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Abstract

Let n > 2 be a positive integer and let φ denote Euler’s totient function. Define
φ1(n) = φ(n) and φk(n) = φ(φk−1(n)) for all integers k ≥ 2. Define the arithmetic
function S by S(n) = φ(n) + φ2(n) + · · · + φc(n) + 1, where φc(n) = 2. We say n is a
perfect totient number if S(n) = n. We give a list of known perfect totient numbers,
and we give sufficient conditions for the existence of further perfect totient numbers.

1 Introduction

Let n > 2 be a positive integer and let φ denote Euler’s totient function. Define φ1(n) = φ(n)
and φk(n) = φ(φk−1(n)) for all integers k ≥ 2. Shapiro [4] defines the class number C(n) of
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n by that integer c such that φc(n) = 2. Define the arithmetic function S by

S(n) = φ(n) + φ2(n) + · · · + φc(n) + 1,

where c = C(n). Note that φc+1(n) = 1. We say that n is a perfect totient number (or PTN
for short) if S(n) = n.

Since φ(n) is even if φ(n) > 1, it follows that all PTNs are odd. It is easy to show that
3k is a PTN for all positive integers k. In Table 1 the 30 PTNs less than 5 · 109 which are
not powers of 3 are given.

In addition to the PTNs given in Table 1, nine more were found by applying a result of
Venkataraman [5]: If p = 223b + 1 is prime then 3p is a PTN. A search of b ≤ 5000, beyond
those giving entries in Table 1, turned up the following nine values for which p = 223b + 1
is prime (and therefore 3p is a PTN): b = 39, 201, 249, 885, 1005, 1254, 1635, 3306, 3522.
The PTN which corresponds to b = 3522 has 1682 digits. Primality was verified with either
UBASIC or Mathematica, by applying Lehmer’s converse of Fermat’s Theorem (Theorem 4.3
in Riesel [3]).

15 = 3 · 5 36759 = 3 · 12253

39 = 3 · 13 46791 = 33
· 1733

111 = 3 · 37 65535 = 3 · 5 · 17 · 257

183 = 3 · 61 140103 = 33
· 5189

255 = 3 · 5 · 17 208191 = 3 · 29 · 239

327 = 3 · 109 441027 = 32
· 49003

363 = 3 · 112 4190263 = 7 · 11 · 54419

471 = 3 · 157 9056583 = 33
· 335429

2199 = 3 · 733 57395631 = 3 · 19131877

3063 = 3 · 1021 172186887 = 3 · 57395629

4359 = 3 · 1453 236923383 = 3 · 1427 · 55343

4375 = 54
· 7 918330183 = 33

· 34012229

5571 = 32
· 619 3932935775 = 52

· 29 · 5424739

8751 = 3 · 2917 4294967295 = 3 · 5 · 17 · 257 · 65537

15723 = 32
· 1747 4764161215 = 5 · 11 · 86621113

Table 1: PTNs less than 5 · 109 (except powers of 3).

The study of PTNs was initiated by Perez Cacho [2] when he proved that 3p, for an odd
prime p, is a PTN if and only if p = 4n + 1, where n is a PTN. Note that Venkataraman’s
result, mentioned above, follows as a corollary. Mohan and Suryanarayana [1] proved that
3p, for an odd prime p, is not a PTN if p ≡ 3 (mod 4). Thus PTNs of the form 3p have
been completely characterized.

Applying Perez Cacho’s result gives the following as the only known chains of PTNs,
apart from the nine examples of length 2 mentioned earlier: 3 → 39 → 471, 32 → 111, 15 →
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183 → 2199, 33 → 327, 255 → 3063 → 36759, 363 → 4359, 36 → 8751, 314 → 57395631,
315 → 172186887.

The purpose of this paper is to investigate PTNs of the form 3kp, for k ≥ 2 and p prime.
As an aside we note a curious result: the fact that φ(n) ≤ n/2 when n is even easily

implies that φ(n) > n/2 when n is a PTN.

2 Sufficient Conditions for PTNs

Mohan and Suryanarayana found sufficient conditions on an odd prime p for 32p and 33p
to be PTNs, given in their paper as Theorem 5 and Theorem 6. In particular, let b be a
nonnegative integer. Then, respectively, if q = 253b + 1 and p = 2 · 32q + 1 are both prime
then 32p is a PTN, and if q = 243b + 1 and p = 22q + 1 are both prime then 33p is a PTN.
There is one known example of their Theorem 5, that being the PTN 15723 = 321747 which
occurs when b = 1. Their Theorem 6 has three known examples: the PTNs 46791 = 331733
(b = 3), 140103 = 335189 (b = 4), and 918330183 = 33 · 34012229 (b = 12). The values
b ≤ 5000 (for both theorems) were tested, but no further examples were found.

Let p be an odd prime. We have found four further sufficient conditions on p for 32p to
be a PTN (three of which are given in the following Theorem), and two sufficient conditions
for 33p to be a PTN.

