

Total Ionizing Dose Mitigation by means of
Reconfigurable FPGA Computing

Farouk Smith

Dissertation presented for the degree of Doctor of Philosophy in
Engineering at the University of Stellenbosch

Supervisor: Prof. S. Mostert

December 2007

 ii

Declaration

I, the undersigned, hereby declare that the work contained in this dissertation is my own
original work and that I have not previously in its entirety or in part submitted it at any
university for a degree.

_________________________ __________________
SIGNATURE DATE

Copyright ©2007 Stellenbosch University

All rights reserved

 iii

Synopsis
There is increasing use of commercial components in space technology and it is

important to recognize that the space radiation environment poses the risk of permanent

malfunction due to radiation. Therefore, the integrated circuits used for spacecraft

electronics must be resistant to radiation.

The effect of using the MOSFET device in a radiation environment is that the gate oxide

becomes ionized by the dose it absorbs due to the radiation induced trapped charges in

the gate-oxide. The trapped charges in the gate-oxide generate additional space charge

fields at the oxide-substrate interface. After a sufficient dose, a large positive charge

builds up, having the same effect as if a positive voltage was applied to the gate terminal.

Therefore, the transistor source to drain current can no longer be controlled by the gate

terminal and the device remains on permanently resulting in device failure.

There are four processes involved in the radiation response of MOS devices. First, the

ionizing radiation acts with the gate oxide layer to produce electron-hole pairs. Some

fraction of the electron-hole pairs recombine depending on the type of incident particle

and the applied gate to substrate voltage, i.e. the electric field. The mobility of the

electron is orders of magnitude larger than that of the holes in the gate oxide, and is swept

away very quickly in the direction of the gate terminal. The time for the electrons to be

swept away is on the order of 1ps. The holes that escape recombination remain near their

point of origin. The number of these surviving holes determines the initial response of the

device after a short pulse of radiation. The cause of the first process, i.e. the presence

of the electric field, is the main motivation for design method described in this

dissertation.

The second process is the slow transport of holes toward the oxide-silicon interface due

to the presence of the electric field. When the holes reach the interface, process 3, they

become captured in long term trapping sites and this is the main cause of the permanent

 iv

threshold voltage shift in MOS devices. The fourth process is the buildup of interface

states in the substrate near the interface

The main contribution of this dissertation is the development of the novel Switched

Modular Redundancy (SMR) method for mitigating the effects of space radiation on

satellite electronics. The overall idea of the SMR method is as follows: A charged

particle is accelerated in the presence of an electric field. However, in a solid, electrons

will move around randomly in the absence of an applied electric field. Therefore if one

averages the movement over time there will be no overall motion of charge carriers in

any particular direction. On applying an electric field charge carriers will on average

move in a direction aligned with the electric field, with positive charge carriers such as

holes moving in the direction of field, and negative charge carriers moving in the

opposite direction. As is the case with process one and two above.

It is proposed in this dissertation that if we apply the flatband voltage (normaly a zero

bias for the ideal NMOS transistor) to the gate terminal of a MOS transistor in the

presence of ionizing radiation, i.e. no electric field across the gate oxide, both the free

electrons and holes will on average remain near their point of origin, and therefore have a

greater probability of recombination. Thus, the threshold voltage shift in MOS devices

will be less severe for the gate terminal in an unbiased condition. The flatband conditions

for the real MOS transistor is discussed in appendix E.

It was further proposed that by adding redundancy and applying a resting policy,

one can significantly prolong the useful life of MOS components in space. The fact

that the rate of the threshold voltage shift in MOS devices is dependant on the bias

voltage applied to the gate terminal is a very important phenomenon that can be

exploited, since we have direct control and access to the voltage applied to the gate

terminal. If for example, two identical gates were under the influence of radiation and

the gate voltage is alternated between the two, then the two gates should be able to

withstand more total dose radiation than using only one gate. This redundancy could be

used in a circuit to mitigate for total ionizing dose.

 v

The SMR methodology would be to duplicate each gate in a circuit, then selectively only

activating one gate at a time allowing the other to anneal during its off cycle. The SMR

algorithm was code in the “C” language. In the proposed design methodology, the design

engineer need not be concerned about radiation effects when describing the hardware

implementation in a hardware description language. Instead, the design engineer makes

use of conventional design techniques. When the design is complete, it is synthesized to

obtain the gate level netlist in edif format. The edif netlist is converted to structural

VHDL code during synthesis. The structural VHDL netlist is fed into the SMR “C”

algorithm to obtain the identical redundant circuit components. The resultant file is also a

structural VHDL netlist. The generated VHDL netlist or SMR circuit can then be mapped

to a Field Programmable Gate Array (FPGA).

