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Abstract

As the acceptance and popularity of wireless networking technologies has pro-

liferated, the security of the IEEE 802.11 wireless local area network (WLAN)

has advanced in leaps and bounds. From tenuous beginnings, where the only

safe way to deploy a WLAN was to assume it was hostile and employ higher-

layer information security controls, to the current state of the art, all manner of

improvements have been conceived and many implemented.

This work investigates some of the remaining issues surrounding IEEE 802.11

WLAN operation. While the inherent issues in WLAN deployments and the

problems of the original Wired Equivalent Privacy (WEP) provisions are well

known and widely documented, there still exist a number of unresolved security

issues. These include the security of management and control frames and the

data link layer protocols themselves. This research introduces a novel proposal

to enhance security at the link layer of IEEE 802.11 WLANs and then conducts

detailed theoretical and empirical investigation and analysis of the effects of such

proposals.

This thesis first defines the state of the art in WLAN technology and deploy-

ment, including an overview of the current and emerging standards, the various

threats, numerous vulnerabilities and current exploits. The IEEE 802.11i MAC

security enhancements are discussed in detail, along with the likely outcomes

of the IEEE 802.11 Task Group W1, looking into protected management frames.

The problems of the remaining unprotected management frames, the unprotected

control frames and the unprotected link layer headers are reviewed and a solution

is hypothesised, to encrypt the entire MAC Protocol Data Unit (MPDU), includ-

ing the MAC headers, not just the MAC Service Data Unit (MSDU) commonly

performed by existing protocols.

1Readers please be aware, irrespective of any final acceptance or publication date on this
thesis, this dissertation was written prior to the publication of any output from IEEE 802.11
Task Group W and thus may not necessarily reflect the current information in that respect.
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The proposal is not just to encrypt a copy of the headers while still using

cleartext addresses to deliver the frame, as used by some existing protocols to

support the integrity and authenticity of the headers, but to pass the entire

MPDU only as ciphertext to also support the confidentiality of the frame header

information. This necessitates the decryption of every received frame using every

available key before a station can determine if it is the intended recipient. As

such, this raises serious concerns as to the viability of any such proposal due to the

likely impact on throughput and scalability. The bulk of the research investigates

the impacts of such proposals on the current WLAN protocols. Some possible

variations to the proposal are also provided to enhance both utility and speed.

The viability this proposal with respect to the effect on network throughput

is then tested using a well known and respected network simulation tool, along

with a number of analysis tools developed specifically for the data generated here.

The simulator’s operation is first validated against recognised test outputs, be-

fore a comprehensive set of control data is established, and then the proposal

is tested and and compared against the controls. This detailed analysis of the

various simulations should be of benefit to other researchers who need to validate

simulation results. The analysis of these tests indicate areas of immediate im-

provement and so the protocols are adjusted and a further series of experiments

conducted. These final results are again analysed in detail and final appraisals

provided.
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Chapter 1

Introduction

As society unreservedly accepts ubiquitous computing, vendors are releasing

bleeding-edge pervasive computing technologies to a hungry consumer market

which has little appreciation, or concern, for the inherent risks and associated

consequences that these technologies may introduce. Many of these new tech-

nologies involve electromagnetic broadcast communication protocols used in un-

controlled and potentially hostile environments.

This impetus to take up new technology often leads to immature designs or

hastily conceived deployments exposing inadvertent vulnerabilities that lead to

security failures.

Consumers are embracing such wireless communication technologies at an

unprecedented rate. After James Clerk Maxwell postulated the existence elec-

tromagnetic waves to the Royal Society of London in 18641 [1], some 23 years

elapsed before Heinrich Hertz demonstrated the production of such electromag-

netic waves in 1887 [2]. It took nearly a further decade before either Nikola

Tesla or Guglielmo Marconi publicly demonstrated the practical transmission of

electromagnetic signals [3, 4]. Today, new wireless communication technologies

are presented to consumers virtually on a monthly basis — albeit often just dif-

ferent flavours of the same precarious concept — as vendors attempt to cajole an

unsuspecting market to take up their particular offering with sufficient zeal to

render it a de-facto standard, or at least to pay for the research and development

costs before a de-jure standard obsoletes their product.

1Published in 1865 [1].
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This work investigates some of the remaining issues in the operation of

IEEE Std 802.11 [5] wireless LANs (WLANs). These include the security of

the management frames and control frames and the data link layer protocols

themselves.

This research introduces a novel proposal to enhance security of IEEE 802.11

WLANs by using cryptographic protection of the link layer. The proposal in-

troduces significant implications for the general utility and throughput of the

protected WLANs and this work then investigates the viability of this proposal

with respect to the impacts on throughput and scalability.

Section 1.1 describes the research problem and section 1.2 details the goals of

this research and how this research relates to published work in the same field.

Following this, section 1.3 presents the main outcomes of this research and then

section 1.4 outlines the rest of this dissertation. Finally, section 1.5, defining

the conventions used throughout the remainder of this document, concludes this

introduction.

1.1 Research Problem

Due to their broadcast mode of transmission and unbounded electromagnetic

transmission medium, all wireless communications technologies are inherently

insecure in every aspect of information assurance: confidentiality, integrity and

availability. Combining this with vendor drivers of time-to-market, cost-of-

development and cost-of-production; along with commercial competition, busi-

ness expediency and consumer naivety; and these inherent insecurities are often

realised. In the rush to bring products to market and standards to industry, the

primary issues have not yet been satisfactorily resolved.

There is currently a dramatic increase in the utilisation of wireless band-

width in the various unlicensed spectra [6, 7] and this rapid public adoption [8]

of unseasoned, often provisional, wireless technologies results in an array of in-

formation security issues, described in detail in the current literature considered

in Chapter 2.

In the case of IEEE 802.11 [5] wireless LANs, the Wired Equivalent Privacy

(WEP) [9, pp. 61–65] protocol was intended to provide security properties sim-

ilar to that of wired networks and is still the most commonly deployed built-in

security mechanism in Australia [10,11]. WEP is easily cracked (defeated) using
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commonly available software detailed in Chapter 2.

The IEEE Std 802.11i [12] amendment [Chapter 3, subsection 3.2] was devel-

oped to address the critical security issues of preceding IEEE 802.11 WLANs.

However, an IEEE 802.11i Robust Security Network (RSN), using the Advanced

Encryption Standard (AES) in CCM2 Protocol (CCMP), requires new hardware

to operate and so deployments in legacy environments will typically fall back to

using the Temporal Key Integrity Protocol (TKIP), where “the confidentiality

and integrity mechanisms are not as robust as those of CCMP” [13, p. 2], or

even to a Transition Security Network (TSN) that allows pre-RSN associations,

as described in Chapter 3.

Moreover, the IEEE Std 802.11i only improves the MAC security for data

frames and provides no protection at all for WLAN control frames or management

frames or the data link layer protocols themselves. This lack of protection for

management and control frames still provides multiple attack vectors into these

networks.

Today’s state-of-the-art WLANs remain vulnerable to trivial traffic analy-

sis, using information gained from the unprotected management frames and link

layer headers; selective Denial of Service (DoS), through the manipulation of

either unprotected control frames or unprotected management frames, using in-

formation gained from the unprotected data link headers; or even certain Man-

In-The-Middle (MITM) attacks, involving selective disassociation, through the

manipulation of unprotected management frames, and a spoofed Access Point

(AP) offering reduced security, using more unprotected management frames and

other information gained from legitimate unprotected data link headers.

The details of the coming amendment from IEEE P802.11w3 for Protected

Management Frames, as discussed in Chapter 4 [subsection 4.7], are as yet un-

confirmed, but are likely to provide only protection for a subset of WLAN man-

agement frames — and then only after the IEEE 802.11i key negotiations are

complete — still leaving a number of management frames, all control frames and

all of the data link layer protocol information unprotected.

2CTR (CounTeR mode) with CBC-MAC (cipher-block chaining (CBC) with message au-
thentication code (MAC)) [12, p. 5].

3Readers please be aware, irrespective of any final acceptance or publication date on this
thesis, this dissertation was written prior to the publication of any output from IEEE 802.11
Task Group W and thus may not necessarily reflect the current information in that respect.



4 Chapter 1. Introduction

1.2 Research Goals

The goal of this research is to investigate possible enhancements to the existing

and proposed protocols to provide additional protections in these areas while

minimizing additional loss of general utility for IEEE 802.11 WLANs as a whole.

This research proposes a novel solution to protect all management frames, all

control frames and all of the components at the data link layer by encrypting

the entire MAC Protocol Data Unit (MPDU), including the MAC headers, but

not the Frame Correction Sequence (FCS), to provide both integrity and confi-

dentiality. Unlike existing schemes, this proposal is not only to protect the MAC

Service Data Unit (MSDU), or to protect a copy of the MPDU header detail

while still using cleartext addresses, but to pass only ciphertext for the MPDU,

with a cleartext FCS.

Due to the difficulties of processing encrypted addressing information, where

many different possible pairwise keys must be tried for each frame received in or-

der to determine if it is intended for that particular station, the proposed solution

foreshadows a considerable risk of severely adversely affecting network through-

put. While numerous issues, such as increased complexity, key management

and implementation considerations, may render this proposal unsuitable for par-

ticular applications, a significant impact to network throughput is the greatest

threat to the overall viability of the general solution. A number of variants of the

proposal are suggested in mitigation for this and various other possible issues.

This work examines the extent of likely throughput impacts and investigates the

viability of implementing such a solution across an extensive range of WLAN

configurations.

1.2.1 Research Objectives

The required research objectives determined to achieve these goals included:

� Review of the current literature on wireless network security to provide a

background in the work;

� Establish the current state of the art for WLAN security with respect to the

emerging implementations of TSNs and RSNs under the IEEE Std 802.11i

ratified during the course of this research;
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� Analyse any implications for current WLAN security in view of the current

amendments, along with the possible implications of the emerging stan-

dards, including the forthcoming amendment from IEEE P802.11w3 for

Protected Management Frames, to determine the remaining level of pro-

tection afforded to WLANs and to confirm the major areas of remaining

vulnerabilities;

� Present the proposed avenues to resolve some of these remaining security

issues and discuss their implications for WLAN utility and performance;

� Develop methods to test these proposals in light of their possible impacts

on the general utility of WLANs, including methods to measure acceptable

metrics to provide usable empirical data for the research community by

which to assess the viability of such proposals;

� Conduct credible simulations of implementations of each of these proposals

with the necessary rigour to provide competent evidence on the likely im-

pacts of applying such amendments to existing architectures, revising any

tools as required; and

� Finally to analyse the results so obtained, and provide an assessment of

the probable impacts of the actual deployment of such protocols in usable

networks and to indicate future directions to develop this knowledge base.

1.2.2 Relationship to Published Research in the Field

There is considerable published work on the insecurities of wireless networking

in general and extensive publication on the specific security issues of WLANs

using WEP, detailed in the current literature in Chapter 2.

There are also the various works covering issues with the IEEE 802.11i amend-

ment and the remaining insecurities in current networks, as detailed in Chapter 3,

providing the state of the art for IEEE 802.11 WLAN security and the current de-

ployments of Wi-Fi Protected Access (WPA) and WPA2. This includes extensive

publication on the failures in the security of control and management frames and

the resulting impacts that these cause, the issues of TSNs, direct attacks on the

Pre-Shared Key (PSK) modes of operation and the issues of weak configurations

permitted by many vendor offerings with mixed modes of operation.
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While many protocols encrypt MPDU payloads, such as the entire MSDU,

or higher-layer PDUs or their respective payloads [14–21], and often also include

a message integrity check (MIC) protecting the MAC headers (and any encryp-

tion headers) themselves [15], as well as frame source authenticity [19, 20], the

author has been unable to locate any examples of cryptographic confidentiality

protection of link layer communications that include the MAC layer headers.

It is noted that many protocols also include copies of the MAC addresses and

other MAC header data within the encrypted payload, such as MACsec [20] (also

referred to by the project name LinkSec), but cleartext data link layer headers

are still transmitted in these cases. As such, these schemes may be able to protect

the integrity of the headers, but cannot protect their confidentiality. While these

headers may not appear to contain a significant amount of information, their

exposure greatly aids any forgery attempts and also assists in traffic analysis and,

where related, cryptanalysis of the ciphertext payload. Tunnelling protocols only

provide confidentiality of the tunnelled addresses, leaving the link layer data of

the tunnel itself exposed.

There also exist schemes involving encrypted MAC addresses for the purposes

of cataloguing or registration, such as in Yang and Liu [22], but these are not

designed for, and do not provide, communications protection.

1.3 Outcomes of the Research

The principal outcome of this research is to show that the overheads introduced

by encrypting the MAC addresses in WLAN frames will not adversely affect

the network throughput under reasonable conditions — even where an AP may

have to attempt decryption of each frame with hundreds of different pairwise

keys in order to determine the correct key in use. This research demonstrates

that cryptographic protection of the entire MPDU is viable for WLAN and thus

provides essential support for the development of schemes, such as the proposal

and variants presented in this work, to enhance WLAN security.

Such schemes provide increased protection, beyond the current state of WLAN

security, from the types of targeted DoS and MITM attacks described in Chap-

ters 2, 3 and 4; and even attacks using the legitimate MAC information, unpro-

tected control frames, or the remaining unprotected management frames from the

emerging work on Protected Management Frames, as discussed in Chapter 4.
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Specific outcomes of this research include:

1. A review of the current literature on IEEE 802.11 wireless networking, pre-

sented at the 2005 AusCERT Asia Pacific Information Technology Security

Conference [23] and provided in Chapter 2;

2. A summary of the current state of the art of IEEE 802.11 WLAN security

including the IEEE Std 802.11i MAC Security Enhancements, their imple-

mentation and the dependencies and differences between a TSN, RSN,

WPA and WPA2, presented in part at the 2007 AusCERT Asia Pacific In-

formation Technology Security Conference [24] and provided in Chapter 3;

3. An analysis of some of the remaining security issues, unresolved by the

existing or proposed protocols, provided in Chapter 4;

4. A proposal to enhance the security of wireless networks at the link layer, by

cryptographically protecting the MPDU for all traffic, including the entire

MAC header, for confidentiality as well as integrity, enhancing data link

security beyond any existing or proposed protocols, provided in Chapter 5;

5. A set of tools to analyse cmu-trace wireless trace file data from the well-

known ns-2 simulator, provided in Chapter 6, including:

� General-purpose awk analysis scripts capable of handling the default

ns-2.33 cmu-trace wireless trace file format (as opposed to readily

available scripts for the more verbose “new wireless trace” file format);

� Special-purpose (project-specific) analysis tools to interpret the sim-

ulations configured here and to discern multi-station traffic interac-

tion, determined from the default ns-2.33 cmu-trace wireless trace

files without requiring any modification to either the simulator itself

or the simulation configurations, including:

– Individual station choices of number of slots for backoff periods,

– Individual frame transmission times,

– Individual frame propagation times,

– Inter-frame delays,

– Inter-layer delays, and

– Intra-layer delays;
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6. Detailed simulation data demonstrating the effects and impacts of applying

cryptographic techniques to low-level protocols in the IEEE 802.11 stack,

available4 as a compressed tar archive (tarball), including: comprehensive

explanations of the necessary modifications to the standard CMU/Rice

Mac/802_11 [25] C++ class files within the ns-2 simulator, as provided in

Chapters 6, 7 and 8; complete configurations for all tests performed, as

detailed in Chapters 7 and 8; the capture of all the data produced by every

test;

7. Results of the effects of these proposals and extensive analysis of each of the

simulations, providing insight, not only into the protocols proposed here,

but also in general for any proposals presenting timing-related impacts to

standard IEEE 802.11 MAC protocols, provided in Chapters 7 and 8; and

8. A summary of the effects and viability of a low-level protocol protection in

IEEE 802.11 networks, along with avenues of further work to advance this

knowledge, provided in Chapter 9.

1.4 Thesis Structure

The remainder of this chapter details the thesis structure and the conventions

used throughout this document.

Following this, Chapter 2 provides the background information from the cur-

rent literature on wireless networking in general, IEEE 802.11 WLANs, the var-

ious standards, the initial IEEE 802.11 security provisions, the issues with those

provisions and the initial attempts to improve WLAN security.

Chapter 3 describes the current state of the art for IEEE 802.11 wireless

network security, including the recent amendments for the MAC security en-

hancements and how they are implemented in Wi-Fi Protected Access (WPA)

and WPA2. The differences between a TSN and an RSN and and some of the

pitfalls of the implementations are discussed, including analysis of various weak

configurations of WPA and WPA2, where attempts to implement an RSN fail or

lead to a TSN, as well as direct attacks on pre-shared key modes and TKIP.

4Detailed simulation data and the ns-2 code modifications are available from the author,
David Ross <dave@antacs.com>, or supervisors, Professor Mark Looi <m.looi@qut.edu.au>
or Associate Professor Andrew Clark <a.clark@qut.edu.au>.
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Chapter 4 provides more detailed operational information and examines the

current and emerging IEEE 802.11 network technologies and the potential for

malicious activities. This establishes the need for this research and considers the

various applications it has in securing WLANs.

Chapter 5 describes the proposal for Wireless Link Security and discusses the

needs of the link layer and the effects of encrypted MAC addresses on both friend

and foe. It then introduces alternative algorithms for greater speed, efficiency

or operational necessity. The protocol design is investigated, including the oper-

ation of the mutable fields, hardware components, the whitening functions and

key establishment, including pairwise, group and other broadcast keys and then

the deployment needs and the tests required are discussed.

Chapter 6 describes the development of the tools to test the viability of the

proposed protocols, including selection of tools and platforms, configurations and

validation of the various tools for simulation, analysis and reporting.

Chapter 7 details the actual tests undertaken, including the development

of the controls, the effects of multi-station contention, determining the aver-

age throughput and establishing control data for UDP and TCP traffic both

with and without contention. The control data is then analysed to validate it

against expected results both in theory from the IEEE Std 802.11 and in prac-

tice from other research data. In particular, the delays due to normal operation

of IEEE 802.11 networks requiring acknowledged directed traffic and the default

Distributed Coordination Function (DCF) backoff are analysed and discussed.

Then the proposals are tested, first detailing how the tools were modified to im-

plement the modified protocols. The initial results were not as expected and the

tools were then modified to ensure that this was not due to inaccuracy within the

simulation itself. However, results after the additional modifications merely con-

firmed the initial results and the tests were continued to forge a comprehensive

range of excessive traffic situations under both WLS and PWLS. These results

are then analysed and discussed.

From these results, Chapter 8 details modifications to enhance the simulations

and draws fresh results from these new simulations, which are then analysed and

assessed in detail.

Finally Chapter 9 concludes the work, with a summary of the overall evalua-

tion of the hypothesis, as well as defining a number of areas of future endeavour

in this field.
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1.5 Conventions Used in This Document

As shown in the acronyms and abbreviations in the front matter, throughout

this document the lower-case symbol ‘b’ is used for bits, while the upper-case

symbol ‘B’ is used for bytes.

Acronyms ending with or containing a lower-case ‘s’ indicate the plural ex-

pansion of the appropriate part of the acronym, e.g. APs for Access Points.

This text is written in Australian English and besides the commonly-known

use of ‘-is-’ infixes where others may use ‘-iz-’ and the use of Australian spellings

such as the Middle English (from Old French) ‘centre’ or ‘litre’ where others may

use ‘center’ or ‘liter’, other localisations which may lead to confusion include

‘full stop’ ≡ ‘period’ and ‘mobile phone’ ≡ ‘cell phone’.

Irrespective of the aforementioned, organisational names herein are spelled5

verbatim, such as the “International Organization for Standardization”6 or the

“Center for Education and Research in Information Assurance and Security”7.

Common information technology industry terms, such as the adjective form

“conformant” of the recognised noun ‘conformance’ and conjunctions “chipset”,

“plaintext”, “ciphertext” and the like, although often not recognised by lexicog-

raphers, are used throughout this dissertation without additional definition or

hyphenation.

Terms commonly used in IEEE standards or IETF RFCs and unambiguously

understood within this field, such as “backoff”, “interframe” and “unicast”, ir-

respective of whether they appear in any formal lexicon, are used herein without

further reference.

In accordance with normal practice [27–29], the full stop has been omitted

from the end of any sentence that terminates with any form of path name,

including URLs [27].

Symbols for units of measure are written the standard Roman font, always

in upright type, in accordance with [30], so as to differentiate these from the

italic type used for names, variables and other LATEX emphasis. This is “applied

independent of the font used for surrounding text” [30, pp. 121, 130].

5Both “spelled” and “spelt” are listed for the past participle of “spell” in the Second Edition
of the Australian Oxford Dictionary [26], although the dictionary itself uses “spelled”.

6http://www.iso.org/
7http://www.cerias.purdue.edu/



Chapter 2

Wireless Networks

This chapter provides the necessary background information from the current lit-

erature on wireless networking, as particularly relevant to IEEE 802.11 WLANs.

It describes the basic concepts and maps out the various IEEE 802.11 standards,

both issued and proposed, and where they fit into the overall WLAN picture.

It includes discussions on the security provisions of the original IEEE 802.11

WLANs and the various issues with those provisions discovered in deployment,

along with the initial attempts and methodologies for improving WLAN security.

This wireless networking background derives from the literature review per-

formed by the author at the commencement of this research, significant portions

of which were presented by the author in “The Security of Wireless Comput-

ing Technologies” [23], at the AusCERT Asia Pacific Information Technology

Security Conference (AusCERT2005), Gold Coast, Australia, in May 2005. Sig-

nificant portions of that paper have also been reproduced verbatim in documents

by one of the Australian state governments.

This chapter not only sets the scene for the remainder of the dissertation,

but establishes the baseline security standard for WLANs that existed at the

beginning of this research. The subsequent developments in WLAN security

during the course of this research and the current security issues are given in the

next chapter, Chapter 3, and the emerging enhancements, at time of writing,

are considered with the description of the remaining problems relevant to this

research in Chapter 4.

11
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2.1 Wireless Ubiquity

The use of wireless technologies for data communications is proliferating at an

unprecedented rate [23]. Cordless telephone handsets utilise various microwave

spectra to carry their signals to their wired base stations [31]. Mobile telephone

handsets — mobile stations (MS) — maintain regular communications with the

cells around them irrespective of whether they are being actively used or not.

Increasingly, these handsets are capable of operating over multiple network pro-

tocols, designed to swap between the various cellular, wide-area and local-area

wireless network protocols, as appropriate, for utility, efficiency or economy [32].

Such devices typically continually scan the air around them searching for the

strongest or cheapest connection to use, including, where available, Voice over

IP (VoIP) over WLAN (VoFi1). Laptop computers and personal digital assis-

tants (PDAs) use the infrared or microwave spectra to communicate with each

other or with printers, mobile telephones or wired-infrastructure networks and

the Internet.

Wireless networks are deployed in all manner of locations, including [33]

homes, schools, university campuses and Wi-Fi2 hot spots3 in cafés, book stores,

libraries, shopping centres, public bars and even aircraft [34]. The author has

conducted security assessments of wireless deployments in numerous situations,

including public transport depots, airport lounges, hotels and commercial offices,

as well as a public network in a major art gallery to disseminate information

on the works being viewed [11, 35]. The author has also been involved with

wireless network security assessments in shared auditoriums where the wireless

infrastructure is also shared, by government officers and university students; and

even in work for the Australian Federal Parliament House4 for use not only by

the sitting members on the x-in-confidence network but simultaneously by

visitors on an unclassified network, both in the same location.

“In some remote communities, WLANs are implemented as a viable last-mile

technology” [33, p. 44] by users lacking landline DSL or cable services [38].

Wi-Fi devices have been adapted for disaster use, forming an ad hoc network

for emergency data transfer, such as with the Wireless Internet Information

System for Medical Response in Disasters (WIISARD) [39].

1Voice over Wi-Fi
2Wireless Fidelity Alliance. URL — http://www.wi-fi.org/
3Either free or for a charge
4unclassified details released to public tender on 28th November 2007 [36,37].
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While there are a great many existing applications and deployments of wire-

less networking technology in many varied locations, to expand the utilisation of

wireless technologies to critical services or in defence or intelligence environments

will require the addition of security features beyond those currently existing. A

major hurdle in providing such security is the technology’s broadcast nature

via an ubiquitous medium, providing network access to adversaries outside the

physical security controls of the network owner.

The following sections describe those wireless networking technologies that

have the capability to impact upon IEEE 802.11 WLANs, leading up to the de-

scription of IEEE 802.11 WLAN itself and the various PHY and MAC protocols

available. The original WLAN security provisions are then described, along with

the threats and vulnerabilities that were present in WLANs at the commence-

ment of this research. The chapter concludes with details of the mechanisms

deployed in the initial attempts to mitigate these risks. This work was presented

in [23].

2.2 Wireless Networking Technologies

Wireless Networks utilise the infrared, radio or microwave spectra, under the

governance of various protocol suites. Of these, commercial broadcast radio and

television clearly had the greatest market penetration towards the end of the last

millennium. However, now mobile phone ownership outstrips television owner-

ship by almost 2:1 [40]. Besides the various mobile telephony protocols, which

do not generally interfere with WLANs (other than for those MS that may dy-

namically switch between communications protocols, including the WLAN stan-

dards), some of the more common wireless networking technologies of relevance

here are the Infrared Data Association (IrDA), IEEE 802.15 Bluetooth and Ultra-

wideband (UWB) personal area networks (PANs) and the IEEE 802.11 WLANs,

all of which share various common spectra, along with a myriad of unrelated

radiating devices.
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2.2.1 IrDA

IrDA infrared links, using the near-infrared5 (120–400 THz) spectrum, establish

point-to-point connections at close ranges up to at least 1 metre, such as be-

tween two laptop devices or between a PDA and a printer or a mobile telephone,

where such devices are IrDA capable. The IrDA inaccurately claims “the secure

wireless link” [41] based on infrared being principally a line-of-sight transmission

technology, thus limiting covert passive or active intrusion to those devices in

the immediate vicinity. Relying on these short-range characteristics, IrDA pro-

vides no link level security and anyone within the unobstructed minimum 30° to

maximum 60° [42] beam can monitor the transmission, including outside glass

doors and windows and reflections from surfaces in rooms and vehicles [43].

In one of his SANS papers in 2004, “Security in Wireless Mobile Communi-

cations”, Dan Reain related a case attributed to James M. Atkinson of a flight

to San Jose where 31 laptops had their IrDA port active and 26 of these allowed

unrestricted access [43, p. 2].

2.2.2 Mobile Telephones

While mobile telephone handsets do not generally interfere with WLANs, most

handsets today at least include Bluetooth capabilities and a few still provide

IrDA capabilities, but more and more frequently these handsets are capable of

operating over multiple network protocols. Those that are capable of utilising

Bluetooth or WLAN, when configured to swap between wireless network pro-

tocols, will regularly scan the air around them searching for the strongest or

cheapest connection to use. This means regular probes in WLAN spectra if

using active methods and added congestion whenever these spectra are chosen.

This will develop more so, as WLANs are often better than 3G telecommu-

nications for many applications. Paul Henry, AT&T Labs division manager of

broadband wireless-systems research has stated that “typical 3G users will get

performance up to [only] 56 kbits per second” [44, p. 29], after performance hits

for distance, congestion and maintaining simultaneous voice quality.

5That part of the infrared spectra that is closer to visible light; cf. mid-infrared and far-
infrared.
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2.2.3 Bluetooth

Bluetooth is a short-range wire-replacement technology [45, Vol. 1, p. 13] that

implements a Wireless Personal Area Network (WPAN). It allows up to eight

devices to connect together into a ‘piconet’. The most frequent use of Bluetooth

technology has been for mobile telephones, not only as wireless headsets and

hands-free use in cars, but also to synchronise configurations, data or even email

with PDAs or PCs [46, 47]. These uses are expanding to cable-free speakers

in home theatre systems and Bluetooth headsets for personal stereos and MP3

players [48], although UWB also made a play for market-share on the former.

Bluetooth uses one of the international unlicensed Industrial, Scientific and

Medical (ISM) bands at 2.4 GHz, along with a host of other devices including

digital cordless telephones and many WLANs. Bluetooth utilises 79 channels

in most countries (23 in France, Japan and Spain) at 1 MHz intervals from

2.402 GHz to 2.480 GHz. The following table (Table 2.1), adapted from Mobile-

Info.com [49], outlines the spectrum availability worldwide:

Country Frequency Range Channels available
AU, EU & USA 2400 – 2483.5 MHz 2402 to 2480 MHz (79 channels)

Japan 2471 – 2479 MHz 2473 to 2495 MHz (23 channels)
Spain 2445 – 2475 MHz 2449 to 2471 MHz (23 channels)
France 2446.5 – 2483.5 MHz 2454 to 2476 MHz (23 channels)

Table 2.1: Bluetooth worldwide spectrum availability [49]

It uses frequency hopping spread spectrum (FHSS), changing channels up

to 1600 times per second in a pre-arranged pattern. FHSS helps to reduce the

effects of narrowband interference and also makes it harder to trivially eavesdrop

on data. This is because the frequency hopping pattern is set each time by the

devices communicating with one another [50].

The IEEE 802.15.1-2002: Wireless MAC and PHY Specifications for Wireless

Personal Area Networks (WPANs) [51] was published in June 2002 and is based

on the most common Bluetooth version 1.1. IEEE 802.15.2-2003: Recommended

Practice for Coexistence of Wireless Personal Area Networks with Other Wireless

Devices Operating in Unlicensed Frequency Bands [52] is designed to mitigate

interference with 802.11 wireless LANs.
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2.2.4 Ultra Wideband (UWB)

Ultra Wideband (UWB) techniques can be applied to any radio technology and

generally are not relevant or are not supposed to impact on WLAN deployments.

However any UWB techniques used for any technology that include the WLAN

spectra will increase the “background noise” and may affect IEEE 802.11 tech-

nologies.

The IEEE Std 802.15.3 High Rate WPAN does use the 2.4 GHz band (not as

UWB) and proposals for the IEEE 802.15.3a, sometimes characterised as “Blue-

tooth on Steroids” [53], do use UWB techniques, designed to replace cables

with short-range very-low-power very-high-bandwidth wireless connections [54].

UWB Bluetooth gives “up to 480 megabits per second at 2 [metres] and 110

megabits per second at 10 [metres], which is the maximum nominal range for

both ultrawideband and Bluetooth” [55].

Poor commercial take-up and a dead-locked standards process [56] has led

to the IEEE 802.15.3a Project Authorisation Request (PAR) being withdrawn in

2006 [57].

At time of writing, most countries are still legislating UWB regulations. The

U.S. limits general UWB to the frequency band 3.1–10.6 GHz, except “vehicular

radar in the 22–29 GHz band using directional antennas on terrestrial trans-

portation vehicles” [58, p. 4], with “Attenuation of the emissions below 24 GHz

is required above the horizontal plane in order to protect space borne passive

sensors operating in the 23.6-24.0 GHz band” [58, p. 4]. To date Australia has

only approved UWB for ground penetrating radar [59] and 24 GHz short-range

vehicle radar [60, p. 4].

2.2.5 ZigBee

At the oposite end of the data-rate scale, IEEE Std 802.15.4 “ZigBee” (uses the

ZigBee lightweight routing protocol) for telemetry and is designed for very low

data rates, so as to give long battery life and low device cost [61]. ZigBee operates

in the 2.4 GHz ISM band by default, but uses 868 MHz in Europe and 915 MHz

in the U.S. and Australia. IEEE Std 802.15.5, approved and publication expected

April 2009, is planned to enable other WPAN meshes to be formed at the MAC

layer, without needing ZigBee for routing [62].
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2.2.6 WiMAX

In some remote communities, WLANs are deployed as the last-mile local loop by

users lacking landline DSL or cable services [33,38]. This has been a target market

for the IEEE 802.16 [63] WiMAX Forum’s broadband Wireless MAN protocol

applications [64], which can also use the same spectra (although typically not)

as WLANs.

2.2.7 IEEE 802.11 WLAN

While the term Wi-Fi specifically refers to technology certified by the industry-

based Wireless Fidelity Alliance6, its use has been generalised to refer to to any

of the IEEE 802.11 series of protocols and their implementations [23]. WLANs

allow devices to move about with relative freedom and wirelessly connect to

other devices or wired-networks, including the Internet, using a short-range radio

transceiver. They also significantly reduce the time and resources needed to set

up new networks and allow for dynamic ad hoc networks, easily and/or frequently

created, modified and discarded, with little or no fixed infrastructure [23]. They

offer data rates 50 to 2000 times faster than dial-up, at peak speeds from 11

mbps (million bits per second) to more than 100 mbps, up to 100 metres from a

base station [48].

In general, a WLAN consists of two or more wireless-capable devices com-

municating with each other. These may be all mobile devices, with no central

control, forming an ad hoc network, or one or more of the devices may include

a central control function, an Access Point (AP), forming an infrastructure

mode network. The AP relays data between the wireless nodes in the WLAN

“and, in most cases, serves as the only link between the WLAN and the wired

networks” [33, p. 45].

Today, the Wi-Fi network interface cards (NICs) most commonly found in

PCs and laptops conform to one or more of the IEEE 802.11a, b, g or (draft) n

specifications. These standards cover a number of different frequency bands and

allow for varying data rates, with some of the newest cards able to operate under

multiple standards [48].

6Formerly the Wireless Ethernet Compatibility Alliance (WECA) [65]
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IEEE 802.11 WLAN Topologies

This last subsection of the wireless networking technologies describes WLANs

themselves as a grounding for any of the material introduced later in this work.

The basic WLAN concepts will be described here, beginning with their logical

structures and then those operational aspects that are needed for the WLAN

security discussions in later sections.

The smallest unit of a WLAN is an individual node or wireless STAtion

(STA) [5]. Any device that accesses the wireless medium (WM) is effectively

a STA, however some STAs are more specialised than general client nodes, for

example an access point (AP), which contains a STA, but also performs other

functions, discussed shortly. WLANs can form various network topologies, all

covered by the primary classifications of [9]:

� Basic Service Set (BSS) — A single WLAN cell with two or more STA

in wireless communication,

� Independent Basic Service Set (IBSS) — Ad-hoc WLANs with no

infrastructure at all, and

� Extended Service Set (ESS) — Typical infrastructure WLAN deploy-

ments.

These basic concepts are presented here.

Basic Service Set (BSS) The BSS “is the basic building block for IEEE 802.11

WLANs” [5, p. 10]. A BSS consists of two or more wireless STAs that are able to

communicate with each other via the wireless medium [9], as shown in Figure 2.1.

This does not necessarily include an access point (AP) — discussed shortly —

although, as an AP also contains a STA, it can. “If a STA moves out of its BSS,

it can no longer directly communicate with other members of the BSS” [9, p. 10].

The services available in a BSS are those services that all STA must provide, the

so-called Station Services (SS): authentication, deauthentication, confidentiality

and medium access control (MAC) service data unit (MSDU) delivery [9, p. 15].

In other words, the BSS is only the radio coverage area and includes only the

four basic Station Services - no distribution or other services.
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Figure 2.1: Basic Service Set (BSS)

The Independent BSS (IBSS) An IBSS, typically referred to as an ad hoc

network, has no central control infrastructure, nor any fixed connection to wired

infrastructure and is composed solely of STAs in communication with each other

via the wireless medium, as shown in Figure 2.2. The services available in an

IBSS are those SS that all STA must provide: authentication, deauthentication,

confidentiality and MSDU delivery [9, p. 15].

Figure 2.2: Independent Basic Service Set (IBSS)

Infrastructure Networks Where the STAs need services beyond their BSS,

an infrastructure network is required. This consists of one or more wireless STAs

controlled by an AP. The AP contains a STA that also provides services to

allow the wireless clients access to a Distribution System (DS) [9, p. 15]. STAs

must associate with the AP in order to access the DS, via the Distribution

System Services (DSS): association, disassociation, reassociation, distribution

(to another STA, possibly via another AP) and integration (with other networks,

e.g. via a portal [9, p. 14] to wired infrastructure, possibly including proprietary

intranets, proprietary internets or even the global Internet). All communication

is through the AP, as shown in Figure 2.3.



20 Chapter 2. Wireless Networks

Figure 2.3: Infrastructure BSS

When a number of BSSs are connected together through some DS, they ap-

pear to the STAs as a single wireless network, or specifically an Extended

Service Set (ESS) [66, p. 7], as shown in Figure 2.4. The ESS consists only of

its component BSSs and does not include any other networks accessible through

the DS. Thus, like a BSS, it is only the (combined or disparate) radio coverage

areas. Stations should be able to roam from one BSS to another, within the

one ESS, as if they were just one big BSS. However, as the original “standard”

for packet forwarding from one AP to another in an ESS, IEEE 802.11F (See

2.4.2 for further details), was only a Recommended Practice — and has now been

withdrawn, replaced by IEEE Std 802.11r — for older devices this is still mostly

supported only by vendor-specific solutions and multi-vendor environments with

older equipment may experience difficulties.

Figure 2.4: Extended Service Set (ESS)
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IEEE 802.11 Operation

The physical layer (PHY) in IEEE 802.11, i.e. the wireless medium (WM) us-

ing electromagnetic radiation (EMR), is “fundamentally different” [9, p. 9] from

wired media, such as twisted pairs of copper wire or coaxial cable. It has no clear

boundaries; is unreliable; and is subject to the vagaries of mobility, dynamic en-

vironments, background EM noise, unrelated EM signals and atmospheric con-

ditions.

IEEE 802.11 networks can have fixed, portable and mobile stations (STA). A

portable STA can be moved from place to place but is only active in stationary

locations. A mobile STA accesses the network while moving. IEEE 802.11 uses

the IEEE 802 48-bit address space and so is compatible with the rest of the

IEEE 802 LAN family [9].

IEEE 802.11 Authentication and Association

In infrastructure mode, a STA must first authenticate itself to an AP and then

associate with the AP in order to access the DS, so that it can pass data via the

AP to the DS — for distribution to other STAs at the same AP, other APs on

the DS, or via a portal to a wired network [9, p. 14]. In practice, commercial

“access points” are both an AP and a portal combined. A STA may only be

associated with one AP at a time. An AP may have many associated STAs at

the same time.

In ad hoc networks (Independent Basic Service Set (IBSS) mode) a node may

authenticate itself to another STA. No association occurs as there is no DS. Each

STA communicates directly with other STAs. A STA may be authenticated with

many other STAs at the same time [9, p. 20].

IEEE 802.11 only provides link level authentication between STAs. It does

not provide either end-to-end or user-to-user authentication [9, p. 20]. Authen-

tication is either Open System authentication, where any STA can be authen-

ticated without credentials, or Shared Key authentication, where the identity

is validated by demonstrating the possession of the WEP encryption key [9].

Open System Authentication With Open System authentication, any

STA can “authenticate” without credentials. That is, the identity is accepted

without further authentication. However, if any form of encryption (WEP, WPA
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or WPA2) is being used, the STA will not be able to transmit or receive data

without the correct keys [67].

Shared Key Authentication With Shared Key authentication, a challenge-

response exchange is performed, using the shared WEP key to validate the STA.

A challenge is sent to the authenticating STA, which encrypts the challenge using

the shared WEP key and sends it back to the AP to verify the credential [67].

2.3 IEEE 802.11 WLAN Protocols

The list of IEEE 802.11 amendments, updates and enhancements keeps expand-

ing and has now circled the alphabet into double-character suffixes. The following

table (Table 2.2), updated from the author’s 2005 paper [23], tries to give it some

perspective.

2.3.1 IEEE 802.11a, b, g and “Super G”

In 1997, the Institute of Electrical and Electronics Engineers published IEEE

Std 802.11: Information technology— Telecommunications and information ex-

change between systems— Local and metropolitan area networks— Specific re-

quirements— Part 11: Wireless LAN Medium Access Control (MAC) And Phys-

ical Layer (PHY) specifications [5]. This detailed requirements for frequency hop-

ping WLANs in the 2.4 GHz band (2400–2483.5 MHz) [68].7 In 1999, the Interna-

tional Organization for Standardization (ISO8) adopted ANSI/IEEE Std 802.11,

1999 Edition, as International Standard ISO/IEC 8802–11: 1999 [9].

This 2.4 GHz band (2400–2500 MHz) (limited to 2400–2483.5 MHz in the

USA) is part of one of the international unlicensed Industrial, Scientific and

Medical (ISM) bands, where communication services “must accept harmful in-

terference” [69, p. 194] from ISM applications. With frequencies at this end of the

microwave spectrum readily absorbed by water [70], signals are thus severely at-

tenuated by water, and a major source of interference is the domestic microwave

oven, along with other communications systems using this unlicensed band such

as Bluetooth devices, some cordless telephones and the like [23].

7While this standard also detailed requirements for WLANs operating at infrared light
frequencies, the scope of this work does not include infrared light WLANs.

8ISO is not an acronym, it is the organisation’s short name (in any language). See
http://www.iso.org/
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Standards/Recommendations Status
ISO/IEC 8802-11; ANSI/IEEE Std 802.11, 1999 edition.
Up to 2Mbps FHSS in the 2.4GHz band.

Existing Standard

ISO/IEC 8802-11:1999/Amd 1:2000; IEEE Std 802.11a–
1999. Up to 54Mbps OFDM in 5GHz band.

Existing Standard

IEEE Std 802.11b–1999 and IEEE Std 802.11b–1999/Cor
1–2001. Up to 11Mbps DSSS in 2.4GHz band.

Existing Standard

IEEE 802.11 Task Group C. Information for bridge operations. Work Complete
IEEE Std 802.11d–2001. Specification for operation in addi-
tional regulatory domains (multi-country roaming).

Existing Standard

IEEE Std 802.11e–2005. Initially both Quality of Service and
security, standard now solely QoS.

Existing Standard

IEEE Std 802.11F9–2003. Recommended Practice for Multi-
Vendor Access Point Interoperability.

Withdrawn

IEEE Std 802.11g–2003. Up to 54Mbps in the 2.4GHz band.
OFDM above 20Mbps, DSSS below 20Mbps.

Existing Standard

IEEE Std 802.11h–2003. Spectrum and Transmit Power Man-
agement Extensions in the 5 GHz band in Europe.

Existing Standard

IEEE Std 802.11i–2004. MAC Security Enhancements. Existing Standard
IEEE Std 802.11j–2004. 4.9 GHz-5 GHz Operation in Japan. Existing Standard
IEEE Std 802.11k–2008. Radio Resource Measurement. Existing Standard
Letters ‘l’, ‘o’, ‘q’, ‘x’ and ‘ab’ not used.
802.11m. Regular maintenance revisions of the base standard. Currently ‘TGmb’
802.11n. >100Mbps in 2.4GHz band. Under Development
802.11p. Wireless Access for the Vehicular Environment. Under Development
IEEE Std 802.11r–2008. Fast BSS Transition (fast roaming). Existing Standard
802.11s. Mesh networking. Under Development
802.11T. Evaluation of 802.11 Wireless Performance. Under Development
802.11u. Interworking with External Networks. Under Development
802.11v. Wireless Network Management. Under Development
802.11w. Protected Management Frames. Under Development
IEEE Std 802.11y–2008. 3650–3700 MHz Operation in USA. Existing Standard
802.11z. Extensions to Direct Link Setup. Under Development
802.11aa. Robust streaming of AV Transport Streams. Under Development
802.11ac. Very High Throughput <6Ghz. Under Development
802.11ad. Very High Throughput in 60 GHz. Under Development

Table 2.2: IEEE 802.11 Standards

9A Recommended Practice is not an amendment, hence uses an upper case letter.
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IEEE 802.11a

In December 1999, the first amendment, IEEE Std 802.11a–1999 (International

Standard ISO/IEC 8802–11:1999/Amd.1:2000 [71]), added specifications to pro-

duce much higher data rates (6-54 Mbit/s) using orthogonal frequency division

multiplexing (OFDM) in the 5.2 GHz band (5150–5350 MHz) and the 5.8 GHz

band (5725–5825 MHz) [68]. Note that the 5.2 GHz band is directed at the

USA-specific “unlicensed National Information Infrastructure (U-NII)” band, for

which there is no equivalent purpose10 in the Australian Radiofrequency Spectrum

Plan [69] (nor for many other countries outside the USA). The 5.8 GHz band

(but not the 5.2 GHz band) is also part of the international (including Australia)

unlicensed ISM bands [23]. Also, the 5 GHz transmission frequency, although

free of the interference of the 2.4 GHz band, considerably limits its range (at the

same power) compared to 2.4 GHz.

There are 12 IEEE 802.11a channels in the 5.2 GHz and 5.8 GHz bands. The

following table (Table 2.3) outlines the spectrum availability.

Frequency Band Channel Number Centre Frequency
USA only — UNII lower band 36 5.180 GHz

5.15-5.25 GHz 40 5.200 GHz
44 5.220 GHz
48 5.240 GHz

USA only — UNII middle band 52 5.260 GHz
5.25-5.35 GHz 56 5.280 GHz

60 5.300 GHz
5.725-5.875 GHz 64 5.320 GHz

ISM 5.8 GHz band 149 5.745 GHz
5.725-5.875 GHz 153 5.765 GHz

(includes USA — UNII upper band 157 5.785 GHz
5.725-5.825 GHz) 161 5.805 GHz

Table 2.3: IEEE 802.11a Frequency Plan [73]

IEEE 802.11b

The second amendment, IEEE Std 802.11b - 1999 [74], published in 2000, intro-

duced specifications for higher data rates (5.5-11 Mbit/s) using direct sequence

10However, use of 802.11a WLANs is permitted under the provisions of the Australian Low
Interference Potential Devices (LIPD) Class Licence [72].
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spread spectrum (DSSS) in the original 2.4 GHz international ISM band [68].

The 2.4 GHz band (2400–2500 MHz) is shared with Bluetooth devices, cord-

less telephones and other devices. However, unlike Bluetooth’s 79 channels,

IEEE 802.11b’s DSSS spreads the data frame over a 22 MHz wide channel. Be-

cause of this wide DSSS signal, there are effectively only three non-overlapping

channels that can be used in any given location and so it is highly prone to in-

terference from other devices with similar spectra, including domestic microwave

ovens [23,70].

There are 14 IEEE 802.11b DSSS channels, each 22 MHz wide [9, p. 218],

with 13 spaced 5 MHz apart from 2.412 GHz to 2.472 GHz and channel 14 at

2.484 GHz [74, p. 42]. The diagram (Figure 2.5) and tables (Tables 2.4 and 2.5)

outline the spectrum availability worldwide.

Figure 2.5: IEEE 802.11b Channel Layout

IEEE 802.11g

While IEEE 802.11a is significantly faster than IEEE 802.11b, the two are incom-

patible and IEEE 802.11b had, by far, the greatest market penetration [10, 11].

IEEE 802.11g [75] was a further addition, using IEEE 802.11a’s Orthogonal Fre-

quency Division Multiplexing over IEEE 802.11b’s frequencies in the 2.4GHz ISM

band. IEEE 802.11g can also fall back to IEEE 802.11b’s DSSS operation and

thus is fully backward compatible with IEEE 802.11b [23].
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Channel Number Centre Frequency DSSS Range
1 2.412 GHz 2.401–2.423 GHz
2 2.417 GHz 2.406–2.428 GHz
3 2.422 GHz 2.411–2.433 GHz
4 2.427 GHz 2.416–2.438 GHz
5 2.432 GHz 2.421–2.443 GHz
6 2.437 GHz 2.426–2.448 GHz
7 2.442 GHz 2.431–2.453 GHz
8 2.447 GHz 2.436–2.458 GHz
9 2.452 GHz 2.441–2.463 GHz
10 2.457 GHz 2.446–2.468 GHz
11 2.462 GHz 2.451–2.473 GHz
12 2.467 GHz 2.456–2.478 GHz
13 2.472 GHz 2.461–2.483 GHz
14 2.484 GHz 2.473–2.495 GHz

Table 2.4: IEEE 802.11b Frequencies derived from [74, p. 42] ±11 MHz [9, p. 218]

Country Channel Numbers
Australia & Europe 1 – 13

France 10 – 13
Japan 1 – 14
USA 1 – 11

Table 2.5: IEEE 802.11b Channels by Country

Super G “Super G” is not an IEEE standard. Vendors, such as Atheros, Net-

gear and D-Link use channel bonding, “which combines two 54 Mbps channels

into one 108 Mbps [proprietary ‘Super G’] link” [76]. “Super G” is thus incom-

patible with the standardised technologies, although such proprietary equipment

will always offer the standard technologies as well. However, fall-back to the

standard technologies may not necessarily be automatic [23].

