
A Fuzzy Description Logic with Product T-norm

Fernando Bobillo and Umberto Straccia

Abstract— Fuzzy Description Logics (fuzzy DLs) have been
proposed as a language to describe structured knowledge with
vague concepts. It is well known that the choice of the fuzzy
operators may determine some logical properties. However, up
to date the study of fuzzy DLs has been restricted to the
Łukasiewicz logic and the “Zadeh semantics”. In this work,
we propose a novel semantics combining the common product
t-norm with the standard negation. We show some interesting
properties of the logic and propose a reasoning algorithm based
on a mixture of tableaux rules and the reduction to Mixed
Integer Quadratically Constrained Programming.

I. INTRODUCTION

Description Logics (DLs) [1] are a logical reconstruction
of the so-called frame-based knowledge representation lan-
guages, with the aim of providing a simple well established
Tarski-style declarative semantics to capture the meaning
of the most popular features of structured representation of
knowledge. Nowadays, DLs have gained even more popu-
larity due to their application in the context of the Semantic
Web, as the theoretical counterpart of OWL DL (the W3C
standard for specifying ontologies, see [7] for details).

Fuzzy DLs (see [9] for a survey) extend classical DLs
by allowing to deal with fuzzy/vague/imprecise concepts for
which a clear and precise definition is not possible. The
problem to deal with imprecise concepts has been addressed
several decades ago by Zadeh [18], which gave birth in the
meanwhile to the so-called fuzzy set and fuzzy logic theory
and a huge number of real life applications exists. Despite the
popularity of fuzzy set theory, relative little work has been
carried out in extending DLs towards the representation of
imprecise concepts, notwithstanding DLs can be considered
as a quite natural candidate for such an extension.

From a semantics point of view, most works rely on the
semantics of fuzzy sets operators proposed by Zadeh [18]
(which we call here “Zadeh semantics”): Gödel conjunction
and disjunction (x ∧ y = min(x, y), x ∨ y = max(x, y)),
Łukasiewicz negation (¬x = 1 − x) and Kleene-Diene
implication (x → y = max{1 − x, y}). Some few works
consider a fully Łukasiewcz compliant semantics [4], [3],
[16]. [16] has been proposed to deal with fuzzy DLs with
so-called fuzzy concrete domains (i.e. the possibility to
represent in fuzzy DLs concepts with explicit membership
functions such as triangular, trapezoidal, left-shoulder and
right-shoulder functions) and proposes a reasoning solution,
which is based on a mixture of tableau rules and Mixed

Fernando Bobillo is with the Department of Computer Science
and Artificial Intelligence, University of Granada, Spain (email: fbo-
billo@decsai.ugr.es).

Umberto Straccia is with the Istituto di Scienza e Tecnologie dellInfor-
mazione, Consiglio Nazionale delle Ricerche, Pisa, Italy (email: strac-
cia@isti.cnr.it).

Integer Linear Programming (MILP) and is implemented in
the fuzzyDL reasoner, available from Straccia’s home page.

In this paper, we consider a fuzzy DL with a novel
semantics, based on the product as t-norm. To the best of
our knowledge, this is the first attempt in this direction. In
the remainder, we proceed as follows. In the next section
we describe the basics of fuzzy DLs and our product-based
semantics, then in Section III we address the inference
algorithm and finally Section IV presents some conclusions
and ideas for future work.

II. FUZZY DLS

In this section, we define fuzzy ALCF(D). We recall
here the semantics given in [4], [3], [16], [17] and then we
consider a family of operators with product as t-norm.

A. Syntax

In fuzzy ALCF(D), we allow to reason with concrete
fuzzy data types, using so-called concrete domains. We
recall that ALCF(D) is the basic DL ALC [11] extended
with functional roles (also called attributes or features) and
concrete domains [10] allowing to deal with data types
such as strings and integers. In fuzzy ALCF(D), however,
concrete domains are fuzzy sets.

A fuzzy data type theory D= 〈∆D, ·D〉 is such that
·D assigns to every n-ary data type predicate an n-ary
fuzzy relation over ∆D. For instance, as for ALCF(D),
the predicate 618 may be a unary crisp predicate over the
natural numbers denoting the set of integers smaller or equal
to 18. On the other hand, concerning non-crisp fuzzy domain
predicates, we recall that in fuzzy set theory and practice,
there are many functions for specifying fuzzy set membership
degrees. However, the triangular, the trapezoidal, the L-
function (left-shoulder function), and the R-function (right-
shoulder function) are simple, but most frequently used to
specify membership degrees. The functions are defined over
the set of non-negative rationals Q+∪{0} Using these func-
tions, we may then define, for instance, Young : Natural →
[0, 1] to be a fuzzy concrete predicate over the natural
numbers denoting the degree of youngness of a person’s
age. The concrete fuzzy predicate Young may be defined
as Young(x) = L(x; 10, 30).

We also allow modifiers in fuzzy ALCF(D). Fuzzy
modifiers, like very , more or less and slightly , apply to
fuzzy sets to change their membership function. Formally, a
modifier is a function fm : [0, 1] → [0, 1]. For instance, we
may define very(x) = x2 and slightly(x) =

√
x.

