
Università di Pisa

Dipartimento di Informatica
Dottorato di Ricerca in Informatica

Ph.D. Thesis Proposal

On expressing different concurrency paradigms on

virtual execution systems.

Cristian Dittamo

Supervisor

Dr. Antonio Cisternino

January 6, 2008

Abstract

The notion of virtual machine has permeated every aspect of computing systems, as wit-
nessed by the ever growing set of virtual execution systems targeted by programming
languages such as Java, C#, Perl and Python just to mention few of them. Virtual
machines are appreciated not only because of portability of computer programs across dif-
ferent architectures; the ability of monitoring the program execution has proven important
to enforce security aspects as well as tailoring execution onto specific architectures. More-
over, dynamic loading and reflection allow programs to adapt their execution depending
on several environment factors, including the underlying computing architecture.
Recently microprocessor architectures are shifting from the original Von Neumann com-
putational model, and including different forms of concurrent computation that cannot
be hidden to the executing program; important examples are the programmable graph-
ical processors (GPU), and the Cell BE architectures. Virtual machines provide an ab-
stract computing model that provides heap, stack-based operations, shared memory, and
multi-threaded concurrency. Although it is possible to imagine a Just In Time compiler
that maps programs for the virtual machines to the underlying architecture, the program
will not contain enough information to efficiently bridge the gap between computational
paradigms that may differ significantly.
In this PhD work we want to investigate general approaches to bridge this gap, by provid-
ing suitable programming abstractions not affecting the general structure of the virtual
machine, but consent control over the particular underlying architecture.

4

Contents

Introduction 1

1 Basic concepts 5

1.1 Virtual Machine programming model . 5
1.1.1 Strongly Typed Execution Environment (Model) 6
1.1.2 Extending the STEE . 8

1.2 Microprocessors programming model . 12
1.2.1 Von Neumann architecture . 12
1.2.2 Data-Flow architecture . 14
1.2.3 Multi-thread hardware, multi-level caches 15

1.3 Problems and Existing solutions . 16

2 Research Proposal 21

Bibliography 25

ii CONTENTS

Introduction

In the last few years, the number of languages, applications and frameworks based on
Virtual Machines (VM) has increased. Some examples are the VMPlants [10], a grid ser-
vice for automated configuration and creation of flexible VM execution environments, and
the Muskel [34] parallel programming library that provides users with structured paral-
lel constructs (skeletons) usable for the implementation of efficient parallel applications.
Muskel applications run on networks/clusters of workstations equipped with Java. Other
examples are the CLR1-based frameworks such as Windows Presentation Foundation

(WPF) [35], a graphical subsystem feature of the .NET Framework 3.0 that provides a
unified programming model for building Windows applications that incorporate UI, media,
and documents, and provides a clear separation between the UI and the business logic; the
Windows Communication Foundation (WCF) [36], which is a new communication subsys-
tem to enable applications on one machine or across multiple network-connected machines
to communicate. Another example is OpenOffice [37], a free office suite based on the
Java virtual machine (JVM).
One of the reason of this success is due to the (extensible) reflection model provided by
execution environments, such as JVM and CLR. It enables dynamic access to the represen-
tation of the application, and allows the program to change its behavior while running
depending on its current execution state [11, 18]. This eases cross-platform interaction
and allows software to be portable between various operating systems (OP).
Although VMs in the form of abstract machines have been around for a long time (since
the mid-1960s), the advent of Java has made them a common technique for implementing
new languages, particularly those intended for use in heterogeneous environments.
A virtual machine was originally defined by Popek and Goldberg [1] as “an efficient,
isolated duplicate of a real machine”. Real machines, i.e. computer systems, are built
on levels of abstraction, where a higher level of abstraction hides details at lower levels
(e.g. files are an abstraction of a disk). VMs enable software virtualization a host platform,
which is similar to abstraction except that details are not necessarily hidden. There are
many types of VMs, but the common theme between them is the idea of virtualizing an
instruction set. Popek and Goldberg in [1] provide the notion of virtual machine map

(VMMap), where any virtual instruction sequence corresponds to a real instruction sequence.
This map was proposed for the conventional third generation computers. We believe that
this mapping can be applied to the current generation of (heterogeneous) computers. The
problem is how to construct such a map in order to obtain the best performance for each
architecture: modify the existing VM model or just extend it? Is it possible to make a

1Microsoft .NET Common Language Runtime implementation of standard ECMA 335 [20] Common
Language Infrastructure (CLI)

2 CONTENTS

general mapping model?
Strongly typed execution environments (STEEs), such as JVM [22], CLR, Shared Source
Common Language Infrastructure (SSCLI) [21], and OCaml [8], implement and expose to
programmers a multi-threaded, shared memory, stack-based virtual machine and offer the
opportunity to be extended by multi-stage [7] and meta-programming [6] capabilities that
can be exploited by the languages that share such VMs (i.e. runtime). For example, in
[4] the reflection support provided by STEE is extended allowing the programmers to mix
code written in the same language, thus giving the impression that the meta-programming
system performs source to source code transformations, whereas in reality the code ma-
nipulation is performed at binary level.
Modern microprocessor architectures have considerably changed from the past: from the
classical Von Neumann architecture to the modern Data-Flow architecture of the Graphi-
cal Processing Unit (GPU) and the multi-core architecture of the Cell Broadband Engine

(Cell BE) microprocessor [26]. The shift to multi-core processors that is currently under-
way provides an increase of 10 to 100 times today’s computing power. Each one of these
microprocessors is completely different from the other both in architecture and program-
ming model. For example, GPU programmable parts consist of an array of vertex processors
and an array of pixel processors to compute the position of vertices and the final color of
each pixel respectively. Each processor has constants and temporary registers. However,
there is no temporary memory. GPUs have a SIMD2 programming model (moving towards
a SPMD3 model) that has to face the lack of resources available and has a limited support
for primitive types typically found on CPUs.
In order to guarantee portability, VMs provide a single view to all these architectures by
means of different implementations of the STEE. This view provides a shared memory,
multi-threaded programming model along with synchronization mechanisms for managing
race conditions such as locks. It is the Just-In-Time (JIT) compiler that is in charge of
translating the intermediate machine-independent code into native CPU code at runtime.
Therefore, there is a JIT compiler for each computer architecture supported by a VM. Each
specific JIT compiler emits optimized code based on its knowledge of the specific instruc-
tions (e.g. SSE24) provided by the ISA of the host CPU.
In the last few years, we’ve observed a progressive branching between the programming
models provided by VMs and the ones provided by modern microprocessors. We call the
problem of filling this gap the mapping problem. Researchers have recently tried to
reduce this gap. For example, Tarditi, Puri and Oglesby [23] have developed a library,
named Accelerator, that uses data parallelism to program GPUs for general purpose uses
under .NET CLR. The main advantage is that no aspect of the GPU is exposed to the
programmers, only high level data-parallel operations: the programmer must use specific
data(-parallel) types to program the GPU instead of the CPU.
Another example is the RapidMind Development Platform [30] that allows the developer
to use standard C++ to create concurrent/parallel applications that run on GPUs, the Cell

