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Introduction to Groebner Bases
Bruno Buchberger defined Groebner bases in his PhD thesis in 1965.  He named them after his PhD 
supervisor Wolfgang Gröbner.  (Both spellings, "Gröbner bases"  and the transliterated "Groebner 
bases", are used in textbooks and the literature.) Buchberger gave an algorithm for computing them 
which is now known as ``Buchberger's algorithm''.  Groebner bases have found many applications 
since.  All general purpose computer algebra systems like Maple have Groebner basis 
implementations.  There are many books that have been written on them.  In 2007 Buchberger 
received an award from the Association for Computing Machinery (ACM) for his work recognizing 
the importance of this contribution to mathematics and computer science.

But what is a Groebner basis?  And what applications do Groebner bases have?  I'd like to begin this 
article  by giving some examples of the main application of Groebner bases which is to solve systems
of polynomial equations.  Below are three systems of polynomial equations.

sys1 := { x^2+y^2=1, x*y=z, z^2-x^2=1, y^2+z^2=2 };

sys2 := { x^2+y^2=1, x*y+x*z+y*z = 1, x+y+z = 1, x*y*z = 1 };

sys3 := { w+x+y+z=1, w-z=1, y+z=1, x+y+2*z=0, w+x=0  };

The first system is a system of 4 quadratic equations in 3 unknowns. The second system has one 
linear, two quadratic and one cubic equation in 3 unknowns.  The third system is a system of 5 linear 
equations in 4 unknowns.  Here are some basic questions we would typically ask about about systems
of equations

  Question 1: Does the system have any real or complex solutions?  If yes, then how many?
  Question 2: How do we solve the system?
  Question 3: Can the system be simplified, that is, are any equations redundant?

We will answer these questions using Groebner bases.  Instead of working with equations, we will 
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work with polynomials and write the systems as a list of polynomials  where the 
polynomials are implicitly equated to 0.  Let me do that for our three systems.

B1 := [ x^2+y^2-2, x*y-z, z^2-x^2-1, y^2+z^2-3 ]:
B2 := [ x^2+y^2-1, x*y+x*z+y*z-1, x+y+z-1, x*y*z-1 ]:
B3 := [ w+x+y+z-1, y+z-1, w-z-1, x+y+2*z, w+x ]:

We will compute a Groebner basis for each system.  And we'll impose lexicographical order on terms
of the polynomials - we will worry about that later.  Here are the Groebner bases.
G1 := Groebner[Basis]( B1, plex(x,y,z) );

G2 := Groebner[Basis]( B2, plex(x,y,z) );

G3 := Groebner[Basis]( B3, plex(w,x,y,z) );

What is the relationship between a Groebner basis G and the input basis B?  

Main property of Groebner bases:  Let   be the input basis (a list of 
polynomials with real or complex coefficients) and let   be the output basis, the 
Groebner basis, also a list of polynomials.

Theorem: The real and complex solutions of the two systems  and 
  are identical, even up to multiplicity of solutions.

So what that means is that we can think of the Groebner basis as a simplified system.  Computing a 
Groebner basis effectively simplifies the system.  It doesn't ``solve the system''.  Let's take a look at 
what it did for each system.
G2;

This means that the second system of equations is equivalent to the system { 1 = 0 } which obviously
has no solutions.  In fact, it is true that the (reduced) Groebner basis  if and only if the system 

 has no solution.  That's nice.

More good news.  I can see that the Groebner basis  for the first system has ``triangularized'' the 
system. 
G1;

The first polynomial
G1[1]=0;

is in z only.  So we solve it e.g. using solve
solve(G1[1]=0,z);

Now the second polynomial in   is in z and y only so we now can solve that too.   
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G1[2]=0;

Since it is quadratic in y we will have 8 solutions in total so far.  Finally the third equation is linear in
x so trivially solved once we know y and z.  Thus the first system has 8 complex solutions.
G1[3]=0;

What about the third system?  
sys3;