Theorem 1 Let b be a nonnegative integer. If r, q, and p, as given, are all prime then 32p
is a PTN:

1. r = 243b + 1, q = 2 · 3r + 1, and p = 2 · 3q + 1;

2. r = 2 · 3b + 1, q = 23r + 1, and p = 2q + 1;

3. r = 223b + 1, q = 233r + 1, and p = 2q + 1.

Proof: (Part 1) We have 32p = 263b+4 + 387 by direct substitution. Also,

S(32p) = 2232q + 2332r + 273b+1 + 273b + · · · + 27 + 26 + · · · + 1

= 27(3b+3 + · · · + 3 + 1) + 451

= 263b+4 + 387 .

The proofs of Parts 2 and 3 are similar. �

In Part 1, when b = 0, we have r = 17, q = 103, and p = 619, giving the PTN 5571.
There are no more examples for b ≤ 3000. In Parts 2 and 3, no examples occur for b ≤ 3000.

Theorem 2 Let b be a nonnegative integer. If q = 233b + 1 and p = 2q + 1 are both prime,
then 32p is a PTN.

Theorem 3 Let b be a nonnegative integer. If r = 223b + 1, q = 24r + 1, and p = 22q + 1
are all prime, then 33p is a PTN.
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Theorem 4 Let b be a nonnegative integer. If s = 253b + 1, r = 2 · 32s + 1, q = 243r + 1,
and p = 22q + 1 are all prime, then 33p is a PTN.

Direct proofs of Theorems 2–4 may be obtained as above. In Theorem 2, examples do not
occur for b ≤ 5000, and in Theorem 3, examples do not occur for b ≤ 3000. In Theorem 4,
when b = 1, we have s = 97, r = 1747, q = 83857, and p = 335429, giving the PTN 9056583.
There are no more examples for b ≤ 2000.

3 PTNs of the form 3
kp

In seeking examples of PTNs of the form 3kp, k ≥ 2, we considered primes p and q such that
q = 2a3b + 1 and p = 2c3dq + 1, where a, c ≥ 1 and b, d ≥ 0. Direct substitution gives

3kp = 2a+c3b+d+k + 2c3d+k + 3k .

On the other hand, we have

S(3kp) = 2c+13d+k−1q + 2a+c+13b+d+k−2 + 2a+c+13b+d+k−3 + · · ·

+ 2a+c+1 + · · · + 1

= 2c+13d+k−1 + 2a+c+1(3b+d+k−1 + · · · + 3 + 1) + 2a+c + · · · + 1

= 2c+13d+k−1 + 2a+c3b+d+k + 2a+c
− 1.

Assuming 3kp is a PTN, we equate the above expressions for 3kp and S(3kp) and simplify to
obtain the diophantine equation

2c(2a
− 3d+k−1) = 3k + 1. (1)

Clearly, a > 1 and c = 1 or 2 for k even or odd, respectively.
When k = 2, the right-hand side of (1) is 10; thus c = 1 and the equation reduces to

2a
− 3d+1 = 5. (2)

Since 2a ≡ 2 (mod 3), we must have a odd. We have a = 3, d = 0 as one solution, and we
have a = 5, d = 2 as another. If a > 5 then 3d+1 ≡ 123 (mod 128), which implies d+1 ≡ 11
(mod 32). This in turn implies 3d+1 ≡ 7 (mod 17), and thus 2a ≡ 7 + 5 ≡ 12 (mod 17),
which is impossible. Thus the only solutions to (2) are given by a = 3, d = 0, and by a = 5,
d = 2. Since also c = 1, this statement includes both our Theorem 2 and Theorem 5 of
Mohan and Suryanarayana [1].

When k = 3, (1) reduces to
2a

− 3d+2 = 7. (3)

Clearly a ≥ 3. Since 2a ≡ 1 (mod 3) and 3d+2 ≡ 1 (mod 8), we must have a and d both
even. Write a = 2α and d = 2δ. Then (3) reduces to

(2α + 3δ+1)(2α
− 3δ+1) = 7. (4)
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Therefore 2α − 3δ+1 = 1 and 2α + 3δ+1 = 7, implying α = 2, δ = 0, which in turn implies
a = 4, d = 0 as the only solution. Together with c = 2, this includes the statement of
Theorem 6 in Mohan and Suryanarayana [1].

We show next that there are no solutions of (1) when k ≥ 4.
Suppose first that k is even, k ≥ 4. Then c = 1. Put x = a + 1 and y = d + k − 1 so that

(1) may be given as
2x

− 2 · 3y = 3k + 1, (5)

where x ≥ 3, y ≥ 3. Then 2x ≡ 1 (mod 27), from which x ≡ 0 (mod 18). Since 218 ≡ 1
(mod 19), we then have −2 · 3y ≡ 3k (mod 19), so that

(

3

19

)y

=

(

−2 · 3y

19

)

=

(

3k

19

)

=

(

3

19

)k

,

where
(

·

·

)

is a Legendre symbol. Also, from (5), −2 · 3y ≡ 3k + 1 ≡ 2 (mod 8), so y is
odd. Then we have a contradiction since k is even, y is odd, and the Legendre symbol
(3/19) = −1.