BE, and multi-core CPUs. It provides a single unified programming model, adding types
and procedures to standard ISO C++ and relying on a dynamic compiler and runtime
management system for parallel processing. However, Accelerator only extends the APIs

2Single Instruction Multiple Data
3Single Program Multiple Data
4Streaming SIMD Extensions 2, is one of the IA-32 SIMD introduced by Intel with the initial version

of the Pentium 4 in 2001.

0.0. CONTENTS 3

allowing programmers to perform computations on GPUs. Whereas in RapidMind, there is
a reliance on a specific programming language along with extension of the APIs. Actually
both don’t introduce a new programming model to solve the mapping problem.
We believe that by leveraging meta- and multi-stage programming features and STEE fea-
tures, such as CLR, SSCLI or Mono, it will be possible to map the different programming
models, by:

• providing a single and unified programming model without losing expressivity nor
forcing the use of a single source language, because SSCLI is a cross-language VM as
well as cross-platform;

• staging the compilation, optimization, and specialization processes by introducing
programming constructs for controlling the generation process and by allowing pro-
grammers to continue developing and debugging at source level;

• providing a mechanism to supply specific operations of the runtime host architecture
at a higher level (i.e. VM level) in order to permit more control over the computation
to programmers.

Outline of the work

This thesis proposal is organized as follows. In Chapter 1 we present the state of the
art in Virtual Machine programming models, providing some useful details about STEEs.
We then focus the discussion on meta-programming, runtime bytecode generation, and
multi-stage programming techniques which allow to extend STEEs with features useful for
maximum performance exploitation of new microprocessors architectures. For each of
these techniques we argue relative features, advantages and disadvantages.
Chapter 2 details our proposal. We outline some ideas about how to solve the mapping
problem.

4 CONTENTS

Chapter 1

Basic concepts

In the following sections we introduce the state of the art in programming models both VMs
and microprocessors. These basic concepts will be useful to delineate the (virtual-to-real
machine) mapping problem.

1.1 Virtual Machine programming model

Virtual Machines, in the form of abstract machines, have been around for a long time
(since the mid-1960s), but the advent of Java has made them a common technique for
implementing new languages, particularly those intended for use in heterogeneous envi-
ronments. There are many types of VMs, but the common theme between them is the idea
of virtualizing an instruction set. Each VM uses a virtual instruction set (VIS) mapped to
the real instruction set (RIS) of the computer.
Currently the VMs are separated into two major categories, based on their use and degree
of correspondence to any real machine: System virtual machine (SysVM) and Process

virtual machine (ProcVM). The former provides a complete system environment con-
structed at ISA level which supports the execution of a complete operating system (OS).
On the other hand ProcVMs, sometimes called application virtual machines, are designed
to run a single program, which means they support a single process. Their purpose is to
provide a platform-independent programming environment that abstracts the details of
the underlying hardware or OS, so that every program executes in the same way on every
platform.
One ProcVM subclass is the High Level Language VM (HLLVM). Its main goal is complete
platform independence for applications. The major difference between ProcVM and HLLVM

is the specification level: HLLVMs provide a Virtual ISA + APIs1. Major modern exam-
ples of HLLVMs are the Java JVM [22] and Microsoft Common Language Infrastructure

(CLI2) [20]. The latter is also cross-language since it allows languages that target the CLI to
be integrated with one another, so that it is possible to use data types of another language
as if they were your own. CLI is an open specification3 that has a number of implementa-
tions including CLR, SSCLI, and Mono. All of them provide a type-oriented, multi-threaded,
stack-based VM, named Virtual Execution System (VES), that offers many services such

1Instead of ISA + OS interface with ProcVM
2Recently standardized by ECMA and ISO as well as the C# language specification [19]
3Published under ECMA-335[20] and ISO/IEC 23271) developed by Microsoft.

6 CHAPTER 1. BASIC CONCEPTS

as dynamic loading, garbage collection and Just-In-Time (JIT) compilation.
An essential characteristic of a VM is that the software running on it is limited to the
resources and virtualizations provided by the VMs; we focus on how to overcome this limit
by providing more functionality based on runtime host architecture features.
In the remainder of this proposal, we consider the type oriented VMs only, named STEE,
such as CLR, SSCLI and Mono, because their execution environments contain information
about program types and their structure, and are able to reflect it to running programs.

1.1.1 Strongly Typed Execution Environment (Model)

A STEE is a VES which implements a VM providing an extensible type system and reflection
capabilities. It is strongly-typed because it guarantees both that value types can always
be established, and that values are only accessed by using the operators defined on them.
The execution is managed since STEE has complete information about all aspects of a
running program. This includes knowledge of: the state and liveness of local variables in
a method; all extant objects and object references, including reachability information.
It provides direct support for a set of built-in data types, and defines a VM with an associ-
ated machine model, shown in (figure 1.1), a state, a set of control flow constructs,
and an exception handling model. The purpose of the STEE is to provide the support
required to execute the intermediate instruction set: IL for CLI and bytecode for JVM. The
IL expresses a program executed by a thread. Each method invocation corresponds to the
addition of a stack frame wich contains local variables and the input arguments.
As for many programming technologies and environments, such as OS with processes and
the Java VM with the class loaders, the CLR defines its own unique model for scoping the ex-
ecution of code and the ownership of resources, called Application Domain (AppDomain).
AppDomain is a sub-process unit of isolation for managed code, which fills many of the
same roles filled by an OS process since it scopes the execution of code, provides a degree
of fault isolation, provides a degree of security isolation and owns resources on behalf of
the programs it executes. However a process is an abstraction created by the OS, whereas
an AppDomain by the CLR. A given AppDomain resides in exactly one OS process, whereas
a given OS process can host multiple AppDomains.
The CLR has its own abstraction for modeling the execution of code that is conceptually
similar to an OS thread. The CLR defines a type that represents a schedulable entity in an
AppDomain, called soft thread. It is a construct that is not recognized by the underlying
OS. A given AppDomain may have multiple soft thread objects. A one-to-one corre-
spondence doesn’t exist between soft threads and AppDomains. When a soft thread in one
AppDomain calls a method in another AppDomain, the thread transitions between the two
AppDomains. Whenever a hard thread winds up executing code in multiple AppDomains,
each AppDomain will have a distinct soft thread object affiliated with that thread.
When unloading an AppDomain, the CLR knows which threads are in it, and forces them
to unwind out of it. Objects in one AppDomain can communicate with types and objects
contained in another AppDomain. However, access to these types and objects is made
only through well-defined mechanisms (e.g. .NET remoting). .NET exposes AppDomains to
programmers via appropriate types in the APIs.

