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Abstract. Estimation of the semantic likeness between words is of great importance in many applications 

dealing with textual data such as natural language processing, knowledge acquisition and information 

retrieval. Semantic similarity measures exploit knowledge sources as the base to perform the estimations. 

In recent years, ontologies have grown in interest thanks to global initiatives such as the Semantic Web, 

offering an structured knowledge representation. Thanks to the possibilities that ontologies enable 

regarding semantic interpretation of terms many ontology-based similarity measures have been 

developed. According to the principle in which those measures base the similarity assessment and the 

way in which ontologies are exploited or complemented with other sources several families of measures 

can be identified. In this paper, we survey and classify most of the ontology-based approaches developed 

in order to evaluate their advantages and limitations and compare their expected performance both from 

theoretical and practical points of view. We also present a new ontology-based measure relying on the 

exploitation of taxonomical features. The evaluation and comparison of our approach’s results against 

those reported by related works under a common framework suggest that our measure provides a high 

accuracy without some of the limitations observed in other works. 
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1.   Introduction  

With the enormous success of the Information Society and the World Wide Web, the amount of 

textual electronic information available has significantly increased. As a result, computer 

understanding of text has acquired great interest in the research community in order to enable a 

proper exploitation, management, classification or retrieval of textual data.  

One of the most basic problems when aiming to interpret textual data is the assessment of 

semantic likeness between terms because, as it has been demonstrated in psychological 

experiments (Goldstone, 1994), it acts as a fundamental organizing principle by which humans 

organize and classify objects. It is important to note that two different paradigms can be found 

in the literature. On one hand, semantic similarity states how taxonomically near two terms are, 

because they share some aspects of their meaning (e.g., dogs and cats are similar to the extend 

they are mammals). On the other hand, the more general concept of semantic relatedness does 

not necessary rely on a taxonomic relation (e.g., car and wheel or pencil and paper); other non 

taxonomic relationships (e.g., meronymy, antonymy, functionality, cause-effect, etc.) are also 

considered. 

Semantic similarity/relatedness computation has many direct and relevant applications. 

Some basic natural language processing tasks such as word sense disambiguation (Patwardhan, 

Banerjee, & Pedersen, 2003),  synonym detection (Lin, 1998) or automatic spelling error 

detection and correction (Budanitsky & Hirst, 2001) rely on the assessment of words’ semantic 

resemblance. Direct applications can be found in the knowledge management field, such as 

thesauri generation (Curran, 2002), information extraction (M. Y. Chen, Chu, & Chen, 2010; P. 

Chen, Lin, & Chu, 2011; D. Sánchez & Isern, 2009; Stevenson & Greenwood, 2005) or 

ontology learning (D. Sánchez, 2010; David Sánchez & Antonio Moreno, 2008; D. Sánchez & 

A. Moreno, 2008), in which new terms related to already existing concepts, should be acquired 

from textual resources. The Semantic Web is an especially relevant application area, when 

dealing with automatic annotation of documents (Cimiano, Handschuh, & Staab, 2004; Chu, 

Chen, & Chen, 2009; D. Sánchez, Isern, & Millan, 2010) and text clustering (Song, Li, & Park, 

2009).  

Despite its usefulness, robust measurement of semantic similarity/relatedness between 

textual terms remains a challenging task (Bollegala, Matsuo, & Ishizuka, 2007). Many works 

have been developed in the last years, especially with the increasing interest on the Semantic 

Web and the popularization of ontologies (Lanzenberger, et al., 2008). Proposed methods aim 

for automatically assessing a numerical score between a pair of terms according to the semantic 

evidence observed in one or several knowledge sources, which are used as semantic 

background. Ontologies have been of great interest for the semantic similarity research 

community as they offer a structured and unambiguous representation of knowledge in the form 



of conceptualizations interconnected by means of semantic pointers. These structures can be 

exploited in order to assess the degree of semantic proximity between terms. According to the 

principle in which the similarity/relatedness computation is based and the way in which the 

ontology is exploited and/or complemented with other sources (e.g., thesaurus, domain corpora, 

etc.), different families of methods can be identified. 

In this paper we survey and compare most of the ontology-based similarity/relatedness 

measures developed in recent years. We tried to collect as much relevant approaches as possible 

in order to offer an updated and detailed review and comparison of the expected performance of 

these measures both from theoretical and practical points of view. Concretely, for each family of 

functions, we identify their main advantages and limitations under the dimensions of expected 

accuracy, computational complexity, dependency on knowledge sources (type, size, structure-

dependency and pre-processing) and parameter tuning.  

We also present a new feature-based method for semantic likeness assessment based on the 

exploitation of the taxonomical knowledge available in an ontology. By considering semantic 

evidence typically omitted by other feature-based approaches, this measure aims to rival state of 

the art ontology-based approaches in terms of accuracy, while retaining a low computational 

complexity. In order to compare all the semantic similarity/relatedness measures in a practical 

setting and evaluate them against our own approach in an objective manner, we collected the 

results reported by related works covered in the paper and tested our approach under the same 

conditions. Several widely used benchmarks have been considered in order to enable an 

objective comparison. 

The rest of the paper is organized as follows. Sections 2 surveys, reviews and compares 

related works in ontology-based semantic similarity/relatedness estimation, classifying them in 

different families. Section 3 presents the new method for measuring semantic likeness. Section 

4 summarizes the evaluation results reported by related works for the analysed measures and 

tests the accuracy of our own approach under the same conditions. Section 5 discusses and 

compares the different measures according to the reported evaluation results. The final section 

contains the conclusions. 

2.   Ontology-based semantic similarity/relatedness 

Ontologies provide a formal specification of a shared conceptualization (Guarino, 1998). Being 

machine readable and constructed from the consensus of a community of users or domain 

experts, they represent a very reliable and structured knowledge source. Due to this reason, and 

thanks to initiatives such as the Semantic Web, which brought the creation of thousands of 

domain ontologies (Ding, et al., 2004), ontologies have been extensively exploited in 



knowledge-based systems (Valls, Gibert, Sánchez, & Batet, 2010) and, more precisely, to 

compute semantic likeness.  