Now, let A, RA, RC , I, Ic and M be non-empty finite
and pair-wise disjoint sets of concepts names (denoted A),
abstract roles names (denoted R), i.e. binary predicates

1-4244-1210-2/07/$25.00 ©2007 IEEE.
652

concrete roles names (denoted T), abstract individual names
(denoted a), concrete individual names (denoted c) and modi-
fiers (denoted m). Concepts may be seen as unary predicates,
while roles may be seen as binary predicates. RA also
contains a non-empty subset Fa of abstract feature names
(denoted r), while RC contains a non-empty subset Fc of
concrete feature names (denoted t). Features are functional
roles.

The syntax of fuzzy ALCF(D) concepts is as follows:

C := > | ⊥ | A | C1 u C2 | C1 t C2 | ¬C | m(C) |
∀R.C | ∃R.C | ∀T1, . . . , Tn.D | ∃T1, . . . , Tn.D .

Concerning axioms and assertions, similarly to [17], we
define fuzzy axioms as follows.

Let n ∈ (0, 1]. A fuzzy TBox T is a finite set of
fuzzy concept inclusion axioms 〈C v D,n〉, where C,D are
concepts. Informally, 〈C v D,n〉 states that all instances of
concept C are instances of concept D to degree n. We write
C = D as a shorthand of the two axioms 〈C v D, 1〉 and
〈D v C, 1〉. For instance, Minor = Person u ∃age. 618

defines a person, whose age is less or equal to 18 (age is a
concrete feature), i.e., a minor,

A fuzzy ABox A consists of a finite set of fuzzy con-
cept and fuzzy role assertion axioms of the form 〈a :C, n〉,
〈(a, b) :R,n〉 and 〈(a, c) :T , n〉, where a, b are abstract in-
dividual constants, c is a concrete individual, and C, R
and T are a concept, an abstract role and a concrete role,
respectively.

Informally, from a semantical point of view, a fuzzy
axiom 〈α, n〉 constrains the membership degree of α to
be at least n. Hence, 〈jim :YoungPerson, 0.2〉 says that
jim is a YoungPerson with degree at least 0.2, while
〈(jim, 180) :hasHeight , 1〉, where hasHeight is a concrete
feature, says that jim’s height is 180. On the other hand, a
fuzzy concept inclusion axiom of the form 〈C v D,n〉 says
that the subsumption degree between C and D is at least n.

An ALCF(D) fuzzy knowledge base K = 〈T ,A〉 consists
of a fuzzy TBox T , and a fuzzy ABox A.

B. Semantics

The semantics extends [15]. The main idea is that concepts
and roles are interpreted as fuzzy subsets of an interpre-
tation’s domain. Therefore, ALCF(D) axioms, rather than
being satisfied (true) or unsatisfied (false) in an interpretation,
become a degree of truth in [0, 1].

In the following, we use ∧,∨,¬ and → in infix notation, in
place of a t-norm, s-norm, negation function and implication
function. A fuzzy interpretation I = (∆I , ·I) relative to
a fuzzy data type theory D= 〈∆D, ·D〉 consists of a
nonempty set ∆I (the domain), disjoint from ∆D, and of
a fuzzy interpretation function ·I that coincides with ·D on
every data value, data type, and fuzzy data type predicate,
and it assigns (i) to each abstract concept C a function
CI : ∆I → [0, 1]; (ii) to each abstract role R a function
RI : ∆I × ∆I → [0, 1]; (iii) to each abstract feature r
a partial function rI : ∆I × ∆I → [0, 1] such that for all

u ∈ ∆I there is an unique w ∈ ∆I on which rI(u, w) is
defined; (iv) to each concrete role T a function RI : ∆I ×
∆D → [0, 1]; (v) to each concrete feature t a partial function
tI : ∆I ×∆D → [0, 1] such that for all u ∈ ∆I there is an
unique o ∈ ∆D on which tI(u, o) is defined; (vi) to each
modifier m the modifier function fm : [0, 1] → [0, 1]; (vii) to
each abstract individual a an element in ∆I ; (viii) to each
concrete individual c an element in ∆D.

The mapping ·I is extended to roles and complex concepts
as specified in the Table I (where x, y ∈ ∆I and v ∈ ∆D).

We comment briefly some points. The semantics of ∃R.C
(∃R.C)I(d) = supy∈∆I RI(x, y) ∧ CI(y) is the result of
viewing ∃R.C as the open first order formula ∃y.FR(x, y)∧
FC(y) (where F is the obvious translation of roles and con-
cepts into first-order logic (FOL)). Similarly, (∀R.C)I(x) =
infy∈∆I RI(x, y) → CI(y) is related to the open first order
formula ∀y.FR(x, y) → FC(y).

Finally, the mapping ·I is extended to non-fuzzy axioms as
specified in the following table (where a, b are individuals):

(C v D)I = infx∈∆I CI(x) → DI(x)

(a :C)I = CI(aI)

((a, b) :R)I = RI(aI , bI) .