1.1. VIRTUAL MACHINE PROGRAMMING MODEL 7

Figure 1.1: Machine state model, VES, manages multiple concurrent threads of control
(not necessarily the same as the threads provided by a host operating system), multiple
managed heaps, and a shared memory address space.

Just In Time compilation

STEE compiles the IL code using JIT into native CPU code. CLR (as well as JVM and
Mono) adopts a 2-stage compilation. At the 1st stage, a compiler that targets the CLR

forms program files (i.e. assembly) in a standard machine independent format containing
both code (i.e. intermediate language (IL)) and metadata. At the 2nd stage, the JIT

compiler converts the IL as needed during execution and stores the resulting native code
for subsequent calls. The loader creates and attaches a stub to each one of a type’s methods
when the type is loaded. On the initial call to the method, the stub passes control to the
JIT compiler, which converts the IL for that method into native code and substitutes the
stub with the native code location address. The choice of representing types and code in
intermediate language form, rather than machine code, is somewhat constrained because
of design goals. Without information on types it is almost impossible to have general

8 CHAPTER 1. BASIC CONCEPTS

support for dynamic loading of modules, thus reducing reuse of software.
Furthermore, the compiler verifies the IL code and relative metadata it receives as input
to find out whether the code is type safe or not, which means that it only accesses the
memory locations it is authorized to access.
A key aspect of the CLR programming model is the heavy reliance on metadata.

Metadata and Reflection

Metadata contains all the information necessary to describe and reference types defined
by the type system. It provides a common interchange mechanism for use between tools
that manipulate programs (such as compilers, debuggers, and runtime code generators
(RCG)), as well as between those tools and the VES. When types become a shared abstraction
between the execution environment and the programming language a larger amount of
information is made available about a program to the runtime and to all the other programs
interested in code analysis. After compilation, programs may manipulate the output
looking for special patterns inside the intermediate language, types and metadata [5]. Post
processing may be done for several reasons: in [4] it is done for runtime code generation; in
[12] the meta-program Particular uses metadata to make a sequential C# coded method
parallel.
Another key aspect of the CLR is the (extensible) model for Reflection. It makes all
aspects of a type’s definition available to programs through metadata, both at development
time and at runtime. The model is extensible because it supports arbitrary metadata
attributes, named Custom Attributes (CA), without introducing new keywords into the
programming language. In [12] a set of CAs are defined so that programmers can suggest
which section of a method body must be analyzed for parallelization purposes.
In the following section, we illustrate how the execution environment can be extended, in
order to overcome the limits of current STEEs.

1.1.2 Extending the STEE

STEEs, such as the CLR or SSCLI, offer the opportunity to be extended with meta-programming
[6] and multi-stage [7] capabilities that can be exploited by the languages that share such
a runtime.

Meta-programming and Runtime Code Generation

Meta-programming refers to the class of programs manipulating other programs, called ob-
ject programs (OP). A meta-program may construct OPs, combine OP fragments into larger
OPs, and observe the structure and other properties of OPs. Examples of meta-programs
are compilers, partial evaluators, AOP4 weavers, FOP5 systems, and many others.
In [6] Sheard proposes a meta-program taxonomy whereof we’ll introduce those aspects
relevant to this proposal only. All meta-programs can be divided into two categories: pro-
gram analyzers and program generators (RTCG6). The former observes the structure and
environment of an OP and computes some value as a result (e.g. optimizers, partial evalu-
ation systems, etc.). The latter is used to address a whole class of related problems, with

4Aspect Oriented Programming
5Feature Oriented Programming
6RunTime Code Generator

1.1. VIRTUAL MACHINE PROGRAMMING MODEL 9

a family of similar solutions, for each instance of the category. It does this by creating an
OP that solves a particular instance.
Furthermore, RTCGs can be further categorized into manually and automatically annotated.
The body of a program generator is partitioned into static and dynamic code fragments.
The static code comprises the meta-program, and the dynamic code comprises the OP being
produced. Annotations are used to separate the pieces of the program. Manually anno-
tated systems are those where the programmer places these annotations directly. Whereas
Automatically annotated ones have the annotations placed by an automatic process.
We are especially interested in RTCGs since they have some useful benefits:

• performance, it is a common objective of many meta-programming system, since
computations can be sped up by preprocessing (i.e. partially evaluating) some of the
static data before consuming the remainder of the dynamic data;

• code compaction, some parts of code may become unnecessary at runtime;

• code adaptation, system can adapt itself to the host environment changes;

• programming language expressiveness, programmers should be able to express not
only the programming language implementation, but its design as well.

Each language attempts to do this within its own domain and under its unique constraints.
We believe that the potential to provide high-level abstractions previously unavailable to
programmers is a RTCG area of application.
However, there are some important issues to be addressed within RTCG:

• speed, there is a tradeoff between generating code quickly or generating code that
runs fast. Generating source code at runtime, through a runtime compiler, entails
post-processing phases, such as transformations and register allocations, which re-
quires time, thus preventing quick code generation. On the other hand, generating
machine code directly is more complex, but potentially quicker to perfom, since an
intermediate step is not required. Whatever the choice, it is hard to make RTCG

generic and cross-platform compatible, since the machine architecture is involved in
the code generation phase.

• garbage collection (GC) for generated code; most GC systems are designed to collect
data, not code, which are often resident in different portions of memory; furthermore,
there is the problem of keeping track of all different access methods of different kinds
of variables.