A paradigmatic example is WordNet (Fellbaum, 1998), a domain-independent and general 

purpose thesaurus that describes and organizes more than 100,000 general English concepts, 

which are semantically structured in an ontological fashion. It contains words (nouns, verbs, 

adjectives and adverbs) that are linked to sets of cognitive synonyms (synsets), each expressing 

a distinct concept (i.e., a word sense). Synsets are linked by means of conceptual-semantic and 

lexical relations such as synonymy, hypernymy (is-a), six types of meronymy (part-of), 

antonymy, complementary and so on. The backbone of the network of words is the subsumption 

hierarchy which accounts more than an 80% of all the modelled semantic links, with a 

maximum depth of 16 nodes. The result is a network of meaningfully related words, where the 

graph model can be exploited to interpret the meaning of the concept. In fact, WordNet has been 

used as the background ontology in all related works. 

In this section, we survey and compare related works in ontology-based similarity 

assessment according to the following classification: 

1. Edge-counting approaches. 

2. Feature-based measures. 

3. Measures based on Information Content. 

2.1.   Edge counting approaches 

Ontologies can be seen as a directed graph in which concepts are interrelated mainly by means 

of taxonomic (is-a) and, in some cases, non-taxonomic links. By mapping input terms to 

ontological concepts by means of their textual labels, a straightforward method to calculate their 

similarity is to compute the minimum Path Length connecting their corresponding ontological 

nodes via is-a links (Rada, Mili, Bichnell, & Blettner, 1989). The longer the path, the more 

semantically far the terms are.  

Let us define path(a,b)=l1,....lk as a set of links connecting the terms a and b in a taxonomy. 

Let |path(a,b)|=k be the length of this path. Then, considering all the possible paths from a to b, 

their semantic distance as defined by (Rada, et al., 1989) is (1). 

( ) ( )bapatha,bdis iirad ,min∀=
           

(1) 

Several variations and improvements of this edge-counting approach have been proposed. 

On one hand, in addition to this absolute distance between terms, Wu and Palmer (Wu & 

Palmer, 1994) considered that the relative depth in the taxonomy of the concepts corresponding 

to the evaluated terms is an important dimension, because concept specializations become less 

distinct as long as they are recursively refined. So, equally distant pairs of concepts belonging to 

an upper level of a taxonomy should be considered less similar than those belonging to a lower 



lever. Wu and Palmer’s measure count the number of is-a links (N1 and N2) from each term to 

their Least Common Subsumer (LCS) (i.e., the most concrete taxonomical ancestor that 

subsumes both terms) and also the number of is-a links of the LCS to the root (N3) of the 

ontology (2). 
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Based on the same principle, Leadcock and Chodorow (Leacock & Chodorow, 1998) also 

proposed a measure that considers both the number of nodes Np separating the ontological nodes 

corresponding to terms a and b, included themselves, and the depth D of the taxonomy in which 

they occur in a non-linear fashion (3). 

)2/log(),(& DNbasim pcl −=          (3) 

Li et al., (Li, Bandar, & McLean, 2003) also proposed a similarity measure that combines 

the shortest path length and the depth of ontology information in a non-linear function (4). 
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, where h is the minimum depth of LCS in the hierarchy and α ≥0 and β> 0 are parameters 

scaling the contribution of shortest path length and depth, respectively. Based on a benchmark 

data, authors stated that the optimal parameters for the measure with respect to a concrete set of 

human judgements were: α =0.2; β =0.6. However, this is just an empirical finding for a 

specific setting. It lacks a theoretical basis and cannot be generalized.  

Al-Mubaid and Nguyen (H. Al-Mubaid & Nguyen, 2006) proposed a cluster-based measure 

that combines the minimum path length and the taxonomical depth. They define clusters for 

each of the branches in the hierarchy with respect the root node. They measure the common 

specificity of two terms by subtracting the depth of their LCS from the depth Dc of the cluster 

(5).  

)),((),( baLCSdepthDbaCSpec c −=         (5) 
The common specificity is used to consider that lower level pairs of concept nodes are more 

similar than higher level pairs, as in Wu and Palmer approach. So, the proposed distance 

measure (sem) is defined as follows (6): 

( ) ))()1,log((min),( kCSpecbapathbadis iisem +×−= ∀
βα

     (6) 

, where α>0 and β>0 are contribution factors of path length and common specify features and k 

is a constant. Authors use k=1 because with k≥1 they proved that the distance is positive.  

Moreover, in their experiments, they give an equal weight to the contribution of the two 

components (path length and common specify) by using α= β = 1.  

Both Li et al., And Al-Mubaid and Nguyen approaches are often considered in the literature 

(Petrakis, Varelas, Hliaoutakis, & Raftopoulou, 2006; Pirró, 2009) as “hybrid” approaches, as 



they combine several structural characteristics (such as path length, depth and local density) and 

assign weights to balance the contribution of each component to the final similarity value. Even 

though their accuracy for a concrete scenario (see evaluation section) is higher than more basic 

edge-counting measures, they depend on the empirical tuning of weights according to the 

ontology and input terms.    

Hirst and St-Onge (Hirst & St-Onge, 1998) extended the notion of taxonomical edge-

counting by considering also non-taxonomic semantic links in the path (full_path). All types of 

relations found in WordNet together with rules that restrict possible semantic chains are 

considered, along with the intuition that the longer the path and the more changes in relation’s 

direction, the lower the likeness. The following path directions are considered: upward (such as 

hypernymy and meronymy), downward (such as hyponymy and holonymy) and horizontal (such 

as antonymy). The resulting formula is (7) 

),(),(_),(& baturnskbapathfullCbasim sh ×−−=       (7) 

, where C and k are constants (C = 8 and k = 1 are used by the authors), and turns(a, b) is the 

number of times the path’s direction changes.  

Due to the non-taxonomic nature of some of the relations considered during the assessment, 

Hirst and St-Onge’s measure captures a more general sense of relatedness than of taxonomical 

similarity, assessed by the approaches detailed above. 

The main advantage of the presented measures is their simplicity. They only rely on the 

graph model of an input ontology whose evaluation requires a low computational cost (in 

comparison to approaches dealing with text corpora, see Section 2.3).  

However, several limitations hamper their performance. First, edge-counting measures only 

consider the shortest path between concept pairs. When they are applied to wide and detailed 

ontologies such as WordNet that incorporate multiple taxonomical inheritance, the result is that 

several taxonomical paths are not taken into account. Other features also influencing the concept 

semantics, such as the number and distribution of common and non-common taxonomical 

ancestors are neither considered. As a result, by taking only the minimum path between 

concepts, many of the taxonomical knowledge explicitly modelled in the ontology is omitted.   

