
> >

> >

> >

Groebner Bases: What are They and What are They
Useful For?

Michael Monagan
Department of Mathematics

Simon Fraser University
mmonagan@sfu.ca

Introduction to Groebner Bases
Bruno Buchberger defined Groebner bases in his PhD thesis in 1965. He named them after his PhD
supervisor Wolfgang Gröbner. (Both spellings, "Gröbner bases" and the transliterated "Groebner
bases", are used in textbooks and the literature.) Buchberger gave an algorithm for computing them
which is now known as ``Buchberger's algorithm''. Groebner bases have found many applications
since. All general purpose computer algebra systems like Maple have Groebner basis
implementations. There are many books that have been written on them. In 2007 Buchberger
received an award from the Association for Computing Machinery (ACM) for his work recognizing
the importance of this contribution to mathematics and computer science.

But what is a Groebner basis? And what applications do Groebner bases have? I'd like to begin this
article by giving some examples of the main application of Groebner bases which is to solve systems
of polynomial equations. Below are three systems of polynomial equations.

sys1 := { x^2+y^2=1, x*y=z, z^2-x^2=1, y^2+z^2=2 };

sys2 := { x^2+y^2=1, x*y+x*z+y*z = 1, x+y+z = 1, x*y*z = 1 };

sys3 := { w+x+y+z=1, w-z=1, y+z=1, x+y+2*z=0, w+x=0 };

The first system is a system of 4 quadratic equations in 3 unknowns. The second system has one
linear, two quadratic and one cubic equation in 3 unknowns. The third system is a system of 5 linear
equations in 4 unknowns. Here are some basic questions we would typically ask about about systems
of equations

 Question 1: Does the system have any real or complex solutions? If yes, then how many?
 Question 2: How do we solve the system?
 Question 3: Can the system be simplified, that is, are any equations redundant?

We will answer these questions using Groebner bases. Instead of working with equations, we will

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

work with polynomials and write the systems as a list of polynomials where the
polynomials are implicitly equated to 0. Let me do that for our three systems.

B1 := [x^2+y^2-2, x*y-z, z^2-x^2-1, y^2+z^2-3]:
B2 := [x^2+y^2-1, x*y+x*z+y*z-1, x+y+z-1, x*y*z-1]:
B3 := [w+x+y+z-1, y+z-1, w-z-1, x+y+2*z, w+x]:

We will compute a Groebner basis for each system. And we'll impose lexicographical order on terms
of the polynomials - we will worry about that later. Here are the Groebner bases.
G1 := Groebner[Basis](B1, plex(x,y,z));

G2 := Groebner[Basis](B2, plex(x,y,z));

G3 := Groebner[Basis](B3, plex(w,x,y,z));

What is the relationship between a Groebner basis G and the input basis B?

Main property of Groebner bases: Let be the input basis (a list of
polynomials with real or complex coefficients) and let be the output basis, the
Groebner basis, also a list of polynomials.

Theorem: The real and complex solutions of the two systems and
 are identical, even up to multiplicity of solutions.

So what that means is that we can think of the Groebner basis as a simplified system. Computing a
Groebner basis effectively simplifies the system. It doesn't ``solve the system''. Let's take a look at
what it did for each system.
G2;

This means that the second system of equations is equivalent to the system { 1 = 0 } which obviously
has no solutions. In fact, it is true that the (reduced) Groebner basis if and only if the system

 has no solution. That's nice.

More good news. I can see that the Groebner basis for the first system has ``triangularized'' the
system.
G1;

The first polynomial
G1[1]=0;

is in z only. So we solve it e.g. using solve
solve(G1[1]=0,z);

Now the second polynomial in is in z and y only so we now can solve that too.