Multi-stage programming

We leverage meta-programming to overcome the limitations of existing programming lan-
guage targeting runtime such as CLR: either performance or expressivity problems. One
way of overtaking them using meta-programming is staging. Staging is a program trans-
formation that involves reorganizing the program’s execution into stages. The goal is
to improve a program based on a priori information about how it will be used. Staged
systems are useful because in the life-cycle of a program there are different stages where
computations can be performed to partially specialize a program. The idea comes from
the observation that a result from a run of an early stage might be reused several times in

10 CHAPTER 1. BASIC CONCEPTS

later stages, and the cushioned cost of generating specialized code is much smaller than
that of the repeated computation.
A new execution model has been introduced whereby a program is processed by a sequence
of processors which take as input an OP and generate a new OP. At each step, called stage,
the input program is evaluated and manipulated. An example of that is the Yacc parser
generator. First, it reads a grammar and generates its relevant C code; second, it compiles
the generated program; third, the user runs this compiled program.
Multi-stage programming languages, such as MetaML [7], MetaOCaml [25], and CodeBricks

[4], have been developed to provide a good basis for the multi-stage programming paradigm.
These languages allow users to write code constructions directly in the form of source code
instead of numerous data constructors for a specific “code” type. They are characterized
by annotation mechanisms which explicitly specify the evaluation order of the various
computations, namely which portion of the program should be executed, so that

Stage program = Conventional Program + Staging Annotations

The type systems of these languages guarantee that the generated code is well-formed,
thereby guaranteeing that the entire execution will not fail.
Following is a description of some important languages and frameworks for meta-programming
and code generation. For each of them we’ll argue the main features.

Languages

MetaML

An example of RTCG is MetaML [7]. This is a homogeneous, manually annotated, runtime
generation system. It guarantees the syntactic correctness in specifying OPs, and type
(and semantic) correctness of OPs. It provides support for multi-stage programming by
three types of staging annotations, static type-checking, a polymorphic type-inference,
and static scoping for both meta-level and object-level variables. The staging annotations
provided are: brackets (< >), which can be inserted around any expression to delay its
execution; escape (~), that combines delayed computations, splicing-in the argument in
the context of the surrounding brackets; run, for executing delayed computations, thus
forcing a piece of code to be evaluated.
MetaML is based on two main principles: cross-stage persistence and cross-stage safety.
The former allows the programmer to use a variable bound at the current level in any
expression to be executed in a future stage. To the user, this means the ability to stage
expressions that use variables defined at a previous stage. The latter, on the other hand,
prevents developers from staging programs where a variable is used at a level lower than
the level of the lambda-abstraction in which it is bound.
In MetaML the cross-stage persistence comes at a price. Because most compilers do not
maintain a high level representation for values at runtime, being able to inject any value
into the code type means that some parts of this code fragment may not be printable.
So, if the first stage is performed on one computer, and the second on another, we must
“port” the local environment from the first machine to the second. Since arbitrary ob-
jects, such as functions and closures, can be bound in this local environment, this can
cause portability problems. Currently, MetaML assumes that the computing environment
does not change between stages. Thus, MetaML currently lacks cross-platform portability.

1.1. VIRTUAL MACHINE PROGRAMMING MODEL 11

F#

F# [14] is a multi-paradigm .NET language explicitly designed to be ML suited to the .NET

environment. F# was modeled on Objective Caml (OCaml) [8] and then tweaked and
extended to mesh with .NET. It fully embraces .NET and enables users to do everything
that .NET allows: garbage collection, JIT compilation, interoperable generics, and .NET

libraries.
Its main contribution is the integration of three programming language paradigms (func-
tional - imperative - object oriented) with each other and with the type system imposed
by the .NET virtual machine: F# types and code can be used directly from other CLI

languages. Moreover it provides the ability to execute programs interactively and across
multiple platforms since it is supported by Mono.
F# supports meta-programming7 by means of F# quotations (<@ @>). The quote op-
erator instructs the compiler to generate data structures representing code rather than
IL. The F# parser and type checker statically guarantee the syntactic validity of quoted
fragments and the typing of quoted literals. Quotations allow capturing of type-checked
expressions as structured terms. They can be interpreted, analyzed and compiled to al-
ternative languages. An interesting feature is that F# quotations can also be generated
programmatically at runtime.
Quotations allow heterogeneous execution of F# programs since a single program written
entirely in F# can run not only as .NET code, but also in various other environments. They
make it possible to “take” part of the program, process it and execute it somewhere else.
For example, in the following code a query comprehension is wrapped in <@ @> marks,
which allows the SQL function to analyze the F# code and translate it to the appropriate
SQL code.

let CustomersList =

SQL <@ { for c in (db.Customers)

when c.Country = "Italy"

-> c } @>

This feature is very interesting for our aims since we want to process and analyze a high-
level language implemented code and execute it where the best performance is provided;
for example, matrix operations can be executed faster on a GPU rather than on a CPU.

Frameworks

Execution environments such as CLR and JVM provide many features needed by multi-stage
programming languages, though there is no explicit support for them. Follows we present
two examples of possible runtime extensions to provide support for multi-stage languages.

Jumbo

A tool for building runtime code generators for Java [17]. It provides a dynamic compiler
for Java capable of pulling together fragments of Java code into a single program and
compiling the combined program at runtime. The basic idea behind Jumbo is compositional

7It is still at an experimental stage.

12 CHAPTER 1. BASIC CONCEPTS

compilation, i.e. the compilation of each language construct is a function of the compila-
tion of its sub-constructs only. The advantage is that any particular piece of syntax can
be easily abstracted from and filled in at a later time/stage. Jumbo’s main disadvantage
is that it is tied to the Java language: it accepts plain source Java code as input and
produces (virtually) the same code as the javac compiler.

CodeBricks

It provides a framework for code generation that allows programs to manipulate and gen-
erate code at source level, while the joining and splicing of executable code is carried out
automatically at intermediate code (VM level). This framework introduces a data type Code
to represent code fragments: methods/operators from this class are used to reify a method
from a class, producing its representation as an object of type Code. Code objects can be
combined by partial application to other Code objects. Code combinators, corresponding
to higher-order methods, allow splicing the code of a functional actual parameter into the
resulting Code object.
CodeBricks is a library implementing the framework for the .NET CLR, where code ma-
nipulation primitives are provided through a library rather than as a language extension,
allowing cross language code generation as well as a more robust and maintainable ap-
proach than language extensions. Programs can be specialized more than once, for instance
as more information becomes available to the program. Since no language processor is in-
volved, specialization can happen at different stages throughout the lifetime of a program,
even beyond the program build. Advantages of the CodeBricks approach are: the gener-
ated code is expressed and manipulated in a high-level language; no high-level language
processor is required to run the generated code; efficient binary code is produced and code
generation overhead is minimal; finally the solution is not tied to a programming language.