Another problem of path-based measures typically admitted (Bollegala, Matsuo, & Ishizuka, 

2009; Wan & Angryk, 2007) is that they rely on the notion that all links in the taxonomy 

represent a uniform distance. In practice, the semantic distance among concept 

specializations/generalizations in an ontology would depend on the degree of granularity and 

taxonomic detail implemented by the knowledge engineer.  



2.2.   Feature-based measures 

Feature-based methods try to overcome the limitations of path-based measures regarding the 

fact that taxonomical links in an ontology do not necessary represent uniform distances. This is 

addressed by considering the degree of overlapping between sets of ontological features. As a 

result, they are more general and, potentially, they could be applied in cross ontology similarity 

estimation settings (i.e., when concept pairs belong to two different ontologies), a situation in 

which edge-counting methods cannot be directly applied (Petrakis, et al., 2006). 

So, on the contrary to edge-counting measures which, as stated above, are based on the 

notion of minimum path distance, feature-based approaches assess similarity between concepts 

as a function of their properties. This is based on the Tversky’s model of similarity (8), which, 

derived from the set theory, takes into account common and non common features of compared 

terms, subtracting the latter from the former ones. In fact, common features tend to increase 

similarity and non-common ones tend to diminish it (Tversky, 1977). Formally, let Ψ(a) and 

Ψ(b) be the features of terms a and b respectively, let Ψ(a) ∩ Ψ(b) be the intersection between 

those two sets of features, and Ψ (a)\ Ψ (b) the set obtained when eliminating the elements of 

Ψ(b) from the set of features of concept a, Ψ(a). Then, the similarity between a and b is 

proposed to be computed as a function of  Ψ(a) ∩ Ψ(b), Ψ(a)\Ψ (b) and Ψ(b)\ Ψ (a) as. 

))(\)(())(\)(())()((),( abFbaFbaFbasimtve ΨΨ⋅−ΨΨ⋅−Ψ∩Ψ⋅= γβα    (8) 

, where F is a function that reflects the salience of a set of features, and α, β and γ are 

parameters that weight the contribution of each component.  

The definition of the set of features is crucial in this model. The existing approaches rely on 

information that is available in ontologies, in particular the set of synonyms (called synsets in 

Wordnet), definitions (i.e., glosses, containing textual descriptions of word senses) and different 

kinds of semantic relationships are considered.  

In Rodriguez and Egenhofer (Rodríguez & Egenhofer, 2003), the similarity is computed as 

the weighted sum of similarities between synsets, features (e.g., meronyms, attributes, etc.) and 

neighbour concepts (those linked via semantic pointers) of evaluated terms (9). 

),(),(),(),(& baSvbaSubaSwbasim odsneighborhofeaturessynsetser ⋅+⋅+⋅=     (9) 

, where w, u and v weight the contribution of each component, which depend on the 

characteristics of the ontology and S represents the overlapping between the different features, 

computed as:    
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, where A, B are the terms evaluated for concepts corresponding to a and b, A\B is the set of 

terms in A but not in B and B\A the set of terms in B but not in A. Finally, γ(a, b) is computed as 

a function of the depth of a and b in the taxonomy as follows: 
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In Petrakis et al., (Petrakis, et al., 2006) a feature-based function called X-similarity relies on 

the matching between synsets and a concept’s glosses extracted from WordNet (i.e., words 

extracted by parsing term definitions). They consider that two terms are similar if the synsets 

and glosses of their concepts and those of the concepts in their neighbourhood (following 

semantic relations) are lexically similar. The similarity function is expressed as follows:   
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The similarity for the semantic neighbours Sneighborhoods is calculated as follows: 
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, where each different semantic relation type (i.e., is-a and part-of in WordNet) is computed 

separately and the maximum (considering all the synsets of all concepts up to the root of each 

hierarchy) is taken.  

Equivalently, the similarity for glosses Sglosses and synonyms Ssynsets are both computed as: 
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, where A and B denote the set of synsets or glosses for the term a and b.  

Feature-based measures exploit more semantic knowledge than edge-counting approaches, 

evaluating both commonalities and differences of compared concepts. However, by relying on 

features like glosses or synsets (in addition to taxonomic and non-taxonomic relationships), 

those measures limit their applicability to ontologies in which this information is available. 

Only big ontologies/thesauri like WordNet include this kind of information. In fact, an 

investigation of the structure of existing ontologies via the Swoogle ontology search engine 

(Ding, et al., 2004) reveals that domain ontologies very occasionally model any semantic feature 

apart from taxonomical relationships. 

Another problem is their dependency on the weighting parameters that balance the 

contribution of each feature. In all cases, those parameters should be tuned according to the 

nature of the ontology and even to the evaluated terms. This hampers their applicability as a 

general purpose solution. Only the definition of Petrakis (Petrakis, et al., 2006) does not depend 

on weighting parameters, as the maximum similarity provided by each feature alone is taken. 

Even though this adapts the behaviour of the measure to the characteristics of the ontology, the 

contribution of other features is omitted if only the maximum value is taken at each time. 



2.3.   Measures based on Information Content 

Also acknowledging some of the limitations of edge-counting approaches, Resnik (Resnik, 

1995) proposed to complement the taxonomical structure of an ontology with the information 

distribution of concepts evaluated in input corpora. He exploited the notion of Information 

Content (IC), by associating appearance probabilities to each concept in the taxonomy, 

computed from their occurrences in a given corpus. IC of a term a is computed according to the 

negative log of its probability of occurrence, p(a) (15). In this manner, infrequent words are 

considered more informative than common ones.  

)(log)( aPaIC −=           (15) 

According to Resnik, semantic similarity depends on the amount of shared information 

between two terms, a dimension which is represented by their Least Common Subsumer (LCS) 

in an ontology. Two terms are maximally dissimilar if a LCS does not exist (i.e., in terms of 

edge-counting, it would be not possible to find a path connecting them). Otherwise, their 

similarity is computed as the IC of the LCS (16).  

)),((),( baLCSICbasimres =         (16) 

One of the problems of Resnik’s metric is that any pair of terms having the same LCS results 

in exactly the same semantic similarity. Both Lin (Lin, 1998) and Jiang and Conrath (Jiang & 

Conrath, 1997) extended Resnik’s work by also considering the IC of each of the evaluated 

terms.  