> >

> >

> >

> >

> >

> >

> >

G1[2]=0;

Since it is quadratic in y we will have 8 solutions in total so far. Finally the third equation is linear in
x so trivially solved once we know y and z. Thus the first system has 8 complex solutions.
G1[3]=0;

What about the third system?
sys3;

Let's solve that one using linear algebra with .
The coefficient matrix and the right hand side vector are
A,b := Matrix([[1,1,0,0],[1,0,0,-1],[0,0,1,1],[0,1,1,2],[1,1,1,
1]]),
 Vector([0,1,1,0,1]);

Solving via reduction of the augmented matrix to reduced Row Echelon form
with(LinearAlgebra):
ReducedRowEchelonForm(<A|b>);

Converting back to equations in this corresponds to the reduced linear system
[y+z=1, x+z=-1, w-z=1];

which just happens to be the same as the Groebner basis!!
G3;

Coincidence? Nope. It turns out that Row Echelon form for a linear system is a Groebner basis. And
a Groebner basis is in Row Echelon form. And just as we can impose uniqueness on Row Echelon
form we can do so on a Groebner basis too. We call it the reduced Groebner basis. Maple is
automatically computing the reduced Groebner basis. In fact, the reduced Groebner basis for a
linear system is the reduced Row Echelon form. So here is one way to understand Groebner bases:
They are the natural generalization of Row Echelon form to non-linear systems.

Elimination

> >

> >

> >

> >

> >

What else can you do with Groebner bases? I once joked with my class that you can do everything
with Groebner bases. Of course that's not true but you can do a lot. Do you recall the rational
parameterization of the circle? It is

 and for .

Clearing fractions we have and . We have two equations in
three unknowns . I would like to eliminate to see what I get. Let's use Groebner bases.
Converting to polynomials we have
B := [(1+t^2)*x - 2*t, (1+t^2)*y - (1-t^2)];

To eliminate we compute a Groebner basis with or to force elimination of . We
do this by specifying plex() or plex(.
Groebner[Basis](B, plex(t,x,y));

Well, look at that! Out popped the implicit equation for the circle. If you have variables
 then to eliminate use plex(.

Polynomial Long Division
Back to question 3. How do we test if there are any redundant equations in these systems. We would
like to remove the redundant equations to simplify the system.
sys1;

sys3;

Let's recall division. Shown in the figure below (a Maple canvas, very useful for creating a figure) is
a division of divided using the highschool long division algorithm as I remember seeing it.

2$x2 C 3$x C 3 = fg = 2$x C 1

q = x C 1

K 2$x2 C x

= 2$x C 3

K 2$x C 1

= 2 = r

We obtain the quotient and remainder satisfying . Have you every

> >

> >

> >

> >

> >

> >

> >

wondered why we always work with the terms sorted in decreasing degree? If you try executing the
division algorithm with the terms sorted in increasing degree, you'll find that it works if the
remainder but doesn't terminate if . To make the division algorithm work for polynomials
in more than one variable we will need to sort the terms. But we will also need to be able to divide
by more than one divisor. You may already have seen this in linear algebra. Consider the four
vectors

u1,u2,u3,u4 := <1,1,0,0>, <1,0,0,-1>, <0,0,1,1>, <0,1,1,2>;

Suppose we are asked if there is a linear dependency between them? My son Philip is taking his first
course in Linear Algebra at the University of British Columbia this Fall. He asked me how to do this
last week! I had to try to remember. There is more than one way to do it. One way is to first see if

 are linearly independent. I'll do this using row Echelon form. First I put the vectors

 as rows of a matrix then reduce it to Row Echelon form.

A := Matrix(<Transpose(u1), Transpose(u2), Transpose(u3)>);

R := ReducedRowEchelonForm(A);

This matrix has rank 3 so yes, are linearly independent. Now what about ? Is it also
linearly independent? One way is to set up a linear system from and solve

for the unknowns . A second way (better) is to use the matrix R and divide the vector by

the rows of R? How? By subtracting multiples of the rows of R from to reduce as follows.
Transpose(u4);

Transpose(u4) - R[2];

Transpose(u4) - R[2] - R[3];

The remainder is 0 therefore there is a dependency. We are doing a division. Repeated subtraction
is division. If we had done this with the polynomials instead of with row vectors then it would look
more like a polynomial division. Let's turn to the general division algorithm.