Note here that e.g. the semantics of a concept inclusion
axiom C v D is derived directly from its FOL translation,
which is of the form ∀x.FC(x) → FD(x). This definition
is clearly different from the approaches in which C v D
is viewed as ∀x.C(x) 6 D(x). This latter approach has
the effect that the subsumption relationship is a boolean
relationship, while the in former approach subsumption is
determined up to a degree in [0, 1].

The notion of satisfaction of a fuzzy axiom E by a fuzzy
interpretation I, denoted I |= E, is defined as follows: I |=
〈α > n〉, where α is a concept inclusion axiom, iff αI > n.
Similarly, I |= 〈α > n〉, where α is a concept or a role
assertion axiom, iff αI > n. We say that a concept C is
satisfiable iff there is an interpretation I and an individual
x ∈ ∆I such that CI(x) > 0.

For a set of fuzzy axioms E , we say that I satisfies E iff
I satisfies each element in E . We say that I is a model of E
(resp. E) iff I |= E (resp. I |= E). I satisfies (is a model of)
a fuzzy knowledge base K = 〈T ,A〉, denoted I |= K, iff I
is a model of each component T ,R and A, respectively.

A fuzzy axiom E is a logical consequence of a knowledge
base K, denoted K |= E iff every model of K satisfies E.

The interesting point is that according to our semantics,
e.g., a minor is a young person to a degree and this
relationship is obtained without explicitly mentioning it.
Finally, given K and an axiom α of the form C v D, a :C,
(a, b) :R or (a, c) :T , it is of interest to compute α’s best
lower degree value bound. The greatest lower bound of α
w.r.t. K (denoted glb(K, α)) is glb(K, α) = sup{n | K |=
〈α > n〉}, where sup ∅ = 0. Determining the glb is called the
Best Degree Bound (BDB) problem. Another similar concept
is the best satisfiability bound of a concept C and amounts
to determine glb(K, C) = supI supx∈∆I{CI(x) | I |= K}.
Essentially, among all models I of the knowledge base, we

653

⊥I(x) = 0
>I(x) = 1

(C1 u C2)
I(x) = C1

I(x) ∧ C2
I(x)

(C1 t C2)
I(x) = C1

I(x) ∨ C2
I(x)

(¬C)I(x) = ¬CI(x))

(m(C))I(x) = fm(CI(x))

(∀R.C)I(x) = infy∈∆I RI(x, y) → CI(y)

(∃R.C)I(x) = supy∈∆I RI(x, y) ∧ CI(y)

(∀T1, . . . , Tn.D)I(x) = infy1,...,yn∈∆D(
Vn

i=1 Ti
I(x, yi)) → DI(y1, . . . , yn)

(∃T1, . . . , Tn.D)I(x) = supy1,...,yn∈∆D
(
Vn

i=1 Ti
I(x, yi)) ∧DI(y1, . . . , yn) .

TABLE I
FUZZY DL SEMANTICS.

are determining the maximal degree of truth that the concept
C may have over all individuals x ∈ ∆I .

Example 2.1: Assume, that a car seller sells an Audi TT
for $31500, as from the catalog price. A buyer is looking for
a sports car, but wants to pay no more than around $30000.
In classical DLs no agreement can be found. The problem
relies on the crisp condition on the seller’s and the buyer’s
price. A more fine grained approach would be (and usually
happens in negotiation) to consider prices as concrete fuzzy
sets instead. For instance, the seller may consider optimal to
sell above $31500, but can go down to $30500. The buyer
prefers to spend less than $30000, but can go up to $32000.
We may represent these statements using two axioms:

AudiTT = SportsCar u ∃hasPrice.R(x; 30500, 31500)
Query = SportsCar u ∃hasPrice.L(x; 30000, 32000)

where hasPrice is a concrete feature (a car has only one
price, which is a number). Then we may find out that the
highest degree to which the concept C = AudiTT uQuery
is satisfiable is 0.5 (the possibility that the Audi TT and
the query matches is 0.5). That is, glb(K, C) = 0.5 and
corresponds to the point where both requests intersects (i.e.,
the car may be sold at $31000).

C. Product as t-norm

In the rest of the paper, we will concentrate on the novel
semantics given by the following operators:

¬α = 1− α
α ∧ β = α · β
α ∨ β = α + β − α · β

α → β =

1 if α 6 β
β/α if α > β

These operators correspond to the product logic family but
replacing Gödel negation (¬α = 1 if α = 0 or 0 otherwise)
with Łukasiewicz negation. We follow the inspiration of the
probabilistic theory, which combines this negation (in the
probability of the negated event) and the product (in the
probability of the conjunction of independent events) [8]. We
are doubtful about the practical interest of Gödel negation
and we prefer to use a continuous and involutive negation.

A property of our logic is that ¬∀R.C 6= ∃R.(¬C)
and ¬∃R.C 6= ∀R.(¬C). Note that the equality holds for
Łukasiewicz logic and “Zadeh semantics”. This is inter-
esting since assuming the inter-definability of quantifiers
is generally an unnecessary restriction [4]. However, De
Morgan laws are still verified, i.e. ¬(α ∨ β) = ¬α ∧ ¬β
and ¬(α ∧ β) = ¬α ∨ ¬β. Moreover, product t-norm is
subidempotent and product t-conorm is superidempotent.
Hence, in general C 6= C u C and C 6= C t C.