Lin proposed that the similarity between two terms should be measured as the ratio between 

the amount of information needed to state their commonality and the information needed to 

fully describe them. As a corollary of this theorem, his measure considers, on one hand, 

commonality in the same manner as Resnik’s approach and, on the other hand, the IC of each 

concept alone (17).  
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The measure proposed by Jiang and Conrath is based on quantifying, in some way, the length 

of the taxonomical links as the difference between the IC of a concept and its subsumer. When 

comparing term pairs, they compute their distance by subtracting the sum of the IC of each term 

alone from the IC of their LCS (18).  

),(2))()((),(& basimbICaICbadis rescj ×−+=       (18) 

It is important to note that IC-based measures need, in order to behave properly, that the 

probability of appearance p monotonically increases as one moves up in the taxonomy (i.e., ∀ci 

| cj is hypernym of ci  => p(ci)≤ p(cj) ).  This is achieved by computing p(a) as the probability of 

encountering any instance of a in the given corpus. In practice, each individual occurrence of 



any noun in the corpus is counted as an occurrence of each taxonomic class containing it (19) 

(Resnik, 1995). 
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, where W(a) is the set of nouns in the corpus whose senses are subsumed by a, and N is the 

total number of nouns in the corpus. 

As a result, an accurate computation of concept probabilities requires a proper 

disambiguation and annotation of each noun found in the corpus. This process is usually done 

manually to ensure the correctness of the tagging, hampering the scalability and applicability of 

this approach with large corpora.  

Moreover, if either the taxonomy or the corpus changes, re-computations are needed to be 

recursively executed for the affected concepts. So, it is necessary to perform a manual and time-

consuming analysis of corpora and resulting probabilities would depend on the size and nature 

of input corpora. Moreover, the background taxonomy must be as complete as possible (i.e., it 

should include most of the specializations of each concept) in order to provide reliable results. 

Partial taxonomies with a limited scope may not be suitable for this purpose. All those aspects 

limit the scalability and applicability of those approaches (David Sánchez, Batet, Valls, & 

Gibert, 2009).  

Considering the limitations of IC-based approaches due to their dependency on corpora, 

some authors tried to intrinsically derive IC values from an ontology. These works rely on the 

assumption that the taxonomic structure of ontologies like WordNet is organized in a 

meaningful way, according to the principle of cognitive saliency (Blank, 2003). This states that 

humans specialise concepts when they need to differentiate them from already existing ones. So, 

concepts with many hyponyms (i.e., specializations) are more general and provide less 

information than the concepts at the leaves of the hierarchy. From the Information Theory point 

of view, they consider that abstract ontological concepts appear more probably in a corpus as 

they subsume many other ones. In this manner, the probability of appearance of a concept (i.e. 

the IC) is estimated as a function of the number of hyponyms and/or their relative depth in the 

taxonomy. 

Seco et al., (Seco, Veale, & Hayes, 2004) and Pirró and Seco (Pirró & Seco, 2008) base IC 

calculations on the number of hyponyms. Being hypo(a) the number of hyponyms of the 

concept a and max_nodes the number of hyponyms of the root node, they compute IC of a 

concept in the following way (20):  

)_log(
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The denominator ensures that IC values are normalized in the range [0..1].  

 



This approach only considers hyponyms of a given concept in the taxonomy; so, concepts 

with the same number of hyponyms but different degrees of generality appear to be equally 

similar. In order to tackle the problem, and in the same manner as for edge-counting measures, 

Zhou et al., (Zhou, Wang, & Gu, 2008) proposed to complement hyponym-based IC 

computation with the relative depth of each concept in the taxonomy. IC of a concept is 

computed as (21):  
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In addition to hypo and max_nodes, which has the same meaning as eq. 20, depth(a) 

corresponds to the depth of the concept a in the taxonomy and max_depth is the maximum 

depth of the taxonomy. The factor k adjusts the weight of the two features involved in the IC 

assessment. They use k=0.5. 

Both ways of intrinsically computing IC have been applied directly on the similarity 

functions proposed by Resnik, Lin and Jiang and Conrath. Those approaches overcome most of 

the problems observed for corpus-based IC approaches (specifically, the need of corpus 

processing and their high data-sparseness) competing and even improving them in terms of 

accuracy (as it will be stated in the evaluation) when applied over WordNet. However, they 

require big, and fine grained taxonomies/ontologies with a detailed taxonomical structure in 

order to properly differentiate concept’s IC. For small or very specialized ontologies with a 

limited taxonomical depth and low branching factor, resulting IC values between concepts 

would become too homogenous to enable a proper differentiation. 

3.   A new feature-based measure exploiting taxonomical knowledge 

From the study of ontology-based semantic similarity measures presented in the previous 

section, the basic conclusions that we want to stress are the following: 

• Pure ontology-based measures, like the ones based on edge-counting, features and intrinsic 

IC computation are characterized by their simplicity and computational efficiency as they 

only exploit the semantic network provided by the ontology. Edge-counting measures are 

the simplest ones and, in consequence, their accuracies have been surpassed (as it will be 

stated in the evaluation section) by more complex approaches exploiting additional 

semantic evidence. Feature-based approaches, however, rely on features which are hardly 

found in domain ontologies, such as non taxonomic relationships, attributes, synonym sets 

or glosses. In consequence, their applicability and accuracy depend on the availability of 

this information. 

 



• Information Content approaches based on semantically-annotated textual data aim to 

improve pure ontology-based ones by capturing implicit semantic as a function of concept 

distribution in corpora. However, the association between the words found in a corpus and 

concepts which are needed to compute accurate concept appearance frequencies is not 

straightforward, requiring a process of manual word sense tagging for disambiguation. This 

hampers the applicability of these methods in practise, which are also affected by corpora 

availability and data sparseness. 

 

In this section we present a new measure that relies on taxonomical features extracted from 

an ontology. Being a feature-based method, our proposal follows a similar principle as proposed 

in the Tversky’s model (eq. 8), which considers that the similarity between two concepts can be 

computed as a function their common and differential features.  

Differently from previous feature-based approaches presented in section 2.2, we only rely on 

taxonomic information. This is due to the fact that available ontologies rarely model other kind 

of knowledge a part from taxonomical relationships (Ding, et al., 2004). As a matter of fact, as 

stated in section 2, taxonomical knowledge represent more than the 80% of the total amount of 

relationships modelled in WordNet.  

Moreover, on the contrary to other feature-based measures, as only one type of feature will 

be considered (i.e., taxonomic relationships) no tuning parameters will be used to weight the 

contribution of potentially scarce semantic features, overcoming one of the limitations observed 

in related works and improving the generality of our measure.  