Let's solve that one using linear algebra with . 
The coefficient matrix  and the right hand side vector  are
A,b := Matrix([[1,1,0,0],[1,0,0,-1],[0,0,1,1],[0,1,1,2],[1,1,1,
1]]),
       Vector([0,1,1,0,1]);

Solving  via reduction of the augmented matrix  to reduced Row Echelon form
with(LinearAlgebra):
ReducedRowEchelonForm( <A|b> );

Converting back to equations in   this corresponds to the reduced linear system
[y+z=1, x+z=-1, w-z=1 ]; 

which just happens to be the same as the Groebner basis!!  
G3;

Coincidence?  Nope.  It turns out that Row Echelon form for a linear system is a Groebner basis. And
a Groebner basis is in Row Echelon form.  And just as we can impose uniqueness on Row Echelon 
form we can do so on a Groebner basis too.  We call it the reduced Groebner basis.  Maple is 
automatically computing the reduced Groebner basis.    In fact, the reduced Groebner basis for a 
linear system is the reduced Row Echelon form.  So here is one way to understand Groebner bases: 
They are the natural generalization of Row Echelon form to non-linear systems.

Elimination
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What else can you do with Groebner bases?  I once joked with my class that you can do everything 
with Groebner bases.  Of course that's not true but you can do a lot.  Do you recall the rational 
parameterization of the circle?  It is

    and   for .

Clearing fractions we have   and   .  We have two equations in 
three unknowns  .  I would like to eliminate  to see what I get.  Let's use Groebner bases.  
Converting to polynomials we have
B := [ (1+t^2)*x - 2*t, (1+t^2)*y - (1-t^2) ];

To eliminate  we compute a Groebner basis with   or  to force elimination of . We
do this by specifying plex( ) or plex(  .
Groebner[Basis]( B, plex(t,x,y) );

Well, look at that!  Out popped the implicit equation for the circle.  If you have variables 
 then to eliminate  use   plex(  .

Polynomial Long Division
Back to question 3. How do we test if there are any redundant equations in these systems.  We would 
like to remove the redundant equations to simplify the system. 
sys1;

sys3;

Let's recall division.  Shown in the figure below (a Maple canvas, very useful for creating a figure) is 
a division of  divided  using the highschool long division algorithm as I remember seeing it.

2$x2 C 3$x C 3 = fg = 2$x C 1

q = x C 1

K 2$x2 C x

= 2$x C 3

K 2$x C 1

= 2 = r

We obtain the quotient  and remainder  satisfying  .  Have you every 
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wondered why we always work with the terms sorted in decreasing degree?  If you try executing the 
division algorithm with the terms sorted in increasing degree, you'll find that it works if the 
remainder  but doesn't terminate if .  To make the division algorithm work for polynomials 
in more than one variable we will need to sort the terms.  But we will also need to be able to divide 
by more than one divisor.  You may already have seen this in linear algebra.  Consider the four 
vectors

u1,u2,u3,u4 := <1,1,0,0>, <1,0,0,-1>, <0,0,1,1>, <0,1,1,2>;

Suppose we are asked if there is a linear dependency between them?  My son Philip is taking his first 
course in Linear Algebra at the University of British Columbia this Fall.  He asked me how to do this 
last week!  I had to try to remember.  There is more than one way to do it.  One way is to first see if 

 are linearly independent.  I'll do this using row Echelon form.  First I put the vectors 

 as rows of a matrix then reduce it to Row Echelon form.

A := Matrix( <Transpose(u1), Transpose(u2), Transpose(u3)> );

R := ReducedRowEchelonForm( A );

This matrix has rank 3 so yes,  are linearly independent.  Now what about ?  Is it also 
linearly independent?  One way is to set up a linear system from   and solve 

for the unknowns  .  A second way (better) is to use the matrix R and divide the vector   by 

the rows of R?  How?  By subtracting multiples of the rows of R from to reduce  as follows.
Transpose(u4);

Transpose(u4) - R[2];

Transpose(u4) - R[2] - R[3];