2.3.2 IEEE 802.11n, “Pre-N” and “Draft-N”

IEEE Task Group N was chartered to define “high throughput” speeds for

WLANs. The amendments are expected to provide payload throughputs up to

at least 100 megabits per second (Mbps) to enable applications such as HDTV

or voice over Wi-Fi (VoFi) [77].
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IEEE 802.11n While 802.11g has a data rate of 54Mbps, it has an “actual

throughput [of] about half that” [78]. Channel bonding two 54 Mbps channels

into one 108 Mbps proprietary “Super G” link has limited practicality since there

can be, at best, only 3 non-overlapping DSSS channels in the 2.4 GHz band. A

new concept is now being finalised to dramatically increase throughput in the

2.4 GHz band. Four different consortia, MITMOT, TGn Sync, WWiSE and

Qualcomm, had each put forward complete proposals for the new standard [79],

to be IEEE 802.11n, based on Multiple Input Multiple Output (MIMO) technol-

ogy.

MIMO Single Input Multiple Output (SIMO), Multiple Input Single Output

(MISO) and Multiple Input Multiple Output (MIMO) provide better WLAN

throughput than by using simple channel-bonding to increase bandwidth. SIMO,

MISO and MIMO use multipath transmissions (echoes and reflections) and ad-

ditional signal processing on both ends to provide an additional ‘spatial’ dimen-

sion to the transmission, to provide a dramatic increase in both throughput and

range [80].

World Wide Spectrum Efficiency (WWiSE) The World Wide Spectrum

Efficiency (WWiSE) consortium, including Airgo Networks, Bermai, Broadcom,

Conexant, STMicroelectronics and Texas Instruments, has provided one of the

proposals for the IEEE 802.11n standard [81]. It uses MIMO with at least two,

up to four antennae at each STA, over the existing IEEE 802.11b/g 20 MHz

channels, to achieve throughputs of 135 Mbps [82].

TGn Synch The TGn Synch consortium, consisting of Agere Systems, Atheros,

Intel, Nokia and Sony, provided another of the proposals. The TGn Synch scheme

also incorporates ODFM and MIMO, like WWiSE [76], as did the other two pro-

posals, one from Qualcomm and the other from Mitsubishi and Motorola (MIT-

MOT) [82]. “The largest difference is that the WWiSE proposal defines the same

20-megahertz-wide channel that current Wi-Fi standards use. The three other

camps propose to bond two such channels into a new width of 40 MHz. Doing

so nearly doubles data rate — from [WWiSE’s] 135 Mbps to TGn Synch’s 243

Mbps” [82].
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Pre-N Although the IEEE 802.11n ratification has been shifted from November

2006 [82] to June 2010 [83], very early in the process, Belkin had already released

laptop cards and a router that incorporated some of this technology, based on

Airgo Networks’ (WWiSE consortium) “True MIMO” technology, even though

it may not be compatible with the eventual standard. Belkin originally called it

“pre-11n”, but that triggered concern in the Wi-Fi Alliance, the industry-based

certifying body. So Belkin then simply called it “Pre-N”11, although the reference

was obvious [23].

Draft-N As the standards process progressed, by mid 2005, WWiSE, TGn

Synch and MITMOT combined their proposals to develop the draft standard,

which was accepted by TGn and went to Draft 1.0 ballot early in 2006. However.

Draft 1.0 achieved less than half the vote. In January 2007 Draft 2.0 was released

for procedural ballot, which was approved in February and immediately balloted

for technical comment. In March, 2007 the technical vote closed and Draft 2.0

was approved to proceed [79].

By mid 2007 the Wi-Fi Alliance chose to use Draft 2.0 as the basis of its

draft IEEE 802.11n certification program. This is the standard to which vendors

currently produce “Draft-N” equipment, available to consumers through retail

outlets, even though Draft 8.0 of the standard has now passed sponsor ballot

and Draft 9.0 has been created to continue the standards process [79].

2.3.3 CSIRO’s WLAN Patent

The Australian Commonwealth Scientific and Industrial Research Organization

(CSIRO) holds US patent 5,487,069, issued on 23 January 1996 (filed on 23

November 1993) to provide high throughput wireless LAN in multipath environ-

ments [84], used in IEEE 802.11a/g and the emerging IEEE 802.11n equipment.

The CSIRO has been in dispute with wireless vendors for many years, but has

recently settled with Hewlett-Packard and is still in litigation with “Microsoft,

Dell, Toshiba, Intel, Nintendo, Netgear, Belkin, D-Link, Asus, Buffalo Technol-

ogy, 3com, Accton and SMC” [85].

11http://www.belkin.com/au/FactSheet/Belkin PreN Fact Sheet.pdf
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2.4 Other IEEE 802.11 Recent Standards

This section, as part of the current literature reviewed at the beginning of this

research, briefly describes those amendments that had been ratified at that time.

Note that subsequent amendments are described later.

2.4.1 IEEE Std 802.11d–2001

The “Specification for operation in additional regulatory domains” [86] for multi-

country roaming was finalised in 2001.

2.4.2 IEEE 802.11F

“IEEE Trial-Use Recommended Practice for Multi-Vendor Access Point Inter-

operability via an Inter-Access Point Protocol Across Distribution Systems Sup-

porting IEEE 802.11 Operation” [87] was an inter-access point protocol to sup-

port roaming STAs.

The capital ‘F’ designated a ‘recommended practice’ [88] — a stand-alone

document and not an amendment to the IEEE Std 802.11 itself which would use

lower-case postfixes.

IEEE 802.11F allowed for roaming between APs on the same network seg-

ment, but this often failed when crossing network segments, particularly for

VoIP applications [89]. “Handoff for voice needs to be no more than 20 millisec-

onds” [89, (quoting Paul Congdon, Hewlett-Packard)]. With this limitation and

the expenses of IEEE 802.11i and RADIUS, VoFi systems used no encryption or

the insecure WEP in order to ensure the handoff reauthentication time remained

under 20-milliseconds [89]. This is now obsoleted by the work of Task Group R.

2.5 Other 802.11 Emerging Standards

This section briefly describes those amendments that were under development

at the beginning of this research. Some of these have been completed and are

described with the advances in the field in Chapter 3. Others are still ongoing.
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2.5.1 IEEE 802.11e

Task Group E was developing Quality of Service (QoS) provisions for WLANs,

which it completed in 2005, drawing on the additional management frames pro-

vided by Task Group H, as described in next chapter [section 3.1.3].

2.5.2 IEEE 802.11h

Task Group H was looking at the spectrum and power management for Europe,

which it completed in 2003, providing new management frames also used by sub-

sequent advances and directly related to this work, as described in next chapter

[section 3.1.1].

2.5.3 IEEE 802.11i

Task Group I was working on the enhanced MAC security provisions, which it

completed in 2004 and forms the bulk of the subject matter for the advances in

the next chapter [section 3.2].

2.5.4 IEEE 802.11j

Task Group J was adding regulatory requirements for use in Japan, which it

completed in 2004, as described in next chapter [section 3.1.2].

2.5.5 IEEE 802.11k

Task Group K was investigating radio management information messages, which

it completed in 2008, drawing on the additional management frames provided by

Task Group H, as described in next chapter [section 3.1.4].

2.5.6 IEEE 802.11p

Task Group P is investigating “Wireless Access in the Vehicular Environment

(WAVE)”.

2.5.7 IEEE 802.11r

Task Group R was working on fast handoff between BSS APs to support stream-

ing technologies such as VoFi. This completed in 2008, again drawing on the
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additional management frames provided by Task Group H, along with the ra-

dio management information messages from Task Group K, as described in next

chapter [section 3.1.5].

2.5.8 IEEE 802.11s

Task Group S (TGs) is investigating wireless mesh protocols for access points,

allowing for multi-hop transmissions via mesh routing protocols. Although the

IEEE 802.11s standard is not ready yet, a number of vendors offer mesh net-

working products that allow enterprises to deploy WLAN APs in hard-to-cable

locations or allow frequent movement of APs. Mesh APs require power, but the

only data cabling is on the edge of the mesh [90]. Current solutions are unique

to each vendor, whose hardware is not interoperable with others. Also, both

back-haul and user access will contend for bandwidth, degrading performance.

2.5.9 IEEE 802.11v

Increasing uptake of WLAN will make management of enterprise-wide APs more

difficult. There is a growing need for remote wireless network management of

configurations and software. Typically, this is performed via the SNMP, but

currently there are no standard MIBs for WLAN-specific parameters, so this

varies from vendor to vendor. Currently, enterprises have to standardise on

one vendor’s hardware or else use a third-party tool that attempts to manage

hardware from multiple vendors.

2.5.10 IEEE 802.11w

Task Group W (TGw) is investigating Protected Management Frames, as dis-

cussed in Chapter 4, section 4.7.

2.6 IEEE 802.11 WLAN Security

This section gives the details of the various security provisions and attempts

to provide security for the original IEEE 802.11 WLANs and the various issues

with those provisions subsequently discovered in deployments under the original

standard.
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Sections of this work were also presented by the author in “Securely De-

ploying IEEE 802.11 WLANs” [24], at the AusCERT Asia Pacific Information

Technology Security Conference (AusCERT2007), Gold Coast, Australia, in May

2007.

Wired networks at least provide a measure of physical security in that they,

even if using broadcast paradigms, limit the dissemination of the signal to the

wired medium itself and the attached stations (STA), for all but exceptionally

well-resourced adversaries. Wired networks are also typically under the physical

control of the network owner and are secured in machine rooms or located in

ducts and conduits or inside walls, hidden above ceilings or buried under the

ground.

Whereas, the wireless medium (WM) permeates everywhere, reaching ev-

eryone, friend or foe (without the adjunct of special purpose buildings or en-

vironments to gaol electromagnetic emissions) and wireless networks generally

broadcast their signals onmidirectionally and unconstrained, limited only by the

sensitivity of a receiver to extract an attenuated signal from the background

noise. These characteristics jeopardise confidentiality by providing informa-

tion, not only in the content of the signal, the data in the message body and the

identity information in the message headers, but in the signal itself, its strength

and location [24].

The characteristics of the medium make WLANs highly susceptible to attacks

on the availability of the services (DoS attacks), through either directional or

omnidirectional jamming of the medium itself, or any one particular channel

thereof [91], or the easy directional or omnidirectional insertion of unprotected,

unauthenticated management frames [92] to deauthenticate or disassociate a STA

from its controlling AP. These latter attacks can be used in isolation or as the

initial part of a more sophisticated attack to interrupt communications as a

prelude to various masquerading attacks.

The lack of inherent confidentiality and weak protection of availability, cou-

pled with the intrinsic ability for easy injection of traffic into the medium by any

STA, anywhere, with sufficient transmitting power and appropriate antennae,

also threatens WLAN information integrity. Hostile STAs may masquerade as

legitimate STAs to an AP or as the legitimate AP to an unsuspecting STA or

even both at the same time as a man-in-the-middle, completely controlling the

communications between the legitimate STA and AP [24].
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The following details the information security features (or features used in

an attempt to support information security) for the original IEEE 802.11 WLAN

standards. These set a baseline against which the current state of WLAN security

(Chapter 3) and the emerging work and remaining issues (Chapter 4) can be

compared.

2.6.1 Service Set Identifier (SSID)

In WLANs, the Service Set Identifier (SSID) acts as a WLAN name, in a similar

manner to the ‘community ’ string in the ubiquitous Simple Network Management

Protocol (SNMP). “Thus all devices trying to connect to a particular established

WLAN must be configured with the same SSID” [33, p. 45]. Many implementa-

tions of WLANs attempt to use the SSID as a password, a purpose for which it

is not designed and thus is not secure. Because the SSID is included in beacon

frames by default, it provides no security. An intruder can get the SSID from

the beacon frames and act as a legitimate node. If the SSID is suppressed in

the beacons (a ‘hidden SSID’), an intruder can simply watch for probe response

frames in legitimate traffic and extract the SSID from there. If there are no

probe response frames readily forthcoming, an intruder can simply send a forged

disassociate packet to force a STA to reassociate and thus obtain the SSID.

2.6.2 MAC Address Filters

An AP can be configured to only accept association and connection requests from

particular MAC addresses [33, p. 46]. Using the MAC address for authentication

has a number of issues. Firstly, the MAC address is easily spoofed on any modern

network interface. Moreover, the MAC address, IP address, default gateway and

other details for legitimate clients is easily sniffed from the WM [93]. The MAC

address is available in clear text even under the latest security protocols. Also,

this typically only “establishes the identity of the [network interface], not its

human user, so an attacker [illegitimately using] a laptop with a registered MAC

address will appear to the network as a legitimate user” [33, p. 47]. In practical

applications this provides no security.
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2.6.3 Denial of Service (DoS)

DoS can be achieved through either directional or omnidirectional jamming of the

medium itself, such as interference produced by some sort of broadband emitter

or signal generator, or any one particular channel thereof [91], or the insertion

of spoofed management or control frames.

DoS Attacks on Management Frames and EAP Frames

There are a number of DoS attacks using Management frames in IEEE 802.11

networks. The simplest of these is a fake Disassociate message forcing a STA to

renegotiate association with the AP or a fake Deauthentication message forcing

the STA all the way back to the unauthenticated state, to renegotiate authenti-

cation and association. Such messages can also be sent to the broadcast address

to reset all the STAs in the network at once. They can also be repeated over and

over to maintain complete DoS in a ‘Deauth flood’.

Other ways to achieve a DoS generally involve overloading the access point

with such things as a flood of Probe Requests or a flood of Authentication Re-

quests or Association Requests. These can be performed with MAC address

spoofing to simulate a large numbers of STAs attempting to join the network.

Other device-specific attacks can affect the infrastructure supporting even

Robust Security Networks (RSN). A number of DoS attacks can be effected on

certain IEEE 802.1X infrastructure via malformed EAP frames. Vulnerable de-

vices may suffer only temporary DoS (process crash with automated restart), or

memory leaks until the process eventually crashes or even the possibility of exe-

cuting arbitrary code on the authentication server. These are not vulnerabilities

in the WLAN, but in the the supporting infrastructure exposed by the WLAN.

DoS Attacks on Control Frames

DoS can also be achieved using spoofed control frames. This is easily performed

by flooding a network with fake CTS frames so that STAs believe the medium is

reserved for a ‘hidden node’ for which they have not seen the RTS frames. These

can be transmitted with sufficient frequency to render the channel unusable.

An alternative to this is to send fake RTS packets to the access point itself,

so that it creates the CTS frames affecting every STA within range — every STA

in the network.
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2.6.4 Rogue Access Points

Rogue APs are unauthorised APs providing (alleged) DSS. These may be unau-

thorised APs attached to a corporate LAN by a legitimate user seeking wireless

flexibility, often also providing unfettered access to the corporate network for

any adversaries, corporate or otherwise. Alternately, it may be an adversary’s

AP pretending to be a legitimate AP, such as for a wireless Hot Spot, to defraud

legitimate clients into providing their authentication credentials [33].

2.6.5 Hijack Attack

Far less likely is the abuse of routing protocols to allow eavesdropping on victim

out-of-range of the attacker by detouring the traffic through corrupted nodes

within the transmission range of both victim and attacker [94].

2.6.6 Wired Equivalent Privacy (WEP)

The Wired Equivalent Privacy (WEP) cryptographic confidentiality algorithm

was designed to be “subjectively equivalent to the confidentiality of a wired local

area network” [5, p. 6]. WEP is based on the RC4 cipher and a secret key that is

shared between all of the nodes in the wireless LAN. It was intended to provide

security properties similar to that of wired networks, however it suffers from a

number of issues [33], as follow.

WEP One-way Authentication

WEP provides only client authentication and does not authenticate the AP.

This provide the opportunity for a rogue AP to defraud a legitimate client into

associating with it and passing those credentials on to the legitimate AP to realise

a MITM attack.

Static WEP Keys

A major problem with WEP keys is the lack of key management provisions within

the protocols, so that the same key is used by all stations and requires manual

processes to be performed at each of the STA for any key rotation, which is

therefore infrequently, if ever, performed. This allows large amounts of ciphertext
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for the same key to be gathered by any adversary — making cipher-text only

attacks considerably easier and faster.

WEP Key Key Size

The USA’s export restrictions on cryptographic material that existed during the

development of the original protocols left WEP with an inadequate 40-bit key

coupled with a 24-bit initialisation vector to create a 64-bit RC4 cipher key.

Many parties blamed 40-bit RC4 keys for WEP’s weakness and recommended

“using 104 or 128-bit RC4 keys instead” [33, p. 47].

However, using the larger key size did little to dissuade adversaries, who

simply required more packets for the same unchanging key to effect an attack.

Jesse Walker’s submission [95] to the IEEE 802.11 working group, identifies an

inherent vulnerability in WEP’s initialization vector irrespective of key size [33].

WEP is easily cracked (defeated) using commonly available software, such as

WEPCrack [96], AirSnort [97], Kismet [98], aircrack 12 [99], Aircrack-ng [100]

and WepLab [101], among others.

Commonly Available Wireless Attack Tools

Some of the more common tools used to investigate wireless networks are included

here.

Kismet Kismet is a passive (optionally active) wireless network detector and

promiscuous packet capture system for Unix-like operating systems. It can

be completely passive, purely listening to traffic to determine the networks in

range [98] or it may also be configured to use active probes.

Wireshark Ethereal, now developed as Wireshark, is the best-known open-

source passive software protocol analyzer that has been ported to most operating

systems. Originated by Gerald Combs, it has an active contributing community

and includes analysis of IEEE 802.11 networks [102].

NetStumbler NetStumbler (and MiniStumbler) are tools for Windows (and

Windows CE) that detect IEEE 802.11 WLANs [103] and provide all of the avail-

12Christophe Devine does not capitalise aircrack, however Thomas d’Otreppe does capitalise
Aircrack-ng.
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able network details from the traffic present. They also use active methods,

probing for available networks.

AirSnort AirSnort recovers WEP encryption keys by passively monitoring

transmissions, however active methods can also be employed to speed this pro-

cess. AirSnort uses the weakness described in Fluhrer, Mantin and Shamir [104].

“AirSnort requires approximately 5-10 million encrypted packets to be gathered.

Once enough packets have been gathered, AirSnort can guess the encryption

password in under a second” [97].

Airsnarf Airsnarf is a rogue wireless AP setup utility for Linux [105]. It ac-

cesses and copies a legitimate wireless hot spot sign-in page. Then it broadcasts

a deauthenticate message that disconnects any nearby hot spot users from the

legitimate AP and it presents itself as the legitimate AP [106].

AirJack AirJack provides low-level device drivers so that raw IEEE 802.11a,

IEEE 802.11b or IEEE 802.11g frames can be crafted and injected into a wireless

network, “providing the ability to perform a DoS attack or to actively determine

the ESSID for a closed network and establish a man-in-the-middle attack” [107].

The KoreK Attacks

One of the primary weaknesses in WEP was fixed by vendors filtering the weak

IVs. The Fluhrer-Mantin-Shamir attack [104] requires many millions of en-

crypted packets, so as to gather sufficient packets with weak initialisation vectors

(IVs). Without these weak IVs and with regular key changes, WEP was, for a

time, secure enough for the majority of applications [23].

Then in August 2004, “a hacker named KoreK posted new WEP statistical

cryptanalysis attack code to the NetStumbler13 forums” [108]. This was incorpo-

rated into a number of new tools, including aircrack [99] and WepLab [101].

These attacks do not require millions of packets to crack a WEP key and the

number of weak IVs does not matter, only the total number of unique IVs cap-

tured [11,23]. “A key can often be cracked with hundreds of thousands of packets,

rather than [the] millions” [108] previously required.

13http://www.netstumbler.com/
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aircrack Christophe Devine developed aircrack, which implements the KoreK

attacks as well as the improved Fluhrer-Mantin-Shamir attack from dwepcrack [109]

by David ‘h1kari’ Hulton [108].

WepLab Jose Ignacio Sanchez developed WepLab, which also implements the

KoreK attacks. WepLab also provides brute force and dictionary cracking attacks

(as does aircrack) [101].

2.6.7 Initial Attempts at Improving Security

With these crippling vulnerabilities in the IEEE 802.11 protocols, alternate pro-

tection methods had to be deployed to provide an acceptable level of security

in the existing WLANs. Prior to the release of the IEEE 802.11i amendment,

wireless networks were best treated as untrusted networks, like the public In-

ternet. Additional security mechanisms, such virtual private network (VPN)

tunnelling, including those using the Security Architecture for the Internet Pro-

tocol (IPsec) [110], Secure Sockets Layer (SSL) encapsulation and various vendor

implementations of the IEEE Std 802.1X [111] port-based network access control

(NAC) framework [67] were often used to help mitigate the atmosphere of inse-

curity in these WLANs. The need for such wrappers and workarounds in WLAN

deployments indicated the lack of acceptably secure wireless networking proto-

cols and hardware. Three of these alternative solutions for WLANs presented by

Zahur and Yang [33] were: Secure Sockets Layer (SSL), Virtual Private Networks

(VPN) and Cisco’s Lightweight EAP (LEAP).

Secure Sockets Layer (SSL)

The Secure Sockets Layer (SSL) protocol [112] was originally developed by Netscape

Communications Corporation14 as a “bubble-in-the-stack”, inserted as a sub-

layer between the the Transport Layer and the higher layers of the protocol stack,

to provide a “Berkeley-Sockets15-like” application programming interface (API)

supporting secured inter-process communications. SSL Version 2 [113, 114] was

released in 1994, in a draft RFC submitted to the W3O working group on secu-

rity. SSL Version 3 was released in late 1995 [115] and as an Internet-Draft [112]

14Originally Mosaic Communications Corporation, then Netscape Communications Corpo-
ration, later Netscape Communications, later purchased by AOL LLC and later dissolved.

15The University of California at Berkeley’s inter-process communication API for UNIX.
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by the Transport Layer Security Working Group in late 1996.

In this manner, higher-layer protocols may be able to utilise SSL connections

to compensate for these initial WLAN security shortfalls. While SSL is avail-

able for a variety of applications, such as HTTP or SMTP over SSL, there are

still many applications that cannot support it. However, the increasing popu-

larity of the deployment and use of SSL-based VPNs would help support this

functionality.

SSL relies upon digital certificates and a Public Key Infrastructure to authen-

ticate the server-side only — the client is typically unauthenticated. This pushes

the burden of authentication of the STA onto the AP or onto the associated

networks behind AP.

Also, in the nature of this SSL certificate authentication, some applications

may accept any valid certificate under one of the many in-built root Certificate

Authorities (CA) found in common operating systems. This means the client of

the application at the STA must be diligent in verifying that the identity pre-

sented by the application’s server exactly matches the identity it was expecting.

Virtual Private Networks (VPN)

VPNs are available in a multitude of proprietary vendor configurations, as well

as in a number of open source implementations, the most popular of the latter

being the IPsec [110] protocol suite providing security at the IP layer. VPNs

are frequently used to provide secure communications for the higher layers of

the communication protocols over otherwise insecure wired networks such as the

Internet. This protects the actual data being transferred, however leaves the

devices themselves and the communications channels still exposed to attack via

known, unpatched, or zero-day attacks. VPNs provide the security services of

authentication, confidentiality and integrity [33]:

� Authentication: Depending on the vendor, or the configuration, VPNs

can be anonymous, unilaterally authenticated or bilaterally (mutually) au-

thenticated. To provide adequate security, the VPN and should be used to

authenticate both the wireless user and the network the user is connecting

to. As both parties can be authenticated at the start, the VPN can thus

provide authentication of the source or of the recipient or both.

� Confidentiality: The VPN will tunnel all traffic using secure protocols to
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encrypt all data and protect its confidentiality while traversing the network.

� Integrity: As part of this tunnelling process VPNs will normally also pro-

vide data integrity, via encrypted message integrity checks (MIC), of the

tunnel payloads wherever appropriate encryption has been used.

Cisco’s Lightweight EAP (LEAP)

Cisco’s LEAP was Cisco’s interim solution for wireless security and used a propri-

etary Extensible Authentication Protocol (EAP) method. The EAP framework

was designed to support various authentication methods in peer-to-peer associ-

ations, such as the Point-to-Point Protocol (PPP). LEAP was used to provide

mutual authentication between a client and an Authentication Server (AS) via

the AP and is carried within the Remote Authentication Dial In User Service

(RADIUS) protocol on the wired LAN.

LEAP was to provide mutual authentication and WEP enhancements such

as a MIC and per packet keying [116]. However, LEAP used a modified version

of Microsoft’s MS-CHAP and the user credentials were easily compromised. The

Cisco Secure Access Control Server (ACS) User Guide [117] now recommends

disabling LEAP in favour of the stronger protocols, such as EAP-TLS, PEAP or

EAP-FAST.

The use of such EAP methods led to a renewed popularity of the use of the

IEEE 802.1X port-based network access control (NAC).

IEEE 802.1X Authentication Protocol

In IEEE 802.1X there are three entities, the supplicant, an authenticator and an

authentication server [111]. The client STA is the supplicant, communicating

with the AP as an authenticator, however actual authentication is performed

with the authentication server (AS). IEEE 802.1X provides two main features [66]

when deployed in the wireless environment: logical ports and key management.

Logical Ports Wireless STAs are not connected to physical ports like their

wired counterparts, but are associated with logical ports on the AP. In associating

with the AP, the combination of the STA’s and the AP’s IEEE (MAC) addresses

establish a logical port for the connection to the wireless device. This logical

port then acts as a destination address in “EAP over LAN” (EAPOL) protocol
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exchanges [66]. In an ‘unauthorised’ state, the port allows only the Dynamic

Host Configuration Protocol (DHCP) and EAP traffic to pass through. Once

‘authorised’, as part of the association process, the port has the normal access

to the DS and other portal functions.

Key Management The other principal feature of IEEE 802.1X is the key

management. Session keys are established with the handshake at the beginning

of the connection on a per session basis using EAPOL-Key message and can also

be rotated as required, over particular periods of time during the session.

IEEE 802.1X Vulnerabilities

Arunesh Mishra and William Arbaugh from University of Maryland published

design flaws and the resulting vulnerabilities in certain configurations of IEEE

802.1X with WLANs, including “Absence of Mutual Authentication” [118, p. 7]

and “Session Hijacking” [118, p. 8]. As with all technologies, various implemen-

tations or insecure configurations can expose vulnerabilities.

In the case of IEEE 802.1X, it is not the framework itself, but poor choice

of EAP methods that can expose the network. This is particularly true of EAP

methods that do not involve mutual authentication or rely on weak cryptographic

components, such as EAP-MD5. These issues are discussed in greater detail in

the next chapter, Chapter 3, as part of the advances announced during the course

in of this work.

Details of the MAC security enhancements and the emerging Management

Frame protection amendments and other recent and emerging standards are also

discussed in Chapter 3.
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Chapter 3

State of the WLAN Security Art

This chapter expands on the background information in the previous chapter and

describes the current state of the art for IEEE 802.11 wireless network security.

This chapter details the various advances in the field that occurred during the

conduct of this research, including the recent amendments for the MAC security

enhancements and how they are implemented in Wi-Fi Protected Access (WPA)

and WPA2. It discusses and compares the differences between WEP, WPA,

WPA2, IEEE Std 802.11i, the Robust Security Network (RSN) and the Transition

Security Network (TSN).

This chapter also identifies a number of remaining security issues in today’s

WLANs that are resolved by this research, some of which are also the subject

of emerging work discussed in Chapter 4, but unlikely to be completely resolved

by that work — as well as some issues that remain unresolved by any current or

emerging activities.

Most of the material here was also presented by the author in “Securely De-

ploying IEEE 802.11 WLANs” [24], at the AusCERT Asia Pacific Information

Technology Security Conference (AusCERT2007), Gold Coast, Australia, in May

2007. Some sections of this material were also presented in an Australian Aca-

demic and Research Network (AARNet) ‘Ozeconference’ titled “A Review of

Actual IEEE 802.11 Deployment Practices” [11] in May 2008.

Section 3.1 details all of the amendments to the IEEE Std 802.11 released dur-

ing the course of this research, each of which impacts, either directly or indirectly,

on the current state of WLAN security, including the various advances intro-

43
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ducing even more sensitive management data to traverse the WM unprotected.

Section 3.2 describes the MAC security enhancements, which only protect the

payload of data frames, leaving frame headers, control frames and management

frames unprotected in WLANs. Section 3.3 then details the requirements for an

RSN and RSNAs, the implications of a TSN, what the WPA certification and

the WPA2 certification actually provides, along with the conditions where WPA2

actually implements a TSN instead of an RSN. Finally, section 3.4 discusses the

results of a series of tests that were presented in the author’s AusCERT2007

paper [24], mentioned above, demonstrating the vulnerabilities from weak con-

figurations of WPA and WPA2 WLANs.

This then completes the current state of related work in the field and forms

the basis of the new research detailed in the following chapters.

3.1 Advances During This Work

Various wireless networking technologies, including higher throughput approaches,

Quality of Service (QoS) provisions, wireless network management, wireless roam-

ing handoffs and WLAN security in particular, were the subject of significant

advances during the course of this research.

With these advances, WLANs gain far more utility for use in mainstream

commercial and even government applications. The advances in QoS and ra-

dio management, combined with the new roaming fast BSS transition standards

make VoFi a practical possibility for commercial environments, where confiden-

tiality is an issue.

Manufacturers are already producing dual-mode cellular/VoFi handsets using

the recent IEEE 802.11 amendments (including e, h, k and r) which allow these

handsets to utilise WLANs for high-speed Internet and VoIP telephone calls.

VoFi is expected to be “a core driver of the enterprise WLAN market” [80].

The first of these advances was the IEEE Std 802.11h-2003 Spectrum and

Transmit Power Management Extensions for Europe [119], followed by the IEEE

Std 802.11i-2004 MAC Security Enhancements [12] and the IEEE Std 802.11j-

2004 5 GHz Operation in Japan [120], then the IEEE Std 802.11e-2005 Quality

of Service [121], a roll-up of all the amendments into IEEE Std 802.11-2007 [122]

and then the IEEE Std 802.11k-2008 Radio Resource Measurement [123] and

IEEE Std 802.11r-2008 Fast Roaming [124] amendments. These advances and
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the current state of the art of WLAN security are detailed in the following sec-

tions, in chronological order except for the IEEE Std 802.11i-2004 MAC Security

Enhancements (lastly) forming the bulk of the detail supporting the information

presented in this Chapter.

3.1.1 IEEE Std 802.11h-2003

“Spectrum and Transmit Power Management Extensions in the 5 GHz band in

Europe” [119] was originally designed to handle frequency selection and trans-

mission power control via management messages between APs and STAs to min-

imise interference with radar and satellite communications in the 5 GHz bands

in Europe, however these amendments have implications in many more regula-

tory domains and can be used to improve WLAN efficiency. The devices “select

another channel and adjust power output” [88] as required.

In order to achieve this, IEEE Std 802.11h defines a series of new management

frames called Action Management Frames, that are used to transmit spectrum

management directives. These Action Management Frames are also carried into

the IEEE Std 802.11e, IEEE Std 802.11k and IEEE Std 802.11r work.

3.1.2 IEEE Std 802.11j-2004

This amendment modified the 802.11 MAC and 802.11a PHY for the 4.9–5.0 GHz

spectrum to meet Japanese regulatory requirements.

3.1.3 IEEE Std 802.11e-2005

The ever expanding suite of applications being delivered over WLAN has lead to

traffic management issues as the bandwidth becomes saturated and the IEEE 802.11

contention-based services are not suited to streaming applications such as VoIP [89].

Task Group E was initially investigating both quality of service and security. This

was then split with IEEE 802.11e for QoS and IEEE 802.11i for security [23].

IEEE Std 802.11e [121] extends the use of IEEE Std 802.11h’s Action Manage-

ment Frames to handle components of the QoS messaging, making these Man-

agement frames critical to the successful deployment of the technology.
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3.1.4 IEEE Std 802.11k-2008

IEEE Std 802.11k provides “Radio Resource Measurement of Wireless LANs” [123].

It defines a set of management messages to query information from the network

STAs, such as an AP requesting that a STA report all beacons it can see on a

particular channel in order to make traffic decisions about switching channels

and the like [125]. Access points may also query STAs for lists of hidden nodes

or for various radio measurements that are available from the STA’s network

interface drivers [125]. This standard can also support the use of IEEE 802.11r

to enhance fast transition between the APs.

This is all achieved through the extension of the use of the Action Man-

agement Frames of IEEE 802.11h, that are used extensively in this query and

response process, pushing more and more network management information into

the actual IEEE 802.11 management frames.

3.1.5 IEEE Std 802.11r-2008

Task Group R (TGr) is looking at fast roaming between APs — “handing off

clients quickly from one access point to another with their authentication and

security policies intact becomes critical when clients are moving, such as with

VoIP calls made with hand-held WLAN phones” [88] or dual-mode GSM/VoFi

phones.

IEEE Std 802.11r allows for fast BSS transition, that is, fast handoff from

one AP to another to maintain mobile streaming services such as VoIP. Prior

to this, the many steps to handoff — a passive or active scan for APs in the

area, exchange authentication messages with the new AP, exchange reassociation

messages to establish a connection at the new AP, performing the IEEE 802.1X

EAP negotiations, pairwise master key generation and pairwise transient key

derivation and establishing quality of service requirements — made streaming

services impractical under IEEE 802.11i. IEEE 802.11r avoids new key exchanges

during handoff within a “mobility domain” [124, p. 2] and carries all resource and

quality of service messages with the IEEE 802.11 authentication and reassociation

messages and leverages any advantages of IEEE 802.11k as well.
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3.2 IEEE Std 802.11i-2004 — MAC Security

With the original insecurities of WLANs being well known and easily exploited [33,

43,95,106,108,126], both industry and standards have moved to respond to the

issues [24]. Task Group I was separated from the original Task Group E, looking

at both quality of service and security, so that the security issues were the single

focus for IEEE 802.11i.

The IEEE Std 802.11i [12] amendment provides an effective and more secure

replacement for WEP, providing two new confidentiality protocols, Temporal

Key Integrity Protocol (TKIP) for the legacy RC4 hardware and the Advanced

Encryption Standard (AES) in CCM1 Protocol (CCMP), enabling authentication

and authorisation via the the IEEE 802.1X port-based Network Access Control

(NAC), providing key distribution via the Extensible Authentication Protocol

over LAN (EAPOL) key exchange [127].

IEEE 802.11i resolved the problems with WEP and the confidentiality and

integrity (including authentication) of all data frames [24]. However, control and

management frames remain unsecured, as are the link layer headers, and DoS

attacks on the availability of the services still exist, along with some new DoS

attacks specific to new elements in IEEE 802.11i [92]. Even if using a RSN, the

lack of protection for management or control frames still provide multiple attack

vectors into these networks.

Where data frames are protected by the IEEE 802.11i amendments, an RSN,

using CCMP, requires new hardware to operate and so deployments with provi-

sions for legacy hardware will typically fall back to using the TKIP or even to a

TSN that allows Pre-Robust Security Network Associations (Pre-RSNA) [24].

Temporal Key Integrity Protocol (TKIP) TKIP was designed to improve

the security of legacy products that had implemented WEP, but were incapable

of supporting the Advanced Encryption Standard (AES). It uses a Message In-

tegrity Code (MIC) called Michael and provides per-frame keying [127].

Counter-Mode/CBC-MAC Protocol (CCMP) CCMP is for new hard-

ware and is stronger than TKIP. It uses AES in counter mode with 128-bit

blocks and a 128-bit key. “For authentication and integrity, CCMP uses Cipher

1CTR (CounTeR mode) with CBC-MAC (cipher-block chaining (CBC) with message au-
thentication code (MAC)) [12, p. 5].
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Block Chaining Message Authentication Code (CBC-MAC)” [127]. The MAC

is 8 octets, the nonce is 48 bits (6 octets) and two extra bytes of 802.11 header

make a total of 16 extra bytes per packet. CCMP protects some fields that

are not encrypted, the additional authentication data (AAD), which include the

source and destination [127]. However, these only provided integrity protection

in detecting modification or damage and do not provide protection for either

availability or confidentiality.

IEEE 802.1X use in an IEEE 802.11i system In IEEE 802.1X there are

three different types of entities, a supplicant, an authenticator and an authenti-

cation server [111]. The authenticator does not actually authenticate the suppli-

cant, it merely enforces authentication. The authenticator communicates with

the supplicant, which it does not allow access to the network, other than DHCP2

and EAP, and passes the supplicant’s credentials back to the authentication

server. The authentication server authenticates the supplicant and passes the

result to the authenticator, which then permits or denies access to the net-

work [24].

In IEEE 802.11i, the Access Point is the Authenticator only, with a typically

separate authentication server, typically a Remote Authentication Dial-In User

Service (RADIUS) server, such as a Cisco Access Control Server (ACS), or an

RSA ACE/Server, Microsoft IAS server, or the like, and the client NIC is the

Supplicant. Thus, the client NIC (supplicant) authenticates with the authen-

tication server via the AP (authenticator). The IEEE 802.1X protocol is used

between the client NIC and the AP. The protocol between the AP and authen-

tication server is not specified in either IEEE 802.1X or IEEE 802.11i, but this is

typically a version of the RADIUS protocol [127].

In IEEE 802.1X, the ‘uncontrolled port’ is used for authentication traffic be-

tween the client NIC (supplicant) and the authentication server. Once the au-

thentication server authenticates the client NIC (supplicant), the authentication

server informs the AP (authenticator) and passes the necessary key material to

the AP (authenticator), so that both the STA and AP have the key material and

the AP allows access through the ‘controlled port’ [127].

Protocol Negotiation The group ciphersuite is the protocol used to encrypt

broadcast traffic. The pairwise ciphersuite is a list of protocols allowed for unicast

2Dynamic Host Configuration Protocol
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traffic. The authentication and key management suite advises whether preshared

key (PSK) mode or IEEE 802.1X is available [127].

Key Exchanges The IEEE 802.11i pairwise master key (PMK) comes from the

authentication server or a preshared password mapped into a PMK. This is fed

into a pseudorandom function, along with the STA’s and AP’s MAC addresses, a

nonce from the STA and a nonce from the AP, to create the pairwise transient key

(PTK). The PTK gets divided into five keys: the EAPOL Key Encryption Key

(KEK), the EAPOL Key Confirmation Key (KCK), the Temporal Key (TK),

the Tx MIC Authenticator Key and the Rx MIC Authenticator Key. The KCK

is used for data origin authenticity. The KEK is used for key confidentiality. The

TK is used for data confidentiality [127].

The random GMK, the AP’s MAC address and a nonce are fed into a pseu-

dorandom function to create the group temporal key (GTK) [127].

The 4-way Handshake [127]

1. The authenticator sends a nonce, ANonce, to the supplicant.

2. The supplicant uses this and its own nonce, SNonce, to calculate the PTK.

The supplicant sends its SNonce and the security parameters it used to

the authenticator, authenticated using the KCK. The authenticator then

verifies that these are valid.

3. The authenticator sends its security parameters and the GTK encrypted

with the KEK, all authenticated using the KCK, to the supplicant, which

allows the supplicant to verify the authenticator’s information.

4. The final acknowledgement activates encryption.

Group Key Handshake Only to update the GTK, since 4-way handshake

includes the GTK.

1. The AP sends the GTK to each STA, encrypted using the STA’s KEK,

with a MIC using the STA’s KCK.

2. The return message activates the new GTK.
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3.3 Robust Security Networks

Most of the material in this section was also presented by the author in “Securely

Deploying IEEE 802.11 WLANs” [24], at the AusCERT Asia Pacific Information

Technology Security Conference (AusCERT2007), in May 2007.

These advances in the data security of wireless LAN networks now make

commercial and government use viable. Only the RSN is capable of providing a

DSD3 Approved Cryptographic Algorithm (DACA) [128]. RC4 is not a DACA,

so WEP-40, WEP-104 and TKIP are not appropriate. Only the IEEE Std 802.11i

Robust Security Network Association (RSNA) provides negotiation of encryption

algorithms, thus allowing for new algorithms in the future.

However, merely conforming with the new amendments is not sufficient to

successfully implement an RSN and many mistakenly believe that simply turning

on WPA or WPA2 is sufficient to meet the requirements of an RSN, necessary

in government and many commercial situations.

The mere existence of WPA2 certification of equipment is not sufficient to

provide a RSN, since compliance with IEEE Std 802.11i does not mandate a RSN

in operation. There is a critical difference between RSNA-capable devices and

RSNA-enabled devices.

WPA2 certified equipment can implement a RSN, but not necessarily so.

WPA2 certification requires backward compatibility with WPA. Despite TKIP

being an optional protocol for RSNs, WPA/TKIP is not a RSN. In addition

to this, any Wi-Fi certification demands backward compatibility with WEP —

but WEP is incompatible with a RSN and some vendors do not keep the two

separate.

For example, the Temporal Key Integrity Protocol (TKIP) is one of the two

defined RSNA data confidentiality and integrity protocols in the amendment to

the standard. As such, its use, in itself, does not preclude a RSN. However, in

practice, selecting TKIP in WPA2 certified equipment often also invokes WPA

compatibility to allow connections with WPA certified equipment, which can

only use TKIP or WEP and do not implement all of the mandatory elements of

IEEE 802.11i — and so this is not a RSN [24].

3Australian Government, Department of Defence, Defence Signals Directorate.
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3.3.1 RSN and RSNA

IEEE 802.11i introduces the robust security network (RSN) — “A security

network that allows only the creation of robust security network associa-

tions (RSNAs)” [12, Definitions 3.106], being associations “if the procedure to

establish authentication or association between them includes the 4-Way Hand-

shake” [12, Definitions 3.107] — the 4-way authentication exchange defined in

this amendment to the standard. These are two critical definitions.

3.3.2 RSNA Requirements

IEEE 802.11i is not a standard in itself. It is an amendment to the IEEE 802.11

standard. As such, it does not have its own Protocol Implementation Confor-

mance Statement (PICS), although it does amend the IEEE 802.11 PICS. These

amendments make RSNA optional, but, if implemented, then implementation

of the RSN Information Element (IE) and CCMP is mandatory.

That is not to say that CCMP must be used, but it must be implemented

“in all IEEE 802.11 devices claiming RSNA compliance” [12, section 8.3.1]. It

is important to note that a RSN does not, by definition, specify any particular

encryption algorithm, but depends solely on the associations it allows.

A RSN only allows RSNAs. RSNAs can use either TKIP or CCMP, along

with RSNA establishment, termination and key management procedures. To

draw the distinction clearly, a network that only has RSNAs is not necessarily

a RSN, because it may still allow pre-robust security network associations (pre-

RSNAs).

The other mandatory element is the RSN IE. It includes the list of available

pairwise (unicast) ciphers and the single groupwise (multicast/broadcast) cipher.

The pairwise cipher is used for communication only between the two parties of a

single association, while the groupwise cipher is used for multicast or broadcast

communications with many or all associated parties. That is, a unique pairwise

cipher and key is used between the AP and each STA, while the groupwise cipher

and key is used for broadcasts from the AP to all STA. An AP in a RSN must

include this RSN IE in its Beacon and Probe Response frames and any STA

wanting to participate in a RSNA must include the RSN IE in its Association

Request frames [24].
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3.3.3 RSN and TSN

Thus, a RSN only allows RSNAs; and any STA in a RSNA must implement

CCMP, may optionally implement TKIP, and can use either (if implemented)

TKIP or CCMP. But for a network to be a RSN it must not allow Pre-RSNAs.

So an AP in a RSN must not associate with pre-RSNA STAs — STAs that do

not have the RSN IE in the Association Request — and it must include the RSN

IE in its Beacon frames, showing the group cipher suite as CCMP or TKIP, but

not WEP [12, p. 5].

A network that allows the creation of pre-RSNAs is not a RSN. A network

that allows the creation of pre-RSNAs as well as RSNAs is called a transition

security network (TSN) and can be identified by the RSN IE of Beacon

frames showing that the group cipher suite is WEP [12, p. 6]. Figure 3.1 com-

pares the functionality of RSNs and TSNs within the WLAN environment. In

a TSN, a RSN STA shall include the RSN IE in its Association Requests. In

an infrastructure network, as all associations are with the AP, both a TSN and

RSN require a RSNA-capable AP. A RSNA-capable AP configured to operate

in a TSN must include the RSN IE in its Beacons and can associate with both

RSNA and pre-RSNA STAs. Pre-RSNA STAs will ignore the unknown RSN IE

from the AP and will not have a RSN IE in their requests [24].

Figure 3.1: RSNs and TSNs within the WLAN Environment [24]

When an AP in a TSN receives an Association Request without an RSN IE,

its IEEE 802.1X Controlled Port shall initially be blocked. The IEEE 802.1X

Station Management Entity unblocks the IEEE 802.1X Controlled Port when
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WEP has been enabled [12, p. 67]. In this case, a STA using WEP can have

the same network access as a STA using a RSNA, thus bringing the security for

the entire network down to the level of simple WEP protection. Mixed modes

involving WEP offer very poor protection. In these cases, additional measures,

such as separate ‘via-WEP’ subnets, separate WEP APs (or separate SSIDs

within an AP [129]) or other network access control should be employed.

The possible cipher suite combinations in the RSN IE are shown here [12]:

Pairwise Groupwise

CCMP CCMP (RSN)

CCMP TKIP (RSN)

CCMP, TKIP TKIP (RSN)

TKIP TKIP (RSN)

CCMP WEP-40 or WEP-104 (TSN)

CCMP, TKIP WEP-40 or WEP-104 (TSN)

TKIP WEP-40 or WEP-104 (TSN)

UseGroup WEP-40 or WEP-104 (TSN)

The combination of TKIP as the pairwise cipher and CCMP as the group

cipher is not permitted. An AP can “Use group cipher suite” for the pairwise

cipher suite if it does not support any pairwise cipher suites [12].

3.3.4 Wi-Fi Protected Access (WPA)

With the problems of WEP apparent to all, the Wi-Fi Alliance could not wait for

IEEE 802.11i to be ratified. It released Wi-Fi Protected Access (WPA), based

on a snapshot of the IEEE 802.11i/D3 draft, as a security solution that fixed

the WEP vulnerabilities in the original IEEE Std 802.11 for WLANs operating

in infrastructure mode. WPA is not certified for ad hoc mode. WPA uses

the Temporal Key Integrity Protocol (TKIP) from IEEE 802.11i for encryption,

including the message identity check (MIC) and per-packet keying, but the WPA

Information Element (IE) is not the same as the IEEE 802.11i IE [24].

Having evolved from a TGi draft, WPA raises ambiguities in comparison to

the final IEEE 802.11i release. In TKIP-Only Mode, it uses TKIP for both the

pairwise and groupwise suites and so IEEE 802.11i’s definition for a RSN — “A

RSN can be identified by the indication in the RSN IE of Beacon frames that the
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group cipher suite specified is not wired equivalent privacy (WEP).” [12, Defini-

tions 3.106] — implies that WPA supports a RSN. However, it is clear from the

minutes of the meetings of TGi that this is not the case. WPA only implements

a subset of a RSN. It does not implement the mandatory CCMP [12, Annex A

PICS PC34.1.2.1] (or Ad Hoc networks or support for Quality of Service (QoS)

or support for pre-authentication), thus is pre-RNSA. It forms, by definition, a

TSN.

Wi-Fi certified WPA devices are not intended to service a mixture of WEP

and WPA. The Wi-Fi WPA certification demands that the default configuration

not support this. However some vendors offer this sort of functionality ‘on top

of’ WPA certification, e.g. Cisco Aironet APs allow a “WPA Migration Mode”

where both WPA and WEP STAs concurrently associate to the same AP. This

mode of operation clearly forms a TSN. SMC offer this functionality on their

SMC2804WBR ‘Barricade g’ wireless router [24].

Devices certified for WPA Personal Mode offer only pre-shared key (PSK)

authentication, requiring manual configuration of a pre-shared key. No authenti-

cation server is used. Whereas, devices certified for WPA Enterprise Mode offer

both PSK and IEEE 802.1X/EAP authentication [23].

3.3.5 WPA2

WPA2 is the Wi-Fi Alliance certification of an implementation of IEEE 802.11i.

WPA2 has all of the mandatory requirements of IEEE 802.11i “but differs slightly

to allow for interoperability” [127] with WPA. All Wi-Fi certified WPA2 devices

are interoperable with Wi-Fi certified WPA devices. WPA2 provides both TKIP

(using RC4) and CCMP (using AES) and is available in both infrastructure mode

and ad hoc mode [24].

3.3.6 When ‘WPA2’ implements a TSN

The difference between IEEE 802.11i and WPA2 is small but non-trivial. Al-

though IEEE 802.11i states a RSN can optionally implement and use TKIP as

well as the mandatory CCMP, when a WPA2 device is configured to allow TKIP

as well as CCMP, it often implements TKIP in the same manner as the WPA

certification and runs a mixed IEEE 802.11i and WPA network — a TSN. The

implementation of this mixed WPA/WPA2 mode is mandatory for Wi-Fi WPA2
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Figure 3.2: Differing requirements for RSN, TSN, WPA and WPA2 [24]

certification and so is available on all WPA2 certified devices. This is becom-

ing less of an issue, as vendors increasingly offer separate configuration options

to allow TKIP for WPA2, separate to support for ‘WPA-compatibility’ — at

least on their commercial-grade equipment. Consumer-grade equipment often

still combines the two as a single option.