Finally, we note that [3], [4] shows for Łukasiewicz logic
that if K has a model then it has a witnessed model, and that
this does not hold for any logic with Gödel negation (such as
Gödel or product logics). However, we note that this result
holds for product logic with Łukasiewicz negation as well.

III. REASONING

Our procedure is inspired on [16]. We leave out for reasons
of space, how to deal with fuzzy concrete domains and
modifiers. The basic idea behind our reasoning algorithm is
as follows. Consider K = 〈T ,A〉. In order to solve the BDB
problem, we combine appropriate DL tableaux rules with
methods developed in the context of Many-Valued Logics
(MVLs) [2]. In order to determine e.g. glb(K, a :C), we con-
sider an expression of the form 〈a :¬C, 1− x〉 (informally,
〈a :C 6 x〉), where x is a [0, 1]-valued variable. Then we con-
struct a tableaux for K = 〈T ,A ∪ {〈a :¬C,¬x〉}〉 in which
the application of satisfiability preserving rules generates new
fuzzy assertion axioms together with inequations over [0, 1]-
valued variables. These inequations have to hold in order
to respect the semantics of the DL constructors. Finally, in
order to determine the greatest lower bound, we minimize the
original variable x such that all constraints are satisfied 1.
Similarly, for C v D, we can compute glb(K, C v D)
as the minimal value of x such that K = 〈T ,A ∪ {〈a :
C, x1〉}∪{〈a : D > x2〉}〉 is satisfiable under the constraints
{y ·x1+(1−y)·x2 > y ·x2+(1−y)·x1, x > (1−y), y ·x2 6
x · x1, xi ∈ [0, 1], y ∈ {0, 1}}, where a is new abstract

1Informally, suppose the minimal value is n̄. We will know then that for
any interpretation I satisfying the knowledge base such that (a :C)I < n̄,
the starting set is unsatisfiable and, thus, (a :C)I > n̄ has to hold. Which
means that glb(K, (a :C)) = n̄

654

individual. Therefore, the BDB problem can be reduced to
minimal satisfiability problem of a KB. Finally, concerning
the satisfiability bound problem, glb(K, C) is determined by
the maximal value of x such that 〈T ,A ∪ {〈a :C, x〉}〉 is
satisfiable.

Using this logic, we end up with a bounded Mixed
Integer Quadratically Constrained Programming optimization
problem (bMICQP, see below). We recall that under “Zadeh
semantics” and Łukasiewicz logic we end up with a bounded
Mixed Integer Linear Program (bMILP) problem [16]. Inter-
estingly, the tableaux contains only one branch and only and,
thus, just one bMICQP problem has to be solved.

A. bMIQCP problems

Let x = 〈x1, . . . , xk〉 and y = 〈y1, . . . , ym〉 be variables
over Q, over the integers (the variables in y are called control
variables). For all i ∈ 0, 1, · · · , n, let ai be an integer vector
of length k, bi be an integer vector of length m, hi be an
integer number and Qi(x, y) = 1/2 · (x + y)T ·Ci · (x + y),
where Ci is a symmetric integer matrix of dimension (k +
m)× (k + m). Let f(x, y) be an k + m-ary linear function.
The MICQP problem is to find x̄ ∈ Qk, ȳ ∈ Zm such that
f(x̄, ȳ) = min{f(x, y) : a0 ·x+ b0 · y > h0} subject to a set
of n constraints of the form: ai · x + bi · y + Qi(x, y) > hi

or ai ·x+ bi · y +Qi(x, y) 6 hi, for all i = 1, . . . , n. Notice
that the objective function is linear, while the restrictions can
contain quadratic sections. The general case can be restricted
to what concerns the paper as we can deal with bounded
MIQCP (bMIQCP). That is, the rational variables range over
[0, 1], while the integer variables ranges over {0, 1}.

Furthermore, we say that M ⊆ [0, 1]k is bMICQP-
representable iff there is a bMICQP (ai, bi, Ci, hi) with k
real and m 0 − 1 variables such that M = {x : ∃y ∈
{0, 1}m} such that ai · x + bi · y + Qi(x, y) > hi or
ai · x + bi · y + Qi(x, y) 6 hi. Notice that every constructor
of the logic is bMICQP representable i.e. it generates a set
of bMICQP representable constraints.

B. A fuzzy tableau

Now, let V be a new alphabet of variables x ranging
over [0, 1], W be a new alphabet of 0-1 variables y. We
extend fuzzy assertions to the form 〈α, l〉, where l is a linear
expression over variables in V,W and real values.

Similar to crisp DLs, our tableaux algorithm checks the
satisfiability of a fuzzy KB by trying to build a fuzzy tableau,
from which it is immediate either to build a model in case
KB is satisfiable or to detect that the KB is unsatisfiable. The
fuzzy tableau we present here can be seen as an extension
of the tableau presented in [6], and is inspired by the one
presented in [13], [14].