1.2 Microprocessors programming model

In this section we present some of the most important architectures and programming
models of the modern microprocessors, so that we can outline the differences between
them and with the VMs models.

1.2.1 Von Neumann architecture

The von Neumann architecture is a computer design model that uses a processing unit and
a single separate storage structure to hold both instructions and data. This architecture is
characterized by a sequential control flow resulting in a sequential instruction stream. This
operating principle is still the basis for today’s most widely used high-level programming
languages, and more astounding, of the ISA of all modern microprocessors. The main goal
of the von Neumann architecture, minimal hardware structure, is today far outweighed by
the goal of maximun performance.
The separation between the CPU and memory leads to the von Neumann bottleneck ; the
limited throughput (data transfer rate) between the CPU and memory compared to the
amount of memory. In modern machines, throughput is much smaller than the rate at
which the CPU can work. This seriously limits the effective processing speed when the
CPU is required to perform minimal processing on large amounts of data. The CPU is

1.2. MICROPROCESSORS PROGRAMMING MODEL 13

continuously forced to wait for vital data to be transferred to or from memory. As CPU

speed and memory size have increased much faster than the throughput between them,
the bottleneck has become more of a problem. The performance problem is reduced by
a memory hierarchy of cache between CPU and main memory, and by the development of
branch prediction algorithms.
Future performance improvements will predominantly come from parallelism rather than
from an ever-increasing uni-processor clock speed.

Multi-core CPU

The CPU speed is reaching a bottleneck because of the number of transistors that can be
integrated on a chip. Solutions can be found in the future using nano technology, but in
the short term using the dual- or multi-core machines, clustered CPUs, even grid computing
and supercomputing. As we’ll argue, GPUs face the same problem, but still have space to
press on due to their task specific designs and parallelism paradigm.

Figure 1.2: Multi-core CPU architecture

A multi-core CPU combines two or more independent cores into a single package com-
posed of a single integrated circuit, called a die, as shown in figure 1.2. Cores may
share a single coherent cache at the highest on-device cache level (e.g. L2 for the Intel

Core 2) or may have separate caches (e.g. current AMD[28] dual-core processors).
The processors also share the same interconnect to the rest of the system. Each “core”
implements optimizations independently such as superscalar execution, pipelining, and
multi-threading.
Software benefits from multi-core architectures because code can be executed in parallel.
Under most common operating systems this requires code to execute in separate threads
or processes. Each application running on a system runs in its own process so multiple

14 CHAPTER 1. BASIC CONCEPTS

applications will benefit from multi-core architectures. Each application may also have
multiple threads but, in most cases, this must be specifically written. However, program-
ming multi-threaded code often requires complex co-ordination of threads and can easily
introduce subtle and difficult to find bugs due to the interleaving of processing on data
shared between threads (thread-safety). Consequently, such code is much more difficult
to debug than single-threaded code when it breaks.
In some existing parallel programming models either shared-memory (such as OpenMP)
or message passing (such as MPI8) can be used on multi-core platforms. They require
specific knowledge on parallel computing to program these platforms because developers
must manage non-functional aspects of the computation such as thread synchronization,
scheduling, etc. In the past, many parallel programming paradigms were proposed to hide
those aspects, freeing the programmers to focus on the computation features.

1.2.2 Data-Flow architecture

The data-flow principle states that an instruction can be executed when all operands are
available. Such an execution is said to be data-driven. The parallelism in this architecture
is limited only by the actual data dependences in the application program. Software
written using a dataflow architecture consists of a collection of independent components
running in parallel that communicate via data channels; such a design can be succinctly
depicted graphically; they use data-flow graphs as their machine language, which specify
only a partial order for the execution of instructions and thus provide opportunities for
parallel and pipelined execution at the level of individual instruction.
Data channels provide the sole mechanism by which nodes can interact and communicate
with each other, ensuring lower coupling and greater reusability. Data channels can also
be implemented transparently between processors to carry messages between components
that are physically distributed.

Graphical Processing Unit

A Graphics Processing Unit (or GPU) is a dedicated graphics rendering device for a per-
sonal computer or game console. GPUs contain many parallel processing units, as shown
in figure 1.3, and are capable of sustaining computation rates greater than ten times that
of a modern CPU. They can in fact be thought of as highly parallel Single Instruction

Multiple Data (SIMD) type processors. GPUs differs from multi-cores because the latters
provide coarse-grain parallelism, heavyweight threads which gain better performance per
thread, whereas GPUs provide more fine-grain parallelism and lightweight threads.
The GPU programming model, however, is very different from traditional CPU models. Re-
cent advances in programmability and architectural design have enabled the use of GPU pro-
cessors for general purpose computations (named GPGPU) such as linear algebra, geometric
computing, database and stream Mining, GPU ray tracing, advanced image processing and
others. The GPU’s rendering pipeline has become programmable both in geometry stage
and rasterization stage. In order to use the GPU the problem is how to map general pur-
pose computing onto the GPUs programming architecture. Traditional GPGPU programming
has demonstrated some limitations, of which high-level programming by using specialized
shading languages, no scatter support, lots of specific limitations on program complexity,

8Message Passing Inteface

1.2. MICROPROCESSORS PROGRAMMING MODEL 15

Figure 1.3: Nvidia GPU architecture, G80

no support for integer types, and limited support for arrays. Recently Nvidia has devel-
oped the CompUte Driver Architecture (CUDA) programming model, that is a general
programming model where the GPU is viewed as a compute device that is a coprocessor to
the CPU or host, has its own DRAM (device memory), and runs many threads in parallel.

1.2.3 Multi-thread hardware, multi-level caches

The Cell architecture grew from a challenge posed by Sony and Toshiba to provide
power-efficient and cost-effective high-performance processing for a wide range of appli-
cations, including the most demanding consumer appliance: game console, such as Sony

Playstation 3. Cell is not limited to game systems. IBM has announced a Cell-based

blade, which leverages the investment in the high-performance Cell architecture. Other
future uses may include HDTV sets, home servers, game servers and supercomputers.
Cell is a heterogeneous chip multiprocessor that consists of an IBM 64-bit Power Archi-

tecture core, augmented with eight specialized co-processors based on a novel SIMD ar-
chitecture called Synergistic Processor Unit (SPU), which is for data-intensive pro-
cessing, like that found in cryptography, media and scientific applications. The system is
integrated by a coherent on-chip bus, as shown in figure 1.4. The main computing power
of the Cell BE is provided by the eight synergistic processor elements (SPE). The SPE is
a processor designed to accelerate media and streaming workloads. The local memory of
the SPEs is not coherent with the PowerPC processor element PPE main memory, and
data transfers to and from the SPE local memories must be explicitly managed by using a
Direct Memory Address DMA engine.
As for higher level programming model (HLPM), a Cell BE based architecture has the
Octopiler compiler, that implements techniques for optimizing the execution of scalar
code in SIMD units, using subword optimization and other techniques. It is also able to
overlap data transfers with computation, by allowing SPEs to process data that exceeds
the local memory capacity. Beside the other lower level optimizations, this compiler also
enables the OpenMP programming model. This approach provides programmers with the