The Wi-Fi Alliance’s WPA2 certification, like WPA, checks that, in the

default configuration , devices in WPA2 mode do not support WEP devices

at the same time. However, every Wi-Fi certified device must support WEP, as

it is a base interoperability requirement for Wi-Fi certification. Many vendors

offer modes that permit a mixture of WPA2 and WPA or WPA and WEP or

even all three at once, then these devices can still be WPA2 certified but in these

other modes will form a TSN. Figure 3.2 illustrates the differences between RSN,

TSN, WPA and WPA2.

Thus, the only WPA2 mode that supports a RSN is the so-called “WPA2-

Only Mode”. Any other mode that permits both RSNAs and pre-RSNAs will

form a TSN. The Wi-Fi WPA2 certification requires “WPA/WPA2 Mixed

Mode” to be implemented. In WPA/WPA2 Mixed Mode, the AP provides both

CCMP and TKIP for the pairwise ciphers and uses TKIP as the group cipher

suite to allow both WPA and WPA2 STAs to associate on the same SSID [24].
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Joseph Davies on Microsoft’s TechNet offers “WPA2-certified wireless equip-

ment is also compatible with WPA and WEP. You can have a mixture [of]

WPA2, WPA, and WEP wireless devices operating in the same environment [130]”.

Such a configuration is clearly a TSN.

Netgear Wi-Fi certified APs can also support both WEP and WPA/WPA2

clients at the same time, to support the transition of WEP-based wireless net-

works to WPA/WPA2. Again, this is a TSN.

Any configuration involving RSNAs (i.e. WPA2) and permitting pre-RSNAs

(WPA or WEP) is a TSN — irrespective of whether or not and pre-RSNA

equipment is actually present or associated with the network. If pre-RSNAs are

permitted then it is a TSN. This is important because it does not matter if all

the devices are using AES-CCMP, if the AP will allow a pre-RSNA association,

then the security may be compromised.

The significant risk here is where an organisation has been using a mixed-

mode WLAN, and converting all devices to use AES-CCMP, erroneously believes

the WLAN is a RSN, when there are still APs that would accept a pre-RSNA.

If an infrequently-used device were to be powered up and associate with WEP,

within minutes an attacker could determine the WEP key and gain access to the

network [24].

3.3.7 Multiple ‘WPA2’ Certifications

Another difficulty has emerged with the Wi-Fi Alliance changing its WPA2 certi-

fication. Part of the security of a RSN relies on the (unspecified) Extensible Au-

thentication Protocol (EAP) providing mutual authentication. Some EAPs do

not provide this. For example, EAP-MD5 does not, while EAP-TLS does [131].

The original Wi-Fi Alliance WPA2 certification required EAP-TLS to be imple-

mented. The latter certification has expanded the list of protocols, but EAP-TLS

is no longer mandatory for all types of devices.

The problem is that the certification is the same, WPA2, and users can-

not readily identify whether products were certified under the first method or

the second without specifically asking the vendor for a copy of the certification

certificate.
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3.4 Attacking WPA2

With the lack of empirical data available as to the actual possibility of vulnerabil-

ities in common-off-the-shelf devices, such as might be used in SOHO situations

(consumer-grade devices), allowing simultaneous WEP and WPA2 associations

when configured as “WPA2”, the author conducted a series of tests on a number

of combinations of vendors’ devices with various chipsets.

These tests are detailed in Appendix B and were also presented by the author

in “Securely Deploying IEEE 802.11 WLANs” [24], at the AusCERT Asia Pacific

Information Technology Security Conference (AusCERT2007), in May 2007.

The initial tests were performed with Microsoft Windows clients and a

Linksys WRT54G AP. The WRT54G allowed the selection of WPA2 with AES

or TKIP+AES or WPA with AES or TKIP or WEP, with all possible combina-

tions of authentication and key-modes. The Windows clients offered a simplified

range of options with WPA2, WPA2-Personal, WPA, WPA-Personal and WEP.

All legal combinations of authentication and encryption were tested and the

clients were able to connect for all matching combinations and, as required and

expected, mixed encryption modes could not connect. None of the variations

of clients, for either Atheros or Texas Instruments chipsets, combined with

either Microsoft or Linux driver software, on any of the platforms, could suc-

cessfully associate with WEP with any of the APs correctly configured for WPA2

(only). These typically were indicated by the client STA finding no suitable AP

(with intersecting sets of protocols) in the responses to its probes. When Linux

clients were used, so that association could be forced by the client STA, the AP

would typically respond with the association denied for an unknown reason [24].

3.4.1 Weak Configurations

Of all the test APs, as given in Appendix B, only the SMC SMC2804WBR “Bar-

ricade g Wireless Broadband Router” offered a WEP/WPA combined mode. The

SMC2804WBR was configured for WEP/WPA combined mode and simultane-

ous associations were successfully made with both WPA and WEP clients. Both

the WPA and WEP clients were able to access the network behind the AP.

It was a trivial matter to capture the traffic needed to use with aircrack

to recover the WEP key with a separate “intruder” device. It was found that

the WEP key allowed an attacker to get to the entire wired LAN behind the
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SMC2804WBR, severely compromising the wired LAN and by setting the AP as

the default gateway, all other subnets and the Internet service.

Curiously, although the WEP key allowed an attacker to get to the en-

tire wired LAN, we were not able to access the WPA devices using the same

AP for the same wired LAN. Again, this is not a clandestine attack — the

SMC2804WBR has to be configured as WEP/WPA to allow this attack. This is

a clearly dangerous configuration [24].

3.4.2 Using Pre-Shared Keys with WPA and WPA2

Note that in the simplest case, for small private networks, there is the option of

using a Pre-Shared Key (PSK) with WPA2 (WPA2-PSK). The Wi-Fi Alliance

calls this “WPA2-Personal”.

The remaining issue, was the use of ‘Pre-Shared Key’ (PSK) mode in all

of these tests. A common comment in Internet forums is that the pass-phrase

should be at least 20 characters long. However this should be random charac-

ters, or there will be insufficient entropy. Tools like aircrack can break non-

random words with a dictionary attack — in seconds. Figure 3.3 shows how

it took aircrack only eight seconds to find our reasonably long (19 characters

and 20 characters), but very poorly chosen pass-phrases, “acetylaminofluorene”

and “acetylcholinesterase” that were used for WPA and WPA2 key pass-phrases

throughout these tests.

Figure 3.3: Pre-Shared Key (PSK) broken in 8 seconds [24]
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There is a critical difference between RSNA-capable devices and RSNA-

enabled devices. It has been shown that conforming with the IEEE 802.11i

amendment does not necessarily enforce a RSN and the WPA2 certification of

equipment is not sufficient to provide a RSN, since compliance with IEEE 802.11i

does not mandate a RSN in operation.

WPA2 certified equipment will implement a RSN, if properly configured to do

so, but this may not be the default. With WPA2 certification requiring backward

compatibility with WPA, it is likely that WPA2 devices will default to a TSN.

In addition to this, many vendors provide various other mixed pre-RSNA modes

of operation [24].

Even if using a RSN, control and management frames remain unsecured,

as are the link layer headers, still providing multiple attack vectors into these

networks.



60 Chapter 3. State of the WLAN Security Art



Chapter 4

Remaining Unprotected

Protocols

This chapter differentiates the current state of the art, given in the previous

chapter, and the remaining unprotected components of the WLAN protocols,

providing vulnerabilities that may be exploited by adversaries to corrupt normal

operations. It provides more detailed operational information and provides a

gap analysis between the realities of IEEE 802.11 networks and the potential for

malicious activities. This describes the need for and various applications of this

research, described in the following chapters.

Analysis of IEEE 802.11 security is frequently based on current or known

issues, such as those already described in the current literature considered in

Chapter 2. While such issues are probably the most pressing for time and cer-

tainly at the forefront of the press, a thorough analysis of the security issues

for any technology requires a thorough understanding of the operation of the

technology in both normal and abnormal states.

Thus, this chapter begins from the physical medium, its characteristics and

intrinsic issues, and how the IEEE 802.11 protocols deal with those issues, as well

as the implications of operating the protocols in this way. In this manner, we

build up a picture of the remaining security issues either not currently handled

by the protocols to date or even as a direct result of the operation of the protocols

as they currently stand.

61
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4.1 Radio Communications

Transmitting IEEE 802.11 STA emit RF energy. While various antenna designs

can concentrate this energy onto a particular path, some of the energy is radiated

in all directions and unless captured in purpose-built shielded facilities, is capable

of being detected by any party, friend or foe, in any direction.

Receiving STA absorb RF energy. While, in theory, it is possible to determine

if a STA is or is not, or stops or starts, receiving a signal based on the remaining

reflected and ambient energy, in practice this requires a highly controlled envi-

ronment and practical IEEE 802.11 deployments cannot determine if any party,

intended or not, is receiving a signal, unless the party responds to the signal.

These two factors combine to make it very easy for an adversary to covertly

listen to radio communications, while making it difficult to assure any degree of

success in radio communications with intended parties.

4.1.1 Interference

Even if two STA are successfully communicating over the WM, individual sig-

nals, or parts of signals, may be damaged, altered or destroyed by changes in

the environment, movement of the STA, movement of objects in the transmis-

sion path, multi-path distortion, interfering signals from other sources or other

technologies, or even by active jamming of the frequencies by an adversary.

4.1.2 Collisions

Just as for wired networks, if two or more STA transmit at the same time,

with sufficient strength, the resulting collision will render the signal unreadable.

However, unlike wired networks, the sending wireless STA typically cannot listen

at the same time as transmitting and so have no way to detect if a collision has

occurred. Also, a collision may only occur locally at the receiving STA, where

another transmitting STA, out-of-range of the first transmitter and hence hidden

from that transmitter, also transmits within range of the receiving STA.

As such, the Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

methods of IEEE 802.3 wired networks are unsuitable for IEEE 802.11 wire-

less networks, where Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA) methods must be employed. This process uses physical and virtual
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carrier sensing and a system of deferred access and truncated binary exponential

backoffs, along with the use of positive acknowledgements for all unicast traffic.

4.1.3 Acknowledgements

To support this, for all directed (unicast) traffic, IEEE 802.11 uses ‘immediate’

positive acknowledgements (ACK) [5]. These ACKs are Control frames sent by

the recipient of a directed frame, back to the original sender, whenever a directed

frame is successfully received. If no ACK is returned, a collision or damaged/lost

frame is assumed and the frame is retransmitted. As such, every legitimate STA

receiving a unicast frame will announce this fact to the world by transmitting an

ACK back to the sender. In this manner, the transfer of every MSDU actually

requires two successful transmissions, both the PPDU and the return ACK —

increasing the opportunity for failure and subsequent retransmission.

4.1.4 Deferred Access

When a STA wants to send a message, it must defer access until it senses the

medium is idle for the period of an interframe space. The actual lengths of the

interframe spaces depend on the PHY layer, but are in the order (from shortest

to longest):

� SIFS — Short Interframe Space, before a Control frame for a related pre-

ceding frame, such as an ACK or CTS, has priority over everything;

� PIFS — PCF Interframe Space, under the Point Coordination Function,

has priority over DCF traffic;

� DIFS — DCF Interframe Space, under the Distributed Coordination Func-

tion; and

� EIFS — Extended Interframe Space, after a frame error, gives problem

nodes the lowest priority.

4.1.5 Slots

When one STA sends a message to another STA, this signal will take a finite

amount of time to propagate to the intended destination and to every other STA

in this broadcast medium. If a third STA were to physically sense the medium as
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idle, and where to immediately attempt to transmit a frame, it may well occur

that there is already a frame destined to this or some other STA already being

propagated through the medium, resulting in a collision destroying both frames.

To minimise the chances of such collisions, all STAs are required to transmit only

at the beginning of a slot boundary. The slot times a different for the various

physical implementations, but are designed to ensure that if any other STA has

begun transmission on the previous slot boundary, then that signal will have

propagated to all other STAs before the next slot boundary.

4.1.6 Backoff

When a STA wishing to transmit, senses the medium, and finds it busy, it must

wait until the medium becomes idle for the appropriate interframe space. How-

ever, if all STAs in the network wishing to transmit a frame, also waited that

same amount of time, then all of these STAs would begin to transmit at roughly

the same time, causing a high collision load in the network. For this reason,

any STA wishing to transmit after it has sensed the medium to be busy, must

wait the appropriate interframe space plus a random number — chosen from

the current Contention Window (CW) — of backoff slots to avoid simultaneous

transmission by all waiting STAs.

4.1.7 Physical and Virtual Carrier Sense

The carrier sense systems of wireless networks include both physical and virtual

carrier sense mechanisms. The physical carrier sense mechanism — the Clear

Channel Assessment (CCA) function — performs the same function as the phys-

ical carrier sense in a wired network. However, in a wireless system, not all of the

signals necessarily reach all of the STAs. Just physically sensing the medium is

insufficient to avoid broadcasting a signal into an already-busy area of the WM.

So IEEE 802.11 wireless systems also employ a virtual carrier sense mechanism

— the Network Allocation Vector (NAV). If the STA is transmitting (and there-

fore the WM around the STA is busy) or the STA’s physical carrier sense shows

the WM to be busy or the NAV is non-zero (the STA ‘knows’ there must be a

transmission occurring somewhere), then the WM is ‘busy’.
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4.1.8 Network Allocation Vector (NAV)

The NAV is updated whenever a STA receives a packet not addressed to it. The

NAV is updated with the duration field from the received packet if this is greater

than the value already in the NAV. Broadcast packets have a duration of zero

(nothing follows). Directed (unicast) traffic has the value of a SIFS plus the time

to transmit the return ACK (the WM is assumed busy for a SIFS + ACK after

this frame). RTS and CTS frames, described below, update the NAV with the

time to reserve the WM.

4.1.9 RTS/CTS Control Frames

If three nodes are arranged in such a way that the two outer nodes can both

communicate with the central node, but cannot detect transmissions from each

other, then if one of the outer nodes is transmitting to the central node, both

this node and the central node can physically sense that the medium is busy.

However, the other node, which is out of range of the transmitting node, cannot

physically detect a busy medium. If this third node, were to also attempt to

transmit to the central node, even though there is no activity in the WM around

this node, this will cause a collision with the active signal already being received

at the central node. The outer nodes each act as a ‘hidden node’ with respect

to the other.

IEEE 802.11 networks can use CTS/RTS control frames to reserve time on

the medium for a transmission. The STA wishing to send a frame will first

issue a Request To Send (RTS) to reserve the medium for the amount of time

required to transmit the frame. Once again, a hidden node that cannot detect

the transmitting STA, would also not detect that STA’s RTS. Therefore, the

STA receiving the RTS issues a Clear To Send (CTS) frame, confirming the

reservation of the medium for the remaining amount of time left from the RTS.

Thus, any STA within range of the sender will see the RTS and will know the

medium will be busy for the period of time in the request — and any STA within

range of the receiver will see the CTS and, even if it did not see the original RTS,

will know that the medium will be busy for the period of time in the CTS, which

will be a SIFS and the time to transmit the CTS less than that given in the

RTS.

This mechanism, while resolving the hidden mode problem and improving
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network response in those situations, provides a vector for a DoS attack. When

an attacker can spoof CTS frames, it can cause other STAs in the network to

falsely reserve time for a busy medium. In addition, where an attacker can spoof

RTS frames sent to the AP and the AP responds with a CTS, as the AP is in

communication with all STA on the network, then this attack will cause every

STA in the network to falsely reserve time for an allegedly busy medium.

4.2 Establishing Communications

Irrespective of the physical layer protocols in use, some of the specifics of which

are discussed later, or the mode of operation intended, there are a number of

processes any STA must undertake before it can attempt to establish wireless

communications. These processes typically involve the exchange of various Man-

agement frames, often completely unprotected, to transfer the necessary config-

uration information to complete the task.

4.2.1 Message Types

There are three principal types of IEEE 802.11 messages. These are Data mes-

sages, Control messages and Management messages. Data messages provide the

service for the upper layer protocols, carrying the MSDUs to their destination

MAC components. Control messages, as discussed in the previous section [4.1],

are used to control the actual process of transferring messages at the MAC level,

such as the positive acknowledgements and the RTS/CTS reservations discussed

above.

The Management messages are used to set up and tear down the communica-

tions for a STA. The basic Management frames include Beacon frames, Probe Re-

quest and Probe Response frames, Authentication and Deauthentication frames,

Association Request and Association Response frames, along with Reassociation

Request and Reassociation Response frames, as well as Disassociation frames

and Action Management frames. State 1 Management messages are used to ac-

cess the basic station services (SS), State 2 Management messages are used to

access distribution system services (DSS) and State 3 Management messages add

services such as QoS, station-to-station link services (e.g. Direct Link Service)

and block acknowledgements.
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4.2.2 Frame Classes

There are three classes of IEEE 802.11 frames. These should not be confused

with the three message types or their various subtypes and frame formats.

The three frame classes a related to the current communications state of the

STA. These states describe the relationship currently existing between the source

and the destination STA and are one of:

1. State 1: unauthenticated and unassociated,

2. State 2: authenticated and unassociated, or

3. State 3: authenticated and associated.

Communications are initiated in State 1. A STA currently in State 1 with

its intended destination may only send Class 1 frames. Class 1 frames are

permitted in any state, but are the only frames permitted when a STA is in

State 1 with respect to its intended destination. Class 1 frames include a subset

of all three of the principle types of messages. This includes the basic control

frames; the management frames related to beacons, probes, authentication and

deauthentication; and a limited subset of the data frames.

When a STA in State 1 with respect to its intended destination authenti-

cates to the destination, the relationship between the STAs moves to State 2,

authenticated but not associated. In State 2 both Class 1 and Class 2 frames

are permitted. Now that the STA is authenticated, the Class 2 frames provide

additional management capabilities with all of the Association, Reassociation

and Disassociation management frames now available. These additional frames

manage the associations between a STA and APs in infrastructure networks.

When a STA in State 2 successfully Associates with an infrastructure net-

work AP, the communications move to State 3 allowing all Class 1, 2 and 3

frames. Class three frames include all of the remaining subtypes of Control,

Management and Data frames; and represent the entirety of the IEEE 802.11

services .

4.2.3 Network Discovery

Before a STA can commence communications over an IEEE 802.11 network, it

must first discover what networks are available. It can do this using either a
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passive scan, listening for Beacon frames from any active networks present, or

an active scan, by sending Probe Request frames and waiting for any Probe

Response frames in return [129]. This is typically controlled by the firmware

and should also be governed by the regulatory domain applicable at the location

where the STA is operating, as a number of regulatory domains do not permit

active scanning on some or all of the IEEE 802.11 frequencies.

A passive scan relies on the information being broadcast in Beacon frames

from any active networks within range. These Beacon frames contain most of

the information a STA needs to join a network or move about from one BSS to

another and are broadcast many times per second. The format of these Beacon

frames is given in Figure 4.1.

Figure 4.1: IEEE 802.11 Beacon Frame Format

* Note that in each of these diagrams where a non-standard information

element (IE), such as the WPA IE shown in Figure 4.1, is included by a vendor,

these should occur after the standard information elements. However while all

vendors appear to place the standardised information elements in the correct

order, non-standard information elements, such as the WPA IE appear in various

vendor-dependent orders. While the WPA IE depicted here, typically appears in

the place of the RSN IE, which would correctly place the vendor-specific IE at

the end, the author has also seen instances of frames containing both the WPA

IE and the RSN IE in the order shown in Figure 4.1.

As Figure 4.1 shows, these regular sub-second Beacon frames provide the

majority of information a STA, or adversary, needs to be able to join the net-

work. This includes the network capabilities, SSID, transmission rates and other

settings.

The SSID is the network name of up to 32 octets. In an infrastructure network

the SSID is broadcast in the beacon frames by the access point. In an ad hoc

network, an IBSS, the random SSID chosen is broadcast by all the members of

the independent service set.

In a BSS or IBSS this network name is different to the Basic Service Set
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Identification1 (BSSID), which is the IEEE 802 48-bit MAC address of the STA

contained in the AP or the IBSS logical (random pseudo-) IEEE 802 48-bit MAC

address. In an ESS, this network name is the extended service set identifier and

although referred to as “ESSID” once [5, p. 25] and “ESS ID” once [5, p. 25], is

simply the SSID of the ESS or IBSS, but is often referred to as the ESSID or

NetID, although the latter is not a standardised term.

A zero-length SSID is the broadcast SSID. Whereas, a value of all 1’s is used

to indicate the broadcast BSSID [5]. A null SSID, consisting of one or more

ASCII NULL characters (0x00), as opposed to a zero-length SSID, is referred to

as a “hidden” SSID for what is sometimes referred to as a “closed” network.

In an infrastructure network access points can be configured not to broadcast

the SSID in the beacon frames by setting it to null in these beacon frames.

As discussed in Chapter 2, this is a common but ineffective security measure

employed for many networks.

Because the SSID is often displayed and entered by the users of the devices,

it typically consists of printable ASCII characters. The only requirement in the

standard is that it be up to 32 binary octets and therefore can take on any value.

However in large and diverse networks with a heterogeneous mixture of vendor

equipment, the various limitations from the different vendors for methods to

enter the SSID will usually dictate an SSID consisting of only printable ASCII

characters.

While a passive scan is innocuous enough, an active scan will broadcast a

series of Probe Request frames, often including probes for all preferred networks

with any “hidden” SSIDs broadcast in the clear, as well as the “Broadcast SSID”

(zero-length SSID) to get any responses available. The format of these Probe

Request frames is given in Figure 4.2.

Figure 4.2: IEEE 802.11 Probe Request Frame Format

The results are returned in a Probe Response frame The format of these

1The IEEE Std 802.11-1997 [5] defines “identification” for BSSID, but uses “identifier” in
the text, e.g. p. 38. However, IEEE Std 802.11-2007 [122] uses only “identification” for BSSID
and only uses “identifier” for SSID.
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Probe Request frames is given in Figure 4.2 and the Probe Response is given in

Figure 4.3.

Figure 4.3: IEEE 802.11 Probe Response Frame Format

Note that the original IEEE standard does not include the Traffic Indication

Map (TIM) information element in probe response frames, however a number

of actual implementations do include the TIM elements in their probe response

frames.

4.2.4 Authentication and Association

Authentication and association in wireless networks are critical components pro-

tecting the confidentiality and integrity of the data traversing not only the WLAN

itself, but also the hardware supporting it, either the wired networks behind an

infrastructure WLAN or the individual devices participating in an ad hoc WLAN.

The use of unsecured WLANs for criminal activity, from misdemeanours to

crimes, or even possible acts of terrorism [132], is ever on the increase. Neigh-

bourhood or passing thieves steal bandwidth. Other criminals steal company

or personal data, or even identities. Yet others use unsecured WLANs to keep

their own identity and location hidden. All this nefarious activity is escalating

exponentially as more and more businesses and residences install WLANs with

ever-increasing range and bandwidth.

Many projects are under way to make wireless networks even more robust.

The US DoD Wireless Adaptive Network Development project (WAND) [133], is

part of the overall project Wireless Network after Next (WNaN) program [134], to

provide cheap USD$500, spectrum-agile, disruption-tolerable communications

networks for up to 1000 nodes, able to search-out and jump to unused spectrum to

avoid interference or jamming. WNaN is also planned to allow for simultaneous

100baseT access.

By the time these advances make it to consumer electronics, the potential

for criminal or terrorist activity utilising the epidemic of unsecured WLANs may

well have become a law enforcement and national security nightmare.
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4.3 Authentication

For most practical purposes, an entity wishing to access resources should be

identified, authenticated and authorised. In identification, a claimant asserts an

identity, then in authentication, a verifier verifies the claimed identity asserted

by the claimant, by validating the credentials presented for that previously reg-

istered identity [135]. Sometimes, the credentials are provided by a trusted third

party. Finally, access is granted to only those resources for which the identity

has already been authorised.

Authentication must not be confused with authorisation. Authorisation is

the granting of access privileges to an identity for the purposes of access control

to resources [135].

The claimant, or some other applicant on behalf of the claimant — a sub-

scriber in the terminology of a Public Key Infrastructure (PKI) — must first

undertake an enrolment process, with a registration authority that verifies the

identity to some standard (including the standard of no verification at all) and

registers the identity and the credentials associated with that identity. The

registration authority stores these details, typically in some form of directory.

Validation engines reference such a directory when a verifier needs to validate

the enrolled identity.

4.3.1 Authentication Credentials

A credential is evidence used to verify an identity. Identity can refer to a physical

entity or a logical entity. Credentials take many forms but are grouped onto three

main types:

� Something you know,

� Something you have, or

� Something you are.

Using one or more of these types of credentials provides different authentication

factors. Using different authentication factors increases the Identity Authentica-

tion Assurance Level (IAAL) that the assertion is valid. This combined with the

Identity Registration Assurance Level (IRAL) determined from the strength of
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the original registration identity validation process, gives the overall Authentica-

tion Assurance Level (AAL), the level of confidence that identity is that of the

claimant [136].

Passwords

A password, ‘pass-phrase’, Personal Identification Number (PIN) or other mem-

orised credential is an example of ‘something you know’. It is not a very strong

credential as knowledge, once revealed, is easily duplicated and many entities

may be given the same ‘shared secret’.

Tokens

A physical key, access pass (identity card, passport or other documents), cryp-

tographic token, smart-card and the like represent ‘something you have’. While

much harder to duplicate than a secret, these tokens are also more visible and

more easily stolen than a secret.

Biometrics

A biometric is a sample of ‘something you are’ — face, fingerprint, retina pat-

tern, Deoxyribonucleic Acid (DNA) profile. Biometrics are unique in that the

credential includes intrinsic Identity Registration Assurance, however as some

biometrics are relatively easy to covertly steal compared to a token and as some

biometric scanners are relatively easy to subvert or bypass entirely, unsupervised

biometric authentication only provides low Identity Authentication Assurance

and is not suitable in many situations.

Digital Certificates

A digital certificate is the binding of a digital encryption key to a digital identity

and attests that the named identity, the certificate ‘subject’, is the holder of

the matching asymmetric private key to the asymmetric public key contained in

the certificate. Subject to the relative strengths of the asymmetric encryption

being used, the certificate effectively transitively asserts that “only the subject

can decrypt anything that you encrypt with this asymmetric public key” and

“anything that this asymmetric public key successfully decrypts can only have

been encrypted by the subject”.
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The certificate is created by a mutually trusted third party called a Cer-

tification Authority (CA). The CA performs the identification, enrolment and

registration functions of a Registration Authority (RA), described above, either

itself or delegated to one or more separate subordinate dedicated RAs.

The integrity of the contents of the certificate is protected using a cryp-

tographic hash algorithm, which is then digitally signed using an encryption

algorithm with the CA’s private key. Thus, the subject’s public key is now as-

serted by a certificate that can be validated by decrypting the signature with

the CA’s public key — which if not known can be obtained from the CA’s own

CA-certificate, possibly issued by some higher CA, and so forth, until the root

CA — the root of trust — is reached with a self-signed (subject and issuer are the

same) root CA-certificate. The success of any hierarchical PKI relies on the trust

in the root. A validation engine must explicitly trust one of the CA-certificates

in the chain from the subscriber’s certificate in order to validate the presented

certificate. The dissemination of the trusted root certificate and the maintenance

of security and therefore trust along the certificate chain is the greatest weakness

and complexity of any hierarchical PKI and the major factor against deployment

of technologies utilising mutual PKI authentication.

4.3.2 Authentication in WLANs

As described in Chapter 2 [section 2.2.7], authentication in IEEE 802.11 WLANs

is conducted using either of two methods: Open System Authentication, whereby

a STA identifies itself and that identity is accepted without challenge by the

receiver; or Shared Key Authentication, where a STA using the WEP protocol

encrypts a challenge from the receiver in order to validate its WEP credentials.

Shared Key Authentication is only available where all STAs are using the

insecure WEP protocol. All other Wireless networks, including Robust Security

Networks (RSN), use Open System Authentication, that is non-validated accep-

tance of the initial identification — subsequently validated during the association

phase.

Authentication allows a STA to move from State 1 to State 2 and therefore

access the SS available from wireless STA to which it has authenticated. However,

in order to access DSS, a station must both authenticate and associate with an

AP providing DSS. It is during this association that the actual credentials of the

requesting station of the participants may be verified.
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4.4 Association

In order to access the DSS a station must associate with an AP providing these

services. It is typically during this association phase that the identities of the

participants are authenticated.

A STA requesting association selects an appropriate authentication and pair-

wise cipher suite from those advertised in the AP’s cleartext Beacon frames or

Probe Response frames and sends the details of its capabilities and the selected

protection mechanisms in an unprotected Association Request of the format de-

picted in Figure 4.4.

Figure 4.4: IEEE 802.11 Association Request Frame Format

The destination AP responds with an unprotected Association Response frame

of the format depicted in Figure 4.5.

Figure 4.5: IEEE 802.11 Association Response Frame Format

Once association has completed, if the selected protections during the asso-

ciation phase indicated any form of RSNA, then the RSNA 4-Way Handshake

immediately proceeds, accordingly authenticating the parties involved, as ap-

plicable. RSNAs may use either a Pre-Shared Key (PSK) or an IEEE 802.1X

Extensible Authentication Protocol (EAP) method to derive the master keys.

LEAP

As already discussed in Chapter 2 [section 2.6.7], alternate solutions included the

use of VPNs, SSL and Cisco’s Lightweight Extensible Authentication Protocol

(LEAP) — a proprietary (Cisco Systems) EAP method to deal with the existing

WEP issues. It provided mutual authentication and dynamic WEP keys to re-

solve some of the initial problems identified in the WEP protocol. Even though
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LEAP is not natively supported by any Microsoft OS, it uses the original Mi-

crosoft Challenge Handshake Authentication Protocol (MS-CHAP) and so user

credentials are easily compromised [137].

The IEEE 802.11i MAC security enhancements introduce Robust Security

Network Associations (RSNAs), as described in Chapter 3 [section 3.2], which

provide for the use of IEEE 802.1X port-based Network Access Control (NAC)

and its component Extensible Authentication Protocols (EAPs) as described in

2 [section 2.6.7]. It should be noted that while the IEEE 802.1X port-based NAC

framework provides the basis for RSNAs, the strength of such associations relies

heavily on the EAP method being used.

EAP-TLS

With the move towards IEEE 802.11i, and the release of the Wi-Fi Alliance’s

Wi-Fi Protected Access (WPA) certification, IEEE 802.1X supplicants where in-

troduced with WPA associations, where EAP-TLS was the only mandatory EAP

method. As such, EAP-TLS is supported by every vendor.

EAP-TLS is detailed in RFC 5216 [138]. It uses Transport Layer Security

(TLS), to secure the authentication session. It provides mutual authentication

using PKI certificates to secure communication to the RADIUS authentication

server and therefore needs a pre-existing PKI in order to be deployed. While

EAP-TLS provides the best security for wireless network associations, the neces-

sary overhead of a pre-existing PKI prohibits its use in many situations outside

of enterprise deployments. However for the enterprise with an existing PKI,

EAP-TLS is the ideal choice of EAP method to secure wireless LANs.

EAP-TTLS

With the difficulties of using EAP-TLS, Funk Software and Certicom (now

SafeNet) developed EAP-TTLS — Tunnelled Transport Layer Security — as

a propriety EAP method, detailed in RFC 5281 [139], where the client does not

need a PKI certificate. The server is authenticated using the server’s PKI cer-

tificate and then a secure connection is used to tunnel the authentication of the

client.
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EAP-FAST

Cisco Systems replaced its insecure LEAP with EAP-FAST, detailed in RFC 4851 [140].

EAP-FAST also performs authentication via secure tunnelling, using a Protected

Access Credential (PAC), with a fall back to TLS, to establish the tunnel. How-

ever difficulties lay in the secure distribution of the credentials.

PEAP

Cisco Systems, Microsoft and RSA developed the Protected Extensible Authen-

tication Protocol (PEAP). PEAP has the same characteristics as EAP-TTLS,

where server is authenticated using the server’s PKI certificate and then a secure

connection is used to tunnel the authentication of the client [137].

Even though EAP-TLS was previously the only EAP method mandatory for

WPA certification, the Wi-Fi Alliance changed its certification scheme so that

certification can be achieved with any of: EAP-TLS, EAP-TTLS/MSCHAPv2,

PEAPv0/EAP-MSCHAPv2, PEAPv1/EAP-GTC, EAP-SIM [141] and, as of 19

May 2009, EAP-AKA and EAP-FAST [142]. Consumers buying retail equipment

now have no way of determining which of the variations of the certification a piece

of equipment has been assessed under.

Note that, irrespective of the EAP method(s) used in certification, vendors

are free to include other EAP methods as they see fit. It has been the author’s

experience that a vast majority of offerings on store shelves include the insecure

EAP-MD5 method. EAP was originally implemented for Point to Point Protocol

(PPP) connections and one of the earliest EAP methods supported by major

vendors such as Microsoft was EAP-MD5, as described in RFC 3748 [143]. The

MD5 digest algorithm has numerous security issues including collisions and tools

to find those collisions and EAP-MD5 does not provide mutual authentication,

is not secure and should not be used.

4.5 Wireless Authentication Requirements

Wireless Local Area Networks (WLANs) have become ubiquitous in society to-

day. The traveller expects a broadband connection in their hotel room, often also

delivered via wireless means; wireless network access in the hotel common areas,

including the swimming pool areas; wireless access in the airport lounge and in

the numerous cafés and bookshops of the cites. Students expect uninterrupted
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wireless access, not only in auditoriums, but campus-wide wireless access across

universities.

The corporate worker, using company SOE equipment, will have a mobile

device, laptop, PDA, smartphone or the like, with either or both user and/or

device credentials, already enrolled via the company registration system into the

company unified directory.

In the past, before the deployment of RSNs, the corporate worker would

connect their SOE equipment to the company’s WEP-enabled WLAN, using the

static pre-configured 104-bit hexadecimal WEP keys, generated by the company’s

system administrators at the beginning of the current millennium, and installed

on every SOE device at commissioning ever since.

Once WEP’s shortcomings became apparent, the corporate WLANs of the

world boosted their network security, if not already, by enforcing VPN tunnelling

over wireless links. Those more security conscious corporations ensured that all

wireless links were treated with the mistrust they deserved by segregating all

wireless activity into DMZs controlled by the company firewalls. In many cases,

as the security was provided by the VPN, WEP was turned off to save the

encryption overhead affecting the performance of the early wireless devices.

With the development and establishment of TSNs and RSNs, SOE devices

now use WPA and WPA2 to authenticate via an EAP to an AP and RADIUS to

a Network Access Control (NAC) Server which then interrogates the appropriate

validation engines for the credentials supplied.

4.6 Threats to WLAN Infrastructure Associa-

tion and Authentication

4.6.1 Passive Threats

Passive threats to WLANs involve the undetectable reception of the radiated

broadcast wireless signals from any or all STAs of the WLAN, possibly at com-

paratively great distances from the sources, typically using inexpensive COTS

equipment, by an assailant requiring minimal technological expertise, in order to

gain the information in the transmitted messages or to gain information about

the WLAN itself, often so as to mount more significant attacks.
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Traffic Analysis

Traffic analysis is the simplest of the threats to wireless network security. As-

suming the packets are encrypted and the assailant cannot decrypt the packets,

then only the traffic volume, the number and size of the packets, the packet

headers and possibly any packet trailers, including destination and source, ex-

posed for analysis. [144] Traffic analysis can indicate network presence and sig-

nificant events; AP vendors, types, MAC addresses and other beacon data; SSID

(whether broadcast or not); STA locations; and many of the typical protocols

being carried, unless packet size obfuscation is also being employed in some ad-

ditional tunnelling protocol.

The encryption layer will determine amount of extra info. If the traffic is

unencrypted, the assailant can read all of the data segments and reconstruct the

entire communication session.

The only requirements for traffic analysis is a receiving antenna and a WLAN

NIC in promiscuous mode, so as to process all traffic detected, whether it is

addressed to the STA or not. The more sensitive the antenna, the greater this

distance from which the traffic analysis can be performed.

Eavesdropping

Eavesdropping goes beyond simple traffic analysis and involves not only captur-

ing packets, but also analysing the packet contents. This is trivial for unen-

crypted traffic, revealing all data transmitted, file transfers, web pages, emails,

terminal services keystrokes and so forth. Eavesdropping not only compromises

the confidentiality of the data in the wireless communications, but also provides

the information required to more effectively undertake more damaging [144] ac-

tive attacks, discussed below. Encrypted traffic, at any level, shall require the

assailant to break the encryption being used in order to reconstruct the data

segments.

Where WEP encryption has been used, it may take a number of hours to

passively capture the 40,000 to 85,000 packets needed to break the encryption.

However, if active methods are used, the encryption can be broken in a matter of

minutes [11,35,145]. The numerous vulnerabilities of WEP have been discussed

in the previous chapters, in section 2.6.6.

The only requirements for eavesdropping is a receiving antenna, a WLAN NIC

in promiscuous mode and any of a wide variety of freely-available automated
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WLAN packet capture and encryption breaking tools. Once again, the more

sensitive the antenna, the greater this distance from which the eavesdropping

can be performed.

4.6.2 Active Threats

Active threats to WLANs involve the detectable emission of signals in the WLAN

spectra, including both omni-directional and narrow-beam transmissions to any

or all STAs of the WLAN, possibly at comparatively great distances from the

sources, but for a number of attacks necessarily physically between the legitimate

STAs, often using inexpensive COTS equipment, by an assailant requiring only

moderate technological expertise, in order to block, replay, insert, monitor or

modify legitimate messages on the WLAN or to gain unauthorised access to the

WLAN or any wired infrastructure beyond the WLAN.

Denial-of-Service

Denial-of-Service (DoS) is the simplest of the active WLAN threats to implement.

The broadcast nature of radio communications leave them highly susceptible to

any form of EM interference, both natural and man-made. The numerous DoS

attacks on WLANs, including via unprotected Control frames and unprotected

Management frames, have already been detailed in Chapter 2 [section 2.6.3].

Replay

Replay attacks record legitimate transmissions on the WLAN and retransmit the

packets to provide false authentication credentials; to obtain duplicate actions

from a service; or to elicit an encrypted response, so as to generate large volumes

of encrypted traffic, in order to break an encryption scheme.

Packet Injection

Packet injection involves transmitting the assailants own packets, sometimes de-

liberately malformed, onto the WLAN, either broadcast to all STA or targeting

a particular STA, such as an AP. This can be used to probe an AP for WLAN

information; to generate an encrypted response to known plaintext, so as to aid

in cryptanalysis; to inject a modified packet back into the WLAN; or to gain

unauthorised access by joining an unprotected WLAN.
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4.7 IEEE 802.11w Security

The IEEE 802.11i MAC security enhancements only provide protection for Data

frames. It provides no protection for Management frames or Control frames.

The shortfalls in security by not protecting these Management or Control frames,

have already been described in the previous chapters. With other IEEE 802.11

Task Groups extending the use of Management frames to carry more and more

sensitive information [146], such as IEEE Std 802.11h-2003, IEEE Std 802.11e-

2005, IEEE Std 802.11k-2008 and IEEE Std 802.11r-2008, the vulnerabilities of

Management frames have become more and more important.

The proposed IEEE 802.11w amendment2 for Protected Management Frames

“to create enhancements to the IEEE 802.11 Medium Access Control layer to

provide, as appropriate, mechanisms that enable data integrity, data origin au-

thenticity, replay protection, and data confidentiality for selected IEEE 802.11

management frames” [147] only provides protection for a small but important

subset of management frames — and only after the IEEE 802.11i key exchanges

have completed. As such, this protection is only afforded after the IEEE 802.11i

pairwise and groupwise keys, along with an additional IEEE 802.11w group key,

have been set up and so, still exposes stations prior to key establishment.

The origin authenticity can only be guaranteed for unicast ‘Robust’ Manage-

ment frames, including unicast Deauthenticate or Disassociate ‘Robust’ Manage-

ment frames, but cannot be guaranteed for any sort of broadcast or multicast

frames. Presumably, once the standard is ratified, compliant devices will ignore

broadcast Deauthenticate or Disassociate messages.

The replay protection and MIC will be built into the ‘Robust’ Management

frame’s new IE and along with the overall message protection, once again, cannot

provide protection prior to a STA’s association and key exchanges. After the

IEEE 802.11i pairwise and groupwise keys have been established, a third key, the

Integrity GTK (IGTK) is also needed to provide the forgery protection (but not

origin protection) for broadcast Robust Management frames.

The proposed amendment protects action management frames, deauthenti-

cation and disassociation frames. While this does close a large security hole in

the malicious DoS attacks with forged disassociation and/or deauthentication of

2Readers please be aware, irrespective of any final acceptance or publication date on this
thesis, this dissertation was written prior to the publication of any output from IEEE 802.11
Task Group W and thus may not necessarily reflect the current information in that respect.
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legitimate STAs and now provides protection for the increasingly vital Action

Management frames for established STAs, it still leaves a large amount of un-

protected management traffic. However this work offers no protection for STAs

when joining the network or when authenticating or when associating prior to

the key exchange in the MAC security enhancement. Moreover, this provides no

protection for an access point that must still provide beacons and still accept

and respond to probe requests, authentication requests and association requests

from STAs that are joining the network.

There is still no protection for control frames and, while malicious acknowl-

edgments will achieve little, forged CTS frames can still be used to deny service

to STAs in a network and forged RTS frames will still successfully deny the entire

network — and floods of RTS or CTS frames will continue the DoS as long as

the flood continues.

Finally there exists no technology currently to protect the data link layer as

a whole and thus we present such a proposal in the next chapter.
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Chapter 5

Link Layer Security

This chapter draws on the security needs and limitations at the link layer for

wireless communications from previous chapters and details the proposal for

Wireless Link Security (WLS). The implications and effects of encrypting MAC

addresses, for both friend and foe, are raised with respect to both directed and

broadcast traffic. A number of alternative algorithms a then introduced to allow

for possible operational necessities or to simply increase speed. The protocol de-

sign is discussed, including the handling of the mutable fields, possible processing

by various hardware components, the whitening functions and key establishment

needs, including unicast, multicast and other broadcast requirements and finally,

the deployment needs and the experiments required to determine the viability of

such a scheme are detailed.

5.1 MAC Security

While many protocols encrypt MAC PDU (MPDU) payloads, such as the entire

MAC SDU (MSDU), or higher-layer PDUs or their respective payloads [14–21],

as depicted in Figure 5.1, and often also include a message integrity check (MIC)

protecting the MAC headers (and any encryption headers) themselves [15], as

well as frame source authenticity [19,20], the author has been unable to locate any

examples of cryptographic confidentiality protection of link layer communications

that include the MAC layer headers.
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Figure 5.1: IEEE 802.11 MAC Frame Format

It is noted that many protocols also include copies of the MAC addresses and

other MAC header data within the encrypted payload, such as MACsec [20] (also

referred to by the project name LinkSec), but the data link layer cleartext headers

are still transmitted in these cases. As such, these schemes may be able to protect

the integrity of these headers, but cannot protect their confidentiality. While

tunnelling protocols provide confidentiality of the tunnelled addresses, the link

layer data of the tunnel itself remains exposed. There also exist schemes involving

encrypted MAC addresses for the purposes of cataloguing or registration, such as

in Yang and Liu [22], but these are not designed for communications protection.

TinySec [148] is a link layer security architecture for wireless sensor networks

developed at the University of California, Berkeley. Being designed for sensor

networks, TinySec requires a very small footprint, both in terms of packet size

and computational complexity. As such, TinySec presents a very lightweight

security architecture. Its designers made an observation that about 50–80%

(sources 69.86%(2001)–61.60%(2004) [149]) of 802.11 networks operated in the

clear, without any cryptographic protection whatsoever [148].

5.2 Wireless LAN Link Layer Security (WLS)

The author proposes a system to enhance the security of WLANs at the link

layer, going beyond the MAC Security Enhancements of IEEE Std 802.11i [12]

and the as yet incipient details of the Protected Management Frames of the

coming amendment from IEEE P802.11w, to protect the entire data link layer,

not just its payload, by encrypting the entire MAC frame (except the FCS)

including the MAC header, shown in Figure 5.2.

This gives the potential for wholly encrypted transmissions at the link layer.

Only the preamble has to be valid, which, being fixed, contains no information

and the FCS, calculated across the encrypted frame, being entirely redundant

over already encrypted data, also provides no information to an adversary.
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Figure 5.2: IEEE 802.11 Frame Detail

5.2.1 Encrypted MAC Addresses

Encrypting the MAC headers immediately conjures up images of lost frames with

unintelligible addressing information, unable to get to the intended destination.

However, link layer IEEE 802.11 networking, like IEEE 802.3 networking, uses

a broadcast medium. Thus all frames are delivered to all possible destinations

within range, including, in the case of the wireless medium (WM), any malicious

or otherwise unwanted destinations also within range. It is then up to the receiv-

ing STA (STA) to decide whether or not the frame is intended for that particular

STA.

Encrypting the MAC headers not only provides for confidentiality of the entire

MPDU, but also aids in obscuring traffic patterns and hinders traffic analysis.

As the traffic is broadcast to all STA in range, an adversary will be unable to

trivially determine which STA was the intended recipient. Instead, an adversary

will need to employ more advanced STA response detection techniques, such

as correlating any individual return acknowledgment-only-sized frames or other

STA response characteristic analysis. The employment of MPDU Aggregation

and Block Acknowledgement will also further frustrate such analysis.

The basis of this proposal is that only a STA that has the correct key to

decrypt the first block of the received frame can determine the addressing infor-

mation and thus match the destination address to its own MAC address. A STA

that does not have the correct key is not only unable to match the destination

address, but is unable to determine which other STA the frame was intended for,
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nor even which STA the frame is from or any other frame details. To all other

STA, the frame addressing appears to be corrupt.

5.2.2 Link Layer Needs

In order to be able to discuss how this proposal may be designed or implemented

on IEEE 802.11 networks, it is necessary to first discuss the detailed link layer

protocols and framing components being used. IEEE 802 networking operates at

the Data Link and Physical layers of the ISO OSI Model.

Unlike IEEE 802.3 networking, where the broadcast signals are for all intents

and purposes restricted to some wired or guided medium, IEEE 802.11 signals are

typically broadcast omnidirectionally beyond the jurisdiction and control of the

network owner and encompass a superset of the threats to IEEE 802.3 networks.

As such, the checks and balances and cost-efficiency tradeoffs relevant to other

networks are different in IEEE 802.11 networks.

Previous decisions on the relative merits of functionality and features versus

complexity and computational expense, reasoned with regard to IEEE 802.3 net-

working in particular or having to apply equally to all forms of IEEE 802 network-

ing, should be tempered with the particular needs of wireless network security

when applied to IEEE 802.11 networks. For example, although the IEEE 802.1

Link Security Study Group (LinkSec) specifically ruled out MAC address en-

cryption and identity hiding during the development of IEEE Std 802.1AE–2006

(MACsec) [20], this standard is designed to apply to all IEEE MAC layers and

“didn’t specifically account for wireless”1 [19].

5.2.3 The Logical Link Control Sub-Layer

The Logical Link Control (LLC) sub-layer uses the IEEE 802.2 protocol, as do

all IEEE 802 LAN protocols including the Ethernet-like IEEE 802.3 CSMA/CD,

but not the (non-IEEE) Ethernet II protocol itself.

5.2.4 The Physical Layer Convergence Protocol

The Physical Layer Convergence Protocol (PLCP) adds the frame preamble to

synchronise the radios, finishing with the Start of Frame Delimiter (SFD) and

the PLCP header.

1“Last thing anyone wants is to have more to worry about in wireless.” [19]
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IEEE 802.11 FHSS

The IEEE 802.11 FHSS preamble consists of 80 bits of alternating zeros and ones,

0101...01. The fixed 16-bit SFD is 0000 1100 1011 1101. This is followed by the

PLCP header. The 32-bit IEEE 802.11 FHSS PLCP header consists of the 12-bit

PSDU Length Word (PLW), the 4-bit PLCP Signaling Field (PSF) encoding the

payload transmission rate and the Header Error Check (HEC) 16-bit CRC.

IEEE 802.11 DSSS

The IEEE 802.11 DSSS preamble consists of 128 bits of all ones, 1111...11, sub-

sequently scrambled by the DSSS process, along with the rest of the frame. The

fixed 16-bit SFD is 0000 0101 1100 1111, which is different from the FHSS SFD.

This is followed by the PLCP header. The 48-bit IEEE 802.11 DSSS PLCP

header consists of the 8-bit Signal field encoding the payload transmission rate

— 0000 1010 for 1 Mbps or 0001 0100 for 2 Mbps — the all-zero 8-bit Ser-

vice field, 00000000, for future use, the 16-bit Length field set to the number

of microseconds required to transmit the frame as an unsigned 16-bit integer —

transmitted least significant bit to most significant bit [150] — and the 16-bit

CRC.

IEEE 802.11b HR/DSSS Long PLCP Format

The IEEE 802.11b DSSS long preamble consists of 128 bits of all ones, 1111...11,

subsequently scrambled by the DSSS process, along with the rest of the frame.

