Figure 9 shows the Reuseware environment where fragments can be defined and
composition programs can be executed. When working in a composition environment,
a Reuseware Project can be created providing support for the creation of folders where
fragments can be stored, composition programs loaded and composition results printed.
The discussed Xcerpt files (modules, programs etc.) would be put in the relevant fold-
ers.

7 Related Work
The Mjølner System and the Beta language [33] were the first to introduce the concept
of slots. In Beta, any programming construct can be replaced by a slot typed with the
non-terminal corresponding to that construct. Beta also supports a notion of inheritance
of grammar types. Binding of slots happens when the name of a fragment and the name
of a slot in the same project match. Our approach extends the Beta approach in two
ways:

1. We introduce additional types of variation points, like hooks, which can be ex-

25

Reuseware project Xcerpt moduleExtended Xcerpt (composition) program

Composition programs Result from executing composition program

Figure 9: Xcerpt composition environment realized in Reuseware.

tended multiple times. Also, we make explicit the actual composition operators,
so that binding a slot with a fragment is an explicit operation rather than implic-
itly matching by name.

2. We extend the concept to any language that can be described by a context-free
grammar. Different from Beta, our tool allows any language to be extended with
a composition system.

The Software COMPOsition SysTem (COMPOST) [34] is a predecessor of our cur-
rent system, which introduced many of the concepts available in our approach, but was
limited to Java and XML. For each new language that should be supported by COM-
POST a large amount of implementation work is required. Additionally, the definition
of dedicated composition languages is not supported. There is only one composition
language, namely Java.

Our notion of fragment components is comparable to the notion of syntactic units
presented in [35]. Syntactic units are arranged in syntactic unit trees that can be likened
to composition programs. In this approach, so-called extension spots can be defined
as alternatives for any fragment of code derivable from a non-terminal. Compared
to our approach, there is no formalization of language extensions which allows for
tailored extension of a language (to only allow the desired amount of variability) and
generation of language specific tooling.

In [36], Gray and Roychoudhury present a technique for constructing aspect weavers
for arbitrary languages. They define an aspect weaving language (called Aspect Do-
main) which can be used to define weavings for different languages. They argue that
a common superset of weaving operations can be applied to arbitrary languages, while
certain languages require specific extensions. The weaving language is comparable

26

to our composition language. The language-independent weaving operations can be
compared with primitive composition operators and language-specific operations with
complex composition operators. The major differences is that Gray and Roychoudhury
do not extend languages, because their components (that is, core and advice artifacts)
only have implicit composition interfaces—which is reasonable, since they focus on
legacy systems written in existing languages—while we focus on DSLs under devel-
opment.

Gray and Roychoudhury explain in detail how their implementation is built on top
of a transformation engine (which is the Design Maintenance System [37]). They show
how this raises the level of abstraction and eases aspect development and weaving.
This is also true for the Reuseware implementation: It is build on top of the EMF
and ANTLR frameworks, which can also be seen as transformation engines, and raises
the level of abstraction wrt. component-based development. Gray and Roychoudhury
state that their concepts could be implemented on top of other transformation engines.
While not explicitly discussed in detail, the same holds for the Reuseware concepts:
they could likewise be implemented on top of program transformation systems like
TXL [38], ASF+SDF [39], or others. However, we chose an EMF-based implemen-
tation to achieve good Eclipse integration and good support for metamodel-based lan-
guages.

8 Conclusions and Outlook
In this paper we presented a formalism for realizing Invasive Software Composition
[10], a gray-box approach to composition, for arbitrary languages. We showed how
languages can be augmented with reuse abstractions via composition, where the intro-
duced formalism plays a central role. The specific reuse concepts can be realized via
special-purpose composition operators. These form an important part of specialized
composition environments—dedicated composition system (LWDCS). To show how
this can be done in practice we augmented the Web query language Xcerpt with the
possibility to define reusable modules. In Section 6 we presented an Eclipse-based
tool that provides support for the introduced composition concepts and allows for the
development of LWDCSs.

The work presented in this paper only supports composition at a syntactic level.
That is, composition results may be semantically invalid. We work toward reusing ex-
isting techniques and tools to ensure semantically valid compositions. We group these
possibilities in two main categories: 1) explicit contracts and 2) implicit verifications.
Explicit contracts allow programmers to restrict how their components may be used.
Implicit verification can be employed in two ways. First, by applying existing tools
to check composition results for general errors. For example, applying an ontology
reasoner to check a composed ontology for inconsistencies. Second, one can apply the
same tools for specialized reasons in specific LWDCS. An example would be to check
the correct usage of Xcerpt modules (see Section 4.1) and report only possible interface
errors, even though other unrelated errors might be present. In the Xcerpt example, this
means that the structure of data provided to a module must match the structure of the
date expected by the module.