3.1.   Evaluating concept dissimilarity 

Our measure considers as features the taxonomical categorization of concepts given by the 

ontology in order to evaluate the amount of dissimilarity (i.e. semantic distance) between 

concepts. Concretely, we consider that a term can be semantically distinguished from other ones 

by comparing the set of concepts that subsume it. Using the same notation introduced by 

Tversky in (Tversky, 1977), the following definitions formalize this idea. 

 

Definition 1.  Let C be the set of concepts of an ontology, we define concept subsumption (≤) as 

a binary relation ≤ : C×C. Having two concepts ci and cj, ci ≤ cj is fulfilled if ci is a hierarchical 

specialization of cj or if ci=cj (i.e., they are the same concept even though they could be 

expressed by means of equivalent synonyms). 

 

The fact of including the concept itself in the subsumption relation assumes the notion of 

dominance as a reflexive relation (Partee, ter Meulen, & Wall, 1990). 



 

Definition 2. The set of taxonomical features describing the concept a is defined in terms of the 

relation ≤ as: 

}|{)( caCca ≤∈=φ         (22)  

 

It is important to note that several immediate generalizations (i.e. categorizations) per 

concept may be available in ontologies modelling multiple inheritance, such in WordNet (Devitt 

& Vogel, 2004) or in detailed domain ontologies such as MeSH or SNOMED-CT (H. Al-

Mubaid & Nguyen, 2006). So, in our case, the set of taxonomical features associated to the 

concept includes all the upper categories found when recursively going through all the upper 

taxonomical paths modelled in the ontology for that concept. Oppositely, ontology-based related 

works (Jiang & Conrath, 1997; Leacock & Chodorow, 1998; Lin, 1998; Rada, et al., 1989; 

Resnik, 1995; Wu & Palmer, 1994) deal with the case of multiple taxonomical generalizations 

per concept by taking the one that defines the maximum similarity with respect to another 

concept (e.g., taking the minimum path between both concepts). In our opinion, this 

simplification omits a large amount of explicitly available knowledge (i.e., other generalizations 

and their corresponding taxonomical paths).  So, an important characteristic of our definition of 

taxonomical features (22) is that it does not introduce this limitation.  

Given two concepts which are semantically described according to their taxonomic features 

(those of eq. 22), we consider the degree of disjunction between their feature sets (non-common 

taxonomical features) as a function of their distance (or dissimilarity) whereas the degree of 

overlap (common ones) is proportional to their similarity. 

Considering the set of differential taxonomical features of a with respect to b as: 

)}()(|{)(-)()(\)( bcacCcbaba φφφφφφ ∉∧∈∈== , we formally define the dissimilarity between 

a and b as:  

 

Definition 3. The dissimilarity dis: C×C →ℜ  between a and b is given by the cardinality of the 

set of differential features of a with respect to b and the set of differential features of b with 

respect to a: 

)(\)()(\)(),( abbabadis φφφφ +=        (23) 

 

In order to enable accurate comparisons between the dissimilarity computed for pairs of 

concepts corresponding to taxonomical branches with different degrees of taxonomical detail or 

multiple inheritance, the value given by (23) should be normalized taking into account the total 

size of the set of features. To include this normalizing factor, we divide the absolute dis value 

by the whole amount of features extracted for both terms. This value corresponds to the sum of 



cardinalities of differential and common taxonomical feature sets, that is 

)()()(\)()(\)( baabba φφφφφφ ∩++ . This will give a relative dissimilarity value in the [0..1] 

interval. 

As a final consideration, many authors argued that an information theoretic approach, in 

which semantic features are evaluated in a non linear fashion (H. Al-Mubaid & Nguyen, 2006; 

Leacock & Chodorow, 1998; Li, et al., 2003), approximates better the concept of similarity. 

Following a similar principle as intrinsic IC approaches (Seco, et al., 2004; Zhou, et al., 2008), 

in which the IC of the concept is computed as a non-linear function of the amount of semantic 

features, we introduce the logarithm in our calculation, obtaining the following formulation. 

 

Definition 4. The normalized dissimilarity between a and b according to their taxonomical 

features is calculated as: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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+
+=

)()()(\)()(\)(
)(\)()(\)(

1log),( 2 baabba
abba

badisnorm φφφφφφ
φφφφ    (24) 

 

In this expression, the logarithm is calculated by adding 1 to the ratio. In this manner, we 

avoid infinite values for equivalent terms (i.e., they are equal terms or exact synonyms 

corresponding to the same concept), which will lead to a zero numerator because there are not 

unique features differentiating them. Moreover, this expression maintains the value range of the 

results in the interval [0..1], being the boundary values: 

min_dis=log2(1+0)=0, for equivalent terms (i.e., ))()(|:()()( bxaxxiffba φφφφ ∈⇔∈∀= ). 
max_dis=log2(1+1)=1, for maximally different terms with disjoint feature sets resulting in 

equal numerator and denominator (i.e., ))()(|:()()( bxaxxiffba φφφφ ∉⇒∈∀≠ ). 

3.2.   Example 

To illustrate the behavior of our approach, let us consider the following portion of an ontology 

(Figure 1). At the lowest level we have four concepts: surfing, sailing, swimming and 

sunbathing. All of them are activities of leisure in the beach, but some of them are also sports 

related to wind and/or water. If only the minimal path connecting the concepts is considered, all 

of them are at the same distance because they are all brothers with respect to the concept beach 

leisure. So, this will be the answer given by the path length measures presented in section 2.1. 

With our proposal, which takes into account all the subsumers of the concepts, we are able to 

distinguish different levels of dissimilarity, which better captures the semantic distance that one 

would attach to those terms. 

 



<<Figure 1>> 

Figure 1. Ontology example. 

 

In our case, the set of features generated for the following four concepts are: 

{ }
{ }

{ }
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From these sets of features we can calculate the dissimilarity between any of those pairs of 

terms. Table 1 contains the results of applying eq. 24. As the measure is symmetric, we present 

only the lower triangular distance matrix. To give an example, the dissimilarity between sailing 

and sunbathing is calculated as follows: 

78.0
214

141log),( 2 =⎟
⎠
⎞

⎜
⎝
⎛

++
+

+=sunbathingsailingdisnorm
 

, where the number of differential taxonomical features of sailing with respect to sunbathing is 

4 (i.e., sailing, wind, water and sport) and the number of differential features of sunbathing with 

respect to sailing is 1 (i.e., sunbathing), and the set of common elements has a cardinality of 2 

(i.e., beach_leisure and activity). 