16 CHAPTER 1. BASIC CONCEPTS

Figure 1.4: Cell BE architecture

abstraction of a single shared-memory address space. Using OpenMP directives, program-
mers can specify regions of code that can be executed in parallel.
Another HLPM example is the Cell Superscalar framework (CellSs). It provides a pro-
gramming model the programmers write sequential applications and the framework is able
to exploit the existing concurrency and use the different components of the Cell BE (PPE
and SPEs) by means of an automatic parallelization at execution time. The only require-
ment we place on the programmer is that annotations (somehow similar to the OpenMP
ones) are written before the declaration of some of the functions used in the application.
The similarity with the Octopiler approach is that an annotation (or directive) before a
piece of code indicates that this part of code will be executed on the SPEs.

1.3 Problems and Existing solutions

In the previous sections we saw how the VM programming model evolution has diverged
from the microprocessor programming model. The result is a significant gap between the
two, which results particularly evident when comparing the fast performance improvement
of modern microprocessors with the slow one of the VM-based applications, as shown in the
figure 1.3. In the past, VM programming models spent most of their effort to solve problems
such as programmability, productivity, and portability. However, the new microprocessors
performance capabilities require that a good programming technology should:

1. provide a more accurate conceptual model of the hardware;

2. clearly expose the most important policy decisions and architectural elements of the
hardware;

3. provide structure and modularity, other than productivity and portability;

4. expose a suitable high level programming mechanism, such as code annotations, that
allows exploiting specific underlying architecture features.

1.3. PROBLEMS AND EXISTING SOLUTIONS 17

Figure 1.5: Progressive branching between hardware potential performance and actual
software performance.

The key to performance improvement is therefore to run a program on multiple processors
in parallel. Unfortunately, it is still very hard to write algorithms that actually take
advantage of those multiple processors. In fact, most applications use just a single core
and see no speed improvements when run on a multi-core machine. We need to write our
programs in a new way. Some proposals have been made, both VM- and non VM-bsaed.

RapidMind

RapidMind provides a software development platform for multi-core processors, with a
single-source solution for portable, high performance parallel programming based on the
general-purpose programming model SPMD. It can be used to target GPUs, multi-core pro-
cessors and Cell BE as well. It integrates with existing C++ compilers, so programmers
don’t need to learn new languages or tools, but just use specific types, vectors and arrays.
User directly specifies parallel algorithm using abstract parallel programming model, then
the platform maps algorithm onto parallel execution mechanisms, selecting the most ap-
propriate mapping for each architecture.
RapidMind supports two operating modes: immediate mode, which simply reflects stan-
dard practice in numerical programming under C++; and retained mode, where operations
on specific types are recorded and dynamically compiled into a “program object” rather
than being immediately executed. For example, in the case of GPUs, applying such a func-
tion to an array of values, causes he platform automatically invokes a massively parallel
computation on the video accelerator.
RapidMind introduces two new stages between the compilation and execution. The first,
named RapidMind Collection, takes, as input, a standard executable with embedded
RapidMind operations, and transforms such operations into parallel computations that
best exploit the host architecture. This trasformed code is taken as input by the second
(new) stage, named RapidMind compilation, in order to produce platform specific code.
In the following example, a sequential matrix multiplication C++ routine is converted to a
parallel implementation by using RapidMind framework.

18 CHAPTER 1. BASIC CONCEPTS

#include <cmath>

const int w = 512, h = 512;

float f;

float a[w][h][4], b[w][h][4];

void compute() {

for (int i = 0; i < w; i++)

for (int j = 0; j < h; j++)

for (int k = 0; k < 4; k++) {

a[i][j][k] += f * b[i][j][k];

}

}

Sequential version.

#include <rapidmind/platform.hpp>

#include <Rapidmind/shortcuts.hpp>

using namespace rapidmind

const int w = 512, h = 512;

Value1f f;

Array<2,Value4f> a(w,h), b(w,h);

Program compute_prog;

void init_compute_prog () {

compute_prog = BEGIN {

In<Value4f> r, s;

Out<Value4f> t;

t = r + f * s;

} END;

}

Parallel version using RapidMind.

This is a very interesting proposal for solving the mapping problem, but it is tied up to
the C++ language, thus cross-language is not supported.

.NET Parallel Extensions

Lately Microsoft has introduced Parallel Extensions [31] to its .NET Framework tech-
nology. They run on .NET FX 3.5, rely on features available in C# 3.0 and provides
imperative data- and task-parallelism APIs in a declarative way. The new concurrency
runtime is used across the library to enable lightweight tasks and effectively map and bal-
ance the concurrency expressed in code to available concurrent resources on the execution
platform.
A major component of the Parallel FX library is the Task Parallel Library (TPL) de-
signed to write managed code that can automatically use multiple processors. The library
uses work-stealing techniques for dynamic work distribution and automatically adapts to
the workload and particular machine. Meanwhile, the primitives of the library only express
potential parallelism, but do not guarantee it. For example, on a single-processor machine,
parallel for loops are executed sequentially, closely matching the performance of strictly
sequential code. On a dual-core machine, however, the library uses two worker threads
to execute the loop in parallel. Unfortunately, the library does not help to correctly syn-
chronize parallel code that uses shared memory. It is still the programmer’s responsibility
to ensure that certain code can be safely executed in parallel. Other mechanisms, such as
locks, are still needed to protect concurrent modifications to shared memory.
For example, in the following code the outer for loop of the matrix multiplication is
replaced by a call to the static Parallel.For method:

using System.Concurrency;

void ParMatrixMult(int size)

{

double[size,size,4] a, b;

1.3. PROBLEMS AND EXISTING SOLUTIONS 19

double f;

...