Spacecraft electronic designers increasingly demand high performance microprocessors

and FPGAs, because of their high performance and flexibility. Because FPGAs are

reprogrammable, they offer the additional benefits of allowing on-orbit design changes.

Data can be sent after launch to correct errors or to improve system performance. System

including FPGAs covers a wide range of space applications, and consequently, they are

the object of this study in order to implement and test the SMR algorithm.

We apply the principles of reconfigurable computing to implement the Switched Modular

Redundancy Algorithm in order to mitigate for Total Ionizing Dose (TID) effects in

FPGA’s. It is shown by means of experimentation that this new design technique

provides greatly improved TID tolerance for FPGAs.

This study was necessary in order to make the cost of satellite manufacturing as low as

possible by making use of Commercial off-the-shelf (COTS) components. However,

these COTS components are very susceptible to the hazards of the space environment.

One could also make use of Radiation Hard components for the purpose of satellite

manufacturing, however, this will defeat the purpose of making the satellite

manufacturing cost as low as possible as the cost of the radiation hard electronic

 vi

components are significantly higher than their commercial counterparts. Added to this is

the undesirable fact that the radiation hard components are a few generations behind as

far as speed and performance is concerned, thus providing even greater motivation for

making use of Commercial components.

Radiation hardened components are obtained by making use of special processing

methods in order to improve the components radiation tolerance. Modifying the process

steps is one of the three ways to improve the radiation tolerance of an integrated circuit.

The two other possibilities are to use special layout techniques or special circuit and

system architectures.

Another method, in which to make Complementary Metal Oxide Silicon (CMOS) circuits

tolerant to ionizing radiation is to distribute the workload among redundant modules

(called Switched Modular Redundancy above) in the circuit. This new method will be

described in detail in this thesis.

 vii

Opsomming
Daar is ‘n verhoogde gebruik van kommersieële komponente in die ruimte en dit is

belangrik om die risiko van bestaling in die ruimte omgewing in erken agv die risiko van

permanente beskadiging te wyte aan bestraling. Dit is vir hierdie rede, dat die

geintegreerde stroombane wat gebruik word vir ruimte elektronika bestand teen

bestraling moet wees.

Die effek van die gebruik van die MOSFET toerusting in ‘n bestralings omgewing is dat

die hek oksied ge-ioniseer word deur die gevangde bestralings ge-induseerde gevange

ladings in die hek-oksied. Die vaste lading in die hek-oksied produseer ’n addisioneele

spannings veld by die oxide-substraat intervlak. Na 'n voldoende dosis, vorm ‘n groot

positieve lading, en dit het dieselfde effek as 'n positief spanning wat oor die hek aangelê

word. Om hierdie rede, kan die transistor die stroom tussen die drein en “source” nie

meer afskakel nie en die transistor bly permanent aan geskakel wat die stroombaan laat

faal.

Daar is vier prosesse betrokke in die bestralings effek op MOS komponente. Eerstens,

die ioniseering bestraling se impak op die hek oksied laag produseer elektron-holte pare.

‘n Fraksie van die elektroon-holte pare herkombineer afhangend op die soort van partikel

en die hek tot substraat spanning, agv byvoorbeeld die elektries veld op die hek. Die

mobilisasie van die elektrone is veel groter as die van die holtes in die hek oksied, en die

elektrone beweeg baie gou in die rigting van die hek terminaal. Die tyd vir die elektrone

om te weg te beweeg is in die orde van 1ps. Die holtes wat herkombinasie ontsnap bly

naby hul punt van oorsprong. Die aantal van die oorlewende holtes bepaal die

aanvanklike effek van die komponent na 'n kort pols van bestraling. Die oorsaak van die

eerste proses en die teenwoordigheid van die elektriese veld is die hoof motivering vir die

ontwerp metode wat beskryf word in hierdie verhandeling.

 viii

Die tweede proses is die stadige vervoer van holtes na die oksied-silikon koppelvlak as

gevolg van die teenwoordigheid van die elektriese veld. Wanneer die holtes die

koppelvlak bereik, proses 3, word hulle gevang in lank termyn areas en die positiewe

lading is die hoof oorsaak van die permanente drumpel spanning verskuiwing in MOS

komponente. Die vierde proses is die opbou van koppelvlak toestande in die substraat

naby die koppelvlak.