27

While our tool can automatically generate an invasive component model for differ-
ent languages, it is currently not able to generate a refined component model as needed
for most LWDCS (see Section 5). Currently, these refinements have to be performed
manually by the developer of the LWDCS. However, as was noted in Section 4, there is
a close correspondence between complex composition operators and component mod-
els in a LWDCS (see Figure 4). Hence, our next step is to derive refined component
models from a set of composition operator definitions. Being able to generate large
parts of a LWDCS is of great importance for the applicability of our approach.

As we discussed in Section 4.2, it is important to support the extension of metamodel-
based languages, for example, Ecore. While our tooling already supports metamodel-
based extensions, finding the precise limitations of this approach in this respect is part
of future work.

This leads to the question of the overall limitations of the presented approach. The
limitations must be addressed on two different levels. First, wrt. the languages being
targeted, and second, the specific reuse and abstraction construct being realized for any
given languages. The main requirement on the language is that it must be context-free.
For a textual language it means that its grammar is context-free and for a metamodel-
based language that its metamodel has a tree-like structure or that a skeleton tree can
be overlaid onto any metamodel instance. Another general limitation of the approach,
as mentioned above, is the restriction to purely syntactical compositions. We must also
consider what kinds of components can be realized for a particular language. As com-
ponents are compiled to the underlying core language, the desired component proper-
ties must be enforceable in that language. For Xcerpt, for example, a desired compo-
nent property is encapsulation, which turned out to be enforceable using the concept of
stores. For other languages and component types, certain component properties might
not be satisfiable. As more languages and component types are experimented with, we
hope to gain experience in this respect.

Acknowledgment
This research has been co-funded by the European Commission and by the Swiss Fed-
eral Office for Education and Science within the 6th Framework Programme project
REWERSE number 506779 (cf. http://rewerse.net), as well as through the 6th Frame-
work Programme project Modelplex contract number 034081 (cf. http://www.modelplex.org)
and by the German Ministry of Education and Research (BMBF) within the project
feasiPLe (cf. http://www.feasiple.de).

References
[1] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Scientific

American, 284(5):34–43, May 2001.

[2] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL web ontology
language semantics and abstract syntax. W3C Recommendation, February 2004.
Available at http://www.w3.org/TR/owl-semantics/. Accessed May 2007.

28

http://rewerse.net
http://www.modelplex.org
http://www.feasiple.de
http://www.w3.org/TR/owl-semantics/

[3] Dan Brickley and R.V. Guha. RDF Vocabulary Description Language
1.0: RDF Schema. W3C Recommendation, February 2004. Available at
http://www.w3.org/TR/rdf-schema/. Accessed May 2007.

[4] Ian Horrocks and Peter F. Patel-Schneider. A proposal for an OWL rules lan-
guage. In Proc. of the 13th International World Wide Web Conference (WWW
2004), pages 723–731. ACM, 2004.

[5] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan Ro-
bie, and Jérôme Siméon. XQuery 1.0: An XML query language. W3C Recom-
mendation, January 2007. Available at http://www.w3.org/TR/xquery. Accessed
May 2007.

[6] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
W3C Working Draft, March 2007. Available at http://www.w3.org/TR/rdf-
sparql-query/. Accessed May 2007.

[7] François Bry and Sebastian Schaffert. The XML query language Xcerpt: Design
principles, examples, and semantics. In Revised Papers from the NODe 2002 Web
and Database-Related Workshops on Web, Web-Services, and Database Systems,
pages 295–310. Springer-Verlag, London, UK, 2003.

[8] Object Management Group. Unified Modeling Language: Superstruc-
ture version 2.0. OMG Document, August 2005. Available at
http://www.omg.org/docs/formal/05-07-04.pdf. Accessed May 2007.

[9] Oscar Nierstrasz and Theo Dirk Meijler. Research directions in software compo-
sition. ACM Computing Surveys, 27(2):262–264, June 1995.

[10] Uwe Aßmann. Invasive Software Composition. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 2003.

[11] William Harrison, Harold Ossher, and Peri Tarr. Asymmetrically vs. symmet-
rically organized paradigms for software composition. Technical report, IBM,
2002.

[12] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina V.
Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-oriented programming. In
Mehmet Akşit and Satoshi Matsuoka, editors, Proc. of the 11th European Conf.
on Object-Oriented Programming (ECOOP’97), volume 1241 of LNCS, pages
220–242, Heidelberg, 1997. Springer.

[13] Harold Ossher and Peri Tarr. Multi-dimensional separation of concerns and the
hyperspace approach. In Proceedings of the Symposium on Software Architec-
tures and Component Technology: The State of the Art in Software Development.
Kluwer, 2000.

[14] Jakob Henriksson, Uwe Aßmann, Florian Heidenreich, Jendrik Johannes, and
Steffen Zschaler. How dark should a component black box be? The Reuse-
ware Answer. Proc. of the 12th International Workshop on Component-Oriented

29

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/xquery
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.omg.org/docs/formal/05-07-04.pdf

Programming (WCOP) co-located with 21st European Conf. on Object-Oriented
Programming (ECOOP’07) (to appear), 2007.