The long format 16-bit SFD is 1111 0011 1010 0000 — transmitted least sig-

nificant bit to most significant bit [150]. This is followed by the PLCP header.

The 48-bit IEEE 802.11b HR/DSSS long PLCP header consists of the 8-bit Sig-

nal field encoding the payload transmission rate — 0000 1010 for 1 Mbps, 0001

0100 for 2 Mbps, 0011 0111 for 5.5 Mbps or 0110 1110 for 11 Mbps — the 8-bit

Service field flagging clocks and modulation and extending the Length field to

17 bits, the 16-bit Length field set to the number of microseconds required to

transmit the frame as an unsigned integer and the 16-bit CRC. The long header

is transmitted at 1 Mbps using DBPSK.
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IEEE 802.11b HR/DSSS Short PLCP Format

The IEEE 802.11b DSSS short preamble consists of 56 bits of all zeros, 0000...00,

subsequently scrambled by the DSSS process, along with the rest of the frame.

The short format 16-bit SFD is 0000 0101 1100 1111 — the reverse of the long for-

mat. This is followed by the PLCP header. The 48-bit IEEE 802.11b HR/DSSS

short PLCP header consists of the 8-bit Signal field encoding the payload trans-

mission rate — but only 2 Mbps, 5.5 Mbps, and 11 Mbps are defined [150] — the

8-bit Service field flagging clocks and modulation and extending the Length field

to 17 bits, the 16-bit Length field set to the number of microseconds required to

transmit the frame as an unsigned integer and the 16-bit CRC — and the 16-bit

CRC. The short header is transmitted at 2 Mbps using DQPSK.

IEEE 802.11a OFDM PLCP Format

IEEE 802.11a OFDM uses operating channels with 52 sub-carriers. Of these, 4

sub-carriers are used as pilot carriers and the remaining 48 are used to carry the

data. The IEEE 802.11a OFDM preamble consists of 12 OFDM symbols over

16 µs — one window with ten repetitions 0.8 µs “short training sequence” [71]

symbols with no guard interval, then one window with a 1.6 µs guard interval

and two 3.2 µs “long training sequence” symbols. This is followed by the PLCP

header. The IEEE 802.11a OFDM PLCP header consists of one single OFDM

symbol providing the 24-bit Signal field, transmitted using DBPSK with a con-

volution code at a rate of R = ½(one data bit for every two code bits); and a

16-bit Service field in the first data symbol, transmitted with the rest of the data

at the payload transmission rate. The 24-bit Signal field contains the 4-bit Rate,

encoding the payload transmission rate; one reserved bit, set to zero; the 12-bit

Length field, encoding (least-significant bit to most-significant bit) the number

of bytes in the embedded MAC frame; a positive parity (even parity) bit for bits

0–16 [71] and all-zero six Signal Tail bits. The 16-bit Service field contains six

zero bits for Scrambler Initialisation and nine reserved (zero) bits for future use.

After the message end the IEEE 802.11a OFDM PLCP adds a Tail field of

six zeros to bring the convolution encoder back to its “zero” state [71]. After

encoding, the scrambled 6-bit tail is replaced with six non-scrambled zero bits

to also bring the receiver’s convolution decoder back to its “zero” state. Finally

the number of Data bits needs to be a multiple of the Number of data Bits Per

Symbol, NNBPS = 48, 96, 192 or 288 bits. The message is padded with zero bits,
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which are subsequently scrambled with the rest of the Data bits. Pad bits are

removed before convolution decoding.

5.2.5 Distinction

This proposal should not be confused with the Fortress Technologies “Wire-

less Link Layer Security (wLLS)” [151] which was released in 2001 as a WEP

replacement technology. Nor should this be confused with “WLLs”, Wireless

Local Loops [152], a solution for the replacement of last-mile wired local loops

for provision of telecommunication services to subscribers in remote or difficult

areas. For this reason, the acronym used here is deliberately kept simple, “WLS”,

for “Wireless Link Security”.

5.2.6 Defeating Sniffers

The effect of this proposal with complete link layer encryption is that any party

monitoring the wireless medium will see the frame preamble for an IEEE 802.11

frame, either short or long as applicable, and the PLCP header, however all data

following the PLCP, being encrypted, shall appear unintelligible. This not only

provides for confidentiality of the PSDU itself but also provides confidentiality

of the identities of the transmitting and receiving STAs.

Any monitoring party shall be unable to determine which receiver the frame is

intended for, the MAC headers, or the frame content. An adversary using packet

capture tools such as Kismet, Wireshark, wepcrack or the like, will be unable

to determine the destination STA for any frame transmitted in the broadcast

medium, nor can the source STA address be determined from the MAC headers

where the source address has been encrypted. All current wireless sniffers and

wireless cracking programs and devices will identify the frame as corrupt (the

FCS will be valid, but the protocol version will be invalid) or otherwise report

nonsense data.

Even where radio spectral analysis equipment is used to determine which STA

is transmitting an encrypted frame, using signal strength correlation or direction

triangulation, an adversary is still unable to determine which STA the frame is

intended for since the broadcast medium carries the frame to every STA in radio

range. This is more effective if the wireless links utilise Block Acknowledgements,

or even unacknowledged multicast frames, rather than positively acknowledged
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directed frames, where the acknowledgement may reveal the true recipient of the

frame.

Where the frames are encrypted with a large block cipher even the true length

of the transmitted frame is hidden from an intruder. However the larger the

block cipher used the greater the encryption overhead in determining whether

an individual frame is valid at the legitimate receiver.

5.2.7 Determining the Source

With sufficient resources the transmitting STA at any particular moment can

be determined by signal strength correlation or direction triangulation, however

this can no longer be gleaned from a simple packet capture and if all commu-

nications are encrypted and the STAs never present their MAC address, or at

least never the present the MAC address used for 802.11, then this will not even

provide a vector for a known-plaintext attack. At the very best there could be a

32-bits-of-unknown-plaintext-but-known-to-be-the-same attack. Obviously, the

fewer the number of participating STAs and the longer the key rotation time,

the greater the viability of any such attacks. The author leaves this analysis to

the cryptographic experts.

This introduces a significant overhead in that all received frames must now

have at least their first block decrypted before determining if the frame is even

intended for the receiving STA. Every STA must decrypt the first block of

every frame transmitted by any other STA. In infrastructure mode, this is a

considerable overhead for the individual STA as they must not only decrypt the

frames from the AP, but must also decrypt the first block of every frame from

every other STA, intended for the AP, just to determine the frame is not for the

STA. This overhead is amplified for the AP in infrastructure mode (and for all

STA in ad hoc WLANs), where multiple pairwise keys are held, the first block

of every frame must be decrypted with each of the successive keys to see which

if any of the keys successfully decrypt the destination address to match that of

the receiving STA.

5.3 Partial WLS

With full link layer encryption creating such a large overhead this introduces the

possibility of leaving the source address (or some equivalent index) unencrypted



5.4. Faster Algorithms 91

so that a STA holding multiple pairwise keys can identify which key should

be used to attempt the decryption of the frame. Although this now provides a

source address to an adversary, a determined adversary can already determine the

transmitting STA via correlated signal strength or direction triangulation. By

providing the source address unencrypted this significantly reduces the overhead

for those STAs communicating with multiple peers, such as an AP in infrastruc-

ture mode or any STA in ad hoc mode. An adversary spoofing the source address

of a legitimate STA is still unable to provide a frame that will decrypt correctly

as the adversary does not have the key to encrypt the remaining components of

the frame correctly.

This now gives us two modes of link layer security, full Wireless LAN Link

Layer Security (WLS) involving the encryption of the entire layer 2 MPDU and

Partial Wireless LAN Link Layer Security (PWLS) where the source address of

the transmitting STA is left in the clear.

5.4 Faster Algorithms

Another possibility is to encrypt the MAC addresses only with a single group key

shared by all legitimate STAs, so that only legitimate participants of the network

can determine which STAs each message has come from and is intended for. An

intruder not holding the group keys will be unable to determine the legitimate

addresses of either transmitting or receiving STAs. However this method does

not protect individual STAs from malicious activity by legitimate parties within

the network.

A further amendment to this is to encrypt the source MAC addresses only

with a single group key shared by all legitimate STAs (destination MAC addresses

remain encrypted with the appropriate pairwise key), so that only legitimate

participants of the network can determine which STA each message has come

from and must decrypt the first block if it has a matching pairwise key to see if

it matches the destination address. Once again, an intruder not holding the group

keys will be unable to determine the legitimate addresses of either transmitting

or receiving STAs. In this case, malicious legitimate parties within the network

can learn the source addresses of all other participants, but remain unable to

spoof destination addresses, while spoofed source addresses frames will fail to

decrypt.
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5.5 Protocol Design

5.5.1 Immutable Fields

The frame checksum (FCS) is calculated over the entire frame including source

and destination addresses. This value is determined by the hardware at trans-

mit time and in the case of WLS includes the encrypted source and destination

addresses, whereas in PWLS shall be calculated using the encrypted destination

address and unencrypted source address. This will not affect the receiving hard-

ware under either method and the receiver shall be able to correctly determine

the FCS appropriate for the received frame.

Similarly the framing of the PSDU into a PPDU, may well occur in hardware,

however as this has no information that cannot already be determined by analysis

of the frame as a whole, there is no value in encrypting this and, indeed, to

encrypt the PLCP preamble and SF delimiter simply provides more data for

known-plaintext attacks on the system.

Where the various fields of the MAC headers are generated by hardware,

prototyping of these designs will require the construction of the entire PSDU

in software, to then be encrypted, so that the various header components can

be individually provided already encrypted to the existing MAC hardware via

appropriate calls to the wireless network interface device drivers, where such

low-level access is available. This is most likely to be possible using popular

open-source drivers for highly-configurable NICs, such as those using Atheros

chipsets.

The author regularly builds such drivers, however prototyping modifications

to the open-source code-base is complex at best, often precarious, typically leads

to failure, and is beyond the scope of this work.

Note the proposed encryption occurs at the MAC layer, before the physical

layer processes. As such, the physical layer whitening for the signal occurs after

the assembly of the frame with its encrypted payload, and so is independent of

the encryption process. The physical layer whitening is only for transmission

functionality and has no effect on the encryption or its relative strength or any

weaknesses.
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5.5.2 Duration and NAV

It should be noted that any of the methods as already proposed here will render

the Duration field unreadable to all but the destination STA. However, this field,

when used in its role to support the virtual carrier sense mechanism, is intended

to be used by every STA except the destination, to update the Network Allocation

Vector (NAV), as descibed in Chapter 4.

As they currently stand, these proposals will therefore have some detrimental

effect on the virtual carrier sense mechanism, which will come into effect wherever

there are ‘hidden nodes’ or other cases of signal loss within the network. This

work does not investigate the extent of any such effect, however, it would be

prudent for any further design to consider the value of not encrypting this field

when it contains a Duration value (0–32767).

In this manner, if the field is to be encrypted for ID or reserved use, only

bits 0-14 should be encrypted and bit 15 always set so that the encrypted value

cannot fall within the range of a Duration value.

This approach has merit in that the Duration value, when set as such, can

be determined from the frame size and bit rates and so form known plaintext

within the header. As such when this field contains a Duration value it would

be better not to include such known plaintext in the encryption.

5.5.3 Key Establishment

It is possible to establish the pairwise keys through public key encryption tech-

niques using the same certificates that would be present for some of the existing

technologies as defined by IEEE 802.11i standards and implemented under the

Wi-Fi Alliance’s WPA and WPA2 certifications, such as EAP-TLS, as discussed

in Chapter 4.

The use of public key cryptography for key establishment introduces the

risk of denial of service attacks due to the expensive computational overheads

of public key cryptography. This can be mitigated using staged authentication

involving less intensive cryptographic techniques as the identity of the peers are

established finally leading to full public key cryptographic authentication. Such

techniques are beyond the scope of this work.
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5.5.4 Multicast and Broadcast

Another issue is multicast and broadcast frames where a single packet must be de-

livered to multiple addresses. This will require the use of a broadcast key known

to all legitimate parties — however this is not the same as the IEEE 802.11i

groupwise key, nor the IEEE 802.11w Integrity GTK (IGTK).

The draft of the IEEE 802.11w standard, which adds security provisions to a

very limited set of management frames2, does rely on the IEEE 802.11i keys, and

as such provides no protection before this key exchange has occurred. In addition,

the IEEE 802.11w standard introduces its own groupwise key, the IGTK needed

to provide the forgery protection for broadcast Robust Management frames.

For our proposals here, the intention is to use pre-existing key material such

as from a public key infrastructure (PKI), to authenticate and support key

exchanges to set up pairwise and groupwise WLS keys in the manner of an

EAP-TLS exchange, as a precursor or replacement of the usual Probe Request-

Response exchange. This proposal thus necessarily precludes the much of the

general-purpose nature of WLANs, as the legitimate STA must already have

appropriate PKI credentials to participate in the network. However, such re-

strictions do not pose an unreasonable requirement given the level of protection

being afforded by this proposal.

5.6 Viability of the Thesis

Having now established this proposal, we need to determine its possible viability.

While the need for existing key distribution methods does limit the application

of these new protocols, of more concern is the effects of this additional layer of

encryption delaying medium access and thereby damaging network throughput.

As the encryption is being applied at the MAC sub-layer, there is more potential

for encryption delays to greatly affect access to the medium, with devastating

consequences for network throughput — and therefore the protocol’s viability.

This research needs to determine what the realistic penalty is as a result of

these encryption delays; and whether the proposed faster algorithms, including

PWLS, are needed to make the system viable, or indeed, whether it is worth

2Readers please be aware, irrespective of any final acceptance or publication date on this
thesis, this dissertation was written prior to the publication of any output from IEEE 802.11
Task Group W and thus may not necessarily reflect the current information in that respect.
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deploying WLS at all.

The critical characteristics that needed to be determined include the effects

of the encryption penalties on the protocols, individual STAs and the network

as a whole; and how these vary with the mobility of the STAs, the range of the

STAs, and indeed, the overall size of the network in physical numbers of STAs.

The following chapters will detail the tests undertaken to determine these

factors.
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Chapter 6

Developing the Tools

The proposal in the previous chapter has identified a significant risk in the po-

tential for encryption delays to greatly affect access to the medium, with severe

impacts on network throughput. This work will now proceed to determine what

the realistic penalty is as a result of these encryption delays and whether WLS is

a viable proposition, or whether the proposed faster algorithms, including PWLS,

are needed to make the system viable.

The author has conducted numerous simulations, with both small and large

numbers of participating STAs, in the pursuit of empirical data to test the viabil-

ity of these proposals. This chapter details the process of developing the various

tools needed for all stages of simulation, analysis and reporting. This includes

the selection of the tools themselves and platforms to be used to provide them,

as well as the configurations and validation of these tools against expected re-

sults, both in theory from the IEEE Std 802.11 series and in practice from other

research data [153]. This is then followed by the actual conduct of the tests and

the analysis of the results in the next chapter.

A number of different tools were utilised for this purpose: ns-2 [154] to

simulate the operation of an IEEE 802.11 network under the DCF; recording of

traffic sink data to determine throughput; trace parsing scripts to analyse the

simulated network performance; spreadsheets to determine and visualise backoff

periods and the choice of backoff slots by contending STAs; and xgraph1 [155]

and gnuplot [156] to visualise the results.

1This is David Harrison’s BSD xgraph, not Carl Hein’s proprietary XGRAPH.
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6.1 ns-2

ns-2 is a network simulator born out of LBNL2’s Network Simulator, ns (now

also known as “ns-1 ”), itself developed from Srinivasan Keshav’s REAL (REal-

istic And Large) [157] simulator, which in turn used the the NEST (NEtwork

Simulation Testbed) [158] toolkit from Columbia University. ns-2 was developed

by the DARPA-funded Virtual InterNetwork Testbed (VINT) research project

in the late 1990’s. The VINT project involved the University of Southern Cal-

ifornia’s (USC) Information Sciences Institute3, the then Xerox PARC4, LBNL

and UCB5. ns-2 has been enhanced over the years by the USC Information Sci-

ences Institute’s DARPA-funded Simulation Augmented by Measurement and

Analysis for Networks (SAMAN) and NSF6-funded Collaborative Simulation for

Education and Research (CONSER) projects, the International Computer Sci-

ence Institute’s (ICSI) Center for Internet Research (ICIR)7, as well as a large

and active research community, including Sun Microsystems, the UCB Daedalus

(BARWAN8) project and the Monarch Project’s Wireless and Mobility Exten-

sions to ns [25] from CMU9 and Rice10 University.

ns-2 is written in C++ and uses an OTcl (Object-oriented Tool Command

Language) interface to set up the simulation.

An NSF CISE11 Computing Research Infrastructure (CRI) project is cur-

rently developing ns-3, a re-design of ns, written in C++ and Python. ns-3 was

conceived in 2006 to resolve perceived issues [159] in ns-2, whose formal develop-

ment funding finished in 2004, such as issues with simulating wireless networks,

many of which have since been successfully resolved in ns-2. ns-3 was still under

heavy development at the time of writing this thesis [160].

ns-2 was chosen for this work because it is a mature, well-developed simula-

2Lawrence Berkeley National Laboratory, previously “LBL” (Lawrence Berkeley Labora-
tory), commonly “Berkeley Lab”, operated by the University of California, Berkeley.

3The USC Information Sciences Institute’s acronym is not used in this dissertation. All oc-
currences of “ISI” in this thesis refers to the Queensland University of Technology’s Information
Security Institute — this author’s affiliation.

4Now just Palo Alto Research Center Incorporated (PARC), since 2002.
5The University of California, Berkeley.
6The U.S. National Science Foundation.
7The ICIR was formerly the AT&T Center for Internet Research at ICSI (ACIRI).
8The Bay Area Research Wireless Access Network.
9Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

10Rice University, Houston, Texas, USA.
11The U.S. National Science Foundation Directorate of Computer and Information Science

and Engineering (CISE).
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tion engine and well-regarded by the research community. As such, nam is then

the logical tool of choice for animating packet trace data from the simulations.

Version ns-2.32 was initially chosen, but was immediately replaced by ns-

2.33, being the most current stable release, as at 31st March 2008. The “ns-

allinone-2.29.3 ” version was not used as the ns-2.3x versions contained required

wireless additions for this work.

Tcl/Tk version 8.4.14, a version verified to work for current ns-2 sources, was

the ultimate choice for these tools, combined with OTcl version otcl-1.13, TclCL

version 1.18, for “Tcl with CLasses”, nam version 1.13 and David Harrison’s

xgraph-12.1 were used.

See the installation and testing of the ns-2 network simulator and associated

tools described in detail in Appendix A.

6.1.1 Platform Selection

The ns-2 network simulator and nam network animator were installed on a

number of machines over the course of this work. These included Intel 32-bit

and AMD12 64-bit platforms, running Fedora 7 and Fedora 9 operating systems

(OS), ultimately on a Fedora 9 32-bit single-core VMware instance hosted in a

Microsoft Windows XP 32-bit OS on Intel 64-bit dual-core hardware.

The preparation of the platforms and the installation and testing of the as-

sociated tools are described in detail in Appendix A.

Unix13-like platforms were chosen because ns-2 is developed on Unix or Unix-

like platforms and although also ported to Microsoft Windows OS variants, has

far better community support and functionality on Unix-like platforms. Of these,

Linux distributions are the most common Unix-like OS variants with free, or at

least open-source, licensing allowing use, investigation and modification of the

code without restriction.

This author’s choice of the Red Hat / CentOS / Fedora OS family was purely

the result of a long history of using Red Hat products and the commercial re-

alities in the author’s experience of particular enterprise products that are only

supported on SunOS/Solaris or Red Hat Enterprise Linux (RHEL). A reader

wishing to replicate these experiments may well prefer a Debian distribution or

12Advanced Micro Devices, Inc.
13The Unix name uses lower-case and is not an acronym, Bell Labs started using and even-

tually trademarked UNIX after Dennis Ritchie and Ken Thompson’s 1974 paper, The UNIX
Time-Sharing System [161], where they used unix in troff ’s new ‘small caps’ capability.
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a derivative, such as Ubuntu, or some other Unix-like OS, since command-line and

basic GUI operations are the same on any distribution. Appendix A describes

the set-up on a Fedora distribution and may not involve identical commands and

configuration on other systems.

Initially, the Fedora 7 OS was chosen both for its currency over the very stable

CentOS (a re-compiled community version of RHEL) and its stability over the

latest release, at that time, of Fedora 8 (a Red Hat sponsored community Linux

project). As ns-2 is compiled against the current running kernel, the frequency

of kernel upgrades has considerable impact on research activity involving the

simulator. By not being the latest release, at that time, Fedora 7 was likely to

have less frequent kernel upgrades and thus provide a longer mean time between

full compilations of the software. However, as the research progressed, Fedora

7 fell too far behind in development, presenting unsupported packages and a

general security risk and so it was decided to move to Fedora 9.

6.1.2 Preparation and Installation of the Simulator

The preparation of the platforms and the installation and testing of the ns-2

network simulator and associated tools are described in detail in Appendix A.

This then gave a working installation of the ns-2 simulator and nam an-

imator. A number of test simulations were then conducted, both to test the

installation and to familiarise the author with the simulator.

6.2 Validating the Simulator

A number of procedures were undertaken to validate the operation of the simu-

lator tool. Firstly, the actual build for the platform was tested as follows.

$ ns

% set ns [new Simulator]

_o4

% ^C

This shows that the simulator does run on the chosen platform. However, it does

not provide any assurance as to the correct operation of the simulator. The ns-2

simulator package comes with a suite of validation tests to verify the build of the

code-base. This test suite is generated with the compile of the rest of the source
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and is available in the ~ns/tcl/test directory. This test suite includes the original

ns-2 validation tests detailed by Floyd [162]. These tests can be performed by

calling the “./tcl/test/test-all-simple” script (this replaces the previous “./test-

all” script in the ~ns directory). However, these original tests are only a subset

of the full suite. All of the tests can be performed by calling the “./validate”

script in the ~ns directory. Typing this command provides hours of scrolling

output of the form shown below.

Running test sack1c:

../../ns test-suite-sack.tcl sack1c QUIET

Guide: SACK TCP, many packet drops, window=27

Test output agrees with reference output

Running test sack3:

../../ns test-suite-sack.tcl sack3 QUIET

Guide: SACK TCP, drops from a small window

Test output agrees with reference output

Running test sack5:

../../ns test-suite-sack.tcl sack5 QUIET

Guide: SACK TCP, many drops, without maxburst

Test output agrees with reference output

and so forth, totalling 6,646 lines of output, with the final summary shown at

the end:

Running test aloha.collisions:

../../ns test-suite-satellite.tcl aloha.collisions QUIET

Test output agrees with reference output

Running test mixed.legacy:

../../ns test-suite-satellite.tcl mixed.legacy QUIET

Test output agrees with reference output

All test output agrees with reference output.

Fri Mar 27 02:34:26 EST 2009

These messages are NOT errors and can be ignored:

warning: using backward compatibility mode

This test is not implemented in backward compatibility mode

validate overall report: all tests passed
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This full test suite was run every time the simulator was modified and the

final validation test results for the modified simulator are archived and stored

with the rest of the source, scripts, and result data for this work.

Having validated the correct operation of the ns-2 simulator tool, the work

proceeded with determining the required configuration of the simulator need to

conduct the testing of the proposed protocols.

Initial investigations with ns-2 showed discrepancies between nominal data

rates and the actual throughput observed. A series of simulations were conducted

to determine the cause of these anomalies.

6.3 Graphing Tools

Both the VINT release of xgraph [155] and the current released version of gnuplot

(4.2.5) [156] were used to visualise the results from the simulations.

David Harrison’s xgraph is a versatile graphing tool optimised for use with

the X Window System (X11) being used on the simulation instances. All sim-

ulations were configured to automatically call xgraph on completion to provide

an immediate display of the simulation results.

However, as the work progressed, the simulation results became more complex

and the representation of the results more detailed, requiring careful configura-

tion of the data representations in order to provide meaningful output. For these

purposes, gnuplot proved to be a more flexible and versatile application to ma-

nipulate the representation of the simulation results. The final representations of

the data presented in this document were produced using the gnuplot software,

configured to provide the optimal resolution in these printed pages, stored and

reproduced at 200 pixels per inch, using varying markers to compensate where

black and white reproductions are made of the original full colour images.

6.4 Initial Configuration

This work does not detail the general configuration, use and operation of the

ns-2 simulator tool. There are a myriad of resources on that subject and the

remainder of this dissertation assumes the reader is at least familiar with the

general concepts of running ns-2 simulations.

Initially, all configuration was performed via Tcl scripts setting parameters,
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initialising and running the ns-2 simulator. All of the scripts used a number of

common features. In all cases, the C++ wireless node objects were instantiated

with bindings to a Tcl array called node_; UDP and TCP agents and applica-

ble traffic sinks were bound to udp_, tcp_ and sink_ arrays in the Tcl scripts;

and any Constant Bit Rate (CBR) UDP applications or FTP TCP applications

were bound to cbr_ or ftp_ Tcl arrays. All simulations used the standard Wire-

lessChannel, with the TwoRayGround radio-propagation model and the Omni-

Antenna model. All simulations used the standard ns-2 Phy/WirelessPhy phys-

ical layer and LL “link layer” [163] (LLC). Initially, the MAC type was also the

standard CMU/Rice Mac/802_11 enhancement [25], now included in the base ns-2

distribution.

Figure 6.1 shows the throughput for simplex Constant Bit Rate (CBR) UDP

messages being generated at 11 Mbps on node_(1) and transmitted to node_(0)

over an IEEE 802.11 WLAN, starting at time 1.0. The relevant settings from the

simulation configuration Tcl script, drtest1.tcl, are:

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ifqlen) 50 ;# max packet in ifq

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(routing) DSDV ;# DSDV or DSR or TORA

set val(nn) 2 ;# number of mobilenodes

set val(x) 350 ;# X dimension of the topo

set val(y) 350 ;# Y dimension of the topo

set val(sc) "drtest-2-1-scen" ;# scene movement file

set val(cp) "drtest-2-1-cbr-11" ;# traffic pattern file

set val(ns) 5.0 ;# node speed

set val(bps) 11.0 ;# CBR bit rate in Mbps

set val(stop) 60.0 ;# simulation time

The LLC processing delay for the encapsulation of the UDP datagram into the

LLC PDU was set to (a nominal) 25 µs. The class LL simulates the LLC sub-layer

and is coded in C++ files ~ns2/mac/ll.h and ~ns2/mac/ll.cc and includes delay_,

the link layer delay. This should be around 25 µs for wireless simulations [164].
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LL set delay_ 25us

The channel type, radio-propagation model, network interface type, MAC

type, interface queue type and size, link layer type, antenna model and ad-hoc

routing type are all used in the creation of the wireless nodes. The x and y values

set the size (in metres) of the boundaries of the wireless topography and nn is

the number of mobile nodes. These are all utilised as follows.

set ns_ [new Simulator]

set topo [new Topography]

$topo load_flatgrid $val(x) $val(y)

# Create God, the General Operations Director

set god_ [create-god $val(nn)]

# Create channels here instead of -channelType in node-config

set chan_1_ [new $val(chan)]

# Configure the mobilenodes and then create them

$ns_ node-config -adhocRouting $val(routing) \

-llType $val(ll) \

-ifqType $val(ifq) \

-ifqLen $val(ifqlen) \

-macType $val(mac) \

-phyType $val(netif) \

-antType $val(ant) \

-propType $val(prop) \

-channel $chan_1_ \

-topoInstance $topo \

-agentTrace ON \

-routerTrace OFF \

-macTrace OFF \

-movementTrace OFF

# Create the specified number of nodes [$val(nn)] and "attach" them

for {set i 0} {$i < $val(nn) } {incr i} {

set node_($i) [$ns_ node]

$node_($i) random-motion 0 ;# disable random motion

}

# Load the node movement model

source $val(sc)

Here, the scene movement file used, drtest-2-1-scen, starts with two nodes at
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1 m range until time 2.0, the nodes then move apart to a range of 300 m at 5 m/s.

The radio range is 250 m, so the connection fails at the end of the simulation,

as seen after 50 seconds of movement in Figure 6.1. The relevant settings in the

scene movement file are:

$node_(0) set X_ 25.000000000000

$node_(0) set Y_ 175.000000000000

$node_(0) set Z_ 0.000000000000

$node_(1) set X_ 26.000000000000

$node_(1) set Y_ 175.000000000000

$node_(1) set Z_ 0.000000000000

$ns_ at 2.000000000000 "$node_(1) setdest 325.000000000000 175.00000000

0000 5.000000000000"

A traffic pattern file, drtest-2-1-cbr-11, was generated for these tests using

the CMU/Rice Monarch Project’s Wireless and Mobility Extensions to ns-2 [25]

cbrgen.tcl Tcl script, as follows.

ns cbrgen.tcl -type cbr -nn 2 -seed 1.0 -mc 1 -rate 11.0 > drtest-2-1-c

br-11

It was subsequently realised that the “rate” was the packet rate, not the

data rate and so had to be corrected, as the above command results in 11 x

512-byte packets per second, a packet interval of 0.0̇9̇ seconds, not 11.0 Mbps,

requiring another 512-Byte packet every 0.0003723̇6̇ seconds. Table 6.1 displays

the formulae for setting packet rate or interval for various packet sizes to achieve

a given Data Rate, R, in Mbps.

The CMU/Rice cbrgen.tcl tool produces unexpected node numbering. The

-nn flag is intended to be the maximum number of mobile nodes, and the resulting

output file lists the value given at -nn number as “nodes: number”, number is used

as the highest node identifier and nodes are numbered from ’0’, so simulations

must account for node numbers in the range 0–number, or number+1 nodes in to-

tal. This can be replicated with the command ns cbrgen.tcl -type cbr -nn 50

-seed 0.1 -mc 50 -rate 2685.546875 > cbr-50-test, which produces an out-

put headed “# nodes: 50, max conn: 50, send rate: 0.00037236363636363639,

seed: 0.1” with 39 actual connections from 29 sources, including both node_(0)

and node_(50).



106 Chapter 6. Developing the Tools

Packet Size Packet Rate (packets/second) Packet Interval (seconds)
general R x 1000000 / Packet Size 1 / (R x 1000000 / Packet Size)
formula = Packet Size / (R x 1000000)

= Packet Size / 1000000 / R
bits R x 1,000,000 0.000001/R

bytes R x 125,000 0.000008/R
512 B R x 244.1406250 0.004096/R
1 KiB R x 122.0703125 0.008192/R
2 KiB R x 61.03515625 0.016384/R

Table 6.1: Calculations of packet rate and interval for various packet sizes, given
the desired Data Rate, R, in Mbps.

The cbrgen.tcl tool generates a random number of connections, up to the

maximum specified, between a random number of nodes, uses random start times

and turns on random noise. This was not suitable for the highly-controlled tests

needed at this stage, so the resultant output needed to be modified, as shown

below.

set udp_(0) [new Agent/UDP]

$ns_ attach-agent $node_(0) $udp_(0)

set sink_(0) [new Agent/LossMonitor]

$ns_ attach-agent $node_(1) $sink_(0)

set cbr_(0) [new Application/Traffic/CBR]

$cbr_(0) set packetSize_ 512

# $cbr_(0) set interval_ 0.090909090909090912

$cbr_(0) set interval_ 0.000372363636363636

$cbr_(0) set random_ 0

# $cbr_(0) set maxpkts_ 10000

$cbr_(0) attach-agent $udp_(0)

$ns_ connect $udp_(0) $sink_(0)

$ns_ at 1.0 "$cbr_(0) start"

While this would have been suitable for this first test, as the number of nodes

increased, manually editing traffic pattern files would become somewhat labori-

ous and so it was decided to code the traffic patterns directly in the simulation

Tcl scripts. As such, drtest-2-1-cbr-11, was not used in this simulation. Instead,

node_(0) would be used for all sinks and the CBR generators would start at a

time equal to their node number, as shown below.
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# Load the traffic model

# source $val(cp)

# Set up the traffic flows

for {set i 1} {$i < $val(nn) } {incr i} {

set udp_($i) [new Agent/UDP]

$ns_ attach-agent $node_($i) $udp_($i)

set sink_($i) [new Agent/LossMonitor]

$ns_ attach-agent $node_(0) $sink_($i)

set cbr_($i) [new Application/Traffic/CBR]

$cbr_($i) set packetSize_ 512

$cbr_($i) set interval_ [expr 0.004096/$val(bps)]

$cbr_($i) set random_ 0

$cbr_($i) attach-agent $udp_($i)

$ns_ connect $udp_($i) $sink_($i)

$ns_ at $i "$cbr_($i) start"

}

Figure 6.1: Default ns-2 configuration — 11 Mbps node (1) to node (0)

Figure 6.1 shows that the WLAN is only achieving an average throughput

of 702 kbps or 6.38% of the application’s nominal 11 Mbps rate. This trace

was produced by recording tuples of the simulation time and the number of

bits recieved at the sink since the previous interval, for every 0.5 seconds of

simulation time into the trace file drtest1-node1.tr whose file descriptor is held
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in f1, as shown here.

# Record data for our extra trace files

proc record {} {

global sink_ f1

#Get an instance of the simulator

set ns_ [Simulator instance]

#Set the time after which the procedure should be called again

set time 0.5

#How many bytes have been received by the traffic sinks?

set bw1 [$sink_(1) set bytes_]

#Get the current time

set now [$ns_ now]

#Calculate the bandwidth (in bit/s) and write it to the files

puts $f1 "$now [expr $bw1/$time*8]"

#Reset the bytes_ values on the traffic sinks

$sink_(1) set bytes_ 0

#Re-schedule the procedure

$ns_ at [expr $now+$time] "record"

}

$ns_ at 0.0 "record"

6.4.1 Varying the MSDU Rate

Figure 6.2 shows the results of varying the CBR generator output from 0 to

1.2 Mbps, increasing by 10 kbps three times a second, starting the CBR generator

at time 1.0 at 30 kbps. This was achieved by changing the CBR interval_ every

one third of a second, using the following code.

for {set i 4} {$i < $val(bps)*11} {incr i} {

# Ramp up the bit rate so we can see what’s going on

set change [expr $i/3.0]

set rate [expr $i/100.0]

puts $f0 "$change, $rate"

$ns_ at [expr $i/3.0] "$cbr_(1) set interval_ [expr 0.4096/$i]"

}

Figure 6.2 shows a linear increase in throughput, in proportion to the increas-

ing rate of the CBR generator, until the performance ceiling is reached, at an



6.4. Initial Configuration 109

Figure 6.2: Default ns-2 configuration — Varying 0–1.2 Mbps Source

average 702 kbps. These results indicate the throughput is not being limited by

the application layer performance and other factors must be involved.

6.4.2 Default Data Rates in ns-2

The Basic Rate used for the PLCP preamble of all IEEE 802.11 frames is 1Mbps.

The applicable Data Rate is used for the body of the frame, including the entire

the PSDU. ns-2, by default, has the Data Rate for the MAC set at 2 Mbps, so

to get 11 Mbps, we need:

Mac/802_11 set dataRate_ 11Mb

This was configured for drtest3.tcl, along with a CBR Packet Size of 1 KiB, to

use:

$cbr_($i) set packetSize_ 1024

$cbr_($i) set interval_ [expr 0.08192/3]

and now increasing the CBR generator by 100 kbps three times a second:

for {set i 4} {$i < $val(bps)*11} {incr i} {

# Ramp up the bit rate so we can see what’s going on

set change [expr $i/3.0]

set rate [expr $i/10.0]
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puts $f0 "$change, $rate"

$ns_ at [expr $i/3.0] "$cbr_(1) set interval_ [expr 0.08192/$i]"

}

Figure 6.3: Data Rate 11 Mbps — Varying 0–12 Mbps Source

Figure 6.3 shows a five-fold improvement. We are now achieving an average

3.545 Mbps or 32.23% of our nominal 11 Mbps. Although currently simulating an

IEEE 802.11b network, it was decided to test the effects of setting the Data Rate

to 54 Mbps, as in an IEEE 802.11g DSSS-ODFM network. This was simulated

in drtest4.tcl, with the only change being:

Mac/802_11 set dataRate_ 54Mb

This resulted in a further improvement to the maximum throughput, but

a much lower percentage of the nominal data rate. Note that although the

application bit rate was still only 12 Mbps at this stage, this has no effect on

these results, as the throughput has not reached anywhere near this level.

Figure 6.4 shows a further 36% improvement to the maximum throughput to

an average 4.821 Mbps. However, we are now only achieving 8.93% of our nominal

54 Mbps. Clearly, while increasing the data rate does improve throughput, the

efficiency is decreasing rapidly.
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Figure 6.4: Data Rate 54 Mbps — Varying 0–12 Mbps Source

6.4.3 The RTS/CTS Threshold

The CMU/Rice Wireless and Mobility Extensions to ns-2 [25], by default, has the

RTS/CTS threshold set zero, using the RTS/CTS exchange for all data packets.

This can be turned off by setting RTSThreshold larger than the maximum packet

size. As the default fragmentation size in ns-2 is 2346 bytes, an RTSThreshold

of 3000 bytes will effectively turn off the RTS/CTS exchange for all packets.

This was configured for drtest5.tcl, with the single change:

Mac/802_11 set RTSThreshold_ 3000

Figure 6.5 shows a considerable 67% improvement in throughput averaging

8.076 Mbps with no RTS/CTS exchange over Figure 6.4 with the RTS/CTS

exchange for these 1 KiB data packets. This is now 14.96% of the 54 Mbps

channel bandwidth.

6.4.4 The Frame Preamble

The CMU/Rice Mac/802_11 enhancements [25], use the 144-bit DSSS frame

preamble, with a 128-bit Sync field and the 16-bit SFD, by default. However the

IEEE 802.11b HR/DSSS offers an optional 72-bit HR/DSSS/Short frame pream-

ble, with a 56-bit Sync field and the 16-bit SFD; and in the IEEE 802.11g Ex-
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Figure 6.5: Data Rate 54 Mbps, RTS/CTS Disabled — Varying Source

tended Rate PHY (ERP) this capability is mandatory. The 72-bit short preamble

was configured for drtest6.tcl, with:

Mac/802_11 set PreambleLength_ 72

Figure 6.6: Rate 54 Mbps, No RTS/CTS, Short Preamble, Varying Source

Figure 6.6 shows a maximum throughput averaging 9.258 Mbps, a further

14.6% improvement in throughput with the short preamble over Figure 6.5 with
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the long preamble, for our 1 KiB payloads. This is now averaging 17.14% of the

54 Mbps channel bandwidth.

Figure 6.7: Compare 11 & 54 Mbps Data Rate, no RTS/CTS, Short Preambles

Figure 6.7 shows the cumulative effect of the changes to the frame format

and transmission mode.

6.4.5 The Packet Size

Having extracted as much as we can from the frame format and transmission,

we now turn our attention the size of the payload. drtest7.tcl was configured to

vary the CBR generator payload from 50 bytes to 5000 bytes, increasing by 50

bytes two times a second, starting at time 0.0, all while maintaining a CBR of

54 Mbps. This was achieved by changing the CBR packetSize_ every one half

of a second and adjusting interval_ to maintain 54 Mbps, viz:

for {set i 1} {$i < 100} {incr i} {

# Ramp up the packet sizes so we can see what’s going on

set change [expr $i/2.0]

set pktsze [expr ($i+1)*50]

puts $f0 "$change, $pktsze"

$ns_ at [expr $i/2.0] "$cbr_(1) set packetSize_ [expr ($i+1)*50]"

$ns_ at [expr $i/2.0] "$cbr_(1) set interval_ [expr ($i+1)*0.0004/54]"

}
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The domain of the results was converted from time to the size of the packets for

the previous half second with:

#Calculate the size and bandwidth (in bit/s) and write it to the files

puts $f1 "[expr $now*100] [expr $bw1/$time*8]"

Note the terms $now*100 recording results, compared with time $i/2.0 and

size ($i+1)*50 sending the packets. The extra one in the ($i+1) term is required

because the proc record {} reads the number of bytes from the previous half-

second up to $now — so the sender starts at 50, while the receiver starts at zero

and both increment by 50 every half second.

In addition, from this point on, the scene movement file used, drtest-2-1-

scen, was modified to leave the two nodes at 1 m range for the entire simulation,

eliminating all movement and remaining within the 250 m radio range throughout

the simulation. The relevant settings in the scene movement file were:

$node_(0) set X_ 25.000000000000

$node_(0) set Y_ 175.000000000000

$node_(0) set Z_ 0.000000000000

$node_(1) set X_ 26.000000000000

$node_(1) set Y_ 175.000000000000

$node_(1) set Z_ 0.000000000000

# $ns_ at 2.000000000000 "$node_(1) setdest 325.000000000000 175.000000

000000 5.000000000000"

Figure 6.8 shows a near-linear increase in throughput, almost in direct propor-

tion to the increasing size of the CBR packets, until at 1 kB a ceiling is reached,

averaging 9.398 Mbps. These results indicate a 1 kB hard limit for the packet

size, irrespective of any other conditions. We also note, that 1 kB (1000-byte)

packets provide 9.394 Mbps throughput, while 1050-byte packets provide only

9.351 Mbps. This correlates to our previous 1 KiB (1024-byte) packets providing

an average 9.258 Mbps with at most only 9.390 Mbps during the simulation. This

decrease after 1 kB also indicates that some sort of fragmentation is occurring.

To verify these results drtest8.tcl was configured to vary the CBR generator

payload from 50 bytes to 20,000 bytes, increasing by 50 bytes four times a second,

starting at time 0.0 for 100 seconds, all while maintaining a CBR of 54 Mbps.

Once again, Figure 6.9 demonstrates the near-linear increase in throughput,

rising with the increasing size of the CBR packets until the 1 kB ceiling is reached,

and averaging 9.395 Mbps thereafter.
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Figure 6.8: Varying Packet Size 0–5,000 Bytes

Figure 6.9: Varying Packet Size 0–20,000 Bytes
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6.4.6 Fragmentation at every Layer

The defaults for most ns-2 parameters can be found in ~ns2/tcl/lib/ns-default.tcl,

including:

Application/Traffic/CBR set rate_ 448Kb ;# a packet interval of 3.75ms

Application/Traffic/CBR set packetSize_ 210

Application/Traffic/CBR set random_ 0

Application/Traffic/CBR set maxpkts_ 268435456; # 0x10000000

Agent/UDP set packetSize_ 1000

Agent/TCP set packetSize_ 1000

Agent/TCP set tcpip_base_hdr_size_ 40

Agent/TCP set ts_option_size_ 10

LL set mindelay_ 50us

LL set delay_ 25us

LL set bandwidth_ 0 ;# not used

Mac/802_11 set PreambleLength_ 144 ;# 144 bit

Mac/802_11 set PLCPHeaderLength_ 48 ;# 48 bits

Mac/802_11 set PLCPDataRate_ 1.0e6 ;# 1Mbps

Mac/802_11 set RTSThreshold_ 0 ;# bytes

Phy/WirelessPhy set CPThresh_ 10.0

Phy/WirelessPhy set CSThresh_ 1.559e-11

Phy/WirelessPhy set RXThresh_ 3.652e-10

Phy/WirelessPhy set bandwidth_ 2e6

Phy/WirelessPhy set Pt_ 0.28183815

Note that all “sizes” (packetSize_, tcpip_base_hdr_size_, ts_option_size_)

are given in bytes, so all interval/rate calculations require these to be multiplied

by eight, viz. rate = 8∗size
interval

and interval = 8∗size
rate

; whereas the “lengths”

(PreambleLength_, PLCPHeaderLength_) are given in bits. This is not necessarily

universal, just in the parameters we are dealing with here.

Note that although ns-2 maintains numerous headers for each packet, the var-

ious traffic sources, transport agents and the link layer do not add the UDP/TCP,

IP or LLC header lengths,
(

8
20

)
+20+8 =

(
36
48

)
bytes, on to the simulated packet’s
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size_ field, so the packetSize_ parameters are effectively the size of the MSDU

passed to the MAC layer.

The random_ parameter in the CBR generator pseudo-randomly changes the

interval by up to half its value for each packet. This is not desired in these trials

and is kept off.

The mindelay_ parameter in the link layer, LL, was introduced by the CMU

Monarch Project’s Wireless and Mobility Extensions to ns for the “minimum time

the LL object will hold onto a packet” [25], but is now obsolete and although set

to the value 50 µs in 49 separate locations in the ns-2.33 sources, is not then

referenced in any source in the ns-2.33 distribution. This function is performed

by the inherited delay_ parameter from the parent class.

LL simulates the link layer and is a subclass of LinkDelay. The LinkDelay class

is derived from the Connector class and simulates a link with latency. LinkDelay

defines bandwidth_, the bandwidth of underlying link in bits per second and

delay_, the line latency for the link. LL inherits these, but being part of the pro-

tocol stack, as opposed to a physical link, does not use the inherited bandwidth_,

which is set by default to zero. The inherited delay_ simulates the overhead of

the link layer.

The wireless PHY has the transmitted signal power, Pt_, a minimum carrier

sense threshold, CSThresh_, and a minimum receiving power threshold, RXThresh_,

all in watts, and requires a signal to have received strength at least the capture

threshold ratio, CPThresh_, greater than any other interfering signal in order to

succeed. Note that CPThresh_ is a direct ratio — not a logarithmic ratio in

decibels (dB) as given in ~ns2/mac/wireless-phy.h, nor a value in watts as given

in [164].

Like the LL, the WirelessPhy does not use the bandwidth_ parameter at

all, even though it is set in defaults to 2 Mbps. The current (ns-2.33 ) code

for the WirelessPhy has the binding of the Tcl and C++ bandwidth_ param-

eters commented-out. The only place in the current wireless ns-2 modules

where the bandwidth_ parameter is used, is at the MAC layer, where it is

used to determine transmit time, by the parent Mac class in ~ns2/mac/mac.h

and as a fallback for the basicRate_ and dataRate_ by the Mac/802_11 class in

~ns2/mac/mac-802 11.cc, if they have not already been set.

Other relevant parameters can be found in ~ns2/mac/mac-802 11.h, includ-

ing:
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#define DSSS_MaxPropagationDelay 0.000002 // 2us

#define MAC_FragmentationThreshold 2346 // bytes

From all of these settings, we see that although the Mac/802_11 default frag-

mentation size is 2346 bytes and we are manually setting the CBR packet size

as desired, the default UDP payload size is 1000 bytes. Fragmentation at the

Transport Layer is now limiting us. This was removed by configuring drtest9.tcl

with:

Agent/UDP set packetSize_ 20000

and to keep the RTS/CTS exchange turned off for these large test packets,

Mac/802_11 set RTSThreshold_ 20000

was also included.

Figure 6.10: Varying Packet Size with No Transport Layer Fragmentation

Figure 6.10 now shows asymptotic gain with increasing packet size approach-

ing 44 Mbps as packet size approaches 20 kB, over 80% of the nominal channel

bandwidth. The actual asymptote, as packet size approaches infinity, can not

be determined from these data, but should be near 54 Mbps for an infinitely

large packet with only a single set of headers and channel negotiation. This

is clearly the bulk of the efficiencies to be gained by manipulating packets and

transmission characteristics. The remaining losses are due to necessary encapsu-

lation data, radio synchronisation overheads, the various interframe spaces and

collision avoidance protocols.
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6.5 Establishing the Baseline

A series of simulations were undertaken to establish the status quo for the current

conditions as a baseline set of control values to compare against the amended

protocols.

6.5.1 The Maximum MSDU Size

The maximum IEEE 802.11 [9, p. 30] MSDU size is 2304 octets14. It is the

maximum size of the MAC Service Data Unit, i.e. the PDU from the LLC,

before any MAC-layer encryption is applied15. The IEEE 802.11b/g maximum

MSDU size is the same. The maximum IEEE 802.11a [71, p. 5] MPDU size

is 4095 octets. In this case it is the MAC Protocol Data Unit, i.e. the PSDU,

not the MSDU — but still, considerably larger. IEEE 802.11n allows MPDU

aggregation and so allows very large payloads [77].

As 2304 octets is the largest MSDU that can be accommodated by all of

the protocols, it was selected for the maximum transport layer PDU. The next

simulation, drtesta.tcl, was configured with:

Agent/UDP set packetSize_ 2304

which, as discussed above, actually simulates a 2304 octet maximum MSDU

(LLC PDU) size. This was configured in conjunction with:

Mac/802_11 set RTSThreshold_ 3000

to support this with no RTS/CTS exchanges. Figure 6.11 shows the results of the

same CBR generator payload varying from 50 bytes to 20,000 bytes, increasing

by 50 bytes four times a second, while maintaining a CBR of 54 Mbps, but

limited to a maximum MSDU of 2304 bytes

Figure 6.11 shows the initial curve of Figure 6.10 as packet size increases from

50 to the maximum MSDU size of 2304 bytes. However from this point on, the

throughput then levels at an average 17.52 Mbps. This achieves a throughput of

32.44% of the channel bandwith.