Suppose next that k is odd, k ≥ 5. Then c = 2. Put x = a + 2 and y = d + k − 1 so that
(1) becomes

2x
− 4 · 3y = 3k + 1, (6)

where x ≥ 4, y ≥ 4. There are two main cases to consider.
(a) If k ≡ 1 (mod 4), then −4 · 3y ≡ 3k + 1 ≡ 4 (mod 16), implying that y is odd. Also,

as immediately above, x ≡ 0 (mod 18). Since 218 ≡ 1 (mod 7), then −4 · 3y ≡ 3k (mod 7),
so 3y+1 ≡ 3k (mod 7). This is impossible when y + 1 is even and k is odd.

(b) If k ≡ 3 (mod 4), then −4 · 3y ≡ 3k + 1 ≡ 12 (mod 16), so y is even. Suppose first
that y ≡ 0 (mod 4). Then 2x ≡ 4 · 3y + 3k + 1 ≡ 4 + 2 + 1 ≡ 2 (mod 5). This implies that
x is odd. But, from (6), 2x ≡ 1 (mod 3), so x is even. We have a contradiction.

The most difficult case to eliminate is when k ≡ 3 (mod 4) and y ≡ 2 (mod 4). Con-
sideration of (6), modulo 5, implies 2x ≡ 4 (mod 5), so x ≡ 2 (mod 4). From (6), we also
have 2x ≡ 1 (mod 27), so x ≡ 0 (mod 18) and then, since x ≡ 2 (mod 4), we have x ≡ 18
(mod 36). This then implies that 2x ≡ −1 (mod 13). Consideration of the nine possibilities
that arise from (6), modulo 13, taking y ≡ 2, 6 or 10 (mod 12) and k ≡ 3, 7 or 11 (mod 12)
shows that in fact y ≡ 2 (mod 12) and k ≡ 3 (mod 12). Now consider a further nine cases
of (6), modulo 37, taking y ≡ 2, 14 or 26 (mod 36) and k ≡ 3, 15 or 27 (mod 36). The only
possibility is y ≡ 2 (mod 36) and k ≡ 27 (mod 36). But in that case, since 218 ≡ 336 ≡ 1
(mod 73), we find that 2x − 4 · 3y ≡ 1 − 4 · 9 ≡ 38 (mod 73) and 3k + 1 ≡ 27 + 1 = 28
(mod 73). This contradicts (6).

We give this conclusion as:

Theorem 5 There are no PTNs of the form 3kp, k ≥ 4, where p = 2c3dq+1 and q = 2a3b+1
are primes with a, c ≥ 1 and b, d ≥ 0.

We next considered another possibility: let a, c, e ≥ 1 and b, d, f ≥ 0 be integers.
Suppose r = 2a3b + 1, q = 2c3dr + 1, and p = 2e3fq + 1 are all prime, and let n = 3kp for
k ≥ 2.
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Substitution gives us

n = 2a+c+e3b+d+f+k + 2c+e3d+f+k + 2e3f+k + 3k,

whereas substitution and calculation gives us

S(n) = 2c+e+33d+f+k−2 + 2e+13f+k−1 + 2a+c+e3b+d+f+k + 2a+c+e
− 1.

Assuming n is a PTN, we equate the expressions for n and S(n) and simplify to obtain the
diophantine equation

2e(2c(2a
− 3d+f+k−2) − 3f+k−1) = 3k + 1 . (7)

We found four solutions to (7), with a, c, d, f ≤ 20 and k ≤ 10. Notice that e = 1 or 2 if k is
even or odd respectively. Our first solution is given by a = e = 2, c = 4, d = f = 0, and k = 3.
Note that this is Theorem 3. The second solution is given by a = 4, c = d = e = f = 1,
and k = 2. This is Part 1 of Theorem 1. The third solution is given by a = e = 1, c = 3,
d = f = 0, and k = 2 (Part 2 of Theorem 1), and the fourth is given by a = 2, c = 3,
d = e = 1, f = 0, and k = 2 (Part 3 of Theorem 1).

Similarly, we also considered integers a, c, e, g ≥ 1, b, d, f, h ≥ 0, where all of s = 2a3b +1,
r = 2c3ds + 1, q = 2e3fr + 1, and p = 2g3hq + 1 are supposed prime. Then, as above, letting
n = 3kp for k ≥ 3 and supposing S(n) = n implies the diophantine equation

2g(2e(2c(2a
− 3d+f+h+k−3) − 3f+h+k−2) − 3h+k−1) = 3k + 1.

We found several solutions, but only one of them produced any PTNs: a = 5, c = f = 1,
d = g = 2, e = 4, h = 0, and k = 3. This is Theorem 4, which we have already seen produces
one known PTN.

The question remains open as to whether or not any PTNs exist of the form 3kp for
k ≥ 4.
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