Given K = 〈T ,A〉, let RK be the set of roles occurring
in K and let sub(K) be the set of named concepts appearing
in K. A fuzzy tableau T for K is a quadruple (S, L, E , V)
such that: S is a set of elements, L : S × sub(K) → [0, 1]
maps each element and concept, to a membership degree
(the degree of the element being an instance of the concept),
and E : RK × (S × S) → [0, 1] maps each role of RK and

pair of elements to the membership degree of the pair being
an instance of the role, and V : IA → S maps individuals
occurring in A to elements in S. For all s, t ∈ S, C,D ∈
sub(K), and R ∈ RK, T has to satisfy:

1) L(s,⊥) = 0 and L(s,>) = 1 for all s ∈ S,
2) If L(s,¬A) > n, then L(s, A) 6 ¬n.
3) If L(s,¬¬C) > n, then L(s, C) > n.
4) If L(s, C u D) > n, then L(s, C) > m1, L(s, D) > m2

and n = m1 ∧m2, for some m1 and m2.
5) If L(s,¬(C uD)) > n, then L(s,¬C t ¬D) > n.
6) If L(s, C t D) > n, then L(s, C) > m1, L(s, D) > m2

and n = m1 ∨m2, for some m1 and m2.
7) If L(s,¬(C tD)) > n, then L(s,¬C u ¬D) > n.
8) If L(s,∀R.C) > n, then L(t, C) > E(R, 〈s, t〉) ∧ n, for all

t ∈ S.
9) If L(s,¬∀R.C) > n, then there exists t ∈ S such that

E(R, 〈s, t〉) → L(t, C) 6 1− n.
10) If L(s,∃R.C) > n, then there exists t ∈ S such that

E(R, 〈s, t〉) > m1, L(t, C) > m2 and n = m1 ∧ m2, for
some m1 and m2.

11) If L(s,¬∃R.C) > n, then E(R, 〈s, t〉) ∧ L(t, C) 6 1 − n,
for all t ∈ S.

12) If 〈C v D, n〉 ∈ T , then L(s, D) > L(s, C) ∧ n, for all
s ∈ S.

13) If 〈a :C, n〉 ∈ A, then L(V(a), C) > n.
14) If 〈(a, b) :R, n〉 ∈ A, then E(R, 〈V(a),V(b)〉) > n.
15) If 〈(a, c) :T , n〉 ∈ A, then E(T, 〈V(a),V(c)〉) > n.

Proposition 3.1: K = 〈T ,A〉 is satisfiable iff there exists
a fuzzy tableau for K.
Proof: [Sketch] For the if direction if T = (S,L, E ,V) is a
fuzzy tableau for K, we can construct a fuzzy interpretation
I = (∆I , ·I) that is a model of A and T as follows:

∆I = S, aI = V(a), a occurs in A
>I(s) = L(s,>),⊥I(s) = L(s,⊥), for all s ∈ S
AI(s) = L(s, A), for all s ∈ S
RI(s, t) = E(R, 〈s, t〉) for all 〈s, t〉 ∈ S × S

To prove that I is a model of A and T , we can show by
induction on the structure of concepts that L(s, C) > n
implies CI(s) > n for all s ∈ S. Together with properties
13–15, this implies that I is a model of T , and that it satisfies
each fuzzy assertion in A.

For the converse, in our logic it holds that if K has a model
then it has a witnessed model. That is, I = (∆I , ·I) is a
witnessed model of K, if for all x ∈ ∆I there is y ∈ ∆I such
that (∃R.C)I(x) = RI(x, y) ∧ CI(y) and there is x ∈ ∆I

such that (C v D)I = CI(x) → DI(x).
So, let I be a witnessed model of K. Then a fuzzy tableau
T = (S,L, E ,V) for K can be defined as follows:

S= ∆I , E(R, 〈s, t〉) = RI(s, t), L(s, C) = CI(s), V(a) = aI

It can be verified that T is a fuzzy tableau for K. 2

C. An algorithm for building a fuzzy tableau

Now, in order to decide the satisfiability of K = 〈T ,A〉
a procedure that constructs a fuzzy tableau T for K has
to be determined. Like the tableaux algorithm presented in
[14], our algorithm works on completion-forests since an
ABox might contain several individuals with arbitrary roles
connecting them. It is worth to note that, while reasoning
algorithms within DLs usually transform concept expressions

655

into a semantically equivalent Negation Normal Form or
NNF (which is obtained by pushing in the usual manner
negation on front of concept names, modifiers and concrete
predicate names only), we cannot make this assumption now
since ¬∀R.C 6= ∃R.(¬C) and ¬∃R.C 6= ∀R.(¬C).