> >

> >

> >

> >

> >

> >

The General Division Algorithm
It may surprise you to learn that this division algorithm was not known before the 20th century. It is
simple but it does depend crucially on how we order the terms in our polynomials. Anyone can learn
how to do this. When we were dividing vectors, we used an implicit ordering on the unknowns

 , namely because of the order we put on the columns of A. The first step to
generalize the division algorithm to polynomials in more than one variable is to decide how to order
terms. Suppose the terms of the polynomial are
f := x^2,y^2,4*x*y^2,5*x,2,7*x*y;

One way to order the terms is to first sort on the degree in the first variable, say x. So we have (in
descending degree)

We have one term of degree 2 in x, three of degree 1 and two of degree 0. Now for each set of terms
with the same degree in x, sort them in decreasing degree in y to get

This ordering is called pure lexicographical order. In Maple we specify this using . If there
were a third variable z we would now sort all terms in in descending degree on z. The first term,
the leading term, is key to the division algorithm. We will denote the leading term of a polynomial f
by LT(). Now when I input the polynomial in this ordering to Maple I get
f := x^2+4*x*y^2+7*x*y+5*x+y^2+2;

Notice that it changed the order of the terms and put the term first. Why? Because it is using
a different term ordering that will also work for the division algorithm and for Groebner bases.
Consider again our terms
f := [x^2,y^2,4*x*y^2,5*x,2,7*x*y];

This time, first sort the terms by degree (into descending order). So the term has degree 3
which is more than the term which has degree 2. We get

There is 1 term of degree 3, three of degree 2, one of degree 1 and one of degree 0. Now sort the
terms of each degree by lexicographical order to get

 .
This term ordering is called graded lexicographical order. To get a Groebner basis in this ordering
use grlex(x,y). Just to see that this makes a difference let's compare the two orderings
Groebner[Basis](B1, plex(x,y,z));

Groebner[Basis](B1, grlex(x,y,z));

Now we are ready to do a general division. We will divide the polynomial by
two polynomials . The first step is to sort the terms so we can identify
the leading terms of the dividend and divisors and . We have

> >

 divided by { , }.

The leading terms are and for the divisors and . The division algorithm always works with
leading terms. It will produce two quotients and and one remainder which will satisfy

and either or no term in the remainder is divisable by any leading term of a divisor.

The following figure shows the first step of the division algorithm. I've put the two divisors on the
left and the two quotients on the top of the radical symbol and the dividend is the usual place. The
first quotient term is . We multiply and subtract as in the division algorithm for one
variable.

g1 = x2 K z2 C 2

g2 = y2 K x K z
x2 C x$y2 C z2 K 1 = f

 q1 = 1
 q2 = 0

K x2 K z2 C 2

= x$y2 C 2$z2 K 3 = f K q1$g1

Notice that after the subtraction we sort the terms in the result so that we can identify the leading
term of the result which is . Now does not divide but does with
quotient . So we add the next quotient term to and multiply and subtract. Here are the next two
steps

> >

g1 = x2 K z2 C 2

g2 = y2 K x K z
x2 C x$y2 C z2 K 1 = f

 q1 = 1 C 1
 q2 = x

K x2 K z2 C 2

= x$y2 C 2$z2 K 3 = f K q1$g1

Kx$ y2 K x K z

= x2 C x$z C 2$z2 K 3 = f K 1$g1 K x$g2

K1$ x2 K z2 K 2

= x$z C 3$z2 K 5 = r

At this point we have and and no terms are divisible by or the leading
terms of the divisors so this is the remainder .
Let us do another division. Consider

 divided by { and }

using lexicographical order with so that the terms are already sorted. Since and

 both divide so the result is going to depend on which we use first. Let's
try it both ways to see what happens.

x$y2 C y2 x$y2 C y2
g1 = x$y C y
g2 = x$y C x

g1 = x$y C x
g2 = x$y C y

q1 = y
 q2 = 0

K x$y2 C y2

0

K x$y2 C x$y

Kx$y C y2

q1 = y-1
q2 = 0

C x$y C x

x C y2=remainder

Note, the terms in the remainder are not divisible by either or .