14The maximum MSDU size of 2304 octets was to allow application data of up to 2048 octets
and up to 256 octets of upper-layer headers.

15Using WEP adds 8 octets, TKIP adds 20 octets, and CCMP adds 16 octets; rendering
maximum data unit sizes of 2312, 2324, and 2320 octets respectively.
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Figure 6.11: Varying Packet Size with Maximum 2304 Byte MSDU

Figure 6.12: The Effects of Fragmentation
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Figure 6.12 compares the fragmentation effects, showing the achieved through-

put against the application data size, firstly with no fragmentation, then with

the chosen control condition with a maximum 2304 byte MSDU and with the

ns-2 default fragmentation at 1000 bytes.

These three traces were all established using a 54 Mbps Data Rate and show

the clear truncation of effective bandwidth caused by MSDU fragmentation. The

unfragmented trace demonstrates that these effects are not the result of a lim-

itation of the chosen PHY to transfer bits at a given rate, but instead, the

two fragmented traces show a limitation on the number of packets that can be

squeezed into the remaining bandwidth when every packet has a fixed maximum

size with a fixed overhead and acknowledgement, plus contention protocols.

6.5.2 The Effects of the Channel Data Rate

Having determined and set the maximum MSDU size, a series of simulations

were then conducted to gather detailed data for packet sizes varying from 50

bytes to 2500 bytes, increasing by 50 bytes every second, generated at 54 Mbps,

with PHY data rates of 1, 2, 11 and 54 Mbps.

Figure 6.13 shows the results of the simulation for a 1 Mbps wireless channel

configured with drtestb.tcl, as follows:

Agent/UDP set packetSize_ 2304

LL set delay_ 25us

Mac/802_11 set dataRate_ 1Mb

Mac/802_11 set RTSThreshold_ 3000

Mac/802_11 set PreambleLength_ 72

Figure 6.13 again shows asymptotic gain with increasing packet size approach-

ing 955 kbps as packet size approaches the 2304 byte maximum and then main-

taining an average 954.1 kbps throughput at maximum packet size, utilising

95.41% of the nominal channel bandwith.

Figure 6.14 shows the results of the simulation for a 2 Mbps wireless channel

configured with drtestc.tcl, using Mac/802_11 set dataRate_ 2Mb

Figure 6.14 shows mostly asymptotic gain with the increasing packet size,

approaching an average 1.830 Mbps as packet size approaches the 2304 byte

maximum and then maintains an average 1.834 Mbps throughput once the max-

imum packet size has been reached, utilising 91.72% of the nominal channel

bandwith.
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Figure 6.13: Varying MSDU Size (Max 2304) at 1 Mbps Data Rate

Figure 6.14: Varying MSDU Size (Max 2304) at 2 Mbps Data Rate
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Figure 6.15 shows the results of the simulation for a 11 Mbps wireless channel

configured with drtestd.tcl, using Mac/802_11 set dataRate_ 11Mb.

Figure 6.15: Varying MSDU Size (Max 2304) at 11 Mbps Data Rate

Figure 6.15 shows exponential limit gain as packet size approaches the 2304-

byte maximum and then maintains an average 7.678 Mbps throughput thereon,

utilising 69.80% of the nominal channel bandwith.

These data correlate closely with both the simulated and experimental data

produced by Joshua Robinson in Making NS-2 simulate an 802.11b link [153].

Figure 6.16 shows drteste.tcl configured with a 54 Mbps wireless channel,

using Mac/802_11 set dataRate_ 54Mb.

Figure 6.16 shows the near-linear gain with increasing packet size of the initial

component of an exponential limit curve as packet size approaches the 2304-byte

maximum and then maintaining an average 17.48 Mbps soon after.

As these last four simulations have ended soon after the 2304-byte maximum

was reached, these terminal values have been averaged over only a half-dozen

samples. The more detailed 54 Mbps channel results of Figure 6.11 give a more

accurate final average (over 176 samples) of 17.52 Mbps, utilising 32.44% of the

nominal channel bandwith.

Summarising these, Figure 6.17 compares the throughput obtained with MAC

data rates of 1, 2, 11 and 54 Mbps on the wireless channel.

For each of the MAC data rates of 1, 2, 11 and 54 Mbps, Figure 6.17 graphs

the throughput as the ordinate in Mbps on the Y-axis, against the source ap-
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Figure 6.16: Varying MSDU Size (Max 2304) at 54 Mbps Data Rate

Figure 6.17: Comparative Throughput vs. Size for 1, 2, 11 and 54 Mbps Rates
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plication packet size as the abscissa in kB on the X-axis. At 2.304 kB, for all

MAC data rates, the packets are fragmented and the characteristic changes to

an average constant level.

6.5.3 The Effects of the Application Data Rate

Next, baseline tests were performed for fixed 2048-byte (16,384-bit) packets gen-

erated at intervals varying to produce application data rates of 0 to 60 Mbps.

This is achieved by actually starting from 0.5 Mbps, increasing by 0.5 Mbps every

half second, to 60 Mbps, measuring at the end of each half second and recording

from time 0. Figure 6.18 shows the results for drtestf.tcl configured with fixed

STAs at 1 m range, and varying source data rates, as follows:

Agent/UDP set packetSize_ 2304

Mac/802_11 set dataRate_ 54Mb

Mac/802_11 set RTSThreshold_ 3000

Mac/802_11 set PreambleLength_ 72

$cbr_(1) set packetSize_ 2048

$cbr_(1) set interval_ [expr 0.016384/0.5]

for {set i 1} {$i < 120} {incr i} {

$ns_ at [expr $i/2.0] "$cbr_(1) set interval_ [expr 0.016384/(($i+1

)*0.5)]"

}

Figure 6.18 shows throughput directly proportional to CBR generation rate,

up to 16 Mbps for both generation rate and throughput, but then settling to

an average 16.16 Mbps throughput thereafter for the 2048-byte packets, utilising

29.93% of the nominal channel bandwith.

Note that the 1% “gain” in performance is due to the DSDV routing functions

in ns-2 adding a 20-byte IP header16 on top of the existing segment that never

gets stripped off at the receiver because the routing functions never see a received

packet addressed for their own node. As such, these unstripped headers are

counted in the received bytes. This means we are effectively transferring “2068-

byte packets” as far as the calculations are concerned, in the same times we

16Both the DSDV and AODV routing protocols add a 20-byte IP header. In fact, the very
first packet of the simulation gets 2 x 20-byte additions due to a queuing bug in ns-2 ’s DSDV
implementation.
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Figure 6.18: Varying Application Data Rate for Fixed STA at 1 m Range

intended to send 2048-byte packets, which gives an effective source data rate of
2068
2048
∗ 16 = 16.16 Mbps.

This behaviour is confirmed by the trace file drtestf-out.tr.

s 0.000000000 _1_ AGT --- 0 cbr 2048 [0 0 0 0] ------- [1:0 0:0 32 0]

r 0.004255770 _0_ AGT --- 0 cbr 2088 [f2 0 1 800] ------- [1:0 0:0 32

s 0.032768000 _1_ AGT --- 2 cbr 2048 [0 0 0 0] ------- [1:0 0:0 32 0]

r 0.033339411 _0_ AGT --- 2 cbr 2068 [f2 0 1 800] ------- [1:0 0:0 32

s 0.065536000 _1_ AGT --- 3 cbr 2048 [0 0 0 0] ------- [1:0 0:0 32 0]

r 0.066227411 _0_ AGT --- 3 cbr 2068 [f2 0 1 800] ------- [1:0 0:0 32

6.6 Simulating Infrastructure Mode

Note that this work does not use Ilango Purushothaman and Sumit Roy’s new

ns-2.33 802.11 infrastructure code [165–167]. The infrastructure code, while

operational, is limited by the other functions of ns-2, such as no multi-channel

or DSS capabilities, and so provides no advantage in this work.

Where desired, infrastructure mode was simulated by configuring all traffic

for all nodes to pass to and from node_(0), fixed at the centre of the topology,

which thereby acted as the AP.
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6.7 Development of the Analysis Tools

The ns-2 trace file contains information recorded on command by options within

the TCL components instantiating the wireless nodes. All simulations were per-

formed with only agentTrace ON, recording the events at the UDP/TCP agents:

$ns_ node-config ... \

-agentTrace ON \

-routerTrace OFF \

-macTrace OFF \

-movementTrace OFF

However, where more detailed analysis was required, such as in the previous

case, routerTrace and macTrace were added, to provide details of all packets

entering and leaving the agents, routing functions and the MAC sub-layer:

$ns_ node-config ... \

-agentTrace ON \

-routerTrace ON \

-macTrace ON \

-movementTrace OFF

This gives a trace providing packets “s”ent, “r”eceived or “d”ropped, event

time, node , subsystem (AGT or RTR or MAC), an error indication or - - -, event

(packet) id, packet type, packet size in bytes and the MAC details [(in hex) dura-

tion field (0 µs or f2 = 242 µs SIFS + ACK), receiver address (RA), transmitter

address (TA) and ether-type], followed by:

� for ARP packets, - - - - - - -, [“REQUEST” or “REPLY”, (in decimal) ARP

source address:source port and ARP target address:target port];

� for IP packets, - - - - - - -, [(in decimal) IP source address:source port, IP

destination address:destination port, IP time-to-live (32) and next hop];

� for IP route advertisements, - - - - - - -, [(in decimal) IP source address:source

port (255), IP destination address (-1):destination port (255), IP time-to-

live (32) and next hop (0)];
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� for TCP packets, - - - - - - -, [(in decimal) IP source address:source port, IP

destination address:destination port, IP time-to-live (32), next hop or 0],

[Sequence number, Ack number], number of forwards and (mobile) optimal

number of forwards17;

This results in output of the form,

s 0.089076526 _3_ RTR --- 0 message 32 [0 0 0 0] ------- [3:255 -1:255 32 0]

s 0.089171526 _3_ MAC --- 0 message 81 [0 ffffffff 3 800] ------- [3:255 -1:255 32 0]

r 0.089819879 _1_ MAC --- 0 message 32 [0 ffffffff 3 800] ------- [3:255 -1:255 32 0]

r 0.089819999 _6_ MAC --- 0 message 32 [0 ffffffff 3 800] ------- [3:255 -1:255 32 0]

r 0.089844879 _1_ RTR --- 0 message 32 [0 ffffffff 3 800] ------- [3:255 -1:255 32 0]

r 0.089844999 _6_ RTR --- 0 message 32 [0 ffffffff 3 800] ------- [3:255 -1:255 32 0]

s 5.000000000 _1_ AGT --- 11 tcp 40 [0 0 0 0] ------- [1:0 0:0 32 0] [0 0] 0 0

r 5.000000000 _1_ RTR --- 11 tcp 40 [0 0 0 0] ------- [1:0 0:0 32 0] [0 0] 0 0

s 5.000000000 _1_ RTR --- 11 tcp 60 [0 0 0 0] ------- [1:0 0:0 32 0] [0 0] 0 0

s 5.000175000 _1_ MAC --- 0 ARP 77 [0 ffffffff 1 806] ------- [REQUEST 1/1 0/0]

r 5.000791451 _0_ MAC --- 0 ARP 28 [0 ffffffff 1 806] ------- [REQUEST 1/1 0/0]

r 5.000791690 _6_ MAC --- 0 ARP 28 [0 ffffffff 1 806] ------- [REQUEST 1/1 0/0]

s 5.000886451 _0_ MAC --- 0 ARP 77 [f2 1 0 806] ------- [REPLY 0/0 1/1]

r 5.001016088 _1_ MAC --- 0 ARP 28 [f2 1 0 806] ------- [REPLY 0/0 1/1]

s 5.001026088 _1_ MAC --- 0 ACK 29 [0 0 0 0]

r 5.001258539 _0_ MAC --- 0 ACK 29 [0 0 0 0]

s 5.001568088 _1_ MAC --- 11 tcp 109 [f2 0 1 800] ------- [1:0 0:0 32 0] [0 0] 0 0

r 5.001702465 _0_ MAC --- 11 tcp 60 [f2 0 1 800] ------- [1:0 0:0 32 0] [0 0] 1 0

s 5.001712465 _0_ MAC --- 0 ACK 29 [0 1 0 0]

r 5.001727465 _0_ AGT --- 11 tcp 60 [f2 0 1 800] ------- [1:0 0:0 32 0] [0 0] 1 0

s 5.001727465 _0_ AGT --- 12 ack 40 [0 0 0 0] ------- [0:0 1:0 32 0] [0 0] 0 0

r 5.001727465 _0_ RTR --- 12 ack 40 [0 0 0 0] ------- [0:0 1:0 32 0] [0 0] 0 0

s 5.001727465 _0_ RTR --- 12 ack 60 [0 0 0 0] ------- [0:0 1:0 32 1] [0 0] 0 0

r 5.001944916 _1_ MAC --- 0 ACK 29 [0 1 0 0]

s 5.002214465 _0_ MAC --- 12 ack 109 [f2 1 0 800] ------- [0:0 1:0 32 1] [0 0] 0 0

r 5.002348842 _1_ MAC --- 12 ack 60 [f2 1 0 800] ------- [0:0 1:0 32 1] [0 0] 1 0

s 5.002358842 _1_ MAC --- 0 ACK 29 [0 0 0 0]

r 5.002373842 _1_ AGT --- 12 ack 60 [f2 1 0 800] ------- [0:0 1:0 32 1] [0 0] 1 0

s 5.002373842 _1_ AGT --- 13 tcp 552 [0 0 0 0] ------- [1:0 0:0 32 0] [1 0] 0 0

r 5.002373842 _1_ RTR --- 13 tcp 552 [0 0 0 0] ------- [1:0 0:0 32 0] [1 0] 0 0

s 5.002373842 _1_ RTR --- 13 tcp 572 [0 0 0 0] ------- [1:0 0:0 32 0] [1 0] 0 0

s 5.002373842 _1_ AGT --- 14 tcp 552 [0 0 0 0] ------- [1:0 0:0 32 0] [2 0] 0 0

r 5.002373842 _1_ RTR --- 14 tcp 552 [0 0 0 0] ------- [1:0 0:0 32 0] [2 0] 0 0

s 5.002373842 _1_ RTR --- 14 tcp 572 [0 0 0 0] ------- [1:0 0:0 32 0] [2 0] 0 0

r 5.002591294 _0_ MAC --- 0 ACK 29 [0 0 0 0]

s 5.002840842 _1_ MAC --- 13 tcp 621 [f2 0 1 800] ------- [1:0 0:0 32 0] [1 0] 0 0

r 5.003051071 _0_ MAC --- 13 tcp 572 [f2 0 1 800] ------- [1:0 0:0 32 0] [1 0] 1 0

s 5.003061071 _0_ MAC --- 0 ACK 29 [0 1 0 0]

r 5.003076071 _0_ AGT --- 13 tcp 572 [f2 0 1 800] ------- [1:0 0:0 32 0] [1 0] 1 0

s 5.003076071 _0_ AGT --- 15 ack 40 [0 0 0 0] ------- [0:0 1:0 32 0] [1 0] 0 0

r 5.003076071 _0_ RTR --- 15 ack 40 [0 0 0 0] ------- [0:0 1:0 32 0] [1 0] 0 0

s 5.003076071 _0_ RTR --- 15 ack 60 [0 0 0 0] ------- [0:0 1:0 32 1] [1 0] 0 0

r 5.003293523 _1_ MAC --- 0 ACK 29 [0 1 0 0]

17The optimal number of forwards value is the minimum number of hops calculated by the
mobile General Operations Director in ˜ns2/mobile/god.cc, but is never used.
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These trace files are typically analysed using data manipulation tools, such as

grep, sed and awk 18. These scripts are usually employed to extract and aggregate

or analyse a particular piece of information, such as throughput for a particular

node or the channel itself or latency or number of lost/delayed/retransmitted

packets and so forth.

In this case, the author needed a tool to assist in visualising the complete

picture; to determine which individual packets were being delayed and why; to

display what interactions were occurring with multiple nodes contending for the

channel; or how the choices of contention backoff affected channel acquisition and

the like. The author needed the chronological layout of the trace output itself,

but with additional information, such as time elapsed since the previous event,

packet transmission time, propagation time and the number of slots actually

chosen by the MAC subsystem from the available contention window.

To include this information in the trace output would require considerable

re-engineering of the trace functions and integrating these with the MAC subsys-

tems. The result would be incompatible with any other version of ns-2 and the

trace output would also be incompatible with any other analysis tools currently

available. Such a single-use need would unlikely be worth the effort required to

develop and instantiate it.

The author determined the additional information could be extracted from

the existing trace output itself and re-incorporated into that existing output to

enhance the utility of this resource.

First the trace was formatted from the simple space-delimited list into a

tabular layout by importing the data into a spreadsheet tool. Microsoft Excel

was used, but any spreadsheet tool would serve the purpose. The data was

imported with whitespace as the delimiter, as shown in Figures 6.19 and 6.20.

This arranged the data fields to provide visual clarity, as shown in Figure 6.21.

To rectify any import errors, all occurrences of “1-Jan” were reverted back

to the original “1/1” data. Next a new third column was inserted and all values

were set with the formula Cx = Bx −Bx−1. From this elapsed time, the number

of slot times for the backoff were determined for every data packet sent from a

MAC subsystem by subtracting the time for the LLC delay and the DIFS and

dividing the result by the slot time, all in µs, with the formula Yx = (Cx −
0.000075)/0.00002, as shown in Figure 6.22.

18awk is named after its original authors, Alfred V. Aho, Peter J. Weinberger and Brian W.
Kernighan.
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Figure 6.19: Import text into a spreadsheet

Figure 6.20: Data delimited by any whitespace
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Throughout the first five seconds of the simulation, for over 200 trace entries

(only a few are shown in the graphic of Figure 6.22), where only single STAs were

transmitting broadcast packets (numerous route messages and an ARP request),

these formulae worked well. However, as can be seen starting at row 13 in the

example of Figure 6.22, as soon as unicast transmissions started, these formulae

were insufficient for a number of reasons.

The first issue was because the timers were no longer related to the previous

event in the trace file. Up until this point, the channel was quiescent and the pre-

vious event was the routing subsystem passing the frame to the MAC subsystem

on the same node. Once unicast transmissions started, the previous event in the

trace file was typically not relevant to the timing of the pending transmission.

This was rectified by amending the errant formulae from Cx = Bx − Bx−1 to

Csend = Bsend − Blastframereceivedbythisnode. In the majority of cases, two distinct

patterns were evident in the trace:

� A MAC subsystem would receive a frame, send a MAC ACK, pass the

frame to the TCP agent, the agent creates the next frame (a TCP ACK

for a TCP data frame or a TCP data frame after a TCP ACK) and sends

it to the routing subsystem, the routing subsystem receives the next frame,

the routing subsystem addresses the next frame and sends it to the MAC

subsystem, and the MAC subsystem sends the next queued frame. In this

case, the formula for the third column was changed from Cx = Bx − Bx−1

to Csend = Bsend −Bsend−7.

� A MAC subsystem would receive a frame (TCP ACK), send a MAC ACK,

pass the frame to the TCP agent, the agent creates the next TCP data

frame and sends it to the routing subsystem, the routing subsystem receives

the next frame, the routing subsystem addresses the next frame and sends

it to the MAC subsystem, the TCP agent expands the window and creates a

second TCP data frame and sends it to the routing subsystem, the routing

subsystem receives the second frame, the routing subsystem addresses the

second frame and sends it to the MAC subsystem, and the MAC subsystem

sends the next queued frame. In this case, the formula for the third column

was changed from Cx = Bx −Bx−1 to Csend = Bsend −Bsend−10.

The second issue was the calculation of slot times was now incorrect, even

with the corrected elapsed time values, as there was no longer only broadcast
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traffic on a quiescent channel and so the LLC processing delay was no longer

relevant to the elapsed time before transmission begins. This single observation

is later pivotal in explaining the effect of encryption overhead on throughput.

In this case, the LLC processing delay was always 25 µs, however on receiving

directed traffic (a unicast frame), a STA must wait a SIFS and send a MAC-layer

ACK back to the sender. This takes 10 µs and 232 µs, a total of 242 µs, before

the STA can begin its DIFS and backoff, making the 25 µs LLC processing delay

irrelevant here.

For directed traffic, the number of slots in the backoff was now determined

from the elapsed time by subtracting a SIFS and the time to transmit a MAC-

layer ACK and a DIFS, being 10 + 232 + 50 = 292 µs, and dividing the result

by the slot time, changing the formula from Yx = (Cx − 0.000075)/0.00002 to

Yx = (Cx − 0.000292)/0.00002, as shown in Figure 6.23.

Further enhancements were to insert three more columns after the packet size

in bytes, containing, for each transmitted MAC data frame, the MPDU size in

bits, the time to transmit the frame and the time to propagate the signal to the

receiver, as shown in Figure 6.24. The frames of interest were those with ‘on-the-

wire’ sizes (for ns-2 with DSDV ad-hoc routing) of 81 bytes (routing broadcast

advertisements), 77 bytes (ARP requests and replies), 109 bytes (empty TCP

SYN or ACK), or 621 bytes (TCP data packets).

Where the event packet size was one of 81, 77, 109 or 621, the MPDU size

was calculated by multiplying the packet size in bytes by 8 bits and subtracting

the 120 bits of PLCP short preamble and PLCP header. Otherwise this field was

set to zero, as it was not an outgoing packet from the MAC layer, other than a

MAC ACK, which is 29 bytes either sending or receiving (the headers are not

‘stripped’ on receipt as the MAC sub-layer does not pass it to a higher layer).

This was achieved using the formula IF (bytes=81 OR bytes=77 OR bytes=109

OR bytes=621) THEN value=bytes*8-120 ELSE value=0. It should be noted

that the value is the size of the MPDU for those frames of interest, but a value

of zero does not necessarily mean an empty frame — just not a frame of interest

here. The formula used was:

Jx = IF (OR(Ix = 81, Ix = 77, Ix = 109, Ix = 621), Ix ∗ 8− 120, 0)

The time to transmit the frame, for those frames for which the MPDU size has

been calculated, depended on whether or not the frame was broadcast/multicast

or unicast. The preamble of all frames is always sent at 1 Mbps. The entire
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of broadcast/multicast frames are always sent at a Basic Rate, also 1 Mbps in

these simulations. The PLCP header of directed frames should be sent at 1 Mbps

with the standard (long) preamble or 2 Mbps with the short preamble used here.

However, ns-2 always sends the PLCP preamble and PLCP header together at

1 Mbps, taking 120 µs. The remainder of directed frames is sent at the Data

Rate of 54 Mbps.

Thus, the formula to determine the time to transmit the frame, in microsec-

onds, was IF msdubits=0 THEN value=0 ELSE IF destination=ffffffff THEN

value=bytes*8 ELSE value=120+msdubits/54. The formula used was:

Kx = IF (Jx = 0, 0, IF (Nx = “ffffffff”, Ix ∗ 8, 120 + Jx/54))

The time to propagate the signal from source to destination, for those frames

for which the MPDU size has been calculated, in nanoseconds, was determined

from the elapsed time, in seconds, between the send event and the next corre-

sponding receive event. Note that ns-2 traces record the start of a send event,

the time of the transmission of the leading edge of the start of the signal, and the

completion of a receive event, when the last component of the signal has been

successfully received. as such, at the MAC sub-layer, the difference between

these two times is the time to transmit the frame plus the time for the signal to

propagate from source to destination, in seconds.

The formula to determine the time to propagate the signal in nanoseconds,

from the elapsed time in seconds and the transmission time in microseconds, was

IF txtime=0 THEN value=0 ELSE value=elapsedtime*1000000000-txtime*1000.

The formula used was: Lx = IF (Kx = 0, 0, Cx+1 ∗ 1000000000−Kx ∗ 1000)

In addition, the elapsed times for receiving a MAC ACK were changed from

Cx = Bx−Bx−1 to CrecvACK = BrecvACK −BsendACK , to display an elapsed time

of 0.000232nnn, where the 232 microseconds is the transmission time for a MAC

ACK and the ‘nnn’ nanoseconds is the propagation time for the signal to travel

from the transmitting node to the receiving node.

6.7.1 Continuing Development

As the analysis continued further into the simulations, these formulae were en-

hanced to account for more and more different combinations of events. Later

enhancements accounted for interactions between multiple STA, with elucida-

tion of inter-STA propagation delays and their effects on transmission contention

delays.
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The formulae for the third column, for each MAC sub-layer transmit event

at time x (after a MAC ACK receive at time x− 1) became:

IF mac ack recv from same node THEN elapsedtime=current-mac ack recv
ELSE IF last data recv by same node THEN elapsedtime=current-last data recv

ELSE elapsedtime=current-mac ack send

Encoded as shown in Figure 6.25:

...

Cn = Bn −Bn−1

...

Cx−1 = Bx−1 −Bx−6

Cx = IF (Dx−1 = Dx, Bx −Bx−1, IF (Dx−7 = Dx, Bx −Bx−7, Bx −Bx−6))

Cx+1 = Bx+1 −Bx

Cx+2 = Bx+2 −Bx+1

Cx+3 = Bx+3 −Bx+1

Cn = Bn −Bn−1

...

The description for the third-last column became:

IF mac ack recv from same node THEN description=“RxACK + DIFS +” (slots)
ELSE IF last data recv by same node THEN description=“Rx+SIFS+ACK+DIFS+”

ELSE description=“RxACK + DIFS +”

and the formula to calculate the slot times became:

IF mac ack recv from same node THEN slots=(elapsed-difs)/slottime
ELSE IF last data recv by same node THEN slots=(elapsed-(sifs+ack+difs))/slottime

ELSE slots=(elapsed-(ack+difs)-propagation)/slottime

Encoded as:
AAx = IF (Dx−1 = Dx, “RxACK + DIFS + ”,

IF (Dx−7 = Dx, “Rx + SIFS + ACK + DIFS + ”, “ACK + ”&
TEXT ((Cx − INT (Cx ∗ 1000000)/1000000) ∗ 1000000000, 0)&“ns + DIFS + ”))

and (in each case set to zero if very small):
ABx = IF (Dx−1 = Dx, IF ((Cx − 0.00005)/0.00002 < 0.1, 0, (Cx − 0.00005)/0.00002),

IF (Dx−7 = Dx, IF ((Cx − 0.000292)/0.00002 < 0.1, 0, (Cx − 0.000292)/0.00002),

(Cx − 0.000282− (Cx − INT (Cx ∗ 1000000)/1000000))/0.00002))
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Chapter 7

Testing the Thesis

This chapter details the actual tests undertaken, establishing the control data

for UDP and TCP traffic, determining the average throughput and the effects

of multi-STA contention. The delays due to normal operation of IEEE 802.11

networks requiring acknowledged directed traffic and the default Distributed Co-

ordination Function (DCF) backoff and their effects on network performance are

determined, in particular, the effects of contention with two STAs transmitting

simultaneously and the race condition that ensues and the deterministic resolu-

tion from the tools being used are examined. This analysis includes the effects

where one STA is acting as an Access Point (AP) and thereby dealing with all

of the other traffic, either transmitting or receiving data, or acknowledgements

of transmitted or received data, as appropriate. Then the proposals are tested,

first detailing how the tools were modified to implement the modified protocols.

Initially, dynamically loadable libraries were considered as a way of providing

the alternate protocols within the simulator. However, the impracticalities of

this are described and this approach is abandoned in favour of simply modifying

the simulator source directly.

The initial results were not as expected and the tools were then modified to

ensure that this was not due to inaccuracy within the simulation itself. However,

results after the additional modifications merely confirmed the initial results

and the tests were continued to forge a comprehensive range of excessive traffic

situations under both WLS and PWLS. These results are then analysed and

discussed in detail.

141
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7.1 Control Data

As a result of the initial investigations in Chapter 6 [section 6.4], the baseline

was chosen with 2048-byte (at the source) packets, being produced at 16 Mbps

(effectively 2068-byte packets at 16.16 Mbps due to ns-2 DSDV routing nuances),

passed to the MAC layer with a maximum 2304-byte MSDU, via the LLC with

a 25 µs overhead, being framed with a short 72-bit preamble and transmitted

with a data rate of 54 Mbps and no RTS/CTS exchanges.

Figure 6.18 provides stationary reference data for the chosen baseline control

under these conditions, with stationary STA at 1 m range. To provide base-

line data for STA involving movement throughout the simulation radio range,

drtestg.tcl was configured as follows:

set val(x) 351 ;# X dimension of the topo

set val(y) 351 ;# Y dimension of the topo

set val(sc) "drtest-2-1-scen" ;# scene movement file

set val(bps) 16.0 ;# cbr Mbit rate

set val(stop) 60.0 ;# simulation time

Agent/UDP set packetSize_ 2304

LL set delay_ 25us

Mac/802_11 set dataRate_ 54Mb

Mac/802_11 set RTSThreshold_ 3000

Mac/802_11 set PreambleLength_ 72

for {set i 1} {$i < $val(nn) } {incr i} {

set udp_($i) [new Agent/UDP]

$ns_ attach-agent $node_($i) $udp_($i)

set sink_($i) [new Agent/LossMonitor]

$ns_ attach-agent $node_(0) $sink_($i)

set cbr_($i) [new Application/Traffic/CBR]

$cbr_($i) set packetSize_ 2048

$cbr_($i) set interval_ [expr 0.016384/$val(bps)]

$cbr_($i) set random_ 0

$cbr_($i) attach-agent $udp_($i)

$ns_ connect $udp_($i) $sink_($i)

$ns_ at $i "$cbr_($i) start"

}
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The scene movement file used, drtest-2-1-scen, was modified to provide an

entire 350 m x 350 m movement field, which requires a 351 m x 351 m topog-

raphy, since the actual 350 m boundaries are out-of-range in a 350 m x 350 m

topography. This includes a continuous field from (0.0, 0.0) to (350.0, 350.0)1 in

the Cartesian plane. The scene movement file was configured to place node_(0)

in the centre of a 350 m x 350 m field, at (175.0, 175.0), and node_(1) to start

in the corner at (0.0, 0.0), at 247.5 m range, then at time 0.2, move through the

centre (0.0 m range) to the opposite corner at (350.0, 350.0), again at 247.5 m

range, at 8.8 m/s. The relevant settings in the scene movement file were:

# topo 351x351

# 2 nodes, 1 connection

# start in corner at 247.5m range

# at 0.2, move through centre (0.0m) to opposite corner (247.5m)

#

$node_(0) set X_ 175.000000000000

$node_(0) set Y_ 175.000000000000

$node_(0) set Z_ 0.000000000000

$node_(1) set X_ 0.000000000000

$node_(1) set Y_ 0.000000000000

$node_(1) set Z_ 0.000000000000

$ns_ at 0.200000000000 "$node_(1) setdest 350.000000000000 350.00000000

0000 8.800000000000"

Movement from location (0.0, 0.0) to location (350.0, 350.0), covers a to-

tal distance of
√

3502 + 3502 = 494.9747468 m. At 8.8 m/s, this will require

494.9747468/8.8 = 56.24713032 seconds to complete. Movement starts almost

immediately at time 0.2 and thus completes at time 56.44713032. The early start

ensures the initial results involve movement from almost maximum range. The

track passing right over the receiver ensures the results include closing distance,

minimum range and enlarging distance; and the last few seconds of the simula-

tion ensure that data from near maximum range
√

1752 + 1752 = 247.4873734 m

are captured. Although the CBR generator starts at time 1.0, after the node is

already moving, at this time the node has moved only 8.8 ∗ 0.8 = 7.04 m and is

still 247.4873734− 7.04 = 240.4473734 m from the receiver.

1A 351 m x 351 m topography provides a field from (0.0, 0.0) up to, but not including,
(351.0, 351.0).
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Figure 7.1: Control Data: Fully Mobile STA sending from Time 1.0

Figure 7.1 shows throughput for the chosen baseline control, with a “perfect”

(noise free) 54 Mbps channel, transmitting packets at (an effective) 16.16 Mbps,

with STA movement from near limit of range, through the receiver location and

on to near limit of range again, starting at time 1.0 and settling to an average

16.15 Mbps thereafter, utilising 29.91% of the nominal channel bandwith.

The range delays included in this control have reduced the final average

throughput from the fixed 1 m range results of Figure 6.18, with an average

16.16 Mbps throughput, utilising 29.93% of the nominal channel bandwith, to

an average 16.15 Mbps throughput, utilising 29.91% of the nominal channel

bandwith.

These data form the baselines for all following simulations. Additional control

cases, involving multiple nodes in contention for access to the channel, were then

prepared as follows.

7.1.1 A Note on Statistical Confidence

As the ns-2 simulator is designed to be deterministic, so as to render completely

reproducible results for any of the scenarios presented in this work, successive

runs of any of these simulations will always produce exactly the same results, no

matter how many times they are executed. As such, any confidence interval for

any datum presented in this work will always be a point.
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While repeating all of this research multiple times under multiple different

seeds for the pseudo-random number generators (PRNG), in order to render a

non-zero confidence interval is beyond the scope of this work and has been shown

to be detrimental to the quality of the random numbers so produced [168] — we

can use the fact that the ns-2 PRNG functions have been demonstrated [168]

to provide a uniform distribution, coupled with the fact that averaging a ran-

dom sequence should always be the same for any random sequence to provide

confidence intervals for the steady-state averages of data within any particular

simulation, however as already stated, any confidence interval for an individual

datum within a simulation is meaningless under these deterministic conditions.

Using the control data above, taking the steady-state data from time 3.0

onwards, the average throughput is 16,148,976 bps, with a standard deviation of

119,039 over 114 samples, gives a 95% CI of just ±21,852 or 0.135% of the mean

or a a 99% CI of just ±28,718 or 0.178% of the mean. This level of confidence

is typical of the results herein and such small intervals are of no consequence in

determining the viability of this proposal.

7.1.2 Multi-Station Contention

Figure 7.2 shows the results of drtesth.tcl configured with two STAs (STA) in

contention for the single 54 Mbps wireless channel, as follows:

set val(nn) 3 ;# number of mobilenodes

set val(sc) "drtest-3-2-scen-stat" ;# scene movement file

set val(bps) 16.0 ;# cbr Mbit rate

set val(stop) 60.0 ;# simulation time

for {set i 1} {$i < $val(nn) } {incr i} {

set udp_($i) [new Agent/UDP]

$ns_ attach-agent $node_($i) $udp_($i)

set sink_($i) [new Agent/LossMonitor]

$ns_ attach-agent $node_(0) $sink_($i)

set cbr_($i) [new Application/Traffic/CBR]

$cbr_($i) set packetSize_ 2048

$cbr_($i) set interval_ [expr 0.016384/$val(bps)]

$cbr_($i) set random_ 0

$cbr_($i) attach-agent $udp_($i)
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$ns_ connect $udp_($i) $sink_($i)

$ns_ at $i "$cbr_($i) start"

}

Here, the scene movement file used, drtest-3-2-scen-stat, has two sending

nodes 10 m either side of the central node_(0) receiver, for the entire simulation,

with no movement and remaining within the 250 m radio range throughout the

simulation. Thus, the receiver can “hear” both sending nodes and each node can

hear both the receiver and the other node. The relevant settings in the scene

movement file were:

$node_(0) set X_ 175.000000000000

$node_(0) set Y_ 175.000000000000

$node_(0) set Z_ 0.000000000000

$node_(1) set X_ 165.000000000000

$node_(1) set Y_ 175.000000000000

$node_(1) set Z_ 0.000000000000

$node_(2) set X_ 185.000000000000

$node_(2) set Y_ 175.000000000000

$node_(2) set Z_ 0.000000000000

Figure 7.2: Control Data: Two Fixed Equidistant STA, all in range

Figure 7.2 shows the CBR generator of node_(1) starting at time 1.0 and

quickly achieving an average throughput of 16.01 Mbps in the first second of
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operation. This is identical to the average over the first second of operation for

the control data in Figure 7.1, at 16.01 Mbps, but due to the movement and

differing ranges, this actually involves different data making up the average.

At time 2.0, the CBR generator of node_(2) starts and node_(2) contends

with node_(1) for the channel. In the next second, node_(1) throughput drops

to 9.248 Mbps and node_(2) throughput rises to 8.702 Mbps, achieving an aver-

age combined throughput of 17.95 Mbps. For the remainder of the simulation,

node_(1) averages 9.000 Mbps throughput or 55.71% of our baseline rate and

node_(2) averages 8.985 Mbps throughput or 55.61% of our baseline rate, with

the average combined throughput being 17.98 Mbps (111.32% of the baseline),

utilising 33.31% of the nominal channel bandwith.

This simulation was then repeated with the sending nodes 150 m each side of

the node_(0) receiver, with no movement throughout the simulation. Thus, the

receiver can hear both sending nodes and each node can hear the receiver but can

not hear the other sending node. This is the so-called “hidden node” case. The

relevant settings were configured in the scene movement file, drtest-3-2-scen-dist.

$node_(0) set X_ 175.000000000000

$node_(0) set Y_ 175.000000000000

$node_(0) set Z_ 0.000000000000

$node_(1) set X_ 25.000000000000

$node_(1) set Y_ 175.000000000000

$node_(1) set Z_ 0.000000000000

$node_(2) set X_ 325.000000000000

$node_(2) set Y_ 175.000000000000

$node_(2) set Z_ 0.000000000000

Figure 7.3 shows the CBR generator of node_(1) starting at time 1.0 and again

achieving an average throughput of 16.01 Mbps in the first second of operation,

identically to the close-range scenario and the control data in Figure 7.1.

At time 2.0, the CBR generator of node_(2) starts and although unable

to hear node_(1)’s transmissions, has to contend with the flow of positive ac-

knowledgements that it does receive from node_(0) for node_(1), as well as wait

for acknowledgements for its own transmissions to ensure any distant collisions

are detected. In the next second, node_(1) throughput drops to 8.901 Mbps

and node_(2) throughput rises to 9.331 Mbps, achieving an average combined

throughput of 18.23 Mbps. For the remainder of the simulation, node_(1) aver-
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Figure 7.3: Control Data: Two Fixed Equidistant STA, hidden from each other

ages 9.213 Mbps throughput or 57.03% of our baseline rate and node_(2) averages

9.114 Mbps throughput or 56.41% of our baseline rate, with the average com-

bined throughput being 18.33 Mbps (113.44% of the baseline), utilising 33.94%

of the nominal channel bandwith.

This simulation yields slightly better results than the scenario where both

sending STAs were able to hear each other’s transmissions and indicates, for

the ns-2 simulator in this two STA and one AP case, that the impact of all

three radios being in the same physical RF collision space is greater than the

probability of having both outlying radios transmit at the same time.

The final case to be tested for the two-sending-node scenarios is where the

nodes remain hidden from each other but are not equidistant from the receiver.

This was configured with node_(1) 175 m on one side of the node_(0) receiver and

node_(2) 90 m on the other side, with no movement throughout the simulation.

Thus, the receiver can hear both sending nodes and each node can hear the

receiver but can not hear the other sending node — hidden nodes — and each

sender has a different propagation delay to the receiver. The relevant settings

were configured in the scene movement file, drtest-3-2-scen-diff.

$node_(0) set X_ 175.000000000000

$node_(0) set Y_ 175.000000000000

$node_(0) set Z_ 0.000000000000

$node_(1) set X_ 0.000000000000
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$node_(1) set Y_ 175.000000000000

$node_(1) set Z_ 0.000000000000

$node_(2) set X_ 265.000000000000

$node_(2) set Y_ 175.000000000000

$node_(2) set Z_ 0.000000000000

Figure 7.4: Control Data: Two Hidden STA, at different ranges

Figure 7.4 shows the CBR generator of node_(1) starting at time 1.0 and

once again achieving an average throughput of 16.01 Mbps in the first second of

operation, identically to the previous scenarios and the control data in Figure 7.1.

At time 2.0, the CBR generator of node_(2) starts and the two nodes now

contend for the channel. In the next second, node_(1) throughput drops to

9.298 Mbps and node_(2) throughput rises to 8.884 Mbps, achieving an aver-

age combined throughput of 18.18 Mbps. For the remainder of the simulation,

node_(1) averages 9.215 Mbps throughput or 57.04% of our baseline rate and

node_(2) averages 9.115 Mbps throughput or 56.42% of our baseline rate, with

the average combined throughput being 18.33 Mbps (113.45% of the baseline),

utilising 33.94% of the nominal channel bandwith.

This simulation yields almost identical results to the previous scenario, except

the differences in timing from the different distances of the two sending nodes

have almost entirely inverted the two throughput traces in Figure 7.4, compared

to Figure 7.3.
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7.1.3 Recording Average Throughput

These results were combined in next simulation, which recorded the average

throughput achieved by any one sending STA (out of two, in this case) in a

single trace file. While this provides little advantage over calculating the average

at each 0.5 second datum from the previous data, this tool becomes far more

useful as the number of nodes increase and saves considerable time and effort

in these cases. This was achieved by using the same scenario, including the

same scene movement file, drtest-3-2-scen-diff, as the previous simulation and

modifying the proc record {} to sum all the data received by all the sinks,

divide by the number of active nodes and record the results in a single trace file

f0, drtestk-avgbw-2tnodes.tr, as shown below.

proc record {} {

global val f0 sink_ nodecount

set ns_ [Simulator instance]

set now [$ns_ now]

set time 0.5

set bz_ 0

for {set i 1} {$i < $val(nn) } {incr i} {

set by_ [$sink_($i) set bytes_]

set bz_ [expr $bz_ + $by_]

$sink_($i) set bytes_ 0

}

puts $f0 "[expr $now] [expr $bz_/$time*8/$nodecount]"

$ns_ at [expr $now+$time] "record"

}

The results are shown in Figure 7.5.

Figure 7.5 shows the average throughput achieved by any one sending STA

(out of two, in this case) in a single trace. This was performed using the same

scenario, including the same scene movement file, drtest-3-2-scen-diff, as the

previous simulation. These data were confirmed by calculating the average at

each 0.5 second datum from the previous data in Figure 7.4 and subtracting the

result from each matching datum here. In each and every case, the difference

was zero, confirming correct operation of this averaging-simulation tool.
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Figure 7.5: Control Data: Average Throughput per Node (Two Nodes)

7.1.4 Ten Stations with Extensive Contention

The next step was to develop control data for many high-output STAs in con-

tention for the same channel. A random 11-node scene movement file, drtest-11-

10-scen, was created with the following command.

./setdest -n 11 -p 2 -M 10.0 -t 60 -x 350 -y 350 >drtest-11-10-scen

This generates nodes in random positions with random movements, many

of which would often be out of range of node_(0) at any given time, so this

was then edited to change node_(0) to the centre of the topography at position

(175.0, 175.0) and delete all movement commands for node_(0). Changing this

then renders all the General Operations Director (GOD) calculations in the scene

movement file incorrect, so these too were removed, forcing ns-2 to perform the

calculations during the simulation run itself. This reduced the scene movement

file to a list of initial positions followed by a series of node movements, within

the 350 m x 350 m field, except for node_(0) fixed in the centre at (175.0, 175.0),

as follows:

$node_(0) set X_ 175.000000000000

$node_(0) set Y_ 175.000000000000

$node_(0) set Z_ 0.000000000000

$node_(1) set X_ 24.390936066935
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$node_(1) set Y_ 184.701008393152

...

$node_(10) set X_ 172.260937209305

$node_(10) set Y_ 40.659152666131

$node_(10) set Z_ 0.000000000000

$ns_ at 2.000000000000 "$node_(1) setdest 168.636731303167 159.39774932

2404 5.207680047769"

$ns_ at 2.000000000000 "$node_(2) setdest 92.127911570856 333.556068468

993 8.753310111512"

...

$ns_ at 2.000000000000 "$node_(10) setdest 251.212047386008 113.8202844

49872 1.543441734052"

$ns_ at 28.779308260520 "$node_(2) setdest 92.127911570856 333.55606846

8993 2.000000000000"

...

$ns_ at 50.101428659031 "$node_(3) setdest 90.940332993304 3.9273908333

61 4.850487587718"

$ns_ at 52.706904395870 "$node_(1) setdest 21.452592195044 301.19891812

8008 2.000000000000"

$ns_ at 54.706904395870 "$node_(1) setdest 297.162488370388 58.89371362

8615 0.296292012005"

This scene movement file was used in drtestl.tcl, which was configured to

create 11 nodes, with CBR generators attached to UDP agents on node_(1)

through node_(10), each starting at time 5.0 ∗ nodeindex, to give five second

intervals between increasing numbers of sending nodes; and all the sinks on

node_(0), with the throughput at each sink recorded every half-second, as shown

below.

set val(nn) 11 ;# number of mobilenodes

set val(sc) "drtest-11-10-scen" ;# scene movement file

set val(bps) 16.0 ;# cbr Mbit rate

set val(stop) 60.0 ;# simulation time

for {set i 1} {$i < $val(nn) } {incr i} {

...

$ns_ attach-agent $node_($i) $udp_($i)

$ns_ attach-agent $node_(0) $sink_($i)
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...

$cbr_($i) set packetSize_ 2048

$cbr_($i) set interval_ [expr 0.016384/$val(bps)]

...

$ns_ at [expr $i*5.0] "$cbr_($i) start"

}

proc record {} {

...

for {set i 1} {$i < $val(nn) } {incr i} {

set by_($i) [$sink_($i) set bytes_]

puts $f_($i) "[expr $now] [expr $by_($i)/$time*8]"

$sink_($i) set bytes_ 0

}

...

}

The results are shown in Figure 7.6.

Figure 7.6: Control Data: Ten STA in Contention sending 16.16 Mbps each

Figure 7.6 shows the CBR generator of node_(1) starting at time 5.0 and

initially achieving an average throughput of 16.01 Mbps in the first second of

operation, identically to the previous scenarios and the control data in Figure 7.1,

consolidating to a 16.13 Mbps average throughput over the first five seconds.
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At time 10.0, the CBR generator of node_(2) starts and the two nodes now

contend for the channel. In the next five seconds node_(1) throughput drops to

8.689 Mbps and node_(2) throughput rises to 9.033 Mbps, achieving an average

combined throughput of 17.72 Mbps, equivalent to 8.861 Mbps per node.

At time 15.0, the CBR generator of node_(3) starts and the three nodes now

all contend for the channel. In the next five seconds node_(1) and node_(2)

throughput drops to 6.178 Mbps and 6.065 Mbps, respectively; and node_(3)

throughput rises to 6.240 Mbps, making an average combined throughput of

18.48 Mbps, equivalent to 6.161 Mbps per node.

At time 20.0, the node_(4) starts and node_(1) through node_(3) throughput

drops to 5.297 Mbps, 4.596 Mbps and 4.464 Mbps, respectively; and node_(4)

throughput rises to 4.460 Mbps, giving an average combined throughput of

18.82 Mbps, or 4.704 Mbps per node.

At time 25.0, the node_(5) starts and node_(1) through node_(4) drop to

4.933 Mbps, 2.501 Mbps, 3.163 Mbps and 3.335 Mbps; and node_(5) rises to

3.511 Mbps, again slightly increasing the average combined throughput, now to

19.29 Mbps, or 3.859 Mbps per node.

At time 30.0, the node_(6) starts and the average combined throughput once

again rises slightly, to 19.58 Mbps, or 3.263 Mbps per node.

At time 35.0, the node_(7) starts and now the average combined throughput

drops slightly, to 19.06 Mbps, or 2.722 Mbps per node.

At time 40.0, the node_(8) starts and the average combined throughput drops

again, to 18.92 Mbps, or 2.365 Mbps per node.

At time 45.0, the node_(9) starts and the average combined throughput picks

up slightly, to 19.18 Mbps, or 2.131 Mbps per node.

At time 50.0, the node_(10) starts and the average combined throughput falls

again, to 18.69 Mbps, or 1.869 Mbps per node.

These are summarised in the following Table 7.1.

For the remainder of the simulation, from time 51.0 to time 59.5 (18 samples),

with all ten nodes active, the comparative throughput for each node and the

whole system are summarised in Table 7.2.

Once again, the averaging-simulation tool discussed previously was applied

to this scenario, recording the average throughput achieved by any one sending

STA (out of ten, in this case) in a single trace file. This was achieved by using the

same scenario, including the same scene movement file as the previous simulation,
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Time Active Nodes Total Av. Throughput Av. Throughput per Node
5.0 1 16,130,400 16,130,400
10.0 2 17,721,932.8 8,860,966.4
15.0 3 18,482,956.8 6,160,985.6
20.0 4 18,817,145.6 4,704,286.4
25.0 5 19,293,612.8 3,858,722.56
30.0 6 19,578,169.6 3,263,028.267
35.0 7 19,055,379.2 2,722,197.029
40.0 8 18,916,409.6 2,364,551.2
45.0 9 19,177,804.8 2,130,867.2
50.0 10 18,691,411.2 1,869,141.12

Table 7.1: Average Total Combined Throughput and Average Throughput per
16.16 Mbps Node

Node Av. Throughput % MAC Rate 54 Mbps % Baseline 16.15625 Mbps

1 1,630,503.1̇ 3.019450206 10.09208889
2 1,433,813.3̇ 2.655209877 8.874666667
3 1,511,018.6̇ 2.798182716 9.352533333
4 2,229,763.5̇ 4.12919177 13.80124444
5 2,277,557.3̇ 4.217698765 14.09706667
6 1,558,812.4̇ 2.886689712 9.648355556
7 2,795,936.0 5.177659259 17.3056
8 1,246,314.6̇ 2.307990123 7.714133333
9 2,259,175.1̇ 4.183657613 13.98328889
10 1,720,576.0 3.186251852 10.6496
All 18,663,470.2̇ 34.56198189 115.5185778

Table 7.2: Average Throughputs for Ten Active 16.16 Mbps Nodes
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and modifying the proc record {} to sum all the data received by all the sinks,

divide by the number of active nodes and record the results in a single trace file.