Let K = 〈T ,A〉 be a fuzzy KB. A completion-forest F
for K is a collection of trees whose distinguished roots are
arbitrarily connected by edges. Each node v is labelled with
a sequence L(v) of expressions of the form 〈C, l〉, where
C ∈ sub(K), and l is either a rational, a variable x, or a
negated variable, i.e. of the form 1−x, where x is a variable
(the intuition here is that v is an instance of C to degree
equal or greater than of the evaluation of l). Each edge 〈v, w〉
is labelled with a sequence L(〈v, w〉) of expressions of the
form 〈R, l〉, where R ∈ RK are roles occurring in K(the
intuition here is that 〈v, w〉 is an instance of R to degree
equal or greater than of the evaluation of l). The forest has
associated a set CF of constraints of the form l 6 l′, l =
l′, xi ∈ [0, 1], yi ∈ {0, 1}, on the variables occurring the
node labels and edge labels. l, l′ are linear expressions.

If nodes v and w are connected by an edge 〈v, w〉 with
〈R, l〉 occurring in L(〈v, w〉), then w is called an Rl-
successor of v and w is called an Rl-predecessor of w. A
node v is an R-successor (resp. R-predecessor) of w if it is
an Rl-successor (resp. Rl-predecessor) of w for some role R.
As usual, ancestor is the transitive closure of predecessor.

Due to the presence of general or cyclic terminology T ,
the termination of the algorithm has to be ensured. This is
done by providing a blocking condition for rule applications.
We say that two non-root nodes v and w are equivalent,
denoted L(v) ≈ L(w), if L(v) = [〈C1, l1〉, . . . , 〈Cn, lk〉],
L(w) = [〈C1, l

′
1〉, . . . , 〈Cn, l′k〉], and for all 1 6 i 6 k, either

both li and lj are variables, or both li and lj are negated
variables or both li and l′i are the same rational in [0, 1] (the
intuition here is that v and w share the same properties).
A node v is directly blocked iff none of its ancestors are
blocked, it is not a root node, and it has an ancestor w such
that L(v) ≈ L(w). In this case, we say w directly blocks v.
A node v is blocked iff it is directly blocked or if one of its
predecessor is blocked (the intuition here is that we need not
further to apply rules to node v, as an equivalent predecessor
node w of v exists).

The algorithm initializes a forest F to contain (i) a root
node vi

0, for each individual ai occurring in A, labelled
with L(vi

0) such that L(vi
0) contains 〈Ci, n〉 for each fuzzy

assertion 〈ai :Ci, n〉 ∈ A, and (ii) an edge 〈vi
0, v

j
0〉, for

each fuzzy assertion 〈(ai, aj) :Ri, n〉 ∈ A, labelled with
L(〈vi

0, v
j
0〉) such that L(〈vi

0, v
j
0〉) contains 〈Ri, n〉. F is then

expanded by repeatedly applying the completion rules de-
scribed below. The completion-forest is complete when none
of the completion rules are applicable. Then, the bMIQCP
problem on the set of constraints CF is solved.

We also need a technical definition involving feature roles
(see [10]). Let F be forest, r an abstract feature such that
we have two edges 〈v, w1〉 and 〈v, w1〉 such that 〈r, l1〉
and 〈r, l2〉 occur in L(〈v, w1〉) and L(〈v, w2〉), respectively

(informally, F contains 〈(v, w1) :r, l1〉 and 〈(v, w2) :r, l2〉).
Then we call such a pair a fork. As r is a function, such
a fork means that w1 and w2 have to be interpreted as the
same individual. Such a fork can be deleted by adding both
L(〈v, w2〉) to L(〈v, w1〉) and L(w2) to L(w1), and then
deleting node w2. A similar argument applies to concrete
feature roles. At the beginning, we remove the forks from the
initial forest. We assume that forks are eliminated as soon as
they appear (as part of a rule application) with the proviso
that newly generated nodes are replaced by older ones and
not vice-versa.

We also assume a fixed rule application strategy as e.g. the
order of rules below, such that the rules for (∃) and (¬∀)
are applied as last. Also, all expressions in node labels are
processed according to the order they are introduced into F .

With xα we denote the variable associated to the atomic
assertion α of the form a :A or (a, b) :R. xα will take the
truth value associated to α, while with xc we denote the
variable associated to the concrete individual c. The rules
are the following:

(A). If 〈A, l〉 ∈ L(v) then CF = CF ∪{xv :A > l}∪{xv :A ∈
[0, 1]}.

(Ā). If 〈¬A, l〉 ∈ L(v) then CF = CF ∪ {xv :A 6 1 − l} ∪
{xv :A ∈ [0, 1]}.

(R). If 〈R, l〉 ∈ L(〈v, w〉) then CF = CF ∪ {x(v, w) :R >

l} ∪ {x(v, w) :R ∈ [0, 1]}.
(¬¬). If 〈¬¬C, l〉 ∈ L(v) then L(v) = L(v) ∪ 〈C, l〉.
(u). If 〈C uD, l〉 ∈ L(v) then append 〈C, x1〉 and 〈D, x2〉 to

L(v), and CF = CF ∪ {x1 · x2 = l, xi ∈ [0, 1]}, where
xi are new variables.

(ū). If 〈¬(C u D), l〉 ∈ L(v) then append 〈¬C t ¬D, l〉 to
L(v).