Parallel.For(0, size, delegate(int i) {

for (int j = 0; j < size; j++) {

for (int k = 0; k < 4; k++)

a[i, j, k] += f * b[i, j, k];

}

};

}

The delegate takes the iteration index as its first argument and executes the unchanged
inner loop body. No changes to the original loop body are necessary since delegates
automatically capture the free variables of the loop body.
The library provides a task manager that, by default, uses one worker thread per processor,
which ensures minimal thread switching by the OS.
The parallel patterns provided are: delegate-based parallel loop, which ensures the correct
exceptions management by properly propagating them and by cancelling all iterations;
reduce (called aggregation); fork-join parallelism, and replicable tasks.

20 CHAPTER 1. BASIC CONCEPTS

Chapter 2

Research Proposal

In order to take advantage from the new architectures, presented in the section 1.2, the
most effort has been spent on VM API extensions. As introduced in section 1.3, these are
technological solutions which work well with the current architectures but that don’t pro-
vide any new conceptual model, thus solution, for filling the models gap. They entail more
mandatory framework extensions in the future whenever new architectures come, with an
increase of API complexity which leads to loss of programmability, thus productivity.
For these reasons the aim of this thesis is to define a model that can map the Virtual

Machine stack-based programming model to the different microprocessor (parallel) pro-
gramming models in order to obtain the maximun performace available without expecting
specific HPC1 knowledge from mainstream developers. The problem is that virtual machines
allow representing computations in such a way that they don’t contain enough information
to efficiently map them onto all underlying architectures. The basic idea is to provide a
simple way for developers to express specific features (e.g. parallel execution) in their algo-
rithms without losing control over the generated code, and being aware of the cost in term
of performace hit and code transformations overhead. It will be the meta-programming
framework in charge of the source code adaptations for each host architecture. Therefore
in our opinion a new model should have the following features:

• simple to code, so that mainstream developers don’t need to be aware of the mi-
croprocessors programming models, the parallel/concurrent programming paradigms
and runtime code generation techniques;

• syntax and semantic correcteness of OPs, so that less controls need be performed
at runtime, and best performance can be obtained;

• completeness, the VM stack-based model should be mapped to all parallel program-
ming paradigms, such that developers can develop and debug the program in its
sequential form, focusing on the functional aspects of the application;

• maximun performance for each microprocessor architectures;

• scalability, no assumption should be made neither on the specific microprocessor
architecture features, which are evaluated during the runtime code generation, nor
on specific parallel programming paradigm;

1High Performance Computing

22 CHAPTER 2. RESEARCH PROPOSAL

• cross-platform portability, since there is a wide range of current available het-
erogeneus platforms both on OSs and microprocessors;

• cross-language integration, programmers should choose whatever programming
language allows them to express their intentions most easily. Frameworks, such as
the CLI, should be in charge of different languages integration.

The methodology that we advocate in our proposal merges the two wide areas presented
in the previous sections into a unique programming framework. We propose to explore
the existing meta-programming techniques over virtual machines since we must treat code
as data in order to manipulate it as needed. There are many techniques for representing
code as data. Many make code an abstract type in order to provide a more usable pre-
sentation of it. Since this representation hides the internal structure of code, some other
interface to the internal structure of code is necessary, if code is deconstructed or observed
as for our aims. Moreover we want generate code efficiently at runtime, so that it will
be possible process and execute it somewhere else without performance decrease. Since
specialization can happen at different stages through the lifetime of a program, especially
in order to translate a VM-language code into microprocessor-language code, we rely on
multi-stage programming. By using it, developers can inspect the code produced by their
generators, so that it can be either printed or compiled, because a delayed computation
maintains an intensional representation.
Therefore we consider to leverage on an existing programming language such as F# and
the CodeBricks library which exploit the cross-platform and cross-language portability
features of .NET framework. Although these tools help our investigation, we espect that
results will not depend on them.
F# quotations allows obtaining data structures that represents the code with the security
of quoted fragments syntactic validity by means of parser and type-checker static checking.
The question now is, what exactly should they represent? For example, every parallel as-
pect of an algorithm so it can be preserved for later stage specializations based on specific
microprocessor features. For instance, we can consider the well known data-flow model,
where data structures should represent a data-flow execution graph of the algorithm with
all intrinsic parallelism. Due to the array handling and representation problem raised by
the data-flow model we propose to explore the macro data-flow model [38]. These data
structures can be then interpreted, analyzed and compiled to alternative languages (e.g.
at lower level, microprocessors programming languages).
The CodeBricks library provides support for multi-stage programming which allows ex-
pressing and manipulating the generated code in a high-level language, limiting the code
generation overhead, and guaranteeing that only type-safe code-fragments can be pro-
duced.
As for the implementation, we consider to leverage on the AppDomain modularity for ex-
ecuting small jit-compiled program fragments on different microprocessor cores or Cell

SPEs, having the main program and the JIT compiler in execution on central processing
unit or Cell PPE. In addition we can take advantage of the parallel extensions to the .NET
runtime to obtain the maximun performance from host architectures. This is an example
of how it is possible to define a mapping among VM semantic objects and underlying com-
puting elements.
In order to illustrate our idea, as introduced in section 1.1.2 on F#, we provide the fol-
lowing example. Developers should code their applications, for example to perform some

23

matrix operations, in a normal way without using any special types or extensions to the
used language, but simply wrapping parts of the code between <@ @> marks.

let moltMatrices =

<@ fun a b ->

Matrix.init 512 512 (fun x y ->

((Matrix.get a x y) + (Matrix.get b x y)) / 2) @>

Then, after syntax analysis, the framework determins that this code can be executed faster
on a GPU (using pixel and vertex shaders) rather than on a CPU, thus it translates it to
GPU code and processes matrices on the graphics card.
In providing an adequate solution to the mapping problem, our aim is to follow several
steps:

• In the first place, we evaluate the existing solutions to the computational models
mapping problem.

• Subsequently, we consider how to represent programs as data to hide unnecessary
details, yet make their important structure evident, and their common operations
easy to express, and efficient to implement.

• The final crucial step will concern the study of a (new) general model that can map
the VM stack-based model on all microprocessor architecture programming models.

To conclude, we argue a formal definition of that new model that will be correct, in
the sense that the semantics expected by the transformation is satisfied, and complete.

24 CHAPTER 2. RESEARCH PROPOSAL

Bibliography

[1] Popek, G.J.; Goldberg, R.P.: Formal requirements for virtualizable third genera-
tion architectures, Communications of the ACM, Vol. 17, Issue 7, New York, NY, USA,
(1974)

[2] Smith, J.E.; Nair,R.: The Architecture of Virtual Machines, IEEE Computer Society,
(2005)

[3] Demers, F.N.; Malenfant,J.: Reflection in logic, functional, object-oriented pro-
gramming: a short comparative study, IJCAI, Workshop on Reflection and Metalevel
Architectures and their applications, (1995), 29-38

[4] Cisternino, A.: Multi-stage and Meta-programming Support in Strongly Typed Execu-
tion Engines, Ph.D. thesis, Department of Computer Science, Pisa University, (2003).