The results are shown in Figure 7.7.

Figure 7.7: Control Data: Average per STA with 10 in Contention to AP

Figure 7.7 shows the average throughput achieved by any one sending STA

in a single trace. This was performed using the same scenario, as the previous

simulation. These data were confirmed by calculating the average at each 0.5

second datum from the previous data in Figure 7.6 and subtracting the result

from each matching datum here. In each and every case, the difference was either

exactly zero or a calculation rounding error 12 orders of magnitude smaller than

the throughput, re-confirming correct operation of this averaging-simulation tool.

7.1.5 TCP Traffic

A baseline was established for TCP traffic. The TCP option of the CMU/Rice

cbrgen.tcl tool was again used in an attempt to create a TCP traffic pattern file,

drtest-11-10-tcp-54, using the following command.

ns cbrgen.tcl -type tcp -nn 10 -seed 1.0 -mc 10 -rate 0.0 >drtest-11-10

-tcp-54

Inspection of the resulting output revealed, for the same reasons as with the

CBR generators, that this traffic pattern file was unsuitable for our purposes at
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this stage. Instead, the scenario was updated in drtestn.tcl to create and start

FTP sources transferring a 2 MB file on TCP agents to and from alternate nodes

and node_(0), as shown below.

Agent/TCP set packetSize_ 2304

for {set i 1} {$i < $val(nn) } {incr i} {

# ======================================TCP

set tcp_($i) [new Agent/TCP]

$ns_ attach-agent $node_($i) $tcp_($i)

set sink_($i) [new Agent/TCPSink]

$ns_ attach-agent $node_(0) $sink_($i)

$ns_ connect $tcp_($i) $sink_($i)

$tcp_($i) set window_ 32

$tcp_($i) set packetSize_ 512

set ftp_($i) [new Application/FTP]

$ftp_($i) attach-agent $tcp_($i)

$ns_ at [expr $i*5.0] "$ftp_($i) send 2000000"

# ======================================TCP

# Bi-Directional

incr i

# ======================================TCP

set tcp_($i) [new Agent/TCP]

$ns_ attach-agent $node_(0) $tcp_($i)

set sink_($i) [new Agent/TCPSink]

$ns_ attach-agent $node_($i) $sink_($i)

$ns_ connect $tcp_($i) $sink_($i)

$tcp_($i) set window_ 32

$tcp_($i) set packetSize_ 512

set ftp_($i) [new Application/FTP]

$ftp_($i) attach-agent $tcp_($i)

$ns_ at [expr $i*5.0] "$ftp_($i) send 2000000"

# ======================================TCP

}

Note that the TCP window size (set in packets in ns-2, not bytes) is only

read on agent instantiation or reset, so the above settings, set window_ 32, have

no effect and the default 20 packet window was applied. Conversely, the TCP
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packet size is used throughout the agent code an so the set packetSize_ 512

overrides the global set packetSize_ 2304 and the simulated packets contained

512 bytes of FTP, along with 60 bytes of TCP, IP and (extra) DSDV2 IP.

The same 11-node scene movement file, drtest-11-10-scen, from the previous

simulations was used. The results are shown in Figure 7.8.

Figure 7.8: Control Data: Bi-directional 2 MB FTP sessions

Figure 7.8 shows the FTP generator of each of ten connections, node_(1) to

node_(0), node_(0) to node_(2), node_(3) to node_(0), node_(0) to node_(4),

node_(5) to node_(0), node_(0) to node_(6), node_(7) to node_(0), node_(0)

to node_(8), node_(9) to node_(0) and node_(0) to node_(10), starting at 5.0

second intervals and delivering a 2 MB FTP payload.

The first transfer completed before the second transfer started. However the

second slightly overlapped the third, causing the third to very slightly overlap

the fourth. The fourth completed before the fifth started, and the fifth before

the sixth, but the sixth slightly overlapped the seventh, and the seventh also into

the eighth. The eighth completed before the ninth, but the ninth overlapped the

tenth slightly. The tenth finished by time 55.0.

In this case, all ten 2 MB FTP sessions completed within 50 seconds of the first

start at time 5.0, transferring 2,234,864 bytes each — a 60-byte TCP SYN plus

3,907 x 572-byte TCP data packets including headers (512-byte FTP payloads)

— within that time, at varying ranges with varying movement of nodes.

2Refer previous discussions about the ns-2 DSDV routing functions adding extra headers.
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The individual performance of each connection is summarised in the follow-

ing Table 7.3. In each case, the average steady throughput is given, discounting

overlapping or trailing time periods. The average of all ten of these steady

throughputs was 3.611 Mbps (0.4514 MBps) and the overall average through-

put, including trailing periods and between transfers, for the 50 seconds, was
2,234,864∗10∗8

50.0
= 3, 575, 782.4 bps or 3.576 Mbps or 0.4470 MBps.

Connection Time Averaged Av. Steady Throughput

1–0 5.0–9.5 3,683,278.2̇
0–2 10.0–15.0 3,468,704.0
3–0 15.5–20.0 3,678,087.1̇
0–4 20.5–24.5 3,677,960.0
5–0 25.0–29.5 3,668,024.8̇
0–6 30.0–35.0 3,505,312.0
7–0 35.5–40.0 3,584,533.3̇
0–8 40.5–44.5 3,652,792.0
9–0 45.0–50.0 3,514,464.0
0–10 50.5–54.5 3,679,104.0

All Average of the above 3,611,225.95̇

All Overall (5.0–55.0) 3,575,782.4

Table 7.3: Average TCP Throughput per node

This simulation was also executed recording the total throughput of all nodes

in a single trace. The results are shown in Figure 7.9.

Figure 7.9 shows the total throughput at any given time for all sending STAs

in a single trace. This was performed using the same scenario as the previous

simulation and gives the overall average throughput, from time 5.5 to time 55.0,

as 3,575,782.4 bps or 3.576 Mbps, identical to the previously calculated results.

7.1.6 Overlapping TCP Traffic

The previous scenario was updated in drtestp.tcl to use FTP sources transferring

a 2.6 MB files, instead of the previous 2.0 MB files, as shown below.

set val(stop) 80.0 ;# simulation time extended

...

$ns_ at [expr $i*5.0] "$ftp_($i) send 2600000"

...
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Figure 7.9: Control Data: Total TCP (FTP) throughput for all nodes

The same 11-node scene movement file with node_(0) stationary in the centre

and the other ten nodes moving, drtest-11-10-scen, from the previous simulations

was used. The results are shown in Figure 7.10.

Figure 7.10: Control Data: Bi-directional Overlapping 2.6 MB FTP sessions

Figure 7.10 shows the FTP generator of each of ten connections, 1–0, 0–2,

3–0, 0–4, 5–0, 0–6, 7–0, 0–8, 9–0 and 0–10, starting at 5.0 second intervals and

delivering a 2.6 MB payload.
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At the start of the simulation, the channel is quiet. At 0.089076526, the

node_(3) DSDV routing function broadcasts a 32-byte routing update, consisting

of a 12-byte3 DSDV route advertisement and a 20-byte IP header, to the LLC

layer for IP broadcast. In ns-2, the LLC does not add the 8-byte LLC header

to the packet, neither in size nor content. The LLC sets the MAC broadcast

address (which gets added to the packet in the MAC layer) and sends the 32-

byte packet to the MAC layer. The MAC layer adds phymib_.getHdrLen11() (

(PreambleLength + PLCPHeaderLength) / 8 + MAC header length + ETHER_FCS_LEN

= (72 + 48) / 8 + (2+2+6+6+6+6+2)4 + 4 = 15 + 30 + 4 = 49 bytes) to the

packet size, making the packet size 81 bytes for transmission. At 0.089171526,

95 µs later, the node_(3) MAC layer broadcasts it to all STA. This 95 µs delay

consists of the 25 µs LLC delay, a 50 µs DIFS (10 µs SIFS + 2 x 20 µs slot times)

and one 20 µs slot time.

Only nodes 1, 6, 4, 0, 2, 7 and 5 are in range to receive the message. From

0.089819879 to 0.089820358, the MAC layers of nodes 1, 6, 4, 0, 2, 7 and 5 receive

the message, taking, in seconds,

0.000648353,

0.000648473,

0.000648494,

0.000648509,

0.000648631,

0.000648774, and

0.000648832, respectively. These times are made up of the transmission time for

the 81-byte broadcast packet, which is always sent at the applicable basic rate

((81 * 8 = 648 bits) / 1 Mbps = 648 µs), plus the propagation time to the node

(distance / SPEED_OF_LIGHT = 0–250 / 300,000,000 = 0–833 ns).

The receiving MAC layers then pass it to their routing functions for processing

with a 25 µs link layer delay.

At 0.192938868, the node_(9) routing function sends its own advertisement

for broadcast. In this case, 655 µs elapses before the MAC layer broadcasts

the 81-byte MPDU. The 655 µs delay consists of the 25 µs LLC delay, a 50 µs

DIFS and twenty-nine 20 µs slot times, drawn randomly from the current 31-slot

3The current DSDV implementation in ns-2 actually stores route advertisements in 9 bytes
(4-byte destination, 1-byte metric and 4-byte serial) but sets the packet size as if advertisements
are 12 bytes each, using change count * 12 + IP HDR LEN.

4ns-2 structures the MAC header as FC:Du:RA:TA:3A:4A:SC, as opposed to the actual
FC:Du:RA:TA:3A:SC:4A.
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Contention Window (CW). The minimum, CWMin_, is 31 slots (0–31 slot delay)

and the maximum, as a result of backoff, CWMax_, is 1023 slots (0–1023 slot delay).

Here, only nodes 5, 4, 2, 8, 1, 10, 7 and 0 are in range to receive the message.

From 0.194241973, the MAC layers of nodes 5, 4, 2, 8, 1, 10, 7 and 0 receive the

message and pass it to their routing functions for processing, again with a 25 µs

link layer delay.

At 0.229788092, the node_(5) routing function does the same. In this case,

115 µs elapses (LLC + DIFS + 2 slot times) before the node_(5) MAC layer

broadcasts it to the nodes in range, 9, 2, 4, 8, 10, 1, 7, 0 and 3.

At 0.335913132, the node_(2) routing function repeats this process. This

time, 155 µs elapses (LLC + DIFS + 4 slot times) before the MAC layer broad-

casts it to nodes 10, 7, 0, 8, 5, 4, 1, 9, 3 and 6 (all nodes are in range of node_(2)

at this time).

At 0.353652583, node_(8)’s routing function advertises and 595 µs elapses

(LLC + DIFS + 26 slot times) before the MAC layer broadcasts it; and at

0.627071594, node_(0)’s routing sends, with 135 µs (LLC + DIFS + 3 slot times)

before the MAC layer uses the channel. node_(7) takes its turn at 0.853263746,

with a 355 µs (LLC + DIFS + 14 slot times) delay; node_(4) at 1.282705256,

with a 75 µs (LLC + DIFS + 0 slot times) delay; node_(10) at 1.616675349,

with a 295 µs (LLC + DIFS + 11 slot times) delay; node_(1) at 1.675920244,

with 315 µs (LLC + DIFS + 12 slot times); and node_(6) at 1.727182352, with

555 µs (LLC + DIFS + 24 slot times) elapsing before the MAC layer uses the

channel. The channel then quiesces again until the first of the FTP transfers.

The node_(1) starts at position (24.390936066935, 184.701008393152) and

at time 2.0 begins to move towards (168.636731303167, 159.397749322404) at

5.207680047769 ms-1.

The first transfer starts at time 5.0 with exclusive use of the channel, achieving

an average 3.683 Mbps from time 5.5 to time 9.5, identically to Figure 7.8.

At 5.000000000, the TCP agent on node_(1) sends a 40-byte5 TCP SYN for

node_(0) to the routing functions. DSDV adds another 20-byte IP header and

passes it to the LLC layer. The LLC cannot resolve the address and the ARP

functions hold the packet and generate an ARP request, passing it to the MAC

5The ns-2 TCP agent already includes both the TCP and IP headers in the packet size.
Both the DSDV and AODV wireless ad hoc routing elements also add another another 20-byte
IP header to the packet size. The DSDV routing also adds yet another 20-byte IP header every
time a packet is re-queued.
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layer after the LLC processing delay.

At time 5.000025, node_(1) should have moved 15.62317034 m to position

(39.77914228, 182.0016454), 135.4020066 m from node_(0) at (175.0, 175.0). The

MAC layer adds 49 bytes of PLCP and MAC headers to the 28-byte ARP MSDU

and ns-2 calculates transmission time, distances and propagation times at this

stage.

After a further 150 µs (DIFS + 5 slot times), the MAC broadcasts the 77-

byte ARP request to all STA. The broadcast MPDU’s are sent at 1 Mbps, taking

616 µs ((77 * 8 = 616 bits) / 1 Mbps ) to transmit and have a propagation delay

of 0–833 ns, as shown previously.

The receiving MAC layers strip off the 49 bytes of PLCP and MAC headers

and pass the 28-byte ARP MSDU to their respective LLC without delay. The

LLC layers immediately pass the ARP requests to their ARP modules. At time

5.000791451, the node_(0) ARP module processes the ARP request and returns

a unicast ARP reply to its MAC layer after an LLC processing delay.

At time 5.000816451, after the 25 µs for the LLC, node_(1) should have

moved a total of 15.62729196 m — a difference of little more than 4.12 mm —

to be only about 4.09 mm closer to node_(0). The MAC layer adds 49 bytes of

PLCP and MAC headers to the MSDU and, 95 µs (LLC + DIFS + 1 slot time)

after receiving the ARP request, transmits the reply packet.

Although the ARP request was a broadcast MPDU, sent at 1 Mbps, the

ARP reply is unicast and sent at the Data Rate of 54 Mbps. However, even for

a unicast packet, the 144-bit (long) or 72-bit (short) preamble (128-bit or 56-bit

sync and 16-bit SFD) is still always transmitted at 1 Mbps and the 48-bit PLCP

header is transmitted at 1 Mbps (long) or 2 Mbps (short). In ns-2, transmission

time is calculated using only a single rate for the entire PLCP preamble and

header, the PLCPDataRate_, which is set to ‘6.0e6’ or 1 Mbps; and then either

the basicRate_ (also 1 Mbps) is used for the remainder of management, control

or broadcast frames; or the dataRate_ (54 Mbps) is used for the remaining bits

of data frames.

The (broadcast) ARP request took 616 µs to transmit and, with the total

delay recorded in the ns-2 trace file being 0.000616451 s, demonstrated a propa-

gation delay of 451 ns. This agrees with the 451.3400221 ns calculated from the

extrapolation of the range from initial positions (135.4020066 m / 3x108 ms-1).

The ARP reply took only 129.1̇85̇ µs (120 bits / 1 Mbps + 496 bits / 54 Mbps)
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to transmit and, with the total recorded delay being 0.000129637 s, demon-

strated a propagation delay of 451.8148145 ns, within half a nanosecond6 of the

451.3263853 ns calculated from the extrapolation of the range from initial posi-

tions (135.3979156 m / 3x108 ms-1). Note that the trace file records no digits

past whole nanoseconds here.

After waiting a 10 µs SIFS, the node_(1) MAC layer sends an 802.11 MAC-

layer ACK to node_(0), taking 232 µs to transmit. Meanwhile node_(1) updates

its ARP tables and sends the waiting TCP SYN to the MAC layer after 25 µs of

LLC processing. As the medium is not idle, the ns-2 MAC “defers” transmission

by using the its “back-off” timer7 in a paused state, waiting for the medium to

become idle.

The MAC-layer ACK takes 232 µs to transmit and a further 451.326 ns

for the last bit to reach node_(0). This gives a total round-trip time from

node_(0) starting to transmit the ARP reply of 129.1̇85̇ µs + 451.340 ns +

10 µs + 232 µs + 451.326 ns = 372.088 µs, well within the txtime(pktTx_) +

DSSS_MaxPropagationDelay + getSIFS() + txtime(getACKlen(), basicRate_) +

DSSS_MaxPropagationDelay = 129.1̇85̇ µs + 2 µs + 10 µs + 232 µs + 2 µs =

375.1̇85̇ µs time-out before a retransmit is scheduled.

After the MAC-layer ACK has been transmitted, the node_(1) MAC layer

then waits a further 310 µs (DIFS + 13 slot times), then sends the waiting SYN

to node_(0).

On receiving the TCP SYN, node_(0) waits a SIFS and then sends a MAC-

layer ACK to node_(1).

It takes 25 µs through LLC for the SYN to get to the node_(0) transport

layer. The TCP agent generates the transport-layer SYN-ACK and passes it

to the routing functions, which in turn pass the routed segment to the LLC,

which hands it on to the MAC layer after a further 25 µs. However, once again,

the node is still transmitting the MAC-layer ACK and the MAC waits for the

transmission to finish — a SIFS plus 232 µs after the TCP SYN was received —

then defers a further DIFS plus 11 slot times, before transmitting the transport-

layer SYN-ACK.

6The 0.4884292 ns difference represents the 11th-least-significant digit in the calcula-
tion, demonstrating a discrepancy of 0.0000000004884292 s in 5.000886451 s or a fraction
of 9.77x10-11, most likely due to rounding the least significant digit recorded in the trace file.

7This is a “defer” operation, but the back-off timer is used because it pauses while the
medium is busy, whereas the defer timer in ns-2 does not. By default, the defer timer in ns-2
is now only used to wait a SIFS before an ACK or CTS.
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Also during this time, node_(1) finishes receiving the MAC-layer ACK before

its retransmit time-out expires.

On receiving the TCP SYN-ACK, node_(1) sends a MAC-layer ACK to

node_(0), after waiting a 10 µs SIFS. After 25 µs (LLC) the SYN-ACK is

received at the transport layer. The TCP agent piggybacks the transport-layer

ACK to the first 512-byte data payload, packet 13 in this simulation8, with TCP

sequence 1, along with 40-bytes of TCP and IP headers and passes it to the

routing functions, which add an extra 20-byte IP header and pass the routed

segment to the LLC, while the TCP agent prepares a second 552-byte segment,

packet 14, TCP sequence 2, and also passes this one on to the routing functions,

which add the extra 20-byte IP header and pass it on to the LLC. There are

now queued packets at the LLC.

The (now 572-byte) packet 13 is handed on to the MAC layer after a further

25 µs in the LLC sub-layer. Another 49 bytes of MAC and PLCP headers are

added to the packet, making it 621 bytes in total. Again, the node is still

transmitting the MAC-layer ACK and the MAC waits for the transmission to

finish and then defers a further DIFS plus 10 slot times, before transmitting the

621-byte packet. In ns-2, the 120 bits of preamble and PLCP takes 120 µs to

transmit, while the remaining 4,848 bits take only 89.7̇ µs to transmit.

Along with the current 451 ns propagation delay, node_(0) finishes receiving

the packet 0.000210229 s later, waits a SIFS and sends the return MAC-layer

ACK to node_(1). After the LLC delay, the node_(0) TCP receives packet 13

and sends an empty transport-layer TCP ACK, packet 15, for TCP sequence 1,

back to the LLC. After another LLC delay, the TCP ACK is received by the

MAC layer, which waits for the MAC ACK transmission to finish and then defers

a further DIFS plus 4 slot times, before transmitting the TCP ACK.

When the empty TCP ACK, packet 15, is received by node_(1), the node

waits a SIFS and returns a MAC ACK to node_(0). The TCP agent receives the

sequence 1 ACK and prepares the sequence 3 segment as packet 16 and sequence

4 as packet 17, passing them to the routing functions. Meanwhile, after sending

the MAC ACK to node_(0), node_(1) waits a further DIFS and 10 slot times

and sends the queued packet 14 (TCP data seq 2) to node_(0).

This pattern continues for some time. Every packet received by a node,

causes it to wait a SIFS and then send a return MAC ACK. This takes 242 µs

8The MAC-layer ACKs are not assigned packet numbers in ns-2, however all route, discovery
and other control or management packets are.
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to complete. Meanwhile, the node processes the received packet and has another

transport packet ready to send within 50 µs, but must wait while the MAC ACK

is being transmitted.

Every time node_(0) receives a TCP data segment, it queues an empty TCP

ACK within 50 µs, but must wait another 192 µs for the MAC ACK to fin-

ish transmitting, plus a 50 µs DIFS, plus a random number of 20 µs slot times

from the contention window, before it can begin to transmit the TCP ACK,

which then takes a further 133.9̇25̇ µs in this implementation, plus approxi-

mately 451 ns to propagate in this instance. Thus, every TCP data packet takes

between 426.377 µs and 1,046.377 µs to acknowledge in perfect conditions, with

no collisions.

For every TCP ACK received by node_(1), at this stage, the TCP agent

expands the TCP window and prepares two more TCP data packets. However

the queued data packets must also wait 242 µs after every packet received for the

MAC ACK to finish transmitting, plus a 50 µs DIFS, plus a random number of

20 µs slot times from the contention window, before it can begin to transmit the

next TCP packet, which then takes a further 209.7̇ µs plus approximately 451 ns

to propagate, in this case. This gives between 502.229 µs and 1,122.229 µs to

send a queued TCP data packet in perfect conditions, with no collisions. Thus,

the round-trip time to send and acknowledge a queued TCP data packet in

this implementation is between 928.606 µs and 2,168.606 µs. The 572-byte data

segment itself takes only 84.7̇40̇ µs to transmit.

Thus, the theoretical average throughput (MSDUs) in these circumstances is

84.7̇40̇ / 1548.606 = 5.472% or 4,576 bits / 1548.606 µs = 2.955 Mbps. However,

our simulations give better results, above 3.615 Mbps to 3.826 Mbps.

As this exchange continues, sometimes the contention backoff selected by

node_(0) is longer than the MAC ACK propagation time and the contention

backoff selected by node_(1). In this case, node_(1) transmits a second queued

packet before node_(0) can send the TCP ACK. This also results in queued

TCP ACK packets at node_(0). Conversely, sometimes node_(0) will transmit a

second queued TCP ACK before node_(1) can send another queued TCP data

packet.

When node_(1) sends two data packets in series, it takes 242 µs after the

previous packet received for the MAC ACK to finish transmitting, plus a 50 µs

DIFS, plus a random number of 20 µs slot times from the contention window,
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plus 209.7̇ µs to transmit the first TCP packet, plus approximately 451 ns to

propagate, plus a 10 µs SIFS, plus 232.451 µs to return the MAC ACK, plus

a 50 µs DIFS, plus a random number of 20 µs slot times from the contention

window, plus 209.7̇ µs to transmit the second TCP packet, which then takes a

further 451 ns to propagate, in this case. This gives between 1,004.909 µs and

2,244.909 µs to send two queued TCP data packets with no collisions.

Similarly, when node_(0) sends two TCP ACK packets in series, it takes

242 µs after the previous packet received for the MAC ACK to finish transmitting,

plus a 50 µs DIFS, plus a random number of 20 µs slot times from the contention

window, plus 133.9̇25̇ µs to transmit the first TCP ACK, plus approximately

451 ns to propagate, plus 242.451 µs to return the MAC ACK, plus a 50 µs

DIFS, plus a random number of 20 µs slot times from the contention window,

plus 133.9̇25̇ µs to transmit the second TCP ACK, which then takes a further

451 ns to propagate. This gives between 853.205 µs and 2,093.205 µs to send two

queued TCP ACK packets, again with no collisions.

The round-trip time to send and acknowledge two queued TCP data packets

in this case is between 1,858.113 µs and 4,338.113 µs, or an average 1,549.057 µs

per 572-byte segment. This produces a throughput of 2.954 Mbps, almost iden-

tical to the single-data-ACK exchange, marginally reduced due to the extra two

small propagation delays.

Occasionally, a node may be able to transmit three or more packets, before

the other selects a shorter slot position — but again these combinations make

little difference to the throughput and only serve to reduce it slightly due to

the node waiting for the extra propagation delays in receiving the MAC ACKs

(ACK+tcp—ACK—tcp—ACK+ack—ACK—ack) — as opposed to transmit-

ting a MAC ACK (one less propagation delay) in single-data-packet exchanges

(ACK+tcp—ACK+ack—ACK+tcp—ACK+ack).

In all possible combinations, our simulations give better results, 3.615 Mbps

to 3.826 Mbps, compared to the theoretical values, at best 2.955 Mbps.

During these calculations, it was noticed the slot times were rarely over half

of the contention window. Only 44 of the first 256 packets had slot times greater

than 15 slots. The average number of slot times for the first 256 packets was just

8.105 slots, from a 31-slot contention window.

An average 8.105 slots produces a round-trip time to send and acknowledge

a queued TCP data packet of 928.606 µs plus 8.105 * 20 µs = 1,090.706 µs
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and a throughput of 84.7̇40̇ / 1090.706 = 7.769% or 4,576 bits / 1,090.706 µs =

4.195 Mbps. This is well above the simulation results, but may support some

skewing of the results if this initial trend were not to become completely uniform

over time.

While this is not a sufficiently large sample to interpolate the actual average

slot time used, it demonstrated that the pseudo random number generator, or its

use in these functions, was a likely candidate to affect the simulated throughput.

The MAC Backoff Timer was investigated more closely.

The ns-2 MAC Backoff Timer uses Random::random() % cw. Using modulo

functions to derive random numbers often attracts criticism, since the modulo

approach only uses the low order bits from the PRNG and may not be as uniform

as using the high order bits in some implementations. This is not an issue for

modern Linux implementations, as provided in the Linux manual:

The versions of rand() and srand() in the Linux C Library use the

same random number generator as random() and srandom(), so the

lower-order bits should be as random as the higher-order bits. How-

ever, on older rand() implementations, and on current implementa-

tions on different systems, the lower-order bits are much less random

than the higher-order bits. Do not use this function in applications

intended to be portable when good randomness is needed. [169]

This reference also recommends using floating point arithmetic, of the form

(int)(cw * (rand() / (RAND_MAX + 1.0))), in order to utilise the high order

bits.

This is not the problem in ns-2, as the simulator uses its own PRNGs from the

Random class in the ~ns2/tools/rng.h and ~ns2/tools/rng.cc files, which do claim

to produce a uniform distribution. The problem was indicated, not so much by

the very low initial average, as by the low initial range. The slot times used for

the first 256 packets, ranged from 0 to 29 from a 31-slot contention window.

Confusion over the DCF Backoff Interval

The IEEE 802.11 DCF backoff is a pseudorandom integral number of slots drawn

from a uniform distribution over the interval [0,CW].

However, numerous peer-reviewed academic works [170–173] on the DCF and

various alternate backoff schemes state the pseudorandom number of slots is
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drawn from a uniform distribution over the interval [0,CW-1], or often “[0,w-1],

where w is the contention window” [170, 171], or similar descriptions to that

effect, but still cite the minimum and maximum contention window sizes as per

the standard, appropriate for an interval of [0,CW].

This error is being perpetuated throughout the current literature, apparently

as authors rely on this existing literature without referring to the standards.

Every version of the IEEE Std 802.11 known to this author [5,9,122,174,175]

states that the Backoff Time consists of a “pseudorandom integer drawn from a

uniform distribution over the interval [0,CW]” [5] times the SlotTime value. The

interval is inclusive as indicated by the closed square brackets — using neither

a parenthesis, ‘[0,CW)’, nor the ISO notation of an outwards pointing bracket,

‘[0,CW[’, to indicate exclusion of the endpoint — and provides the minimum

contention window sizes as 15, 31 and 63 slots for each of the FHSS, DSSS and

IR PHY, respectively and the maximum contention window size as 1023 slots for

all three.

However, the ns-2 MAC Backoff Timer’s Random::random() % cw only pro-

vides the interval [0,CW-1], for these same window sizes — the minimum 31 slots

in the simulations here. This is an error in ns-2 and the function should at least

be Random::random() % (cw + 1) to provide the complete interval [0,CW].

As stated above, this error also appears frequently in the current literature.

In general, these works [170–173, 176] reference the IEEE Std 802.11, but most,

notably, have also utilised the ns-2 simulator. However the ns-2 implementa-

tion does not appear to be the source of this misdirection, but simply another

symptom of the underlying issue.

In general, the older works from around 1997, almost always use the interval

“[0,w-1]”, where “w is the contention window”, in particular Bianchi [177] states

this and then offers the “values CWmin and CWmax reported in the final version of

the standard [cites a 1997 version] are PHY-specific and are summarised in Table

I” [177, p. 536], which gives the various CWmin as 16, 32, and 64, for FHSS, DSSS

and IR, respectively and CWmax as 1024 for each.

The recorded 1997 version of the standard [5] currently available from IEEE,

states the random integer for DCF backoff is drawn from “a uniform distribution

over the interval [0,CW]9, where CW is an integer within the range of values of the

MIB attributes aCWmin and aCWmax, aCWmin≤CW≤aCWmax” [5, p. 76] and provides

9Note that this is for DCF backoff — the PCF uses the range from 1 to aCWmin.
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aCWmin as 15, 31 and 63, for FHSS, DSSS and IR, respectively and aCWmax as

1023 for each [5, pp. 218, 223, 237 and 272]. Clearly both descriptions produce

the same intervals and it would appear that what Bianchi refers to pre-dates the

actual 1997 version of the standard as it is now recorded.

This transition is well covered by Wu [178], who uses “a uniform distribution

over the interval [0,CW]”, but also describes:

“The back-off time is uniformly chosen in the range (0, w-1). Also

(w-1) is known as Contention Window(CW), which is an integer with

the range determined by the PHY characteristics CWmin and CWmax.”

It is this fact that CW replaces w-1, with the standardised minimums of 15, 31

and 63, instead of 16, 32 and 64, that has been omitted by many authors.

Thus, new works relying on these older works may contain a mixture of pre-

and post-standard descriptions, such as [171] which uses [0,w-1] on the first

page and [0,CW] on the second page — in both cases referring to the standard

IEEE 802.11 DCF. This should not be confused with other works, such as [179],

describing new paradigms, who as a matter of design, use both [0,CWi] and

[0,CWi-1] in their proposed algorithms, depending on whether they are increas-

ing or decreasing their current window.

While works, such as [177, 180], using the [0,w-1], with CWmin and CWmax as

powers of 2, still produce the correct intervals, others, such as [170–173, 176],

using this interval with the standard CWmin and CWmax as powers of 2 minus 1 are

therefore incorrect.

The ns-2 DCF Backoff Interval

The ns-2 implementation falls into this category, drawing a random number

backoff slots from the incorrect interval [0,CW-1], combined with the standard-

ised values CWmin_ = 31 and CWmax_ = 1023.

Even with a uniform distribution, this reduced interval reduces the average

number of slot times to 15, giving 928.606 µs plus 15 * 20 µs = 1,228.606 µs and a

best-case throughput (single-data-ack exchanges) of 84.7̇40̇ / 1228.606 = 6.897%

or 4,576 bits / 1,228.606 µs = 3.7245 Mbps, as supported by our simulation

results.

In this case, where the node is now transferring a larger FTP payload, the

average over the first 5 seconds, from time 5.5 to 10.0 is now 3.678 Mbps, which
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is more than the previous 3.576 Mbps, where the FTP session completed before

time 10.0.

At time 10.0, the second transfer, outbound from node_(0) to node_(2),

starts, but must contend with the transfer still being received by node_(0) from

node_(1). The TCP agent on node_(0) sends a SYN (packet 8060) for node_(2)

at precisely 10.000000000 and the DSDV routing protocol adds its 20-byte header

and passes it to the LLC sub-layer. The LLC cannot resolve the address and

the ARP functions hold the packet and generate an ARP request, passing it to

the MAC layer after the 25 µs LLC processing delay, where it is queued behind

23 waiting TCP ACKs — packets 8016, 8020–8022, 8025–8027, 8029–8031, 8033,

8035, 8037, 8039, 8042–8044, 8047, 8048, 8050, 8055, 8058 and 8059, for segments

3997–4019.

Over the next 28 ms, node_(0) receives a further 23 packets (seq 4020–4042)

from node_(1), queues 23 more TCP ACKs (seq 4020–4042) and sends the 23

waiting TCP ACKs (seq 3997–4019) to node_(1), before it can broadcast the

ARP request to locate node_(2) at 10.02873176.

node_(2) is just 208 ns away and is the first to receive the 616 µs ARP request,

which is passed to the ARP module. The ARP module processes the ARP request

and returns a unicast ARP reply to its MAC layer after an LLC processing delay.

The node_(2) MAC chooses a large number of slot times from the CW, while

the node_(1) MAC chooses just seven slot times for its next queued packet and

transmits packet 8086 (seq 4043) for node_(0) before node_(2) can send the ARP

reply.

node_(2) sees the node_(1) transmission less than a microsecond later and

pauses its backoff timer, calculating the number of whole idle-slots as ((current-

time - (start-time + DIFS)) / SlotTime) truncating any fraction to the previous

whole integer; and then decrementing the time remaining (rtime) by the prod-

uct of idle-slots and SlotTime. After node_(2) successfully receives packet 8086

(node_(1) to node_(0)), it sets the NAV from the packet Duration field (set to

the time to transmit a MAC ACK plus a SIFS).

The backoff timer remains paused while the MAC is not idle, with either

physical carrier sense (transmitting or receiving) or virtual carrier sense (non-

zero NAV).

Before the NAV expires and the backoff timer resumes, node_(2) begins re-

ceiving the MAC ACK from node_(0) to node_(1). On completion of receiving
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the MAC ACK, node_(2) updates its NAV with the MAC ACK duration, al-

ways set to zero, and so resumes the backoff timer after a DIFS, setting the time

remaining as (rtime + DIFS).

This process is repeated twice more as node_(1) sends another TCP data

packet and node_(0) is also able to send a TCP ACK, both packets with their

respective MAC ACK replies, before the node_(2) backoff timer finally expires

and the ARP reply is sent to node_(0) 2,697.465 µs after the request.

The TCP SYN from node_(0) for node_(2) is addressed and queued behind

the 24 waiting TCP ACKs (seq 4021–4044) for node_(1) on node_(0).

After node_(1) begins to send its MAC ACK at 10.03112707, the last bit

is sent 232 µs later at 10.03135907 and node_(1) waits a DIFS before an 11-

slot contention backoff to send the next TCP data packet. The DIFS expires

at 10.03140907 and the first 20 µs slot expires at 10.03142907 and node_(1)

enters its second 20 µs slot. However, 159 ns later (the current propagation time

from node_(1) to node_(2)10), at 10.03142923, node_(2) begins to transmit its

ARP reply. This takes 159 ns to reach node_(1), which pauses its backoff timer,

calculating only one whole idle-slot as having expired. The ARP reply takes

129.1851852 µs to receive and node_(2) then waits the NAV from the packet

duration (SIFS plus time to transmit a MAC ACK).

Before this expires, node_(2) sees the actual MAC ACK sent at 10.03156862

from node_(0), 365 ns after it starts, and continues to pause its backoff timer.

The MAC ACK takes a further 232 µs to receive and node_(1) then resets its

NAV to zero, waits a DIFS and transmits the next packet after the remaining

10 slot times expire.

At 10.06436563, node_(0) has sent 24 more TCP ACKs up to seq 4044, but

has also received 27 TCP data packets and queued TCP ACKs for seq 4045–4071,

before it sends the TCP SYN and node_(2) prepares the SYN ACK. node_(0)

sends TCP ACK 4045 to node_(1), occupying the channel until node_(1) returns

the MAC ACK to node_(0).

Both node_(2) and node_(0) choose ten slots from the CW to transmit their

queued packets. However, node_(1) is much closer to node_(2) than node_(0).

So node_(2) sees the end of the node_(1) transmission 206 ns before node_(0)

does. Both nodes wait a DIFS and 10 slots from the time they received the last

bit of the node_(1) transmission. At 10.06541842, node_(2) begins to transmit

10Propagation time determined from the 159 ns difference in the trace file between node (1)’s
slots (from the end of its ACK + DIFS) and node (2)’s transmission.
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the SYN ACK to node_(0), taking 208 ns to propagate to node_(0). However,

only 206 ns later, at 10.06541862, node_(0) begins to transmit another TCP

ACK to node_(1).

Just 2 ns after node_(0) begins to transmit the TCP ACK, it begins to receive

the SYN ACK from node_(2), however ns-2 fails to act on the error condition

at node_(0) and the SYN ACK is processed. A MAC ACK is prepared, but the

MAC is still waiting for a incoming MAC ACK response from node_(1) and the

outgoing MAC ACK is delayed.

Meanwhile, node_(1) detects both packets and drops the incoming TCP ACK

as a collision without acknowledgement. Eventually, node_(0) times out to re-

transmit the TCP ACK and now sends the delayed MAC ACK for its incorrectly

received SYN ACK. However, node_(2) has already timed-out to retransmit the

SYN ACK and drops this late acknowledgement as stale.

Soon after, node_(0) successfully retransmits the TCP ACK and, after many

more packets transfer between node_(1) and node_(0), eventually node_(2) re-

sends the SYN ACK, which node_(0) acknowledges again and this time drops as

a duplicate.

Thus, besides the exacerbation of a collision during the initial TCP hand-

shake, the second transfer has a very slow start as every packet from node_(0)

gets queued behind 23–27 TCP ACKs for node_(1) that also contend with, on av-

erage, the same number of TCP data packets coming from node_(1) to node_(0).

However, this roughly one-in-fifty window improves dramatically as the trans-

fer gets under way and the TCP window expands on node_(0). With every

TCP ACK received, node_(0) queues two more data packets, roughly doubling

the transmit rate, as shown in Table 7.4, until the 20 packet ns-2 default TCP

window is filled, finally achieving roughly one quarter of the channel utilisation.

Although node_(0) has equal probability of getting the channel when contending

with node_(1), it is also sending TCP ACKs for node_(1), as well as the TCP

data for node_(2).

Simultaneous Transmission Between Two Nodes

At time 10.229390899, a race condition presents in the simulation (although no

race condition actually occurs in the deterministic execution of the simulator),

as both node_(0) and node_(2) choose the same slot to send packets to each

other and again the error in ns-2 allows both to process the received packets,
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Seq# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Pkts 52 47 3 56 2 5 3 53 2 7 4 5 1 6 1
Seq# 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Pkts 48 2 7 3/6 4 4 1 3 8 1 3 1 1 5 1

Table 7.4: Delay to Transmit TCP Data from node (0) to node (2)

even though each was transmitting at the same time, realistically destroying any

received data.

Set-up of the Race Condition

At time 10.228848899±,11 node_(0) begins to send the first bit of a 29-byte

(232-bit) MAC ACK to node_(1), in response to the last packet it received from

node_(1).

The propagation delay is calculated, with 52 bits of precision, for every node

in range of node_(0) and a receive event is scheduled for every node at the

appropriate time for that particular node. In this case, node_(2) is approximately

208 ns away and at 10.228849107 it will begin to receive the MAC ACK intended

for node_(1).

The MAC ACK is a control packet sent at 1 Mbps and takes 232 µs (232,000 ns)

to transmit.

At 10.229080899, when the last bit is transmitted, node_(0) selects a DIFS

plus 13 slots to backoff to transmit the next queued packet, TCP data seq 18 to

node_(2), and sets its backoff timer with 310 µs, to expire at 10.229390899.

At precisely the propagation time after the last bit is transmitted (approxi-

mately 208 ns), at 10.228849107, node_(2) begins to receive the first bit of the

MAC ACK transmitted by node_(0). At 10.229081107, when the last bit is re-

ceived, node_(2) selects a DIFS plus 13 slots to backoff to transmit the next

queued packet, TCP ACK seq 17 to node_(0), and sets its backoff timer with

310 µs, to expire at 10.229391107.

At time 10.229390899, node_(0)’s backoff timer expires and it begins to send

TCP data seq 18 to node_(2). Again, propagation delay is calculated, with

11Although the ns-2 scheduler uses doubles with 52 bits of mantissa, the trace file only
displays time to nine decimal places (nano-seconds) and so any calculations shown here are
only accurate to whole nanoseconds.
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52 bits of precision, for every node in range of node_(0) and a receive event is

scheduled for every node at the appropriate time for that particular node. Now

node_(2) is scheduled to begin to receive TCP data seq 18 at exactly the same

time it is already scheduled to transmit TCP ACK seq 17, at 10.229391107.

The Deterministic Simulation

The ns-2 scheduler used here is a linked list of events. Where multiple events

are scheduled at the same time, the ns-2 scheduler always executes events in the

same order they were scheduled.

Thus, the transmit, scheduled after node_(2) saw node_(0)’s MAC ACK, will

always execute before the receive, scheduled after node_(0) began sending the

following packet.

At 10.229391107, node_(2) begins to transmit TCP ACK seq 17, setting

tx_state_ = MAC_SEND and tx_active_ = 1, to node_(0), which is actively trans-

mitting TCP data seq 18 to node_(2). At the same time, having already set its

transmit state, it begins receiving TCP data seq 18, setting rx_state_ = MAC_RECV.

It takes node_(2) 133.9̇25̇ µs to transmit TCP ACK seq 17, after which it

sets its tx_active_ = 0, but leaves tx_state_ = MAC_SEND while waiting for a

2 µs maximum propagation delay, a SIFS, a return MAC ACK and a second 2 µs

maximum propagation delay; and is still receiving the TCP data seq 18.

At 10.229525241, node_(0) finishes receiving TCP ACK seq 17 and processes

it, but cannot send a MAC ACK while it is still transmitting TCP data seq 18.

At 10.229600677, node_(0) finishes transmitting TCP data seq 18, and begins

to wait for a 2 µs maximum propagation delay, a SIFS, a return MAC ACK and

a second 2 µs maximum propagation delay.

At 10.229600885, node_(0) finishes receiving TCP data seq 18 and processes

it, but cannot send a MAC ACK while it is still tx_state_ = MAC_SEND, waiting

for the MAC ACK from node_(2).

At 10.229771033 (10.229391107 + 133.9̇25̇ µs + 2 µs + 10 µs + 232 µs +

2 µs), node_(2) times-out sets to retransmit TCP ACK seq 17, waits a SIFS

and begins to send its late MAC ACK to node_(0) at 10.229781033, once again

taking 208 ns to propagate to node_(0) and 232 µs to receive the 232 bits at

1 Mbps.

Only 75.644 µs later, at 10.229846677, 10.229600677 + 246 µs, node_(0)

times-out to retransmit TCP data seq 18. The IEEE 802.11 protocols do not
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check carrier-sense when sending the MAC ACK, so node_(0) waits a SIFS and

sends its late MAC ACK to node_(2) at 10.229856677, destroying the incom-

ing (also late) MAC ACK from node_(2). At 10.230088885, 232.208 µs later,

node_(2) finishes receiving the late MAC ACK and drops it as stale.

Next node_(2) retransmits the unacknowledged TCP ACK seq 17, which

node_(0) acknowledges and drops as a duplicate; and node_(0) retransmits the

unacknowledged TCP data seq 18, which node_(2) acknowledges and drops as a

duplicate.

As the number of contending nodes increases, the potential and likelihood

of these and similar collisions also increases, wasting bandwidth and increasing

individual contention windows, reducing the overall throughput. However, as

the number of contending nodes increases, the probability of all nodes choosing

a long contention backoff, at any given time, from their individual contention

windows, decreases; and the probability of at least one node choosing a very short

contention backoff increases; resulting in shorter contention backoffs, increasing

the overall throughput.

Thus, increasing the number of nodes increases the overall channel through-

put, even though the throughput of individual nodes deceases — up to the point

at which the time lost to collisions exceeds the time gained by shorter contention

backoffs.

Recurring Patterns in the Remainder of the Simulation

This same pattern of slow-start, slowly rising to a steady shared channel utilisa-

tion is repeated for every new transfer initiating from the already-fully-queued

AP. The first data packet for node_(4) is not successfully transferred until over

3 seconds after the FTP session initiates.

Conversely, each new transfer from another node to the AP does not suffer the

same severity of this slow start, as there is no existing queue on the sending node

— although enlargement of the TCP window does require waiting for queued

TCP ACKs from the AP.

Initially, the first node is able to effect almost three quarters of the total

throughput, effectively having to contend only with the AP for the channel and

the AP has to send all the TCP ACKs from the first transfer, as well as any TCP

data for the second transfer. However, as the simulation progresses, and the AP

has multiple concurrent transfers, the node transferring data to the AP is more
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and more likely to have to contend with one of the other nodes returning TCP

ACKs to the AP and this advantage reduces to two thirds of the total transfer

rate — still considerably more than the sum of all the transfers outbound from

the AP, which equally share the remaining one third of the throughput.

Table 7.5 provides a graphic of the proportion of the total throughput achieved

by each of the transfers at various stages throughout the simulation.

Time 1–0 0–2 3–0 0–4 5–0 0–6 7–0 0–8 9–0 0–10
10.5–11.5 74% 26%
15.5–23 28% 72%
23.5–24 19% 71% 10%
25.5–30 29% 71%
30.5–34 16% 69% 14%
34.5–35 50% 50%
35.5–40 19% 12% 69%
40.5–45.5 9% 13% 68% 10%
45.5–50 12% 12% 11% 66%
50.5–55 9% 8% 8% 66% 10%
55.5–56.5 18% 39% 22% 21%
57–64.5 32% 30% 37%
65–69.5 43% 57%

Table 7.5: Proportion of the Channel Throughput for each Transfer

In this case, the ten 2.6 MB FTP sessions take 65 seconds complete, trans-

ferring 2,905,248 bytes each — a 60-byte TCP SYN plus 5,079 * 572-byte TCP

data packets (2,905,820 bytes for node_(4), with an extra 572-byte packet).

The individual performance of each connection is summarised in the following

Table 7.6. For every connection, the average steady throughput of the previous

non-overlapping TCP simulation is compared against the average throughput

in this overlapping TCP simulation for the same periods, then the best average

steady throughput for the connection in this overlapping simulation is given, dis-

counting as many as possible overlapping or trailing time periods. The average of

all ten of these best average steady throughputs was 2.569 Mbps (0.3211 MBps),

down from the 3.611 Mbps (0.4514 MBps) of the non-overlapping simulation,

however the overall average throughput, was 29,053,052∗8
65.0

= 3, 575, 760.2 bps or

3.576 Mbps or 0.4470 MBps, the same as the non-overlapping simulation.

This simulation was also executed recording the total throughput of all nodes

in a single trace. The results are shown in Figure 7.11.
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Link Previous Time Non-overlap Overlapping Steady-state Throughput

1–0 5.0–9.5 3,683,278.2̇ 3,683,278.2̇ 5.0–10.0 3,678,284.8
0–2 10.0–15.0 3,468,704.0 2,541,606.4 12.0–15.0 3,460,981.3̇
3–0 15.5–20.0 3,678,087.1̇ 2,588,999.1̇ 15.5–23.0 2,594,897.1
0–4 20.5–24.5 3,677,960.0 168,288.0 24.5–25.0 3,102,528.0
5–0 25.0–29.5 3,668,024.8̇ 2,450,808.8̇ 25.5–30.0 2,591,032.8̇
0–6 30.0–35.0 3,505,312.0 678,259.2 34.5–35.0 1,812,096.0
7–0 35.5–40.0 3,584,533.3̇ 2,493,411.5̇ 36.0–40.0 2,535,104.0
0–8 40.5–44.5 3,652,792.0 367,224.0 65.0–69.5 1,534,485.3̇
9–0 45.0–50.0 3,514,464.0 2,231,353.6 45.5–50.0 2,355,114.6̇
0–10 50.5–54.5 3,679,104.0 351,208.0 65.0–69.5 2,025,642.6̇

All Avg above 3,611,225.95̇ 1,755,443.7 Avg above 2,569,016.7

All All (5.0–55.0) 3,575,782.4 All (5.0–70.0) 3,575,760.2

Table 7.6: Comparing Non-overlapping and Overlapping TCP Throughput

Figure 7.11: Control Data: Total TCP throughput (Overlapping FTP) all nodes
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Figure 7.11 shows the total throughput at any given time for all sending

STAs in a single trace. This was performed using the same scenario, as the

previous simulation and gives the overall average throughput, for the 65 seconds,

as 3,575,760.2 bps or 3.576 Mbps, identical to the previously calculated results

and again the same as the non-overlapping simulation.

7.2 Testing the Proposals

With the control data now established and thoroughly analysed in its own right,

the author then modified the ns-2 simulator to implement the proposals. The

various approaches to testing new protocols are now discussed and the chosen

approach is then detailed.