(t). If 〈C uD, l〉 ∈ L(v) then append 〈C, x1〉 and 〈D, x2〉 to
L(v), and CF = CF ∪{x1+x2−x1 ·x2 = l, xi ∈ [0, 1]},
where xi are new variables.

(t̄). If 〈¬(C t D), l〉 ∈ L(v) then append 〈¬C u ¬D, l〉 to
L(v).

(∀). If 〈∀R.C, l1〉 ∈ L(v), 〈R, l2〉 ∈ L(〈v, w〉 and the rule has
not been already applied to this pair then append 〈C, x〉
to L(w) and CF = CF ∪ {x > l1 · l2, x ∈ [0, 1]}, where
x is a new variable. The case for concrete roles is similar.

(∃̄). If 〈¬∃R.C, l1〉 ∈ L(v), 〈R, l2〉 ∈ L(〈v, w〉 and the rule
has not been already applied to this pair then append
〈¬C, 1 − x1〉 to L(w) and CF = CF ∪ {x(v, w) :R 6

x2, x1 · x2 = 1 − l1, xi ∈ [0, 1]}, where xi are new
variables. The case for concrete roles is similar.

(v). If 〈C v D, n〉 ∈ T and v is a node to which this rule
has not yet been applied then append 〈¬C, 1 − x1〉 and
〈D, x2〉 to L(v), and CF = CF ∪ {x2 > x1 · n, xi ∈
[0, 1]}, where xi are new variables.

(∃). If 〈∃R.C, l〉 ∈ L(v) and v is not blocked then create a
new node w and append 〈R, x1〉 to L(〈v, w〉) and append
〈C, x2〉 to L(w), and CF = CF∪{x1·x2 = l, xi ∈ [0, 1]},
where xi are new variables. The case for concrete roles
is similar.

(∀̄). If 〈¬∀R.C, l〉 ∈ L(v) and v is not blocked then create a
new node w and append 〈R, x1〉 to L(〈v, w〉) and append
〈C, x2〉 to L(w) and CF = CF ∪{y ·x1 +(1− y) ·x2 >
y · x2 + (1 − y) · x1, l 6 y, y · x2 6 x1 − l · x1, xi ∈
[0, 1], y ∈ {0, 1}}, where xi, y are new variables. The
case for concrete roles is similar.

Let us comment the (∀̄)-rule. If 〈¬∀R.C, l〉 ∈ L(v) then

656

infb R(a, b) → C(b) 6 1 − l. For a new abstract individual
b, there are two possibilities to satisfy this restriction: (i)
RI(a, b) 6 CI(b) and l = 0; (ii) RI(a, b) > CI(b) and
CI(b) 6 RI(a, b) − RI(a, b) · l. The binary variable y
simulates the two branches: (i) if y = 0 then l = 0 and
x2 > x1; (ii) if y = 1 then x2 6 x1 and x2 6 x1 − x1 · l.

Rules for modifiers and concrete roles are not shown
since they are equal to “Zadeh semantics” and Łukasiewicz
logics [16]. However, as explained above, we cannot suppose
in them that concepts are in NNF.

Proposition 3.2 (Termination): For each KB K, the
tableau algorithm terminates.
Proof: [Sketch] Termination is a result of the properties of
the expansion rules, as in the classical case [6]. More pre-
cisely we have the following observations. (i) The expansion
rules never remove nodes from the tree (except forks at the
beginning) or concepts from node labels or change the edge
labels. (ii) Successors are only generated by the rules (∃)
and (¬∀). For any node and for each concept these rules
are applied at-most once. (iii) Since nodes are labelled with
nonempty sequences of sub(K), obviously there is a finite
number of possible labelling for a pair of nodes. Thus, the
blocking condition will be applied in any path of the tree
and consequently any path will have a finite length. 2

Proposition 3.3 (Soundness): If the expansion rules can
be applied to a KB K such that they yield a complete
completion-forest F such that CF has a solution, then K
has a fuzzy tableau for K.
Proof: [Sketch] Let F be a complete completion-forest
constructed by the tableaux algorithm for K. By hypothesis,
CF has a solution. If x is a variable occurring in CF , with
x̄ we denote the value of x in this solution. If the variable
x does not occur in CF then x̄ = 0 is assumed. A fuzzy
tableau T = (S,L, E ,V) can be defined as follows:

S = {v | v is a not blocked node in F},
L(v,⊥) = 0, if v ∈ S,
L(v,>) = 1, if v ∈ S,
L(v, A) = x̄v :A, if v in F not blocked,

E(R, 〈v, w〉) = x̄(v, w) :R, if v, w in F not blocked
E(R, 〈v, w〉) = x̄(v, w′) :R, if v in F not blocked,

w blocks w′

V(ai) = vi
0, where vi

0 is a root node

It can be shown that T is a fuzzy tableau for K. 2

Proposition 3.4 (Completeness): Consider a KB K. If K
has a fuzzy tableau, then the expansion rules can be applied
in such a way that the tableaux algorithm yields a complete
completion-forest for K such that CF has a solution.
Proof: [Sketch] Let T = (S,L, E ,V) be a fuzzy tableau for
K. Using T , we can trigger the application of the expansion
rules such that they yield a completion-forest F that is
complete. Using L and E we can find a solution to CF . 2

IV. CONCLUSIONS

In this work we presented a reasoning algorithm for
fuzzy ALCF(D) with product as t-norm. Our logic has
interesting properties such as not allowing inter-definability
of quantifiers, but still verifying De Morgan laws. The

reasoning algorithm combines tableaux rules with a reduction
to a bMIQCP problem (while under Łukasiewicz logic and
“Zadeh semantics” we end up with a bMILP problem).