Table 1. Dissimilarities calculated with disnorm for leaf concepts presented in Figure 1. 

Concepts  Surfing Sailing Swimming Sunbathing 

Surfing 0   

Sailing 0.36 0   

Swimming 0.51 0.51 0  

Sunbathing 0.78 0.78 0.65 0 

 

For the ontology fragment in Figure 1, the concepts sailing and surfing are the most similar 

ones (least distance) as it was expected, because they are sports made in the water with the help 

of the wind, as well as, beach leisure activities (as it is explicitly stated in the ontology via 

taxonomical relationships). Swimming is more similar to sailing and surfing than sunbathing 

because it is also a water sport. In fact, sunbathing is only a relaxing activity in the beach not 

related with sports, so it is considered the semantically farthest to the rest of concepts. All those 

semantic evidences are properly captured by our approach by exploiting taxonomical 

knowledge (especially in the case of multiple inheritance) as it is presented in Table 1. 

3.3.   Properties 

In order to show the validity of the presented measure, we have studied the properties that a 

dissimilarity measure must fulfill. It is important to note that the fulfilment of those properties is 



a requirement if the measure is used in conjunction with some reasoning or data mining 

techniques (for example, similarity is a core element in case-based reasoning stages: case base 

building, case retrieval, and even case adaptation (O'Sullivan, Smyth, & Wilson, 2005)). In fact, 

the coherency of the results obtained in clustering algorithms relying on similarity measures 

may depend on the fulfilment of those properties (Everitt, Landau, & Leese, 2001).  In this 

respect, several of the measures proposed in related works (especially weighted and feature-

based ones (Li, et al., 2003; Rodríguez & Egenhofer, 2003; Tversky, 1977)), do not accomplish 

basic properties such as minimality, hampering their applicability in some data mining 

algorithms.   

 

Proposition 1. The function disnorm fulfills the properties of dissimilarity measures (Euzenat & 

Shvaiko, 2007): 

0),(,, ≥Ο∈∀ badisba        (positiveness)    

0),(, =Ο∈∀ aadisa         (minimality)    

),(),(,, abdisbadisba =Ο∈∀        (symmetry)   

 

Proof. By adding 1 to the inner expression of the logarithm, values positively range from 0 to 1 

so, positiveness is ensured. Equivalent terms will result in an empty set of unique features and 

in a disnorm value of log2(1)=0, accomplishing the second property that says that the minimum 

dissimilarity must be given by the comparison of one item with itself. Finally, as a and b are 

evaluated according to their feature sets (i.e., the order of the elements in the sets is irrelevant) 

and all the operations performed over those sets are commutative (i.e., difference and 

intersection), the measure accomplishes the symmetry property.  □  

3.4.   Dealing with polysemic terms 

When input terms are raw words extracted from text, some of them may be polysemous. For 

general ontologies such as WordNet, polysemic words correspond to several concepts (i.e., one 

per word sense) which can be found by mapping words to concept synsets. As a matter of fact, 

in WordNet 2, polysemic nouns correspond to an average of 2.77 concepts2. A proper 

disambiguation of input terms may solve the ambiguity, assigning input words to unique 

ontological concepts. However, as stated in the introduction, semantic similarity is promoted 

exactly for applications dealing with various levels of ambiguity because in texts we find words 

rather than concepts (Budanitsky & Hirst, 2006).  

In previous works, polysemic words have been tackled by retrieving all possible concepts 

corresponding to a term and then, computing individual similarities for each possible pair of 
                                                           

2 http://wordnet.princeton.edu/wordnet/man2.1/wnstats.7WN.html 



concepts and selecting, as the final result, the maximum similarity value obtained. The rationale 

for this criterion is that in order to evaluate the similarity between two non-disambiguated 

words (i.e., no context is available), human subjects would pay more attention to their 

similarities (i.e., most related senses) rather than their differences, as it has been demonstrated in 

psychological studies (Tversky, 1977). Therefore, we have taken the same approach to solve 

this problem, taking the minimum dissimilarity value obtained for all the possible combinations. 

 

Definition 5. The generalized dissimilarity measure which is able to deal with polysemic terms 

is defined as: 

)','(min),(
'
'

badisbadis norm
Bb
Aadgeneralize

∈∀
∈∀

=         (25) 

, where A is the set of concepts (i.e., word senses) for the term a, and equally for term b.   

 

Proposition 2. The function disgeneralized fulfills the properties of dissimilarity measures: 

positiveness, minimality and symmetry. 

 

Proof. The proof is straightforward considering that disnorm fulfills the positiveness, minimality 

and symmetry as the minimum operator keeps the properties when applied to it. □ 

4.   Results  

As stated in (Bollegala, et al., 2009), an objective evaluation of the accuracy of a semantic 

similarity function is difficult because the notion of similarity is a subjective human judgement. 

In order to enable fair comparisons, several authors created evaluation benchmarks consisting of 

word pairs whose similarity were assessed by a set of humans. Rubenstein and Goodenough 

(Rubenstein & Goodenough, 1965) defined the first experiment in 1965 in which a group of 51 

students, all native English speakers, assessed the similarity of 65 word pairs selected from 

ordinary English nouns on a scale from 0 (semantically unrelated) to 4 (highly synonymous). 

Miller and Charles (Miller & Charles, 1991) re-created the experiment in 1991 by taking a 

subset of 30 noun pairs which similarity was reassessed by 38 undergraduate students. The 

correlation obtained with respect to Rubenstein and Goodenough experiment was 0.97. Resnik 

(Resnik, 1995) replicated again the same experiment in 1995, in this case, requesting 10 

computer science graduate students and post-doc researchers to assess similarity. The 

correlation with respect to Miller and Charles results was 0.96. Finally, Pirro (Pirró, 2009) 

replicated and compared the three above experiments in 2009, involving 101 human subjects, 

both English and non-English native speakers. He obtained an average correlation of 0.97 with 

respect to Rubenstein and Goodenough experiment, and 0.95 with respect to Miller and Charles 



experiment. It is interesting to see the high correlation obtained between the experiments even 

though being performed in a period of more than 40 years and with heterogeneous sets of 

people. This states that similarity between selected words is stable over the years, making them 

a reliable source for comparing measures.  