7.2.1 Adding New Protocols to ns-2

The accepted method for modifying or developing new agents and protocols

within the ns-2 simulator, was to modify the original source code, or to copy

components of the source code into new files and then modifying the new files as

additions to the original source. This was then inserted into the ns-2 source tree

and the entire tree recompiled to produce a new simulator executable containing

the altered or additional functionality.

In this manner, developing new protocols could be considerably time-consuming

and resource-hungry, particularly where a series of tests and modifications were

required in the normal course of the development cycle. As such, development of

new protocols for the simulator could be a somewhat slow and tedious process,

interspersed with frequent breaks while the source tree was compiled.

Moreover, where such modifications prove popular and require distribution,

these would then need to be distributed either as patches to a particular revision

of the source code, or as an entire special revision of the source distribution

itself. Persons wishing to use these modifications, would at a minimum need

to download the appropriate patch for their ns-2 revision, patch the source and

then recompile it. At worst, it may be necessary to download an entire special

ns-2 distribution to achieve their goals.
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7.2.2 Dynamic Modules in ns-2

Federico Maguolo and Nicola Baldo from the Special Interest Group on NET-

working (SIGNET) in the Department of Information Engineering at the Uni-

versity of Padova designed and developed patches for ns-2 to utilise the ability

to load dynamic libraries in Tcl as a way of developing extensions to ns-2.

Maguolo’s patches to allow dynamically loadable libraries considerably speeds

development time for ns-2 experiments. New agents and new protocols can be

developed on the fly without the need to modify the simulator source code, nor

to recompile the entire simulator. Using these patches, the dynamic libraries are

developed as independent modules and are loaded as part of the simulation at

the time, rather than having to be a permanent part of the simulator itself.

This also provides a vector for the distribution of the popular extensions, as

such dynamically loadable libraries can be sourced and loaded at simulation time

by those who desire to use them. Furthermore, such modifications will not affect

the compatibility of the core simulator program.

Maguolo’s patches modified the core ns-2 simulator to allow the dynamic

extension of the declared types within the various headers, thus allowing any

additional modules to provide definitions of new types of agents, protocols and

so forth. Maguolo’s patches were developed for ns-2.29 and ns-2.31 and were

incorporated into the codebase of ns-2.33.

The dynamically loadable libraries were tested with the SIGNET sample

dynamic libraries, in this case, the dynamic library tcp-veno package available

from http://www.dei.unipd.it/ baldo/tcp-veno-1.0.2.tar.gz The following steps

were performed:

cd /usr/src

wget http://www.dei.unipd.it/~baldo/eurane-umts-1.10.2.tar.gz

wget http://www.dei.unipd.it/~baldo/tcp-veno-1.0.2.tar.gz

tar xzvf tcp-veno-1.0.2.tar.gz

cd tcp-veno-1.0.2

./configure --with-ns-allinone=/usr/src

make

cd samples

ns test-veno.tcl

The test, having completed successfully, confirmed that dynamically loadable

libraries were operational in the ns-2 simulator tool.
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7.2.3 Developing the New Dynamic Modules

The development of new dynamic modules to implement the proposed WLS and

PWLS protocols began with the setting up of the development environment as

follows.

cd ~/ns

mkdir drproto

cd drproto

mkdir src

mkdir m4

Next, a complete set of autotools macros for dynamically loadable libraries for

ns-2 was downloaded from under Nicola Baldo’s University of Padova Web

page [181], at http://www.dei.unipd.it/b̃aldo/nsallinone.m4 into the m4 sub-

directory and the autogen script was created in the parent directory, as follows.

cd m4

wget http://www.dei.unipd.it/\~baldo/nsallinone.m4

cd ..

vi autogen.sh

Append the following two lines [181]:

#!/bin/sh

aclocal -I m4 --force && libtoolize --force && automake --foreign

--add-missing && autoconf

Make it executable and create configure.ac

chmod a+x autogen.sh

vi configure.ac

Create configure.ac with the following [181]:

AC_INIT(foo,1.0)

AM_INIT_AUTOMAKE

AC_PROG_CXX

AC_PROG_MAKE_SET

AC_DISABLE_STATIC

AC_LIBTOOL_WIN32_DLL

AC_PROG_LIBTOOL
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AC_PATH_NS_ALLINONE

AC_DEFINE(CPP_NAMESPACE,std)

AC_CONFIG_FILES([

Makefile

src/Makefile

m4/Makefile

])

AC_OUTPUT

Create Makefile.am in this parent directory with the following [181]:

SUBDIRS = src m4

EXTRA_DIST = autogen.sh

ACLOCAL_AMFLAGS = -I m4

DISTCHECK_CONFIGURE_FLAGS = @NS_ALLINONE_DISTCHECK_CONFIGURE_FLAGS@

Create Makefile.am in the m4 directory with [181]:

EXTRA_DIST = nsallinone.m4

Create Makefile.am in the src directory with [181]:

lib_LTLIBRARIES = libfoo.la

libfoo_la_SOURCES = <list of sources>

libfoo_la_CPPFLAGS = @NS_CPPFLAGS@

libfoo_la_LDFLAGS = @NS_LDFLAGS@

libfoo_la_LIBADD = @NS_LIBADD@

nodist_libfoo_la_SOURCES = embeddedtcl.cc

BUILT_SOURCES = embeddedtcl.cc

CLEANFILES = embeddedtcl.cc

TCL_FILES = foo-init.tcl

embeddedtcl.cc: Makefile $(TCL_FILES)

cat $(TCL_FILES) | @TCL2CPP@ FooTclCode > embeddedtcl.cc

EXTRA_DIST = $(TCL_FILES)
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In the process of developing these files, it was soon discovered, that in order to

develop a dynamically loadable library to perform the Mac/802_11 functions using

WLS or PWLS, that the entire IEEE 802.11 MAC layer and channel protocols

would have to be duplicated and given a unique name to allow other inclusion

as a dynamic library without interfering with the existing functionality.

At this point it was realised that the advantages of dynamically loadable

libraries are only valid when a substantially new protocol or agent is being sim-

ulated.

In this case, as we are wishing to simulate modifications to an existing ex-

tensive set of protocols and agents, it is more efficient to directly modify copies

of the existing code and recompile the ns-2 simulator tool. The development of

dynamically loadable libraries was abandoned in favour of duplicating existing

elements within the Mac/802_11 protocols and making our modifications directly

to the source. Once modified, this alternate code was then recompiled with the

remainder of the source to produce a new version of the ns-2 simulator tool.

7.2.4 Class Structures for ns-2 Mobile Nodes

Mobile nodes contain address and port demultiplexers to source or sink agents, a

routing agent, an LLC component to handle sequence numbers and link address-

ing with an ARP component to resolve for MAC addresses, feeding an interface

queue into the MAC component and the network interface into the channel.

The class MobileNode simulates the wireless STAs themselves. The class in-

cludes position, speed and energy states; and can calculate distance and propaga-

tion delays to other mobile nodes. The implementation of the class was not modi-

fied during this work. The code is located in the files ~ns2/common/mobilenode.h

and ~ns2/common/mobilenode.cc.

The class LL simulates the LLC upper sub-layer of the link layer and while the

code itself remained unchanged in files ~ns2/mac/ll.h and ~ns2/mac/ll.cc, the

operation of the LLC was modified through the OTcl—C++ variable bindings.

It includes the variables:

� bandwidth_ : which is not used in the LL class, as previously discussed; and

� delay_ : the link (in this case, LLC) delay, which is inherited from the

parent LinkDelay subclass of the Connector class and set by default to

25 µs.
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The class LL manages the arptable_, schedules UP packets to go to the uptarget_

after the delay_ and determines the MAC address (but does not encapsulate it)

and schedules DOWN packets to go to the downtarget_ after the delay_.

The class PriQueue is used to simulate the link layer queue which gives priority

to routing packets and remains unchanged in files ~ns2/queue/priqueue.h and

~ns2/queue/priqueue.cc.

The class Mac802_11 simulates a (mostly IEEE 802.11b) wireless MAC and

has source code in files ~ns2/mac/mac-802 11.h and ~ns2/mac/mac-802 11.cc,

modified as described below.

The class WirelessPhy simulates the interface to wireless physical layer and re-

mains unchanged in files ~ns2/mac/wireless-phy.h and ~ns2/mac/wireless-phy.cc.

The class WirelessChannel simulates the actual transmission of the packet

at the physical layer and remains unchanged in files ~ns2/mac/channel.h and

~ns2/mac/channel.cc.

7.3 Testing Partial WLS

Although “Partial WLS”, with the destination address unencrypted, was only

an alternate to the primary objective of WLS itself, with the entire MPDU

encrypted, Partial WLS is the easiest to implement and involved the least un-

certainty; and so was the first to be simulated.

7.3.1 Configuring Partial WLS

As Partial WLS does not encrypt the destination address, no modifications were

required to the MAC address filtering or handling routines. The principal consid-

eration with Partial WLS was the delay in encrypting an outgoing packet before

passing it to the lower layers; and the delay in decrypting a packet addressed for

the current node before passing it to the higher layers.

Initially this was performed by changing the LLC processing delay to simulate

longer handling times going down to or up from the MAC sub-layer.

The initial value for an encryption cost consisted of a relatively slow base

cost of 0.9 µs + 0.009 µs per byte. In our simulations with a maximum of 2304-

byte packets plus the extra 20 bytes from the DSDV routing not being removed

would therefore transfer maximum 2324-byte packets. These induce a maximum

encryption/decryption cost of 21.816 µs.
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To represent this additional delay in encrypting an outgoing packet before

passing it to the lower layers and the delay in decrypting an incoming packet

before passing it to the higher layers, this encryption/decryption cost was added

to the default LLC processing delay of 25 µs to give a total delay of 46.816 µs,

as shown below.

The simulation of drtestg.tcl, producing the control data in Figure 7.1, was

reconfigured with this additional delay in drtestr.tcl, as follows:

Agent/UDP set packetSize_ 2304

Agent/TCP set packetSize_ 2304

# Standard Link Layer delay 25us PLUS

# PARTIAL WLS (21.816us to decrypt frame but destination is understood)

LL set delay_ 46.816us

Mac/802_11 set dataRate_ 54Mb

Mac/802_11 set RTSThreshold_ 3000

Mac/802_11 set PreambleLength_ 72

7.3.2 Unexpected Results

The results are shown in Figure 7.12.

Figure 7.12: PWLS simulated by adding extra delay between the LLC and MAC
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Figure 7.12 shows the CBR generator of node_(1) plotted over the original

node_(1) from Figure 7.1, starting at time 1.0 and initially achieving an average

throughput of 16.01 Mbps in the first second of operation, identically to the pre-

vious scenarios and the control data in Figure 7.1, consolidating to a 16.15 Mbps

average throughput over the simulation.

These results are virtually identical to the control data showing that Partial

WLS has no effect on throughput in this two-node scenario.

The author was not expecting these results, gathered before the detailed

analysis of the empirical data, having assumed that the cost of encryption would

have to have some effect on the throughput. It was considered that these results

may be distorted, with the effects masked, because the encryption delay had

been confined entirely to the LLC sub-layer; and thus more accurate results may

issue if the simulation were to more precisely represent the physical processes.

7.3.3 Refining the Tools

The code was reviewed tracing the path of the “packet” through the various

components of the nodes. The LLC delay was reset to the default 25 µs and

the cost of encryption was moved into the MAC sub-layer by modifying the

Mac802_11 class.

To ensure a reasonable simulation of a practical real-world encryption engine,

the author used the specifications of Sivakumar and Velmurugan’s “High Speed

VLSI Design CCMP AES Cipher for WLAN (IEEE 802.11i)” [182], as a leading-

edge hardware cryptographic engine for WLAN use, providing throughputs of

2.257 Gbps for encryption and 1.722 Gbps for decryption.

Adding Encryption Delays in the ns-2 MAC Sub-layer

A new subclass CryptoTimer(Mac802_11 *m) of the MacTimer(m) class was added

to the MacTimer class header file, ~ns2/mac/mac-timers.h, as shown below.

class CryptoTimer : public MacTimer {

public:

CryptoTimer(Mac802_11 *m) : MacTimer(m) {}

void handle(Event *e);

};
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The matching handler stub code was added to the MacTimer class C++ source

file, ~ns2/mac/mac-timers.cc, as shown here.

/* =================================================================

Crypto Timer to encrypt/decrypt entire frames

================================================================= */

void

CryptoTimer::handle(Event *)

{

busy_ = 0;

paused_ = 0;

stime = 0.0;

rtime = 0.0;

mac->cryptoHandler();

}

The Mac802_11 class header file, ~ns2/mac/mac-802 11.h, was then mod-

ified to add the new timer friend class CryptoTimer, handled by the void

cryptoHandler(void), passing the outgoing copy of the packet in the structure

pointed to by Packet *delayedPacket_. These declarations were then used in the

modification of the Mac802_11 class C++ source file, ~ns2/mac/mac-802 11.cc,

to insert the appropriate cost of encryption.

Encryption Pipelining in the MAC Sub-layer

It was assumed a pipelining process would be used, so that the start of the

ciphertext can be transmitted while the remainder of the stream is still being

encrypted.

In the unlikely event that the encryption rate is slower than the data rate,

then sufficient units of the frame must be encrypted before the transmission

begins, so that the encryption of the last unit has completed before it is to

be transmitted. This adds a delay before transmission can begin. However,

transmission and propagation themselves are unaffected and proceed with the

normal timings. The worst case here is an encryption rate so slow that the entire

frame has to be encrypted before transmission begins.

It was assumed that normally the encryption rate will be very much faster

than the data rate. This is reasonable given the current relative states of both
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the encryption and IEEE 802.11 transmission technologies. While this may come

into question should advances in multi-gigabit over-the-air data rates outstrip ad-

vances in encryption rates, there is sufficient margin to assume any such advances

will even out in the long term. As such, the only delay in this case is the en-

cryption of the first ciphertext unit, which must occur before transmission can

begin. Assuming a worst case of a 128-bit block cipher in Cipher-Block-Chaining

(CBC) mode, this would require the first 128-bit encryption to be completed be-

fore transmission begins.

The ns-2 Mac802 11 Class

The Mac802_11 class, from the C++ source file, ~ns2/mac/mac-802 11.cc, pro-

vides the various methods for the MAC sub-layer, these include:

� Mac802_11::recv(Packet *p, Handler *h) : receives a packet from the

LLC queue or starts to receive an incoming packet from the wireless chan-

nel — passes downward-going packets to send(p, h), otherwise checks for

collisions and starts the mhRecv_ timer to wait txtime(p);

� Mac802_11::recvHandler() : the mhRecv_ timer handler stub (finished re-

ceiving a frame), calls recv_timer();

� Mac802_11::recv_timer() : the mhRecv_ timer handler, which ignores re-

ceived packets if still transmitting when the receive finishes, drops col-

lisions and error packets setting the NAV with an EIFS, updates the

NAV for non-local-destination packets, discards non-local-destination di-

rected packets, passes MAC ACKs to recvACK(pktRx_) or data packets to

recvDATA(pktRx_) and calls rx_resume();

� Mac802_11::recvACK(Packet *p) : if not MAC_SEND (waiting for an ACK)

drops the packet as DROP_MAC_INVALID_STATE, otherwise stops the mhSend_

timer (to stop a retransmit), resets the retry count and the cw_, removes

the previous packet from the queue and, if another is waiting, starts the

mhBackoff_ timer with the reset cw_, and calls tx_resume();

� Mac802_11::recvDATA(Packet *p) : strips of the length of the PLCP and

MAC headers, sends a MAC-layer ACK and calls tx_resume() for directed
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packets, checks the sequence number and drops duplicates, copies broad-

casts to the uptarget_->recv(p->copy(), (Handler*) 0), passes broad-

casts and packets for other nodes back to the channel interface and sends

local-destination packets to the uptarget_->recv(p, (Handler*) 0);

� Mac802_11::send(Packet *p, Handler *h) : calls sendDATA(Packet *p) to

add the headers and calculate the txtime(), assigns a sequence number

and, if not already in backoff, starts mhBackoff_ with an initial DIFS wait

if the medium is idle or no initial wait if not idle;

� Mac802_11::sendDATA(Packet *p) : adds the length of the PLCP and MAC

headers, adds the applicable header details and calculates the txtime() and

dh_duration;

� Mac802_11::deferHandler() : the mhDefer_ timer handler stub, which calls

check_pktCTRL() for waiting MAC ACKs or calls check_pktTx() for waiting

data packets;

� Mac802_11::backoffHandler() : the mhBackoff_ timer handler stub, which

calls check_pktTx() for waiting data packets;

� Mac802_11::check_pktCTRL() : does not check the medium idle state for

ACKs, sets the state MAC_ACK, sets the transmission timeout and calls

transmit(pktTx_, timeout);

� Mac802_11::check_pktTx() : if the medium is not idle, increments the cw_

and starts the mhBackoff_ timer again, otherwise sets the state MAC_SEND,

sets the transmission timeout and calls transmit(pktTx_, timeout);

� Mac802_11::transmit(Packet *p, double timeout) : sets an error state

on any incoming packets [this does not work], copies (so as to retransmit

later) the packet to the downtarget_->recv(p->copy(), this), starts the

mhIF_ timer with the txtime(p) for the busy channel interface and starts

the mhSend_ timer with the timeout;

� Mac802_11::txHandler() : the mhIF_ timer handler, which resets the inter-

face transmitter active state after the frame is sent;

� Mac802_11::sendHandler() : the mhSend_ timer handler stub (send timeout

expired), which calls send_timer();
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� Mac802_11::send_timer() : if sending an ACK, frees the local resources, if

sending a data packet, calls RetransmitDATA(), and calls tx_resume();

� Mac802_11::RetransmitDATA() : if sending a broadcast (doesn’t get ACKed),

frees the local resources, resets the cw_ and starts the mhBackoff_ timer,

otherwise increments the error counts, if the retry count is exceeded, drops

the packet as DROP_MAC_RETRY_COUNT_EXCEEDED and resets the retry count

and the cw_, otherwise increments the cw_ and starts the mhBackoff_ timer

again;

� Mac802_11::rx_resume() : sets interface receive state to MAC_IDLE and

pauses/resumes any mhBackoff_ timer according to overall medium state;

� Mac802_11::tx_resume() : if waiting to send an ACK or a unicast packet

without RTS not already in backoff, starts the mhDefer_ timer for a SIFS,

otherwise if not already in backoff, starts the mhBackoff_ timer with an

initial DIFS, sets interface transmit state to MAC_IDLE and pauses/resumes

any mhBackoff_ timer according to overall medium state;

� Mac802_11::navHandler() : the NAV handler, which resumes mhBackoff_

after a DIFS;

Mac802 11 Class Modifications

The Mac802_11 class was first modified at the point where it passes the frame to

the channel interface. The original code is shown below.

inline void

Mac802_11::transmit(Packet *p, double timeout)

{

...

downtarget_->recv(p->copy(), this);

mhSend_.start(timeout);

mhIF_.start(txtime(p));

}

This was modified to schedule the copy of the packet to be handled by a

CryptoTimer() after the 0.00000005671245 seconds it takes to encrypt the first

128-bit block, as shown following.
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inline void

Mac802_11::transmit(Packet *p, double timeout)

{

...

/*

* downtarget_->recv(p->copy(), this);

* Crypto cost on sending a packet is just the encryption

* of the maximum 2324-octet frame

* at 2324 * 8 / 2257000000 = 0.000008237483 seconds

* which is far less than the MAC data rate 54Mb = 0.000344296

* So, the only delay is encrypting the first 128 bit block

* 128 / 2257000000 = 0.00000005671245 seconds

*/

delayedPacket_ = p->copy();

Handler *postdecrypt_ = new CryptoTimer(this);

// Scheduler::instance().schedule(postdecrypt_, delayedPacket_, 0.0);

Scheduler::instance().schedule(postdecrypt_, delayedPacket_, 0.00000005671245);

mhSend_.start(timeout);

mhIF_.start(txtime(p));

}

...

void

Mac802_11::cryptoHandler()

{

/*

* Crypto cost on sending a packet

*/

downtarget_->recv(delayedPacket_, this);

}

The simulator was recompiled and a new simulation of drtestr.tcl (from

drtestg.tcl), was reconfigured with the original default LLC delay of 25 µs in

drtests.tcl, as follows:

LL set delay_ 25us

...

set f_($i) [open drtest$t-encr$i.tr w]

...

exec xgraph drtestg-node1.tr drtest$t-encr1.tr -geometry 800x400 &
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7.3.4 Results Confirmed

This simulation produced the same results as the previous method of drtestr.tcl,

shown in Figure 7.12, with throughput following the original control data in

Figure 7.1.

These results confirmed that, using reasonable specifications, Partial WLS

has no effect on throughput in this two-node scenario.

In an attempt to quantify the magnitude of this immunity to encryption de-

lays, the author completed a series of further simulations, steadily increasing the

encryption delay and recompiling the simulator until a deviation was achieved.

This occurred at a factor of 30 times the original encryption delay, as shown in

the code below and in Figure 7.13.

inline void

Mac802_11::transmit(Packet *p, double timeout)

{

...

/*

* downtarget_->recv(p->copy(), this);

* Crypto cost on sending a packet is just the encryption

* of the maximum 2324-octet frame

* at 2324 * 8 / 2257000000 = 0.000008237483 seconds

* which is far less than the MAC data rate 54Mb = 0.000344296

* So, the only delay is encrypting the first 128 bit block

* 128 / 2257000000 = 0.00000005671245 seconds

*/

double crptdelay = 30.0 * 0.00000005671245;

delayedPacket_ = p->copy();

Handler *postdecrypt_ = new CryptoTimer(this);

// Scheduler::instance().schedule(postdecrypt_, delayedPacket_, 0.0);

// Scheduler::instance().schedule(postdecrypt_, delayedPacket_, 0.00000005671245);

Scheduler::instance().schedule(postdecrypt_, delayedPacket_, crptdelay);

mhSend_.start(timeout);

mhIF_.start(txtime(p));

}

This gives a transmission delay of 1.7 µs and represents an encryption rate of

only 75.23̇ Mbps. The results are shown in Figure 7.13. While the encryption
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rate here has not yet dropped below the data rate, the additional delay was now

causing the send timeout, based on a maximum 2 µs propagation delay, to be

exceeded for most packets.

Figure 7.13: PWLS simulated by adding block encryption transmission delay

To extend this, the effects of decrypting a received packet in the MAC were

added to the modified simulator code. A new subclass DstDecTimer() of the

MacTimer() class was added to the MacTimer class header file, ~ns2/mac/mac-

timers.h.

class DstDecTimer : public MacTimer {

public:

DstDecTimer(Mac802_11 *m) : MacTimer(m) {}

void handle(Event *e);

};

The matching handler stub code was added to the MacTimer class C++ source

file, ~ns2/mac/mac-timers.cc, as shown below.

/* ============================================================

DstDec Timer to decrypt dest addr with every available key

============================================================ */

void

DstDecTimer::handle(Event *)
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{

busy_ = 0;

paused_ = 0;

stime = 0.0;

rtime = 0.0;

mac->dstDecHandler();

}

The Mac802_11 class header file, ~ns2/mac/mac-802 11.h, was again mod-

ified to add the new timer friend class DstDecTimer, handled by the void

dstDecHandler(void). These declarations were then used in the modification

of the Mac802_11 class C++ source file, ~ns2/mac/mac-802 11.cc, to insert the

appropriate cost of encryption at the point where it passes the frame to the LLC

interface. The original code is shown below.

Mac802_11::recvDATA(Packet *p)

{

...

/*

* Pass the packet up to the link-layer.

* XXX - we could schedule an event to account

* for this processing delay.

*/

...

uptarget_->recv(p, (Handler*) 0);

}

This was modified to schedule the copy of the packet to be handled by a

DstDecTimer() after the 0.00000007433217 seconds it takes to decrypt the first

128-bit block, shown here with the same multiple of 30 applied to produce an

effect in the results, as shown in Figure 7.14.

Mac802_11::recvDATA(Packet *p)

{

...

/*

* uptarget_->recv(p, (Handler*) 0);

* Decrypting the maximum 2324-octet frame for Partial WLS
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* at 2324 * 8 / 1722000000 = 0.000010796748 seconds

* which is far less than the MAC data rate 54Mb = 0.000344296

* So, the only delay is encrypting the first 128 bit block

* 128 / 1722000000 = 0.00000007433217 seconds

*/

double addrdelay = 30.0 * 0.00000007433217;

delayedPacket_ = p;

Handler *postdecrypt_ = new DstDecTimer(this);

// Scheduler::instance().schedule(postdecrypt_, delayedPacket_, 0.00000007433217);

Scheduler::instance().schedule(postdecrypt_, delayedPacket_, addrdelay);

}

...

void

Mac802_11::dstDecHandler()

{

/*

* Decrypting the frame for Partial WLS

*/

uptarget_->recv(delayedPacket_, (Handler*) 0);

}

Figure 7.14: PWLS adding both encryption and decryption delays
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7.4 Testing WLS

The tools were further modified to simulate ‘full’ WLS, with the destination

address encrypted. This presents no new difficulties for the sending STA, however

the receiving STAs must begin to decrypt the headers of every packet they see,

in order to determine the destination address and therefore to know whether or

not the packet was intended for them.

7.4.1 Configuring WLS

As PWLS and WLS employ effectively the same process for the sending STA in

this respect, no modifications were required to the MAC transmit() routine. The

principal consideration with full WLS was the effects of delays in decrypting the

destination address in the recv_timer() routine that filters non-local addresses

and calls the various helper routines, based on the packet type, and subsequently,

the recvDATA() routine that processes incoming data packets.

Although the header processing functionality is split across two routines in

the ns-2 Mac802_11 class, the recvDATA() is called only by the recv_timer()

routine and so is functionally all one routine. This simplifies the approach, as

the decryption cost can be implemented in the one place, at the point where

recvDATA() prepares to pass the packet to the uptarget_.

The decryption cost varies between ordinary STA and APs. An ordinary STA

in a BSS will typically have only one pairwise key between itself and the AP. As

such, if it can successfully decrypt a packet then the packet was indeed from the

AP and destined for that STA. However, in a BSS, the AP will have a pairwise

key for every STA and so must try to decrypt the packet with each of these keys,

until it is successful. On average, an AP will need to attempt to decrypt the

first 128-bit block with half of the total number of keys, which is half of the total

number of STA, before it successfully decrypts the start of the packet.

This effect is amplified in an IBSS, where every STA must therefore hold keys

for every other STA — effectively making every STA an AP in regards to WLS

decryption cost.

Note that even under CBC mode, it is sufficient to attempt to decrypt just

the first block in order to determine if the key is correct. The correct key can

then continue to be applied to decrypting the remainder of the frame without

interrupting the process.
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The recvDATA() routine was modified to account for decrypting the first 128

bits of the MAC header with each of the available keys, until successful, to deter-

mine the destination address. This was achieved by multiplying the decryption

cost for one 128-bit block by the sending node number. This simulates a STA

decrypting the first 128 bits with each key for each node in sequence, until it

reaches the key of the source node for this packet. On average, this will be half

of all the active nodes in the simulation.

At the start of the simulation, with only one node transmitting (node_(1)),

this will be the first key tried every time, but by the end of the simulation, with

all of the nodes transmitting, this will be an overall average of half of the keys.

The code was modified as shown here:

Mac802_11::recvDATA(Packet *p)

{

...

/*

* uptarget_->recv(p, (Handler*) 0);

* Decrypting the maximum 2324-octet frame for Partial WLS

* at 2324 * 8 / 1722000000 = 0.000010796748 seconds

* which is far less than the MAC data rate 54Mb = 0.000344296

* So, the only delay is encrypting the first 128 bit block

* 128 / 1722000000 = 0.00000007433217 seconds

* Decrypting the address will require multiple iterations

* of decrypting the first 10 octets for each of the known "keys"

* which will require the first 128 bits (one block) for each key

* and will require min 1, max all keys tested

* receiving from 1 STA = 0.00000007433217 seconds

* receiving from 2 STA = 0.00000014866434 seconds

* receiving from 5 STA = 0.00000037166086 seconds

* receiving from 10 STA = 0.00000074332172 seconds

* receiving from 25 STA = 0.00000185830430 seconds

* receiving from 50 STA = 0.00000371660859 seconds

* receiving from 100 STA = 0.00000743321718 seconds

* receiving from 150 STA = 0.00001114982578 seconds

* receiving from 254 STA = 0.00001888037166 seconds

* struct hdr_mac802_11* mh = HDR_MAC802_11(p);

* u_int32_t dst = ETHER_ADDR(mh->dh_ra);

* u_int32_t src = ETHER_ADDR(mh->dh_ta);
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*/

// double addrdelay = 0.00000007433217;

double addrdelay = src * 0.00000007433217;

delayedPacket_ = p;

Handler *postdecrypt_ = new DstDecTimer(this);

// Scheduler::instance().schedule(postdecrypt_, delayedPacket_, 0.00000007433217);

Scheduler::instance().schedule(postdecrypt_, delayedPacket_, addrdelay);

}

This code can be switched between PWLS and WLS by swapping the com-

ments on the two addrdelay lines (0.00000007433217 seconds for PWLS and

node-number*0.00000007433217 seconds for WLS).

The simulator was recompiled as PWLS and a new simulation of drtests.tcl

based on drtestg.tcl was reconfigured in drtestt.tcl, as follows:

# PARTIAL WLS (56ns to encrypt, 74ns to decrypt first block)

# FULL WLS (56ns to encrypt, (74ns)*numbernodes to decrypt first block)

...

set f_($i) [open drtest$t-PWLS$i.tr w]

...

exec xgraph drtestg-node1.tr drtest$t-PWLS1.tr -geometry 800x400 &

Figure 7.15: WLS Simulator configured for PWLS using 16.16 Mbps CBR
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This simulation produced the same results as the previous drtestr.tcl and

drtests.tcl, verifying the new implementation has not altered the PWLS results,

as shown in Figure 7.15.

7.4.2 WLS Results

The ns-2 code was then changed to simulate WLS and recompiled and the sim-

ulation was repeated in drtestt.tcl :

# PARTIAL WLS (56ns to encrypt, 74ns to decrypt first block)

# FULL WLS (56ns to encrypt, (74ns)*numbernodes to decrypt first block)

...

set f_($i) [open drtest$t-WLS$i.tr w]

...

exec xgraph drtestg-node1.tr drtest$t-PWLS1.tr drtest$t-WLS1.tr

-geometry 800x400 &

This simulation produced the same results as the previous simulations, with

throughput identical to PWLS, following the original control data in Figure 7.1.

These results showed that, using reasonable specifications, WLS also has no

effect on throughput in this two-node scenario, as shown in Figure 7.16.

Figure 7.16: WLS Simulator configured for WLS using 16.16 Mbps CBR
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7.5 Complete PWLS and WLS Results

With the implementation developed, the code was then changed back to simulate

PWLS and recompiled and all of the control simulations were repeated under

the new implementation to enable a thorough analysis of the effects of these

proposals. Then, the code was switched to simulate WLS, recompiled and again

all of the control simulations were repeated under the WLS implementation to

compare the effects of these proposals.

These are presented here, as pairs of PWLS and WLS results, to enable

easy comparison, however all the PWLS results were in fact gathered before any

the WLS results, as switching between the two requires recompiling the ns-2

simulator.

7.5.1 Two CBR Transmitters

The control simulation of drtesth.tcl was reconfigured from drtestt.tcl, as drtes-

tuh.tcl and subsequently as drtestvh.tcl, as follows:

set val(nn) 3 ;# number of mobilenodes

set val(sc) "drtest-3-2-scen-stat" ;# scene movement file

set val(cp) "" ;# traffic pattern file

The scene movement file, drtest-3-2-scen-stat, has two sending nodes 10 m

either side of the central node_(0) receiver, for the entire simulation, with no

movement and remaining within the 250 m radio range throughout the simula-

tion. Thus, the receiver can “hear” both sending nodes and each node can hear

both the receiver and the other node.

This produced effectively the same results as the control case, as shown in

Figures 7.17 and 7.18. Note these graphics plot the data with lines only between

the measured data for clarity — the data points occur every 0.5 seconds (at the

vertices) on each of the lines.

The control simulation of drtesti.tcl was reconfigured from drtestuh.tcl, as

drtestui.tcl and subsequently as drtestvi.tcl, as follows:

set val(sc) "drtest-3-2-scen-dist" ;# scene movement file

The scene movement file, drtest-3-2-scen-dist, has two sending nodes 150 m

either side of the node_(0) receiver, with no movement throughout the simula-

tion. Thus, the receiver can hear both sending nodes and each node can hear the
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Figure 7.17: PWLS with two CBR nodes 10 m opposite equidistant from AP

Figure 7.18: WLS with two CBR nodes 10 m opposite equidistant from AP
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receiver but can not hear the other sending node. This is the so-called “hidden

node” case.

Again, this produced effectively the same results as the control case, as shown

in Figures 7.19 and 7.20.

Figure 7.19: PWLS with two CBR nodes 150 m opposite equidistant from AP

Figure 7.20: WLS with two CBR nodes 150 m opposite equidistant from AP

The next case to be tested was where the nodes were not equidistant from the

receiver. Thus, the receiver can hear both sending nodes and each node can hear
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the receiver but can not hear the other sending node — hidden nodes — and each

sender has a different propagation delay to the receiver. The relevant settings

were configured in the scene movement file, drtest-3-2-scen-diff, configured from

drtestuj.tcl, as drtestuj.tcl and subsequently as drtestvj.tcl.

Once again, this produced effectively the same results as the control case, as

shown in Figures 7.21 and 7.22.

Figure 7.21: PWLS with two CBR nodes at different distances from the AP

Figure 7.22: WLS with two CBR nodes at different distances from the AP
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The next simulation recorded the average throughput achieved by any one

sending STA (out of two, in this case) in a single trace file. This was achieved by

using the same scenario, including the same scene movement file as the previous

simulation and modifying the proc record {} to sum all the data received by

all the sinks, divide by the number of active nodes and record the results in a

single trace file f0, drtestuk-avgbw-2nPWLS.tr and drtestvk-avgbw-2nWLS.tr, as

previously described.

Figure 7.23: Average PWLS throughput with two CBR nodes

7.5.2 Ten CBR Transmitters

The next step was to test ten high-output STAs in contention for the same

channel.

The same random 11-node scene movement file, drtest-11-10-scen, was used in

drtestul.tcl and subsequently drtestvl.tcl, with CBR generators attached to UDP

agents on node_(1) through node_(10), each starting at time 5.0 ∗nodeindex, to

give five second intervals between increasing numbers of sending nodes; and all

the sinks on node_(0).

Once more, this produced effectively the same results as the control case, as

shown in Figures 7.25 through 7.32.

Even the highly-timing-sensitive individual node traces follow the same trend

as the control data. The individual traces for node_(1) under both PWLS and
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Figure 7.24: Average WLS throughput with two CBR nodes

Figure 7.25: PWLS throughput with ten CBR nodes
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Figure 7.26: WLS throughput with ten CBR nodes

WLS are plotted over the control trace in Figures 7.27 and 7.28.

Figure 7.27: Node (1) PWLS throughput with ten CBR nodes
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Figure 7.28: Node (1) WLS throughput with ten CBR nodes
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The individual traces for node_(5) under both PWLS and WLS are plotted

over the control trace in Figures 7.29 and 7.30.

Figure 7.29: Node (5) PWLS throughput with ten CBR nodes

Figure 7.30: Node (5) WLS throughput with ten CBR nodes
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The individual traces for node_(10) under both PWLS and WLS are plotted

over the control trace in Figures 7.31 and 7.32.

Figure 7.31: Node (10) WLS throughput with ten CBR nodes

Figure 7.32: Node (10) WLS throughput with ten CBR nodes
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The average throughput per active node under both PWLS and WLS are

plotted over the control trace in Figures 7.33 and 7.34.

Figure 7.33: Average PWLS throughput with ten CBR nodes

Figure 7.34: Average WLS throughput with ten CBR nodes
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7.5.3 TCP Traffic

The scenario of drtestn.tcl was repeated in drtestun.tcl and subsequently drtestvn.tcl,

to create and start FTP sources transferring a 2 MB file on TCP agents to and

from alternate nodes and node_(0).

Again, this produced effectively the same results as the control case, as shown

in Figures 7.35 and 7.36.

Figure 7.35: PWLS throughput with 2 MB FTP Transfers

Figure 7.36: WLS throughput with 2 MB FTP Transfers
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The total TCP throughput for all concurrent transfers under both PWLS and

WLS are plotted over the control trace in Figures 7.37 and 7.38.

Figure 7.37: Average PWLS throughput with 2 MB FTP Transfers

Figure 7.38: Average WLS throughput with 2 MB FTP Transfers
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7.5.4 Overlapping TCP Traffic

The scenario of drtestp.tcl was repeated in drtestup.tcl and subsequently drtestvp.tcl,

to create and start FTP sources transferring a 2.6 MB file on TCP agents to and

from alternate nodes and node_(0).

Once again, this produced effectively the same results as the control case, as

shown in Figures 7.39 through 7.46.

Figure 7.39: PWLS throughput with 2.6 MB overlapping FTP Transfers

Figure 7.40: WLS throughput with 2.6 MB overlapping FTP Transfers
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The individual traces for node_(1) under both PWLS and WLS are plotted

over the control trace in Figures 7.41 and 7.42.

Figure 7.41: Node (1) PWLS throughput with 2.6 MB FTP Transfers

Figure 7.42: Node (1) WLS throughput with 2.6 MB FTP Transfers
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The individual traces for node_(5) under both PWLS and WLS are plotted

over the control trace in Figures 7.43 and 7.44.

Figure 7.43: Node (5) PWLS throughput with 2.6 MB FTP Transfers

Figure 7.44: Node (5) WLS throughput with 2.6 MB FTP Transfers
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The individual traces for node_(10) under both PWLS and WLS are plotted

over the control trace in Figures 7.45 and 7.46.

Figure 7.45: Node (10) PWLS throughput with 2.6 MB FTP Transfers

Figure 7.46: Node (10) WLS throughput with 2.6 MB FTP Transfers



7.5. Complete PWLS and WLS Results 217

The total TCP throughput for all concurrent transfers under both PWLS and

WLS are plotted over the control trace in Figures 7.47 and 7.48.

Figure 7.47: Total PWLS throughput with 2.6 MB FTP Transfers

Figure 7.48: Total WLS throughput with 2.6 MB FTP Transfers
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7.6 Discussion

These results conclusively show that reasonable rates of encryption can be ex-

pected to have no effect on the network throughput for either partial WLS or

full WLS, as proposed here. This is due to the already extensive wait times for

the base protocol requiring positive acknowledgement of all directed traffic. The

delays introduced by the need for positive acknowledgements, combined with the

collision avoidance protocol, more than cover any reasonable delays caused by

additional encryption at this late stage.

However, the results show that should the encryption rate be so slow, as to de-

lay packet transmission by values approaching two microseconds, this then has a

catastrophic effect on network throughput. This is due to the transmission time-

outs allowing for a maximum medium propagation delay of two microseconds. As

such, encryption delays approaching two microseconds trigger the timeouts, caus-

ing retransmission (retransmission should not include an encryption overhead)

however retransmission does involve increasing the contention window with a

new contention backoff for every new packet.

This has a devastating effect on network throughput, dramatically reducing

the throughput, causing failures on retransmission for all directed packets.

Normally the encryption rate will be very much faster than the data rate. As

such, it was assumed that the relevant delay in this case was the encryption of the

first ciphertext unit, which must occur before transmission can begin. Assuming

a worst case of a 128-bit block cipher in Cipher-Block-Chaining (CBC) mode, this

would require the first 128-bit encryption to be completed before transmission

begins.

However, this is not actually true. The PLCP Preamble will be transmitted

first at 1 Mbps. This is a fixed sync pattern and a fixed SOF delimiter, which

should not be encrypted, as it would provide one or more blocks suitable for

a known-plaintext attack on the encryption and, irrespective of this, must not

be encrypted as a technical requirement to synchronise the receiving radio. A

standard PLCP Preamble will take 144 µs to transmit, followed by the 48-bit

PLCP header, also at 1 Mbps — a total of 192 µs. The short PLCP Preamble

will take 72 µs to transmit, followed by the 48-bit PLCP header, now at 2 Mbps

— a total of 96 µs.

This gives an additional window to buffer greater cryptographic delays. Com-

bining this with the possibly of adjusting the transmission timeouts to account
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for any encryption (and receiver decryption) delays, provide a further enhance-

ment detailed in Chapter 8.



220 Chapter 7. Testing the Thesis



Chapter 8

Analysis and Simulation

Enhancement

“It is a bad plan that admits of no modification.” — Publilius Syrus,

Maxims, ˜100 BC.

From the previous results, this chapter details further modifications to en-

hance the simulations and draws fresh results from these new simulations, which

are then analysed here.

8.1 General Outline

The results of the previous Chapter 7 provide valuable insight into the likely

practical operation of a WLAN utilising WLS and also highlight a number of

deficiencies in the original assumptions and the configuration of the simulations.

These results show, for any reasonable rates of encryption and decryption,

neither PWLS nor WLS would have any negative impact on a network through-

put. However, these results provide only limited information on the effects of

very slow rates of either or both encryption or decryption, inducing considerably

longer delays into the system.

The results have shown that until the encryption penalties have induced suf-

ficient delay to cause retransmission timeouts to be triggered, adding low level

encryption has no effect on network performance. This is due to the exist-

ing delays in the WLAN protocols necessary for multiple access with collision

221
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avoidance. These inbuilt delays mask any reasonable cryptographic penalties

introduced by this proposal.

However, with the dramatic cut off as the retransmit timers expired, these

results provided little information on the actual characteristics of the encryption

penalty past these limits, if the timeouts were to be adjusted to allow for the

additional encryption delays.

It was decided to enhance the simulator environment, to increase the retrans-

mission timeouts in line with any increased encryption delays. This was achieved

by including calculations for decryption times during the encryption process and

adding any excess decryption time to the Send timeout.

8.2 Refining the Investigation

Additional enhancements included at this stage included making an additional

allowance for the change in packet size due to the padding while encrypting within

a 128 bit of block cipher; adding the decryption delay to broadcast packets as

well as directed traffic; and adding an allowance for an additional decryption

attempt by every STA, to first check the broadcast key before its unicast keys.

These were achieved by modifying the Mac802_11 class C++ source code, in

the file ~ns2/mac/mac-802 11.cc, as described below.

First the simulator code used to produce the previous results was saved:

cd /usr/src/ns-2.33

cd mac

ls -al

cp -p mac-802_11.h mac-802_11.h.dr1

cp -p mac-802_11.cc mac-802_11.cc.dr1

ls -al

vi mac-802_11.cc

8.2.1 Variable Encryption Delay

The Mac802_11 class is a subclass of the Mac class, itself a subclass of the Bi-

Connector subclass of the NsObject class. As such, the Mac802_11 class inherits

the double delay_; // MAC overhead from the Mac class, but which is unused by

the default ns-2.33 Mac802_11 class.
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The author utilised this variable to provide an efficient method to vary the

cryptographic penalties without requiring the entire recompilation of the ns-2

simulator every time.

In the authors modifications, the Mac802_11 delay_ is used to hold the de-

cryption delay for 128 bits. The decryption delay is used to minimise error as

decryption is usually slower than encryption and hence the decryption time is

usually the larger value.

Internally the routines use a ratio of 1.722:2.257 encryption delay to de-

cryption delay, based on Sivakumar and Velmurugan’s CCMP AES Cipher for

WLAN, providing throughputs of 2.257 Gbps for encryption and 1.722 Gbps for

decryption [182].

The new code was recompiled into the simulator and tested using that the

previous control values from drtestg.tcl to produce identical results with zero

delay.

Another snapshot of the code was taken at this point:

cp -p mac-802_11.h mac-802_11.h.dr2

cp -p mac-802_11.cc mac-802_11.cc.dr2

8.2.2 Further Enhancements

It was then decided to separately test the effects of the encryption delay and

the decryption delay for various numbers of STAs independently. The code

was further modified to allow the author to isolate the effects of encryption,

decryption, or both, as described here. This additional code was again compiled

into the simulator and utilised to produce the results herein.

The following code uses the new CryptoTimer() and DstDecTimer() classes

that were added to the MacTimer files, ~ns2/mac/mac-timers.h and ~ns2/mac/mac-

timers.cc, as already described in Chapter 7 [sections 7.3.3 and 7.3.4].

The Mac802_11::transmit(Packet *p, double timeout) routine was modi-

fied to replace the original:

downtarget_->recv(p->copy(), this);

mhSend_.start(timeout);

mhIF_.start(txtime(p));

with:
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/*

*

* Refined to enhance WLS and PWLS simulation.

* The default MAC delay is 6.4us but is not used by Mac/802_11.

* We use MAC delay_ to hold the DECRYPTION delay for 128 bits.

*

* As a benchmark this uses the ratio of

* 2.257 Gbps encryption to 1.722 Gbps decryption

* So encryption = (1.722/2.257 =) 0.7629596810 * delay_

*

* Most MPDUs will have 3 addresses = 2+2+6+6+6+2+8 bytes of

* MAC + LLC headers (+4 bytes FCS unencrypted) plus

* 72 bits of preamble and 48 bits of PLCP header unencrypted

* (but ns-2 always adds all 4 addresses to the size, but not

* the LLC header, so 120 bits + 2+2+6+6+6+6+2 + 4 bytes

* = 15 + 30 + 4 bytes = 49 bytes = 392 bits added to the MSDU)

*

* So frames have 120 bits unencrypted at 1 MHz (ns-2) = 120 us

* (but really 72 bits at 1 MHz + 48 at 2 MHz = 72 + 24 = 96 us)

* Plus a 50 us DIFS and 0-31 x 20 us slots = 146-766 us before

* the first encrypted bit is needed (min 146 us avg 456 us)

*

* That means any encryption rate over 876,712 bps will always

* have the first encryption block in time, which is less than

* lowest data rate, so only data rate is really relevant.

*

* As long as encryption is faster than data rate no effects.

* If encryption time is grater than tx_time + DIFS (0 slots)

* (worst case) then worst case delay is encryption time less

* (tx_time + DIFS)

*

* ALSO, the retransmission timers must account for receiver

* decryption time (See recv(), below)

*/

// first adjust the timeout with RECEIVE delay at the other end

// This is duplicated (index_ reversed) from the recv() function

// See the recv() function for the details
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// Receive the PLCP and the first 128 bits

double addrdelay = 0.00012237037037;

// Special - no decryption delay (no matter what was seeded)

// delay_ = 0;

// addrdelay = 0;

// Special - make decryption 6 Mbps slowing by 1 kbps per second

// delay_ = 128/(60000000-Scheduler::instance().clock()*1000000);

// Add decryption delays as appropriate (reverse logic to recv())

if(index_ == 0) {

// This is the AP for my simulations

// sending to a STA with one key

addrdelay += delay_;

} else {

// This is just a STA

// Sending to the AP for my simulations

struct hdr_cmn *hdr = HDR_CMN(p);

if(hdr->size() == 29) {

// This is an ACK or a CTS with no src

// Try half the keys on average to decode this

// Adjust this for the number of STA in the sim

// ((#MULTIkeys + #STA) / 2)

addrdelay += (((1.0 + 1.0) / 2.0) * delay_);

} else {

struct hdr_mac802_11* mh = HDR_MAC802_11(p);

u_int32_t dst = ETHER_ADDR(mh->dh_ra);

u_int32_t src = ETHER_ADDR(mh->dh_ta);

// (#MULTIkeys + STAindex)

addrdelay += ((1.0 + src) * delay_);

// Special - simulate the XXXth node only

// addrdelay += ((1.0 + 1.0) * delay_);

}

}

// If decrypting takes longer than receiving, add the difference

if(addrdelay > txtime(p)) timeout = timeout + addrdelay - txtime(p);
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// Now back to the business of this module - TRANSMIT delay

// Now work out any transmission delays...