The remainder is 0 therefore there is a dependency.  We are doing a division.  Repeated subtraction 
is division.  If we had done this with the polynomials instead of with row vectors then it would look 
more like a polynomial division.  Let's turn to the general division algorithm.
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The General Division Algorithm
It may surprise you to learn that this division algorithm was not known before the 20th century.  It is 
simple but it does depend crucially on how we order the terms in our polynomials.  Anyone can learn
how to do this.  When we were dividing vectors, we used an implicit ordering on the unknowns 

 , namely  because of the order we put on the columns of A.  The first step to 
generalize the division algorithm to polynomials in more than one variable is to decide how to order 
terms. Suppose the terms of the polynomial are
f := x^2,y^2,4*x*y^2,5*x,2,7*x*y;

One way to order the terms is to first sort on the degree in the first variable, say x.  So we have (in 
descending degree)

 

We have one term of degree 2 in x, three of degree 1 and two of degree 0.  Now for each set of terms 
with the same degree in x, sort them in decreasing degree in y to get

  
This ordering is called pure lexicographical order. In Maple we specify this using .  If there 
were a third variable z we would now sort all terms in  in descending degree on z. The first term, 
the leading term, is key to the division algorithm.  We will denote the leading term of a polynomial f 
by LT( ).  Now when I input the polynomial in this ordering to Maple I get
f := x^2+4*x*y^2+7*x*y+5*x+y^2+2;

Notice that it changed the order of the terms and put the term  first.  Why?  Because it is using 
a different term ordering that will also work for the division algorithm and for Groebner bases. 
Consider again our terms
f := [x^2,y^2,4*x*y^2,5*x,2,7*x*y];

This time, first sort the terms by degree (into descending order).  So the term  has degree 3 
which is more than the term  which has degree 2.  We get

There is 1 term of degree 3, three of degree 2, one of degree 1 and one of degree 0.  Now sort the 
terms of each degree by lexicographical order to get 

 .  
This term ordering is called graded lexicographical order.  To get a Groebner basis in this ordering 
use grlex(x,y).  Just to see that this makes a difference let's compare the two orderings
Groebner[Basis]( B1, plex(x,y,z) );

Groebner[Basis]( B1, grlex(x,y,z) );

Now we are ready to do a general division.  We will divide the polynomial  by 
two polynomials  .  The first step is to sort the terms so we can identify 
the leading terms of the dividend   and divisors  and  .  We have
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    divided by { ,   }.

The leading terms are  and for the divisors  and   .  The division algorithm always works with 
leading terms.  It will produce two quotients  and  and one remainder  which will satisfy

   
  
and either  or no term in the remainder  is divisable by any leading term of a divisor. 

The following figure shows the first step of the division algorithm. I've put the two divisors on the 
left and the two quotients on the top of the radical symbol and the dividend  is the usual place.  The 
first quotient term is  .  We multiply and subtract   as in the division algorithm for one 
variable.

g1 = x2 K z2 C 2

g2 = y2 K x K z
x2 C x$y2 C z2 K 1 = f

 q1 = 1
 q2 = 0

K x2 K z2 C 2

= x$y2 C 2$z2 K 3 = f K q1$g1

Notice that after the subtraction we sort the terms in the result so that we can identify the leading 
term of the result which is  .  Now  does not divide   but  does with 
quotient .  So we add the next quotient term  to  and multiply and subtract.  Here are the next two 
steps



> > 

g1 = x2 K z2 C 2

g2 = y2 K x K z
x2 C x$y2 C z2 K 1 = f

 q1 = 1 C 1
 q2 = x

K x2 K z2 C 2

= x$y2 C 2$z2 K 3 = f K q1$g1

Kx$ y2 K x K z

= x2 C x$z C 2$z2 K 3 = f K 1$g1 K x$g2 

K1$ x2 K z2 K 2  

= x$z C 3$z2 K 5 = r

At this point we have  and  and no terms  are divisible by  or  the leading
terms of the divisors so this is the remainder  .
Let us do another division.  Consider 

    divided by {  and  }

using lexicographical order with  so that the terms are already sorted.  Since  and 

  both divide   so the result is going to depend on which we use first.  Let's 
try it both ways to see what happens.