In fact, Rubenstein and Goodenough and Miller and Charles benchmarks have become de 

facto standard tests to evaluate and compare the accuracy of similarity measures. Authors 

quantify the accuracy of their measures by computing the correlation between the similarity 

ratings reported in these benchmarks against those obtained by means of the computerized 

assessments. If the two ratings are exactly the same which means that the similarity function 

perfectly mimics human judgements, correlation coefficient will be 1, whereas 0 means that 

automatic assessments are unrelated to human opinions. Spearman’s and Pearson’s correlations 

coefficients have been commonly used in the literature; both are equivalent if ratings sets are 

ordered (which is the case). They are also invariant to linear transformations which may be 

performed over results such as a change between distance and similarity by changing the sign of 

the value or normalizing values in a range. The use of these benchmarks and the correlation 

coefficient as a measure of evaluation enables an objective comparison between measures.  

In order to evaluate the accuracy of related works commented in section 2, we have taken the 

correlation values originally reported by related works for Rubenstein and Goodenough and 

Miller and Charles benchmarks (when available) and summarized them in Table 2. In the case 

in which a concrete measure depends on certain parameters (such as weights or corpora 

selection/processing) the best correlation value reported in authors’ experiments according to 

optimum parameter tuning was compiled. It is important to note that, even though some of them 

rely on different knowledge sources (such as tagged corpora), all measures use WordNet as 

background ontology. Concretely, WordNet 2 is the most common version used in related 

works. In cases in which original authors used an older version (WordNet 2 was released in July 

2003), we took a more recent replication of the measure evaluation performed by another author 

in order to enable a fair comparison. At the end, we picked up correlation results reported by 

authors in papers published from 2004 to 2009.   

In order to evaluate and compare our approach against related works under the same 

conditions, we applied it to the two benchmarks also using WordNet 2 as ontology. The 

correlation values obtained in our case are shown in the last row of Table 2. 

 

 

 

 



Table 2. Correlation values for each measure. From left to right: authors, measure type, correlation for 

Miller and Charles benchmark, correlation for Rubenstein and Goodenough benchmark and reference in 

which those correlations where reported 

Measure  Type M&C R&G Evaluated in 

Rada et al., (path length) Edge-counting 0.59 N/A (Petrakis, et al., 2006) 

Wu and Palmer Edge-counting 0.74 N/A (Petrakis, et al., 2006) 

Leacock and Chodorow Edge-counting 0.74 0.77 (Patwardhan & Pedersen, 

2006) 

Li et al., Edge-counting 0.82 N/A (Petrakis, et al., 2006) 

Al-Mubaid and Nguyen (sem) Edge-counting N/A 0.815 (Hisham   Al-Mubaid & 

Nguyen, 2009) 

Hirst and St-Onge Edge-counting 0.78 0.81 (Wan & Angryk, 2007) 

Rodriguez and Egenhofer Feature 0.71 N/A (Petrakis, et al., 2006) 

Tversky Feature 0.73 N/A (Petrakis, et al., 2006) 

Petrakis et al., (X-similarity) Feature 0.74 N/A (Petrakis, et al., 2006) 

Resnik IC (corpus) 0.72 0.72 (Patwardhan & Pedersen, 

2006) 

Lin IC (corpus) 0.7 0.72 (Patwardhan & Pedersen, 

2006) 

Jiang and Conrath IC (corpus) 0.73 0.75 (Patwardhan & Pedersen, 

2006) 

Resnik (IC computed as Seco et al.,) IC (intrinsic) N/A 0.829 (Zhou, et al., 2008) 

Lin (IC computed as Seco et al.,) IC (intrinsic) N/A 0.845 (Zhou, et al., 2008) 

Jiang and Conrath (IC computed as Seco et al.,) IC (intrinsic) N/A 0.823 (Zhou, et al., 2008) 

Resnik (IC computed as Zhou et al.,) IC (intrinsic) N/A 0.842 (Zhou, et al., 2008) 

Lin (IC computed as Zhou et al.,) IC (intrinsic) N/A 0.866 (Zhou, et al., 2008) 

Jiang and Conrath (IC computed as Zhou et al.,) IC (intrinsic) N/A 0.858 (Zhou, et al., 2008) 

Our approach (eq. 25) Feature 0.83 0.857 - 

5.   Discussion  

From the results reported in Table 2, in the following, we will make a comparative analysis of 

the different measures covered in this paper. Together with their accuracy, their main 

advantages and drawbacks from the application point of view will be discussed.  

The basic path length measure (Rada, et al., 1989) presents the lowest accuracy (0.59) due to 

the fact that absolute lengths of the paths connecting two concepts may not accurately represent 

their specificity. This is the case of WordNet, since concepts higher in the hierarchy are more 

general than those lower in the hierarchy (Pirró, 2009). As a result, other edge-counting 

approaches also exploiting the relative depth of the taxonomy (Wu and Palmer (Wu & Palmer, 

1994), Leadcock and Chodorow (Leacock & Chodorow, 1998)) offer a higher accuracy (0.74). 

It is remarkable the correlation values obtained by Li (Li, et al., 2003) and Al-Mubaid and 



Nguyen  approaches (H. Al-Mubaid & Nguyen, 2006), which combine the length of the path 

with the depth of the concepts in a weighted and non-linear manner. However, they rely on 

empirical parameters whose values have been experimentally determined to optimize the 

accuracy for the evaluated benchmark, hampering their generality. Hirst and St-Onge (Hirst & 

St-Onge, 1998) presents a similar behaviour, also relying on tuning parameters but, in this case, 

using non-taxonomic relationships that consider a more general concept of relatedness.  

Feature-based methods try to overcome the limitations of path-based measures by 

considering different kinds of ontological features. The problem, which has been also noted for 

some edge-counting measures, is their dependence on the parameters introduced to weight the 

contribution of each feature (for Rodriguez and Egenhofer (Rodríguez & Egenhofer, 2003) and 

Tversky (Tversky, 1977) approaches). Correlation values are, however, very similar to those 

offered by edge-counting measures (0.71-0.74) in these benchmarks. This can be motivated by 

the fact that they rely on concept features, such as synsets, glosses or non-taxonomic 

relationships which have secondary importance in ontologies like WordNet in comparison with 

taxonomical knowledge. In fact, those kind of features are scarce in ontologies (Ding, et al., 

2004), which causes those approaches are based on partially modelled knowledge. As a result, 

those measures, even being more complex, are not able to significantly outperform the state of 

the art of edge-counting measures.     