// Special - no encryption delay (no matter what was seeded)

// delay_ = 0;

// Special - make encryption 6 Mbps slowing by 1 kbps per second

// delay_ = 128/(60000000-Scheduler::instance().clock()*1000000);

// Total time to encrypt the MPDU less FCS (less dst addr for PWLS)

// Set the MPDU size in the Tcl scripts to the next 128 bit boundary

// ns-2 adds 392 bits of PLCP, MAC and FCS

// Take off 120 PLCP and 32 FCS (152 bits) -> 240 encrypted bits

// or only 240 - 48 = 192 encrypted bits added for PWLS

// So 2048 bytes = 2068 (DSDV error) = 16544 bits

// PWLS 16544 + 192 = 16736 -> 131 x 128 - 196 = 16572 = 2072 bytes

// WLS 16544 + 240 = 16784 -> 132 x 128 - 240 = 16656 = 2082 bytes

// Each less 20 bytes that will be added by the DSDV routing here

u_int32_t size = HDR_CMN(p)->size();

// Encrypting is only 1722/2257 as expensive as decrypting

// So encrypting is 0.7629596810 * delay_ per 128-bit block

// or delay_ / 167.7677120 per bit

// PWLS Encryption time

//double crptdelay = ((double)size * 8.0 - 200) * delay_ / 167.7677120;

// WLS Encryption time

double crptdelay = ((double)size * 8.0 - 152) * delay_ / 167.7677120;

// If the encryption time is greater than the transmission time

// plus a DIFS up to the start of the last 128 bits (16 bytes)

double lastblock = phymib_.getDIFS() + txtime(p) - (128 / dataRate_);

if(crptdelay > lastblock) {

// then encrypt some before sending

delayedPacket_ = p->copy();

Handler *postdecrypt_ = new CryptoTimer(this);

crptdelay = crptdelay - lastblock;

timeout = timeout + crptdelay;

Scheduler::instance().schedule(postdecrypt_, delayedPacket_, crptdelay);

} else {

downtarget_->recv(p->copy(), this);

mhIF_.start(txtime(p));



8.2. Refining the Investigation 227

}

mhSend_.start(timeout);

}

Where the CryptoTimer handler is:

Mac802_11::cryptoHandler()

{

/*

* Transmit packet after (starting) encryption

*/

downtarget_->recv(delayedPacket_, this);

mhIF_.start(txtime(delayedPacket_));

}

The Mac802_11::recv(Packet *p, Handler *h) routine was modified to re-

place the original:

mhRecv_.start(txtime(p));

with:

/*

* mhRecv_.start(txtime(p));

*

* Refined to enhance WLS and PWLS simulation.

* The default MAC delay is 6.4us but is not used by Mac/802_11.

* We use MAC delay_ to hold the DECRYPTION delay for 128 bits.

*

* Decrypting the whole MSDU for PWLS happens in

* recvDATA, before handing on to uptarget_

*

* But before we can do address filtering in WLS

* we must first recieve and decrypt the addresses

* which will be in the first cipherblock

*

* Most MPDUs will have 3 addresses = 2+2+6+6+6+2+8 bytes of

* MAC + LLC headers (+4 bytes FCS unencrypted) plus

* 72 bits of preamble and 48 bits of PLCP header unencrypted

* (but ns-2 always adds all 4 addresses to the size, but not

* the LLC header, so 120 bits + 2+2+6+6+6+6+2 + 4 bytes
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* = 15 + 30 + 4 bytes = 49 bytes = 392 bits added to the MSDU)

*

* So frames have 120 bits unencrypted at 1 MHz (ns-2) = 120 us

* (but really 72 bits at 1 MHz + 48 at 2 MHz = 72 + 24 = 96 us)

* before receiving the first cipherblock,

* taking only 128 / 54 Mbps = 2.370370370 us,

* which must then be decrypted, taking a delay_ for

* every key attempted, BEFORE any filtering decisions.

*

* AFTER filtering, any frame for this STA can be ACKed

* after FCS (receive complete)

*

* Excessively slow decryption rates may delay MSDU’s being

* passed to higher layers but will not affect the WM

* throughput except for short packets that take longer

* to decrypt the addresses than to finish receiving

* the frame

*

* Receiving the first cipherblock needs preamble at 1 Mbps,

* PLCP at PLCP rate, then the first 128 bits at the data rate

* 72bits/1Mbps + 48bits/2Mbps + 128/54Mbps

* but ns uses a single PLCPDataRate

* (72bits + 48bits = 120bits)/1Mbps + 128/54Mbps

* = 0.00012s + 0.000002370370370s = 0.0001223703704s

* Decrypting the first block will take a further delay_

*

* Decrypting the address will require multiple itterations

* of decrpting the first 10 octets for each of the known "keys"

* which will require the first (block) 128 bits for each key

* 128 / 1722000000 = 0.00000007433217 seconds

* and will require min 1, max all keys tested

* receiving from STA1 = 0.00000007433217 seconds

* receiving from STA2 = 0.00000014866434 seconds

* receiving from STA5 = 0.00000037166086 seconds

* receiving from STA10 = 0.00000074332172 seconds

* receiving from STA25 = 0.00000185830430 seconds

* receiving from STA50 = 0.00000371660859 seconds

* receiving from STA100 = 0.00000743321718 seconds
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* receiving from STA150 = 0.00001114982578 seconds

* receiving from STA250 = 0.00001858304297 seconds

*

* For an ACK frame, that is frame control 16bits,

* duration 16bits, address 48bits and fcs 32bits = 112bits,

* this is longer than the transmission time

* and must be added here.

* ACKs & CTS are 29bytes (120bits PLCP + 112bits MPDU)

* All data frames in these simulations are 2117+ bytes

* 15B PLCP, 2 FC, 2 dur, 4x6 addrs, 2 SC, MSDU, 4 FCS

* where MSDU = 20 hdr + 2048+ data

*/

// Receive the PLCP and the first 128 bits

double addrdelay = 0.00012237037037;

// Special - no decryption delay (no matter what was seeded)

// delay_ = 0;

// addrdelay = 0;

// Special - make decryption 6 Mbps slowing by 1 kbps per second

// delay_ = 128/(60000000-Scheduler::instance().clock()*1000000);

// Add decryption delays as appropriate

if(index_ == 0) {

// This is the AP for my simulations

if(hdr->size() == 29) {

// This is an ACK or a CTS with no src

// Try half the keys on average to decode this

// Adjust this for the number of STA in the sim

// ((#MULTIkeys + #STA) / 2)

addrdelay += (((1.0 + 1.0) / 2.0) * delay_);

} else {

struct hdr_mac802_11* mh = HDR_MAC802_11(p);

u_int32_t dst = ETHER_ADDR(mh->dh_ra);

u_int32_t src = ETHER_ADDR(mh->dh_ta);

// (#MULTIkeys + STAindex)

addrdelay += ((1.0 + src) * delay_);

// Special - simulate the XXXth node only
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// addrdelay += ((1.0 + 1.0) * delay_);

}

} else {

// This is just a STA with one key

addrdelay += delay_;

}

// Wait for receiving or decrypting, whichever is longer

if(txtime(p) > addrdelay) addrdelay = txtime(p);

mhRecv_.start(addrdelay);

After the Receive Timer (the time to receive the frame from start to finish)

expires without collision, then the Mac802_11::recvDATA(Packet *p) routine was

modified to replace the original, in three places, firstly decrypting the rest of the

frame (only at least the first block is decrypted during the receive time so that

the address filtering can happen in this routine), by inserting after:

/*

* Pass the packet up to the link-layer.

* XXX - we could schedule an event to account

* for this processing delay.

*/

with:

/*

* Pass the packet up to the link-layer.

* XXX - we could schedule an event to account

* for this processing delay.

*/

/*

* Decrypting the whole frame is completed here

* if not already, before handing on to uptarget_

* All the PLCP and decrypting the first block

* have been done already in recv().

* If we have got here, then this packet is for us

* and we already have the right key.

* The total decryption time is MSDU * delay_

* But we have been decrypting ever since we got the

* first 16 bytes, which have at least been decrypted.

* But there were another 14 bytes of header already stripped.
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*/

// Special - no decryption delay

// delay_ = 0;

// Special - make decryption 6 Mbps slowing by 1 kbps per second

// delay_ = 128/(60000000-Scheduler::instance().clock()*1000000);

double addrdelay = 0.0;

// Time to decrypt (size+14)/16 128-bit blocks.

addrdelay = ((double)size + 14.0) / 16.0 * delay_;

// Less time already spent while receiving the

// rest of the packet after the first 16 bytes.

addrdelay -= ((double)(size + 14) * dataRate_);

// Either way, there is at least the last block to decrypt

if(addrdelay < delay_) addrdelay = delay_;

and then for broadcast frames, replace the original:

if (dst == MAC_BROADCAST) {

uptarget_->recv(p->copy(), (Handler*) 0);

}

with:

if (dst == MAC_BROADCAST) {

/*

* uptarget_->recv(p->copy(), (Handler*) 0);

*/

if (addrdelay) {

delayedPacket_ = p->copy();

Handler *postdecrypt_ = new DstDecTimer(this);

Scheduler::instance().schedule(postdecrypt_, delayedPacket_, addrdelay);

} else uptarget_->recv(p->copy(), (Handler*) 0);

}

and finally for unicast frames, replace the original:

uptarget_->recv(p, (Handler*) 0);

}
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with:

/*

* uptarget_->recv(p, (Handler*) 0);

*/

if (addrdelay) {

delayedPacket_ = p->copy();

Handler *postdecrypt_ = new DstDecTimer(this);

Scheduler::instance().schedule(postdecrypt_, delayedPacket_, addrdelay);

} else uptarget_->recv(p->copy(), (Handler*) 0);

}

Where the DstDecTimer handler is:

Mac802_11::dstDecHandler()

{

/*

* Pass up packet after completing decyption

*/

uptarget_->recv(delayedPacket_, (Handler*) 0);

}

8.2.3 Snapshots of the Code

These modifications were saved (with the zero delay ‘specials’ turned on) as:

cp -p mac-802_11.h mac-802_11.h.specials

cp -p mac-802_11.cc mac-802_11.cc.specials

but are otherwise identical to the (no ‘specials’ active) final code in:

mac-802_11.h.final

mac-802_11.cc.final

mac-timers.h.final

mac-timers.cc.final

available from the author, the Queensland University of Technology or online at

http://www.antacs.com
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8.2.4 Compiling and Validation

The new code was recompiled into the simulator, with:

cd /usr/src/ns-2.33

make clean

make

make install

and validated with:

./validate >>validate.out.final 2>&1

resulting in:

(Validation can take 1-30 hours to run.)

Sun Apr 19 16:48:18 EST 2009

...

Test output agrees with reference output

All test output agrees with reference output.

Sun Apr 19 18:11:22 EST 2009

These messages are NOT errors and can be ignored:

warning: using backward compatibility mode

This test is not implemented in backward compatibility mode

validate overall report: all tests passed

8.3 Verifying the Simulator

The simulator was then tested using that the previous control scenarios from

drtestg.tcl, drtestl.tcl, drtestn.tcl and drtestp.tcl were configured in drtestwa.tcl

through drtestwd.tcl, as shown here, to produce identical results with zero delay,

as shown in Figures 8.1 through 8.4.

# w series uses the new code, no multiplier, padded lengths, fixed timeouts

# wa validation for zero delay against control data from drtestg

#

# These simulations are using the MAC delay_ to hold the DECRYPTION delay

# The default MAC delay is 6.4us but is not used by Mac/802_11

# The default HERE is to use decryption at 1.722 Gbps for each 128-bit block
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# 128 / 1722000000 = 0.00000007433217190s = 74.33217190ns

# ENCRYPTION is typically faster and I use 2.257 Gbps for each 128-bit block

# The modified Mac/802_11 uses (1722/2257=)0.7629596810*delay_ for encryption

# Mac/802_11 set delay_ 74.33217190ns

#

# But this case is the zero delay validation

# Simulator set to zero irrespective of what is here

Mac/802_11 set delay_ 0us

Figure 8.1: Enhanced WLS Simulator using a 16.16 Mbps CBR Source
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Figure 8.2: Enhanced WLS Simulator with ten 16.16 Mbps CBR nodes

Figure 8.3: WLS with ten TCP (2.0 MB FTP) sessions



236 Chapter 8. Analysis and Simulation Enhancement

Figure 8.4: WLS with ten overlapping TCP (2.6 MB FTP) sessions

8.4 Enhanced Results

Having validated the simulator results for normal WLAN operation, the Ten

CBR Node scenario from drtestl.tcl was configured for the new simulator in

drtestwe.tcl, with:

Mac/802_11 set delay_ 74.33217190ns

The delay shown here, for decrypting a 128-bit block under AES CCMP,

provides an encryption rate of 2.257 Gbps and a decryption rate of 1.722 Gbps.

The results of using ‘full’ WLS with this rate of encryption/decryption are shown

in Figure 8.5.

Figure 8.5 indicates that with an encryption/decryption rate of 2.257/1.722 Gbps,

invoking WLS has no effect on network throughput at all, producing an exact

replica of the control data.

To aid the visualisation of these results, this scenario was continued using

the “Average Throughput per Node”, of drtestm.tcl. This was configured for

the same encryption/decryption rate in drtestwf.tcl, with the result shown in

Figure 8.6.

The decryption delay was then increased to match the 2 µs maximum prop-

agation delay that had destroyed the network throughput in the previous tests.

This was configured in drtestwg.tcl, with:

# Mac/802_11 set delay_ 74.33217190ns
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Figure 8.5: WLS with ten nodes — 2.257/1.722 Gbps encryption/decryption

Figure 8.6: Average WLS Throughput per Node — 2.257/1.722 Gbps crypto
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Mac/802_11 set delay_ 2.0us

This the decryption delay and represents a mere 64 Mbps decryption rate

or an 84 Mbps encryption rate (1.53 µs encryption delay). The results of using

WLS with this rate of encryption/decryption are shown in Figure 8.7.

Figure 8.7: Average WLS Throughput — crypto slowed to 84/64 Mbps

Again, Figure 8.7 indicates that even with an encryption/decryption rate of

only 84/64 Mbps, invoking WLS still as no effect on network throughput at all.

The decryption delay was then increased further, so that the encryption delay

would to match the 2 µs maximum propagation delay. This was configured in

drtestwh.tcl, with:

# Mac/802_11 set delay_ 74.33217190ns

# Mac/802_11 set delay_ 2.0us

Mac/802_11 set delay_ 2.6213705us

This now represents a 64 Mbps encryption rate (2 µs for 128 bits) or only

a 49 Mbps decryption rate. The results of using WLS with this rate of encryp-

tion/decryption are shown in Figure 8.8.

Once again, Figure 8.8 indicates that even with an encryption/decryption

rate of only 64/49 Mbps, invoking WLS still as no effect on network throughput

at all.

At 3.0 µs, the result did not perfectly match the control, but the difference

was negligible. By 5.0 µs, the effects became significant. This was configured in

drtestwi.tcl, with:
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Figure 8.8: Average WLS Throughput — crypto slowed to 64/49 Mbps

# Mac/802_11 set delay_ 74.33217190ns

# Mac/802_11 set delay_ 2.0us

# Mac/802_11 set delay_ 2.6213705us

Mac/802_11 set delay_ 5.0us

This now represents only a 25.6 Mbps decryption rate or a 33.6 Mbps en-

cryption rate. The results of using WLS with this rate of encryption/decryption

are shown in Figure 8.9.

Figure 8.9 shows a noticeable deviation from the control data for decryption

rates below 40 Mbps.

At 15.0 µs, the throughput achieves less than half the control value. This was

configured in drtestwj.tcl, with:

# Mac/802_11 set delay_ 74.33217190ns

# Mac/802_11 set delay_ 2.0us

# Mac/802_11 set delay_ 2.6213705us

# Mac/802_11 set delay_ 5.0us

Mac/802_11 set delay_ 15.0us

This now represents a decryption rate significantly less than 10 Mbps. The

results of using WLS with these rates are shown in Figure 8.10.

Figure 8.10 shows a major deviation from the control data for decryption

rates below 10 Mbps.
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Figure 8.9: Average WLS Throughput — crypto slowed to 33.6/25.6 Mbps

Figure 8.10: Average WLS Throughput — crypto slowed to 11.18/8.53̇ Mbps
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Finally, at 50.0 µs, the throughput achieves only a small fraction of the control

value. This was configured in drtestwk.tcl, with:

# Mac/802_11 set delay_ 74.33217190ns

# Mac/802_11 set delay_ 2.0us

# Mac/802_11 set delay_ 2.6213705us

# Mac/802_11 set delay_ 5.0us

# Mac/802_11 set delay_ 15.0us

Mac/802_11 set delay_ 50.0us

This now represents a decryption rate significantly of only 2.56 Mbps. The

results of using WLS with these rates are shown in Figure 8.11.

Figure 8.11: Average WLS Throughput — crypto slowed to 3.36/2.56 Mbps

Figure 8.11 shows the throughput limited to the decryption rate.

8.5 Detailed Rate Results

The simulator was then modified, using the code switches shown above, to vary

the encryption and/or decryption rates during the simulation run. This was

achieved using:

// Special - make encryption 6 Mbps slowing by 1 kbps per second

// delay_ = 128/(60000000-Scheduler::instance().clock()*1000000);

and:
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// Special - make decryption 6 Mbps slowing by 1 kbps per second

// delay_ = 128/(60000000-Scheduler::instance().clock()*1000000);

The simulator was first modified to use no decryption delay and no encryption

delay and was recompiled. drtestwl.tcl was configured to run the drtestg.tcl con-

trol scenario, but starting from time 0.0 and recording time as reverse encryption

rate, as shown below.

# Mac/802_11 set delay_ 74.33217190ns

# The simulator will vary the encryption/decryption delay from 0 to 60 kbps.

...

set f_($i) [open drtest$t$u-none1.tr w]

...

exec xgraph drtestg-node1.tr drtest$t$u-none1.tr -geometry 800x400 &

...

# $ns_ at $i "$cbr_($i) start"

$ns_ at 0.0 "$cbr_($i) start"

...

puts $f_($i) "[expr 60.0-$now] [expr $by_($i)/$time*8]"

...

$ns_ at 0.5 "record"

The results are shown in Figure 8.12.

Figure 8.12: WLS Throughput with all delays disabled cf. Control Data
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Figure 8.12 shows the results for no encryption or decryption are a mirror

image (reversed scale) of the control data.

Next, the simulator was modified to use no decryption delay and the variable

encryption delay and was recompiled. drtestwm.tcl was duplicated to run the

same scenario as drtestwl.tcl, but this time recording into the file drtestwm-

encr.tr.

The results are shown in Figure 8.13.

Figure 8.13: WLS Throughput vs. Encryption Rate (decryption delays disabled)

Next, the simulator was modified to use the variable decryption delay for the

first node in the “key list”, but with no encryption delay and was recompiled.

drtestwn.tcl was again duplicated to run the same scenario as drtestwm.tcl, but

this time recording into the file drtestwn-decr1.tr.

The results are shown in Figure 8.14.

Next, the simulator was modified to use the variable decryption delay for the

tenth node in the “key list”, but still with no encryption delay. drtestwn.tcl was

modified to record into the file drtestwn-decr10.tr.

The results are shown in Figure 8.15.

This was repeated for the 100th node in the “key list” and drtestwn.tcl was

modified to record into the file drtestwn-decr100.tr. The results are shown in

Figure 8.16.

Finally, the simulator was modified to use the variable decryption delay for

the 1000th node in the “key list” and drtestwn.tcl was modified to record into
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Figure 8.14: WLS Throughput vs. Decryption Rate for the First Unicast Key

Figure 8.15: WLS Throughput vs. Decryption Rate for the Tenth Unicast Key
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Figure 8.16: WLS Throughput vs. Decryption Rate for the 100th Unicast Key

the file drtestwn-decr1000.tr. The results are shown in Figure 8.17.

Figure 8.17: WLS Throughput vs. Decryption Rate for the 1000th Unicast Key

8.6 Discussion

As can be seen from these results, in our ten-node saturated-channel scenarios,

the penalty for encrypting a packet at the MAC sub layer, as it is queued for
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transmission, has no effect on network throughput until the decryption rate drops

below 40 Mbps.

In a two-node network, with one node transmitting to the other, any penalty

in decrypting a received packet has no effect on network throughput until the

decryption rate drops below approximately 2 Mbps. However, unlike encryption,

which has the same penalty for every STA irrespective of the number of STAs,

decryption must be performed using every available key.

In partial WLS, the decryption key is identified by the source address from

the source address and so invokes the same penalty irrespective of the number

of STAs in the network . However the complete WLS proposal does not provide

an unencrypted source address and so every known a key must be checked in

order to decrypt the packet, including the broadcast keys. As such, on average,

approximately half of all of the keys must be tried for even an acknowledgement

packet.

The simulations performed here used the same design for both ad hoc and

infrastructure performance, simulating infrastructure networks by having the

first node_(0) behave as a central AP receiving and transmitting to each of the

other STAs.

In the system we are simulating here, an AP maintains an ordered a set of

keys for each pairwise connection with its associated STAs in the same order

that they associated. As such, the oldest associations will have their keys earlier

in the AP’s list and so suffer reduced decryption penalty at the AP. Conversely,

the newest associations will result in keys at the end of the AP’s list and thus

suffer the greatest decryption penalty at the AP.

While this system is not fair for the last STAs in large networks and, in

all practicality, realised implementations of this system would involve at least a

randomising function — or more likely, a last-in first-out approach in attempting

decryption keys. Such approaches, while making this fairer for individual STAs,

will not affect the average overall throughput for a given number of STAs, and

so do not affect the results we present here.

In a ten-STA network, the decryption penalty for traffic from the tenth node,

the last to associate, and so the last key to be tried in the simulations, has

no effect on network throughput until the decryption rate drops below approx-

imately 4 Mbps, at which time network throughput dramatically falls, quickly

are reaching zero for decryption rates falling below 1 Mbps.
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Conclusions

“All progress is precarious, and the solution of one problem brings

us face to face with another problem” — Martin Luther King Jr.,

Strength to Love, 1963.

Finally This chapter concludes the work, summarizing the results of this work,

as well as defining areas of future endeavour in this field.

9.1 Summary

This research has investigated the current state of the art in IEEE 802.11 wireless

network security, including current weaknesses identified in Pre-Shared Keys,

TKIP, the use of TSNs and the ability to select weak configurations based on the

vendor offerings that permit insecure combinations, compromising what would

otherwise be a Robust Security Network.

This work has looked at the security of the low level protocols and, in partic-

ular, vulnerabilities in and possible attacks on Control and Management frames

in IEEE 802.11 WLANs. Two principal options for protecting the entire data

link layer, including all of the MAC sub-layer headers, where proposed and in-

vestigated, along with a number of variants.

While acknowledging that the key establishment requirements may reduce

the general utility of these proposals, it is believed that this limitation does not

preclude deployments in a great many situations where this additional level of

security is desired, or indeed required.

247
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The major concern therefore was the impact of this additional cryptographic

load at such a low level in the protocol stack.

A series of simulations were conducted to establish a baseline commensurate

with real-world observations of WLAN performance. From this baseline, a de-

tailed set of control data was generated providing communications links with

Constant Bit-Rate (CBR) sources: in an uncontended medium, contending with

another CBR STA, in scenarios of close and distant ranges, contending with

many high-rate CBR sources, as well as simulated TCP data, both to and from

an AP and including multiple overlapping TCP sessions.

These controls were then used to compare with and analyse the results of

simulations of the new proposed protocols.

When initial simulations yielded results effectively identical to the controls,

the simulations were adjusted to better recreate the physical realities of the pro-

posals. An extensive set of simulations of these new protocols where conducted

and analysed, confirming that the penalties invoked by applying cryptographic

protections at this low level of the protocol stack did not affect network through-

put for reasonable rates of encryption.

The data did however show, that exceptionally slow encryption rates and, in

particular, low decryption rates at the receiver, many induce sufficient delay in

the transmission of, or the response to, packets — resulting in retransmissions

and hence retransmission failures, at which point, throughput is decimated, as

all unicast traffic effectively fails, with only broadcast traffic being successful.

In light of these results, the simulated protocols were amended to account for

delays both in transmission and particularly decryption by the receiver, in order

to respond to unicast transmissions destined for that node, to permit a reply

within the new time frame. These additional enhancements were then tested

and the analysis of the results further supported the viability of these proposals.

While not necessarily appropriate in open networks permitting access by un-

known STA without prior credentials, for those networks where the only per-

mitted STA have already been provided with the appropriate credentials, then

the Wireless Link Security proposed here may well be a viable solution, with the

appropriate development.
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9.2 Further Work

This research has shown that encrypting the entire data link layer can be a viable

proposition. However, there are still a great many issues to be considered before

these proposals could lead to a workable solution.

These proposals are based on the assumption that all of the stations already

hold the required Public Key Infrastructure (PKI) credentials necessary to es-

tablish the pairwise unicast and groupwise broadcast keys necessary to initiate

these protocols. However, no consideration has yet been made as to how these

credentials are distributed, nor how such credentials would be used to establish

such keys. This is a matter for future research in this area.

This research has only dealt with the established wireless network protocols,

such as IEEE 802.11b and/or IEEE 802.11g, but has not investigated the effects

of recent amendments in such areas as: adding quality of service, fast handoff

for roaming or the emerging IEEE 802.11n High Throughput amendments [77]

and the effects of MSDU-aggregation or block acknowledgements.

Moreover, this work has only touched on the practical vagaries of the imple-

menting such protocols in hardware. Even with the extensive knowledge base

and open code of groups such as the Linux wireless development community and

the flexibility of chip sets, such as the Atheros wireless hardware, the intricacies

of encrypting the entire MPDU, including headers, are likely to induce their own

range of unique difficulties.

Along with these major areas, further research in these and any other wireless

networking protocols, will require enhancements to the base simulation tools to

account for the current advancements in wireless networking itself. While the ns-

2 simulator still remains more popular than the ns-3 successor, the majority of

the development effort in the simulator itself now appears to be squarely focused

on advancing ns-3 as the replacement for ns-2 [160].

In addition, further work is required to verify this work against fully func-

tioning infrastructure mode simulations, as well as without and the faulty ns-2

DSDV routing protocol that added an extra twenty bytes to every packet passed

in these simulations.
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9.3 Final Remarks

While the spectre of encrypted MAC addresses traversing the wireless medium,

seemingly unable to find a home, at first appears a major challenge, this work

has shown that this is not unreasonable and, in the right situation, may well be

a desirable feature and in the right application, entirely appropriate, in view of

the applicable risk profile that such protocols maybe addressing .

As in all matters of information security, the application of any security

control should always be the result of a risk-based decision applicable to the

particular situation being addressed. The application of any security control,

simply in the name of security, may well and add unnecessary burden for minimal

gain, and if not done in response to or in accordance with, an appropriately

designed security architecture, is unlikely two best support the purposes of the

infrastructure in meeting the business needs.



Appendix A

Developing the Tool Platforms to

Test the Thesis

This author’s choice of the Red Hat / CentOS / Fedora OS family is described

in subsection 6.1.1 of Chapter 6. A reader wishing to replicate these experiments

may well prefer a Debian distribution or a derivative, such as Ubuntu, or some

other Unix-like OS, since command-line and basic GUI operations are the same

on any distribution.

The following describes the set-up on a Fedora distribution and may not

involve identical commands and configuration on other systems.

A.1 Preparation, Installation and Configuration

of the Tools

On the 29th March 2008, the initial preparations were commenced for the de-

velopment of the simulation tools. Once a stable platform has been prepared,

originally Fedora 7 in this case, the set up of ns-2 proceeded as follows. Version

ns-2.32 was initially chosen, but was immediately replaced by ns-2.33, being the

most current stable release, as at 31st March 2008. The “ns-allinone-2.29.3 ” ver-

sion was not used as the ns-2.3x versions contained required wireless additions

for this work.
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A.1.1 Preparing the Environment

The first step was to check that the development environment was complete and

install any missing tools.

rpm -q wget

rpm -q gcc-c++

rpm -q libX11-devel

rpm -q xorg-x11-proto-devel

rpm -q libXt-devel

rpm -q libXmu-devel

A.1.2 Download and Install Tcl/Tk

Next Tcl and Tk and Object-oriented-Tcl, OTcl were prepared. The latest

releases of Tcl and Tk were 8.5.2 and the latest OTcl was 1.13. These were

obtained, compiled and installed as follows.

cd /usr/src

wget http://prdownloads.sourceforge.net/tcl/tcl8.5.2-src.tar.gz

wget http://prdownloads.sourceforge.net/tcl/tk8.5.2-src.tar.gz

wget http://prdownloads.sourceforge.net/otcl-tclcl/otcl-src-1.13.tar.gz

tar xzvf tcl8.5.2-src.tar.gz

tar xzvf tk8.5.2-src.tar.gz

tar xzvf otcl-src-1.13.tar.gz

cd /usr/src/tcl8.5.2/unix

./configure

make

make install

cd /usr/src/tk8.5.2/unix

./configure

make

make install

cd /usr/src/otcl-1.13

A.1.3 Installation Issues

At this point configure repeatedly failed for OTcl, while trying to find the Tcl

binaries. Both
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./configure

and

./configure --with-tcl=/usr/local/bin/tclsh8.5

or any other permutation failed.

Version otcl-1.13 was released 10th March 2007. All of these tools were

downloaded and being prepared over a year later on 29th March 2008. The

Tcl/Tk version 8.5.2 had only been released the day before, on 28th March 2008.

It seemed likely that the year-old OTcl was incompatible with the new versions

of Tcl and Tk.

It was decided to try reverting to Tcl/Tk version 8.4.14, from 19th Octo-

ber 2006 — a version verified to work for current ns-2 sources. The reversion

proceeded as follows.

cd /usr/src/tk8.5.2/unix

make distclean

cd /usr/src/tcl8.5.2/unix

make distclean

cd /usr/local/bin

rm -f tclsh* wish*

cd /usr/local/include

rm -f tcl* tk*

cd /usr/local/lib

rm -rf tcl* tk* libtcl* libtk*

cd /usr/local/man/man1

rm -f tclsh* wish*

cd /usr/local/man/man3

rm -f Tcl* Tk* TCL* Ttk*

Next, the version 8.4.14 sources for Tcl and Tk were obtained, compiled and

installed, as follows.

cd /usr/src

wget http://prdownloads.sourceforge.net/tcl/tcl8.4.14-src.tar.gz

wget http://prdownloads.sourceforge.net/tcl/tk8.4.14-src.tar.gz

tar xzvf tcl8.4.14-src.tar.gz

tar xzvf tk8.4.14-src.tar.gz
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cd /usr/src/tcl8.4.14/unix

./configure

make

make install

cd /usr/src/tk8.4.14/unix

./configure

make

make install

Then, OTcl version 1.13 was successfully compiled and installed as follows.

cd /usr/src/otcl-1.13

./configure

(NOT ./configure --with-tcl=/usr/share/tcl8.4.14/ as in some examples.)

vi Makefile

line 31 change

INST_OLIBSH= NONE/lib

to

INST_OLIBSH= /usr/local/lib

make install

A.1.4 Download and Install TclCl

Next, a Tcl/C++ interface, called TclCL, for “Tcl with CLasses”, was needed

to provide the Tcl/C++ interface for ns-2 and nam. Version 1.18 was used.

cd /usr/src

wget http://downloads.sourceforge.net/otcl-tclcl/tclcl-src-1.18.tar.gz

tar xzvf tclcl-src-1.18.tar.gz

cd tclcl-1.18

./configure --with-tcl=/usr/src/tcl8.4.14/

make

make install

A.1.5 Download and Install ns-2, nam and xgraph

Finally, ns-2 and nam, along with optional David Harrison’s xgraph, were built

as follows.
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cd /usr/src

wget http://downloads.sourceforge.net/nsnam/ns-2.33.tar.gz

wget http://downloads.sourceforge.net/nsnam/nam-src-1.13.tar.gz

wget http://downloads.sourceforge.net/nsnam/xgraph-12.1.tar.gz

tar xzvf ns-2.33.tar.gz

tar xzvf nam-src-1.13.tar.gz

tar xzvf xgraph-12.1.tar.gz

cd ns-2.33

./configure

make

make install

echo ’export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib:’ > /etc/p

rofile.d/ns.sh

chmod 0733 /etc/profile.d/ns.sh

After the installation, a clean boot with all the new libraries was performed and

the simulator was tested as follows.

$ ns

% set ns [new Simulator]

_o4

% ^C

Then nam was built.

cd /usr/src/nam-1.13

./configure

make

make install

Then check the nam console starts.

nam

Lastly, xgraph was built.

cd /usr/src/xgraph-12.1

./configure

make

make install
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Initially, the Fedora 7 OS was chosen both for its currency over the very stable

CentOS (a re-compiled community version of RHEL) and its stability over the

latest release, at that time, of Fedora 8 (a Red Hat sponsored community Linux

project). As ns-2 is compiled against the current running kernel, the frequency

of kernel upgrades has considerable impact on research activity involving the

simulator. By not being the latest release, at that time, Fedora 7 was likely to

have less frequent kernel upgrades and thus provide a longer mean time between

full compilations of the software. However, as the research progressed, Fedora

7 fell too far behind in development, presenting unsupported packages and a

general security risk and so it was decided to move to Fedora 9.

A.2 Platform-Specific Issues

Soon after the move to Fedora 9, in late August 2008, the Fedora software repos-
itories were penetrated and the Fedora GPG1 software signing keys may have
been compromised [183]. This prompted the issue of new keys and a new package
repository for both Fedora 8 and Fedora 9. Fedora 7, being no longer supported,
was not included in this process. The possibly compromised keys are listed here.

� RPM-GPG-KEY-fedora (4F2A6FD2),

� RPM-GPG-KEY-fedora-test (30C9ECF8),

� RPM-GPG-KEY-fedora-extras (1AC70CE6), and

� RPM-GPG-KEY-legacy (731002FA).

The key change involved upgrades to the latest PackageKit (0.2.5-1.fc9 i386)

and a new fedora-release (9-5.transition noarch) with new .repo files pointing to

the new repositories, but signed with the old key, in the old updates repository.

This update then loads the new .repo files pointing to the new repositories on

old systems accepting the old key, such that any subsequent updates point to

the new updates-newkey and updates-testing-newkey repositories.

=============================================================================

Package Arch Version Repository Size

=============================================================================

Updating:

PackageKit i386 0.2.5-1.fc9 updates 561 k

PackageKit-libs i386 0.2.5-1.fc9 updates 106 k

fedora-release noarch 9-5.transition updates 34 k

1GNU Privacy Guard (GnuPG or GPG).
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gnome-packagekit i386 0.2.5-2.fc9 updates 1.1 M

yum-packagekit i386 0.2.5-1.fc9 updates 11 k

Transaction Summary

=============================================================================

Install 0 Package(s)

Update 5 Package(s)

Remove 0 Package(s)

For any case where the original .repo files have been modified, this update

leaves two rpmnew .repo files as follows:

warning: /etc/yum.repos.d/fedora-updates.repo created as /etc/yum.repos

.d/fedora-updates.repo.rpmnew

warning: /etc/yum.repos.d/fedora.repo created as /etc/yum.repos.d/fedor

a.repo.rpmnew

These can then be modified if desired and moved over the active files.

mv /etc/yum.repos.d/fedora-updates.repo.rpmnew /etc/yum.repos.d/fedora-

updates.repo

mv /etc/yum.repos.d/fedora.repo.rpmnew /etc/yum.repos.d/fedora.repo

However, as all future updates were to come from the updates-newkey and

updates-testing-newkey repositories, this was not required.

The next update then points to the new repositories, signed with the new

keys listed here:

� RPM-GPG-KEY-fedora-8-and-9-primary (6DF2196F) and

� RPM-GPG-KEY-fedora-test-8-and-9-primary (DF9B0AE9)

The new keys are then imported as required during the normal update process.

warning: rpmts_HdrFromFdno: Header V3 DSA signature: NOKEY, key ID 6df2

196f

Importing GPG key 0x6DF2196F "Fedora (8 and 9) <fedora@fedoraproject.or

g>" from /etc/pki/rpm-gpg/RPM-GPG-KEY-fedora-8-and-9-i386

Is this ok [y/N]:
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Appendix B

Attacking WPA2

This appendix discusses the results of a series of tests, conducted by the author

during the course of this research demonstrating the vulnerabilities from weak

configurations of WPA and WPA2 WLANs.

Most of the material here was also presented by the author in “Securely De-

ploying IEEE 802.11 WLANs” [24], at the AusCERT Asia Pacific Information

Technology Security Conference (AusCERT2007), Gold Coast, Australia, in May

2007. Some sections of this material were also presented in an Australian Aca-

demic and Research Network (AARNet) ‘Ozeconference’ titled “A Review of

Actual IEEE 802.11 Deployment Practices” [11] in May 2008.

The are numerous WPA2-certified devices that are known to permit simul-

taneous WEP and WPA/WPA2 associations, when configured to do so. It is

similarly well known that the majority of commercial-grade equipment is highly-

configurable and can be made to accommodate almost anything the administra-

tor desires.

However, there seems to be no empirical data available as to the possibility of

common-off-the-shelf devices, such as might be used in small office / home office

(SOHO) situations (the consumer-grade devices), allowing simultaneous WEP

and WPA2 associations, when configured as “WPA2”, presumably intending

‘WPA2-only’ associations.

Tests were performed on a number of combinations of vendors’ devices, with

various chipsets.
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B.1 Conduct of the Tests

Access Points used were:

� Linksys WRT54G “Wireless-G Broadband Router”, Wi-Fi Certified “includes

WPA2” (as opposed to the Wi-Fi WPA/WPA2 Certifications);

� Belkin “Wireless G Router”, Wi-Fi Certified and “WPA – WPA2” (but without

the Wi-Fi WPA/WPA2 Certification mark); and

� SMC SMC2804WBR “Barricade g Wireless Broadband Router”, with no Wi-

Fi certifications, claiming “Wi-Fi Protected Access (WPA)”, but only providing

WEP out-of-the-box, with WPA added by a flash upgrade.

Client Stations used were:

� D-Link “AirPlus G” DWL-G520 Wireless PCI Adapter (Atheros chipset) on

Microsoft Windows 2000 Professional with D-Link “AirPlus G” DWL-G520

Windows 2000 drivers;

� D-Link “AirPlus G” DWL-G520 Wireless PCI Adapter (Atheros chipset) on

Fedora with madwifi drivers and wpa supplicant;

� D-Link “AirPlus G+” DWL-G520+ Wireless PCI Adapter (Texas Instru-

ments ACX110 chipset) on Microsoft Windows XP Professional with D-Link

“AirPlus G+” DWL-G520+ Windows XP drivers; and

� D-Link “AirPlus G+” DWL-G520+ Wireless PCI Adapter (Texas Instru-

ments ACX110 chipset) on Fedora with ndiswrapper and D-Link “AirPlus

G+” DWL-G520+ Windows XP drivers.

All data capture was performed on a separate machine with a D-Link “AirPlus

G” DWL-G650 Wireless PCMCIA Adapter (Atheros chipset) on Fedora with

madwifi drivers, kismet and ethereal1.

B.1.1 Initial Tests

The initial tests were performed with the Microsoft Windows clients to the

Linksys WRT54G on a “LinksysSecurityTests” network. The WRT54G allowed

the selection of WPA2 with AES or TKIP+AES or WPA with AES or TKIP or

1The Ethereal Project now uses the name “Wireshark”.
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WEP, with all possible combinations of authentication and key-modes. The Win-

dows clients offered a simplified range of options with WPA2, WPA2-Personal,

WPA, WPA-Personal and various WEP flavours.

All legal combinations of authentication and encryption were tested and the

clients were able to connect for all matching combinations and, as required and

expected, mixed encryption modes could not connect. These typically were indi-

cated by the client STA finding no suitable AP (with intersecting sets of proto-

cols) in the responses to its directed and broadcast probes. When Linux clients

were used, so that association could be forced by the client STA, the AP would

typically respond with the association denied for an unknown reason.

Figure B.1: AP Association Response with mismatched protocols

However, a WEP client attempting to associate with the WRT54G AP set

for WPA2 (only), but with both TKIP and CCMP and the default WEP Key 0

set to match, revealed what appeared to be the AP offering the possibility of a

WEP connection:

Figure B.2: RSN Transmitter can support WEP simultaneously

This was also noted in IEEE 802.11i, verbatim:

“Bit 1: No Pairwise. If a STA can support WEP default key 0

simultaneously with a pairwise key.” [12, Para 7.3.2.25.3]
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This looked promising for a attempt to get a WEP association with a WPA2

AP, to compromise the WEP key and thereby subvert the security of the under-

lying network.

B.1.2 A False Positive Result

As expected, the Windows clients initially were unable to associate, via WEP,

with the WRT54G configured for WPA2 “TKIP+AES” mode. However, at one

point, after a series of configuration changes, the Microsoft Windows 2000 Pro-

fessional with D-Link “AirPlus G” DWL-G520 client indicated it had associated

with the Linksys WRT54G via WEP. A valid association was verified by pinging

a host behind the AP via the WLAN.

The next phase was to gather enough packets to execute the KoreK attacks

and recover the WEP key. Traffic was simulated with a continuous ping (one per

second) from the Windows 2000 host. Unfortunately, after a period of time, the

connection would fail and the drivers lock-up, requiring a reboot. This apparent

instability was severely hampering the gathering of packets for the statistical

attack and it was decided to switch to a Linux client with a more versatile set of

network tools and possibly less stability problems.

Two different Linux clients with different hardware and software were used.

One used the D-Link “AirPlus G+” DWL-G520+, with a Texas Instruments

ACX110 chipset and ndiswrapper and the D-Link Windows XP drivers —

chosen because of the same binary drivers as the Windows clients, so as to

differentiate any OS-specific issues.

The other used the D-Link “AirPlus G” DWL-G520, with an entirely dif-

ferent Atheros chipset and madwifi drivers and wpa supplicant. This com-

bination was chosen because the Atheros chipset is highly configurable, per-

forming much of its work in software and firmware, rather than dedicated hard-

ware. The madwifi drivers give an extensive interface to this chipset and the

wpa supplicant uses a detailed configuration file, allowing all settings to be

manipulated.

Extensive testing involving all possible configurations of the clients and the

WRT54G as WPA or WPA2 failed to obtain a WEP association. The only

recourse was to revert to the Windows client and gather the necessary packets

over a longer time. However, now the Windows client also refused to associate

via WEP. There now seemed only two possibilities, either:
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� The original WEP associations had actually been with some other AP,

allowing WEP; or

� The original associations had not actually been WEP or the AP was al-

lowing WEP.

B.1.3 Analysis

The packet capture files for the month in question were reviewed to find that

the client had been authenticating and associating with the correct AP, the

WRT54G, but even though the Windows client had consistently reported WEP

encryption in use, the traffic clearly showed a TKIP protocol selection and 4-way

handshake for a WPA connection and the apparent ‘instability’ was in fact due

to the WEP key being used for the group cipher and the disassociate in group

key time-out never recovering (because the client will not negotiate a new key)

and the new handshake timing out.

Figure B.3: Disassociate on Group Key Time-out

Further investigation revealed the ‘No Pairwise’ bit only has meaning for

a client STA, to indicate to an AP as to whether or not it can support WEP

default key 0 simultaneously with a pairwise key. (So that the AP does not

attempt to have the STA install a pairwise key, over the top of WEP default key

0.) This bit has no relevance in packets from an AP. An AP always sets this bit

to zero. While this is not new, it was, for this author, obscure, and is included

for emphasis.
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Figure B.4: Subsequently fails to negotiate a new Group Key

B.1.4 Remaining Results

With this avenue of attack failing to be realised, the tests were repeated on the

other APs.

None of the variations of clients, for either Atheros or Texas Instruments

chipsets, combined with either Microsoft or Linux driver software, on any of the

platforms, could successfully associate with WEP with any of the APs surveyed

when correctly configured for WPA2 (only).

B.1.5 Weak Configurations

Neither the Linksys WRT54G, nor the Belkin “Wireless G Router” provided

a configuration option permitting the use of WEP with WPA modes.

The SMC SMC2804WBR “Barricade g Wireless Broadband Router” does

offer a WEP/WPA combined mode. With this mode set both WPA and WEP

associations can exist simultaneously.

The SMC2804WBR was configured for WEP/WPA combined mode and si-

multaneous associations were successfully made with:

� the D-Link “AirPlus G+” DWL-G520+ Wireless PCI Adapter (Texas Instru-

ments ACX110 chipset) on Microsoft Windows XP Professional with D-Link

“AirPlus G+” DWL-G520+ Windows XP drivers configured for WPA; and

� the D-Link “AirPlus G” DWL-G520 Wireless PCI Adapter (Atheros chipset)

on Fedora with madwifi drivers and wpa supplicant configured for WEP.

Both the WPA and WEP clients were able to access the network behind the

SMC2804WBR, confirmed by pinging hosts on the wired network.
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By setting continuous traffic from the WEP client, it was a trivial matter

to capture the traffic needed to use with aircrack to recover the WEP key on

the separate “intruder” device, a laptop with a D-Link “AirPlus G” DWL-G650

Wireless PCMCIA Adapter (Atheros chipset) on Fedora with madwifi drivers,

kismet, ethereal (now “Wireshark”) and aircrack.

It was found that the WEP key allowed an attacker to get to the entire

wired LAN behind the SMC2804WBR, severely compromising the wired LAN,

including access to every host NIC (although host security provided protection)

and by setting the SMC2804WBR as the default gateway, all other subnets and

the Internet service. This required the SMC2804WBR to be configured as a

gateway, allowing any out, with the appropriate default routes.

Curiously, although the WEP key allowed an attacker to get to the entire

wired LAN, we were not able to access the WPA devices using the same AP for

the same wired LAN.

Again, this is not a clandestine attack — the SMC2804WBR has to be con-

figured as WEP/WPA to allow this attack. This is a clearly dangerous configu-

ration.

B.1.6 Using Pre-Shared Keys with WPA and WPA2

Note that in the simplest case, for small private networks, there is the option of

using a Pre-Shared Key (PSK) with WPA2 (WPA2-PSK). The Wi-Fi Alliance

calls this “WPA2-Personal” (as opposed to “WPA2-Enterprise” that uses the

802.1X authentication methods).

The remaining issue, which is also shown in the discussion in the next sec-

tion, was the use of ‘Pre-Shared Key’ (PSK) mode in all of these tests. It

took aircrack only eight seconds to find our reasonably long (19 characters

and 20 characters), but very poorly chosen pass-phrases, “acetylaminofluorene”

and “acetylcholinesterase” that were used for WPA and WPA2 key pass-phrases

throughout these tests.
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Figure B.5: Pre-Shared Key (PSK) broken in 8 seconds [24]
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B.2 Discussion

Some device drivers allow a PSK to be entered as 64 hexadecimal digits providing

the 256-bit key directly, such as (often with a leading ‘0x’)

‘8F8E17FC4CFD675A4F70E38587843845097A6D34637CA4F71FF785EBB462D71E’.

However, unless every device on the network allows this method of entry, it can

not be used for any of the devices, as the other entry methods hash the input.

The more universal method of setting the PSK is to supply a 8–632 character

pass-phrase. The IEEE 802.11i standard uses the term “pass-phrase”, meaning

a secret text string, to distinguish it from a ‘password’ commonly used to mean

a single group of alphabetic symbols containing no spaces. There is a very great

risk to the security of the configuration if the pass-phrase used has insufficient

entropy, making it susceptible to dictionary attacks. Ideally the pass-phrase

should be 63 random printable characters, such as

‘Fi+Kbl).1x@/X5Lf8sNf;AYl[!eCU:’y72aSBoB(=P4k=GzLna:F*bKJ?.gAwq@’.

However some vendor’s interfaces cannot accept the full encoding range of 32

to 126 (decimal), inclusive and the pass-phrase is restricted to alphanumeric

characters, such as

‘L7YavIR03qUQbrVWexMqDrGSK8gCxdjATZVSllFiTpPZUzSoPjrofrxokoV6cih’.

A common comment in Internet forums is that the pass-phrase should be at

least 20 characters long. However this should be random characters, or there

will be insufficient entropy. Many make the mistake of using an actual phrase, or

worse a single password. Figure B.5 shows how quickly tools like aircrack can

break non-random words with a dictionary attack — in this case, eight seconds.

B.2.1 General Guidelines for Implementing a RSN

Since any implementation of a RSN on WPA2 equipment demands the use of

AES-CCMP only for both the (singular) pairwise suite, as well as the groupwise

suite, the following guidelines apply equally to public, private and commercial

WLANs:

1. All of the devices must implement CCMP (i.e. must all be WPA2 devices).

2. All of the devices must not permit pre-RSNAs:

� Select “WPA2 Only Mode”

2To distinguish it from the 64 digit hex.
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� Ensure the transmitted RSN IE uses only CCMP for the groupwise

suite

� Test to ensure WEP STA is refused association — in both shared-key

and open authentication modes

3. If the software/firmware allows, remove or disable WEP-40, WEP-104 and

TKIP.

4. If using WPA2-PSK, use a random 256-bit (64 hexadecimal digit) key.

5. If using PSK, but cannot use hex keys, use a random 63 character ‘pass-

phrase’.

6. If using 802.1X authentication, ensure the selected EAP provides mutual

authentication, such as EAP-TLS.

7. If the software/firmware allows, remove or disable other EAPs.

There is a critical difference between RSNA-capable devices and RSNA-

enabled devices. It has been shown that conforming with the IEEE 802.11i

amendment does not necessarily enforce a RSN and the WPA2 certification of

equipment is not sufficient to provide a RSN, since compliance with IEEE 802.11i

does not mandate a RSN in operation.

WPA2 certified equipment will implement a RSN, if properly configured to do

so, but this may not be the default. With WPA2 certification requiring backward

compatibility with WPA, it is likely that WPA2 devices will default to a TSN.

In addition to this, many vendors provide various other mixed pre-RSNA modes

of operation.
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