[15] Jakob Henriksson, Jendrik Johannes, Steffen Zschaler, and Uwe Aßmann. Reuse-
ware – adding modularity to your language of choice. Proc. of TOOLS EUROPE
2007: Special Issue of the Journal of Object Technology (to appear), 2007.

[16] Object Management Group. Meta Object Facilities (MOF) 2.0 Query / View /
Transformation Specification. OMG Document, November 2005. Available at
http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf. Accessed May 2007.

[17] Atlas Project Team. Atlas Transformation Language. Available at
http://www.eclipse.org/m2m/atl/. Accessed May 2007.

[18] James Clark. XSL transformations (XSLT). W3C Recommendation, November
1999. Available at http://www.w3.org/TR/xslt. Accessed May 2007.

[19] Sebastian Schaffert, Francois Bry, and Tim Fuche. Simulation unification. Tech-
nical Report IST506779/Munich/I4-D5/D/PU/a1, Institute for Informatics, Uni-
versity of Munich, 2005.

[20] Dexter C. Kozen. Automata and Computability. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1997.

[21] International Organization for Standardization. ISO/IEC 14977:1996: Informa-
tion technology — Syntactic metalanguage — Extended BNF. International Or-
ganization for Standardization, Geneva, Switzerland, 1996.

[22] Francois Bry, Tim Fuche, and Sebastian Schaffert. Initial draft of a language
syntax. Technical Report IST506779/Munich/I4-D6/D/PU/a1, Institute for Infor-
matics, University of Munich, 2006.

[23] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an engineering discipline
for grammarware. ACM Transactions on Software Engineering Methodology,
14(3):331–380, 2005.

[24] Object Management Group. MetaObject Facility (MOF) specification version
2.0. OMG Document, January 2006. Available at http://www.omg.org/cgi-
bin/doc?formal/2006-01-01. Accessed May 2007.

[25] Frank Budinsky, Stephen A. Brodsky, and Ed Merks. Eclipse Modeling Frame-
work. Pearson Education, 2003.

[26] Marcus Alanen and Ivan Porres. A relation between context-free grammars and
meta object facility metamodels. Technical Report 606, TUCS - Turku Centre for
Computer Science, Turku, Finland, March 2004.

[27] Uwe Aßmann, Sacha Berger, François Bry, Tim Furche, Jakob Henriksson, and
Jendrik Johannes. Modular web queries—from rules to stores. 3rd International
Workshop On Scalable Semantic Web Knowledge Base Systems (SSWS’07) (to
appear). Vilamoura, Algarve, Portugal, Nov 27, 2007, 2007.

30

http://www.omg.org/cgi-bin/apps/doc?ptc/05-11-01.pdf
http://www.eclipse.org/m2m/atl/
http://www.w3.org/TR/xslt
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01

[28] Adrian Colyer, Andy Clement, George Harley, and Matthew Webster. Eclipse
AspectJ: Aspect-Oriented Programming with AspectJ and the Eclipse AspectJ
Development Tools (The Eclipse Series). Addison-Wesley Professional, 2004.

[29] Olaf Spinczyk, Daniel Lohmann, and Matthias Urban. AspectC++: an AOP Ex-
tension for C++. Software Developer’s Journal, 5:68–76, 2005.

[30] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison Wesley, Read-
ing, MA, 1994.

[31] The Eclipse Foundation. Eclipse platform technical overview. Available
at http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-
whitepaper.html. Accessed May 2007.

[32] Terence Parr. ANTLR — ANother Tool for Language Recognition — parser
generator. Available at http://www.antlr.org. Accessed May 2007.

[33] Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard. Object-
Oriented Programming in the BETA Programming Language. Addison-Wesley,
June 1993.

[34] The COMPOST Consortium. The COMPOST system. Available at
http://www.the-compost-system.org. Accessed May 2007.

[35] Marek Majkut and Bogdan Franczyk. Generation of implementations for the
model driven architecture with syntactic unit trees. In Proceedings of 2nd OOP-
SLA Workshop Generative Techniques in the context of MDA, October 2003.

[36] Jeff Gray and Suman Roychoudhury. A technique for constructing aspect weavers
using a program transformation engine. In AOSD ’04: Proceedings of the 3rd
international conference on Aspect-oriented software development, pages 36–45,
New York, NY, USA, 2004. ACM Press.

[37] Ira D. Baxter. Dms: program transformations for practical scalable software evo-
lution. In IWPSE ’02: Proceedings of the International Workshop on Principles
of Software Evolution, pages 48–51, New York, NY, USA, 2002. ACM Press.

[38] James R. Cordy. The txl source transformation language. Sci. Comput. Program.,
61(3):190–210, 2006.

[39] Mark G. J. van den Brand, J. Heering, P. Klint, and P. A. Olivier. Compiling
language definitions: the asf+sdf compiler. ACM Trans. Program. Lang. Syst.,
24(4):334–368, 2002.

31

http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html
http://www.eclipse.org/articles/Whitepaper-Platform-3.1/eclipse-platform-whitepaper.html
http://www.antlr.org
http://www.the-compost-system.org