For IC-based measures, we observe that approaches relying on an intrinsic computation of 

IC (based on the number of concept hyponyms) clearly outperform approaches relying on 

corpora (0.72 vs. 0.84, in average). This is very convenient as corpora dependency seriously 

hampers the applicability of classic IC measures. The difference between both ways of 

computing IC is caused by two factors. Firstly, the data sparseness problem that appear when 

relying on tagged corpora (which would be necessary small due to manual tagging) to obtain 

accurate concept appearance frequencies. Secondly, the fact that WordNet’s taxonomy is 

detailed and fine-grained, which enables an accurate estimation of a term’s generality as a 

function of its number of hyponyms. With regards to the performance of each measure, Lin 

(Lin, 1998) tends to improve Resnik (Resnik, 1995) one when IC is computed intrinsically, as 

the former is able to differentiate terms with identical LCS but different taxonomical depths. 

With regards to the way in which intrinsic IC is computed, more complex approaches also 

exploiting relative depth and relying on weighting parameters (Zhou et al., (Zhou, et al., 2008)) 

offer the highest accuracy (0.86).     

Comparing the proposed measure with other ontology-based works, one can note that our 

approach’s accuracy surpasses the basic edge-counting approaches (0.83 vs. 0.74). In general, in 

complex and detailed ontologies like WordNet, where multiple taxonomical paths can be found 

connecting concept pairs (overlapping hierarchies), path-based measures waste explicitly 

available taxonomical knowledge as only the minimum path is considered as an indication of 



distance. Only the Li et al.,’s measure is able to achieve a very similar accuracy when the 

appropriate scaling parameters are empirically chosen.  

Feature-based approaches’ correlations are also surpassed (0.84 vs. 0.74), even though they 

are based on other non-taxonomical features and weighting parameters. This shows that 

taxonomical knowledge plays a more relevant role in stating term similarity than other more 

scarce features which are typically poorly considered in available ontologies.  

The same situation is repeated for corpus-based IC measures (0.84 vs. 0.73) showing that the 

exploitation of high quality taxonomical knowledge available in ontologies provides even more 

reliable semantic evidences than unstructured textual resources. This is coherent to what is 

observed for approaches computing IC in an intrinsic manner, which, conceptually, follow a 

similar principle as our approach. In their case, similarity is computed as a function on the 

number of hyponyms whereas in our case it is estimated as a function of overlapping and non-

overlapping hypernyms. Moreover, Lin and Jiang and Conrath measures computing IC 

intrinsically follow the same principle as feature-based measures: similarity is proportional to 

feature overlapping (in their case, represented by the IC of the LCS) and inversely proportional 

to the differences (in their case, the IC of each individual term). So, if the IC is computed from 

taxonomical evidences (i.e., number of hyponyms) it is coherent that their correlation values are 

similar as those of our approach. The only case in which they surpass our measure’s correlation 

is when IC is computed as Zhou et al.’s (Zhou, et al., 2008), in which a weighting parameter is 

introduced to optimize the assessment.  

Summarizing, our measure is able to provide a high accuracy without any dependency on 

data availability, data pre-processing or tuning parameters for a concrete scenario. As it only 

relies on the most commonly available ontological feature, our measure ensures its generality as 

a domain-independent proposal. At the same time, it retains the low computation complexity 

and lack of constraints of edge-counting measures as it only requires retrieving, comparing and 

counting ontological subsumers. This ensures its scalability when it must be used in engineering 

or data mining applications, which may require dealing with large sets of terms (Armengol, 

2009; Batet, Valls, & Gibert, 2008).  

Compared to other approaches based on taxonomical knowledge, the exploitation of the 

whole amount of unique and shared subsumers seems to give solid semantic evidences of 

semantic resemblance. First, the distinctive features implicitly include information about the 

different paths connecting the pair of terms. In the same manner, the depth of the Least 

Common Subsumers of those concepts is implicitly included in the set of shared subsumers (i.e., 

the deeper the LCS, the higher the amount of common features). Other features that have been 

identified in the literature, such as relative taxonomical densities and branching factors, are also 

implicitly considered, being all of them useful dimensions to assess semantic similarity. 



As any other ontology-based measure, the final accuracy will depend on the coverage, detail, 

completeness and coherency of taxonomical knowledge. Moreover, most of the improvements 

achieved by our approach are derived from the fact that similarity is estimated from the total set 

of subsumer concepts considering the different taxonomical hierarchies. If the input ontology 

offers little taxonomical detail or does not consider multiple inheritance, the accuracy 

improvements of our approach with respect to measures based on the minimum path are likely 

to be less noticeable. Fortunately, large and broad ontologies are being developed, like WordNet 

as a general purpose description of concepts, or the UMLS repository in the medical context. 

6.   Conclusions  

As it has been explained in the introduction, semantic similarity assessment is a crucial 

component embedded in many applications framed in the artificial intelligence research area. 

This paper provides an up-to-date survey of ontology-based semantic similarity measures that 

can be used to estimate the resemblance between terms.  

A new measure based on taxonomical features has been also presented and compared in the 

context of the survey. In this measure the set of features is built from the categorization (i.e., 

subsumers) of the concepts modelled in the ontology. In our case, we consider subsumers as 

labels that describe the meaning of the concept in different levels of generality.  

Differently to the other feature-based approaches, this measure only relies on taxonomic 

ontological knowledge (which is the most commonly available one), lacking of corpora-

dependency or parameter-tuning. It is computational efficient as only taxonomical branches are 

explored and it fulfils the mathematical properties required in many applications for coherent 

similarity computation (Everitt, et al., 2001; O'Sullivan, et al., 2005). 

The paper has analysed, under a common framework, the pros and cons of both related 

works and our proposal, with the aim of giving some insights on their accuracy, applicability, 

dependencies and limitations. In addition, a complete comparison of all these measures in a 

practical setting is reported, using the two widely used benchmarks. The conclusions extracted 

from those analyses would help practitioners in selecting the measure that better fits with the 

requirements of a concrete application. In particular, the results reported by our measure for the 

two benchmarks suggest a promising accuracy, improving the correlations reported by most of 

other ontology-based approaches, while minimizing the constraints that may hamper its 

applicability both from the computational efficiency and resource-dependency points of view. 

For this reason, as future work, we want to study how the inclusion of this measure can improve 

the results in some concrete applications. In particular, we are studying semantically grounded 



data mining processes and statistical disclosure control methods, which may directly benefit 

from a more accurate similarity assessment. 
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