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

> >

What is surprising is that in one order we get 0 for the remainder but in the other we don't. And that
is a serious problem. It means that there's something wrong with the division algorithm. We can't
use it as expected to test if divides with 0 remainder. It turns out that the problem is not
the division algorithm, rather, it's the basis that we are using. It's not a "good basis". That
is, it's "not a Groebner basis". If we'd used a Groebner basis we would get a 0 remainder.
Incidentally, the same problem occurs if you try to divide a vector by a set of vectors if
you don't first put the vectors in Row Echelon form. Let us first simplify the divisor basis. We have
g1 := x*y+y;

g2 := x*y+x;

g3 := g2-g1;

I'd better use g3 to simplify g1 and g2
g1 := g1 - expand(y*g3); # simplify g1

g2 := g2 - expand(y*g3); # simplify g2

g2 := g2-g3; # simnplify g2 some more

G := {g1,g2,g3};

This is actually a Groebner basis and we have the following property.

Property of a Groebner Basis. A Groebner basis for a set of input polynomials
 with respect to a given term ordering, has the property that if a given polynomial

may be written as for some polynomials , then the remainder of
divided by is 0. This allows us to answer question 3.

sys1;

f1,f2,f3,f4 := x*y-z,x^2+y^2-1,z^2-x^2-1,y^2+z^2-2;

To test if the 4th equation is redundant, we first compute a Groebner basis G for using any
term ordering.
G := Groebner[Basis]([f1,f2,f3], plex(x,y,z));

Now we just need to divide by and see if we get 0 remainder. This command does the division
and returns the remainder
Groebner[NormalForm](f4, G, plex(x,y,z));

0
Since it is 0 then is redundant.
Note, division of by does not yield a 0 remainder

> >

> >

> >

> >

Groebner[NormalForm](f4, [f1,f2,f3], plex(x,y,z));

Limitations
There is much more to Groebner bases of course. More properties, more applications. But there is a
catch that needs to be stated lest you think that you can now use Groebner bases to solve systems of
hundreds of equations. If we have a system of quadratic equations in unknowns then the number
of solutions is in general. Trying to solve the system using the lexicographical monomial ordering,
in general will result in a triangular system with one polynomial of degree which even for small
is too big to compute. Here are four quadratics so you get a sense of this.
f1,f2,f3,f4 := w^2+x^2+y^2+z^2-1, 2*w^2-y^2+z*y+x*z-2,
 w^2+3*y^2-x*z-x^2-1,w*x+w*y+w*z-1;

G := Groebner[Basis]([f1,f2,f3,f4],plex(w,x,y,z)):
G[1];

If there is no hope of ever computing the Groebner basis. We cannot store let alone compute
a polynomial of degree . But a linear system of 100 equations in 100 unknowns is easy.

Term Orderings
Lastly, I want to mention that these two term orderings that we have been using satisfy three
properties which together are what will make the division algorithm work. The three properties are

 (i) The term ordering is a total ordering, that is, you can sort the terms into
 which means that by transitivity.

 (i) For any three non-zero terms we have 0 .
 (iii) Every non-empty set of terms has a least element in the term ordering.

The last property is needed for termination of the division algorithm. It is called the well-ordering
property. It is not at all obvious that the two orderings we have defined satisfy property (iii). That
needs a formal proof. We will not give it here.

For one variable, there is only one term ordering that satisfies all three properties, namely,

For two or more variables there are an infinite number of term orderings. When computing Groebner
bases, some term orderings are easier than others and some properties of a Groebner basis may
depend on specific term orderings.

> >

> >

References
Some helpful references include the Wikipedia page on Groebner bases. It explains Groebner bases in
terms of ideals, which is something I've tried to avoid here. As well, this textbook provides the
authorative treatment:

Ideals Varieties and Algorithms, Cox, Little, and O'Shea, Springer Verlag Undergraduate Texts in
Mathematics.

Legal Notice: © Maplesoft, a division of Waterloo Maple Inc. 2014. Maplesoft and Maple are trademarks of Waterloo Maple Inc. This
application may contain errors and Maplesoft is not liable for any damages resulting from the use of this material. This application is
intended for non-commercial, non-profit use only. Contact Maplesoft for permission if you wish to use this application in for-profit
activities.