x$y2 C y2 x$y2 C y2 
g1 = x$y C y
g2 = x$y C x

g1 = x$y C x
g2 = x$y C y

q1 = y
 q2 = 0

K x$y2 C y2

0

K x$y2 C x$y

Kx$y C y2

q1 = y-1
q2 = 0

C x$y C x

x C y2=remainder

Note, the terms in the remainder  are not divisible by either  or .
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What is surprising is that in one order we get 0 for the remainder but in the other we don't.  And that 
is a serious problem.  It means that there's something wrong with the division algorithm.  We can't 
use it as expected to test if  divides   with 0 remainder.  It turns out that the problem is not 
the division algorithm, rather, it's the basis  that we are using.  It's not a "good basis".  That 
is, it's "not a Groebner basis".  If we'd used a Groebner basis we would get a 0 remainder.  
Incidentally, the same problem occurs if you try to divide a vector  by a set of vectors  if
you don't first put the vectors in Row Echelon form. Let us first simplify the divisor basis.  We have
g1 := x*y+y;

g2 := x*y+x;

g3 := g2-g1;

I'd better use g3 to simplify g1 and g2
g1 := g1 - expand(y*g3); # simplify g1

g2 := g2 - expand(y*g3); # simplify g2

g2 := g2-g3; # simnplify g2 some more

G := {g1,g2,g3};

This is actually a Groebner basis and we have the following property.

Property of a Groebner Basis.  A Groebner basis  for a set of input polynomials 
  with respect to a given term ordering, has the property that if a given polynomial  

may be written as   for some polynomials  , then the remainder of  
divided by  is 0.  This allows us to answer question 3.

sys1;

f1,f2,f3,f4 := x*y-z,x^2+y^2-1,z^2-x^2-1,y^2+z^2-2;

To test if the 4th equation is redundant, we first compute a Groebner basis G for  using any 
term ordering.  
G := Groebner[Basis]( [f1,f2,f3], plex(x,y,z) );

Now we just need to divide  by  and see if we get 0 remainder.  This command does the division 
and returns the remainder
Groebner[NormalForm]( f4, G, plex(x,y,z) ); 

0
Since it is 0 then  is redundant.
Note, division of  by  does not yield a 0 remainder 
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Groebner[NormalForm]( f4, [f1,f2,f3], plex(x,y,z) );

Limitations
There is much more to Groebner bases of course.  More properties, more applications.  But there is a 
catch that needs to be stated lest you think that you can now use Groebner bases to solve systems of 
hundreds of equations.  If we have a system of  quadratic equations in  unknowns then the number 
of solutions is  in general.  Trying to solve the system using the lexicographical monomial ordering,
in general will result in a triangular system with one polynomial of degree   which even for small  
is too big to compute.  Here are four quadratics so you get a sense of this.
f1,f2,f3,f4 := w^2+x^2+y^2+z^2-1, 2*w^2-y^2+z*y+x*z-2,
               w^2+3*y^2-x*z-x^2-1,w*x+w*y+w*z-1;

G := Groebner[Basis]([f1,f2,f3,f4],plex(w,x,y,z)):
G[1];

If  there is no hope of ever computing the Groebner basis.  We cannot store let alone compute 
a polynomial of degree .  But a linear system of 100 equations in 100 unknowns is easy.  

Term Orderings
Lastly, I want to mention that these two term orderings that we have been using satisfy three 
properties which together are what will make the division algorithm work.  The three properties are

    (i) The term ordering is a total ordering, that is, you can sort the terms  into  
 which means that  by transitivity.

   (i)  For any three non-zero terms  we have    0 .
   (iii) Every non-empty set of terms  has a least element in the term ordering.

The last property is needed for termination of the division algorithm.  It is called the well-ordering 
property.  It is not at all obvious that the two orderings we have defined satisfy property (iii).  That 
needs a formal proof.  We will not give it here.

For one variable, there is only one term ordering that satisfies all three properties, namely,

  

For two or more variables there are an infinite number of term orderings.  When computing Groebner
bases, some term orderings are easier than others and some properties of a Groebner basis may 
depend on specific term orderings.
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