The result could be extended to more expressive fuzzy
DLs, such as SHIF(D) and SHOIN (D), which are the
DLs behind the web ontology description languages OWL-
DL and OWL-Lite, by adapting our blocking condition
similarly as done in [5]. We also plan to implement the
reasoning algorithm as an extension of the fuzzyDL reasoner.

ACKNOWLEDGMENT

Fernando Bobillo holds a FPU scholarship from the Span-
ish Ministerio de Educación y Ciencia.

REFERENCES

[1] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi
and Peter F. Patel-Schneider, editors. The Description Logic Hand-
book: Theory, Implementation, and Applications. Cambridge Univer-
sity Press, 2003.

[2] Reiner Hähnle. Advanced many-valued logics. In Dov M. Gabbay and
F. Guenthner, editors, Handbook of Philosophical Logic, 2nd Edition,
volume 2. Kluwer, Dordrecht, Holland, 2001.

[3] Petr Hájek. Making fuzzy description logics more general. Fuzzy Sets
and Systems, 154 (1), 1–15, 2005.

[4] Petr Hájek. What does mathematical fuzzy logic offer to description
logic? In Elie Sanchez, editor, Capturing Intelligence: Fuzzy Logic
and the Semantic Web. Elsevier, 2006.

[5] Ian Horrocks, Ulrike Sattler and Stephan Tobies. Practical reasoning
for very expressive description logics. Logic Journal of the IGPL,
8(3):239–263, 2000.

[6] Ian Horrocks, Ulrike Sattler and Stephan Tobies. Reasoning with
individuals for the description logic SHIQ. In David MacAllester,
editor, Proceedings of the 17th International Conference on Automated
Deduction (CADE-17), number 1831 in Lecture Notes in Artificial
Intelligence, pages 482–496, Germany, 2000. Springer Verlag.

[7] Ian Horrocks, Peter F. Patel-Schneider and Frank van Harmelen. From
SHIQ and RDF to OWL: The making of a web ontology language.
Journal of Web Semantics, 1(1):7–26, 2003.

[8] Thomas Lukasiewicz. Probabilistic Description Logics for the Se-
mantic Web. Technical Report INFSYS 1843-06-05, Institut für
Informationssysteme, Technische Universität, Vienna, Austria, 2006.

[9] Thomas Lukasiewicz and Umberto Straccia. An Overview of Uncer-
tainty and Vagueness in Description Logics for the Semantic Web.
Technical Report INFSYS RR-1843-06-07, Institut für Information-
ssysteme, Technische Universität, Vienna, Austria, 2006.

[10] Carsten Lutz. Description logics with concrete domains - A survey. In
Advances in Modal Logics Vol. 4. King’s College Publications, 2003.

[11] Manfred Schmidt-Schauß and Gert Smolka. Attributive concept
descriptions with complements. Artificial Intelligence, 48:1–26, 1991.

[12] Giorgos Stoilos, Giorgos Stamou, Vassilis Tzouvaras, Jeff Z. Pan and
Ian Horrocks. The fuzzy description logic f-SHIN. Proc. of the ISWC
Workshop on Uncertainty Reasoning for the Semantic Web, 2005.

[13] Giorgos Stoilos, Giorgos Stamou, Vassilis Tzouvaras, Jeff Z. Pan and
Ian Horrocks. A Fuzzy Description Logic for Multimedia Knowledge
Representation. In Proceedings of the International Workshop on
Multimedia and the Semantic Web, 2005.

[14] Giorgos Stoilos, Umberto Straccia, Giorgos Stamou and Jeff Z. Pan.
General concept inclusions in fuzzy description logics. In Proceedings
of the 17th European Conference on Artificial Intelligence (ECAI-06),
pages 457–461. IOS Press, 2006.

[15] Umberto Straccia. Reasoning within fuzzy description logics. Journal
of Artificial Intelligence Research, 14:137–166, 2001.

[16] Umberto Straccia. Description logics with fuzzy concrete domains. In
Fahiem Bachus and Tommi Jaakkola, editors, Proceedings of the 21st
Conference on Uncertainty in Artificial Intelligence (UAI-05), pages
559–567, Edinburgh, Scotland, 2005. AUAI Press.

[17] Umberto Straccia. A fuzzy description logic for the semantic web. In
Elie Sanchez, editor, Fuzzy Logic and the Semantic Web, Capturing
Intelligence, chapter 4, pages 73–90. Elsevier, 2006.

[18] Lofti Zadeh. Fuzzy sets. Information and Control, 8(3):338–353,
1965.

657