[5] Attardi,G.; Cisternino, A.; Colombo,D.: CIL + Metadata ¿ Executable Program,
in Journal of Object Technology, vol. 3, no. 2, Special issue: .NET: The Programmers
Perspective: ECOOP Workshop 2003, pp. 19-26.

[6] Sheard, T.: Accomplishments and Research Challenges in Meta-Programming (invited
paper), Springer Berlin/Heidelberg, Lecture Notes in Computer Science, Vol. 2196,
(2001), 2-44.

[7] Taha, W.; Sheard, T.: MetaML and multi-stage programming with explicit annota-
tions, Theoretical Computer Science, Vol. 248, (2000), 211-242.

[8] Leroy, X.: The Objective Caml system, See http://caml.inria.fr/pub/docs/manual-
ocaml/, (2007).

[9] Aycock, J.: A brief history of just-in-time, ACM Computing Surveys (CSUR), Vol.35,
Issue 2, (2003), 97-113.

[10] Krsul, I.; Ganguly, A.; Zhang, J.; Fortes, J.A.B.; Figueiredo, R.J.: VM-
Plants: Providing and Managing Virtual Machine Ezecution Environment for Grid
Computing, ACM/IEEE SC 2004 Conference (SC’04), (2004).

[11] Karsai, G.; Sztipanovits, J.: A Model-Based Approach to Self-Adaptive Software,
Intelligent Systems and Their Applications, IEEE, Vol. 14, Issue 3, (1999), 46-53.

[12] Dittamo, C.; Cisternino, A.; Danelutto, M.: Parallelization of C# programs
through annotations, proceedings of Practical Aspects of High-Level Parallel Program-
ming Workshop (PAPP), “Computational Science ICCS 2007”, LCNS 4488/2007,
(2007), pp. 585-592.

26 BIBLIOGRAPHY

[13] Shiel, S.; Bayley, I.: A Translation-Facilitated Comparison Between the Common
Language Runtime and the Java Virtual Machine, Electronic Notes In Theroretical
Computer Science, 141, Elsevier Ltd., (2005), 35-52.

[14] Syme, D.: Leveraging .NET Meta-programming Components in F#, The 2006 ACM
SIGPLAN Workshop on ML (ML 2006), Portland, Oregon, (2006).

[15] Bawden, A.: Quasiquotation in LISP (invited talk), ACM SIGPLAN Workshop on
Partial Evaluation end Semantic-Based Program Manipulation, ACM, BRICS Notes
Series, (1999), 4-12.

[16] Taha, W.: Multi-Stage Programming: its theory and applications, Ph.D. thesis, Ore-
gon Graduate Institute of Science and Technology, (1999).

[17] Kamin, S.; Clausen, L.; Jarvis, A.: Jumbo: Run-time Code Generation for Java
and Its Applications, Proceedings of the International Symposium on Code Generation
and Optimization (CGO 2003), San Francisco, California, (2003), 48-56.

[18] Sestoft, P.: Runtime Code Generation with JVM and CLR, Unpublished, Available
at http://www.dina.dk/sestoft/publications.html, (2002).

[19] ECMA International: ECMA Standard 334: C# language specification, See
http://www.ecma-international.org/publications/standards/Ecma-334.htm.

[20] ECMA International: ECMA Standard 335: Common Language Infrastructure,
See http://www.ecma-international.org/publications/standards/Ecma-335.htm.

[21] Microsoft Research: SSCLI: Shared Source Common Language Infrastructure,
See http://research.microsoft.com/rotor.

[22] Lindholm, T.; Yellin, F. : The JavaTM Virtual Machine Specification, Sun Mi-
crosystems, (1999).

[23] Tarditi, D.; Puri, S.; Oglesby, J.: Accelerator: simplified programming of graph-
ics processing units for general-purpose uses via data-parallelism, Technical Report
MSR-TR-2005-184, Microsoft Research, (2005).

[24] Syme, D.; Margetson, J.: The F# website, See
http://research.microsoft.com/fsharp, (2006).

[25] Taha, W. and other contributors: MetaOCaml: a compiled, type-safe multi-
stage programming language, See http://www.metaocaml.prg, (2006).

[26] Pham, D.; Asano, S.; Bolliger, M.; Day, M. N.; Hofstee,H. P.; Johns,C.;

Kahle,J.; Kameyama,A.; Keaty,J.; Masubuchi,Y.; Riley,M.; Shippy,D.;

Stasiak,D.; Suzuoki,M.; Wang,M.; Warnock,J.; Weitzel,S.; Wendel,D.; Ya-

mazaki,T.; Yazawa,K.: The Design and Implementation of a First-Generation CELL
Processor, Proceedings of the Custom Integrated Circuits Conference, (2005).

[27] Wechsler, O: Inside Intel Core Microarchitecture, White paper, Intel corpora-
tion,(2006).

BIBLIOGRAPHY 27

[28] AMD Multi-core, White paper.

[29] Elrad,T.; Filman,R.E.; Bader,A.: Aspect-oriented programming, Communica-
tions of the ACM, Vol.44 (2001).

[30] Monteyne, M.: RapidMind Multi-Core Develpment Platform, RapidMind (2007).

[31] Microsoft corporation: Parallel Computing Developer Center website, See
http://msdn2.microsoft.com/en-us/concurrency/default.aspx, (2007).

[32] Craig, I.D.: Virtual Machines, Springer, 1st edition, (2005).

[33] Rosenblum, M.: The Reincarnation of Virtual Machines, ACM Queue, Vol. 2, no.
5, (2004).

[34] Danelutto, M.: QoS in Parallel Programming through Application Managers,
13th Euromicro Conference on Parallel, Distributed and Network-Based Processing
(PDP’05), (2005), 282-289.

[35] Petzold, C.: Applications = Code + Markup: A Guide to the Microsoft Windows
Presentation Foundation, Microsoft Press, (2006).

[36] Smith,J.: Inside Windows Communication Foundation, Microsoft Press, (2007).

[37] Sun Microsystems, Inc.: OpenOffice suite, See
http://www.openoffice.org/index.html.

[38] Sharp, John A.: Data Flow Computing: Theory and Practice, Intellect Books,
(1992).