Die hoof bydrae van hierdie verhandeling is die ontwikkeling van die Skakel Modulêr

Oortolligheid (SMR) metode om die effekte van die ruimte bestraling op sateliet

elektronika te verminder. Die uitgangspunt van die SMR metode is as volg: 'n elektron

word versnel in die teenwoordigheid van 'n elektriese veld. Maar in ’n vaste stof, sal die

elektrone na willekeur rond beweeg in die afwesigheid van 'n aangelegde elektriese veld.

Om hierdie rede, as ons die beweging gemiddelt oor tyd meet sal daar geen algehele

beweging van lading draers in enige presiese rigting wees nie. Met die aanwending van

'n elektries veld sal lading draers op gemiddeld beweeg in 'n rigting gerig met die

elektries veld, met positief lading draers soos holtes, beweeg in die rigting van die veld,

en negatiewe ladind draers beweeg in die teenoorgestelde rigting.

Dit word voorgestel in hierdie verhandeling dat indien ons 'n nul spanning aan wend oor

die hek terminaal van 'n MOS transistor in die teenwoordigheid van ioniseerende

bestraling, deur byvoorbeeld geen elektriese veld oor die hek aan te lê nie, dan sal beide

die vry elektrone en holtes gemiddeld naby hul punt van oorsprong bly, en om hierdie

rede het hulle ‘n groter waarskynlikheid van herkombinasie. Dus, die drempel spanning

aanpassing in MOS komponente sal kleiner wees vir die hek terminaal in 'n nul spannings

kondisie.

Dit word verder voorgestel dat deur oortolligheid by te voeg en die aanwending van 'n rus

beleid, dat die leeftyd van MOS komponente beduidend verleng kan word in die ruimte.

Die feit dat die tempo van die drumpel spanning verandering in MOS komponente

afhanklik is van die spanning wat aangewend word tot die hek terminal, is 'n baie

belangrike verskynsel wat uitgebuit kan word. Met direkte beheer en toegang tot die

 ix

spanning wat aangelê word op die hek terminaal. Indien byvoorbeeld, twee identiese

hekke onder die invloed van bestraling was, en die hek spanning word gewissel tussen

die twee, dan behoort die twee hekke instaat te wees om meer bestand te wees teen totale

dosis bestraling, in vergelyking wanner net een hek gebruik word. Hierdie oortolligheid

kan gebruik word in elektronika om die totale ioniseerings dosis te verminder.

Die SMR metode behels die dupliseering van elke hek in 'n elektroniese stroombaan.

Daarna word selektief een hek op 'n tyd ge-aktifeer om toe te laat dat die ander herstel

gedurende sy “af” kringloop. Die SMR algoritme is gekode in die “C” taal. In die

voorgestelde ontwerp metode, hoef die ontwerp ingeneur nie bekommerd te wees omtrent

bestraling effekte wanneer die hardeware implementasie in 'n hardeware beskrywing taal

beskryf word nie. In plaas daarvan, maak die ontwerp ingeneur gebruik van

konvensionele ontwerp tegnieke. Wanneer die ontwerp voltooi is, word dit gesintetiseer

om die hek vlak netlist in edif formaat te verkry. Die edif netlist word dan omgekeer na

strukturele VHDL kode gedurende sintese. Die strukturele VHDL netlist word dan

gevoed binne-in die SMR “C” algoritme om die identiese oorbodige stroombaan

komponente te verkry. Die resultaat is ook 'n strukturele VHDL netlist. Die ontwikkelde

VHDL netlist of SMR stroombaan kan dan oorgedra word tot 'n veld programmeerbare

hek struktuur (FPGA).

Ruimtetuig elektroniese ontwerpers benodig meer en meer hoë werkverrigting

mikroprosesseerders en FPGAs weens hul hoë werkverrigting en buigsaamheid. Omdat

FPGAs herprogrameerbaar is, bied hulle die addisioneel voordele om dit moontlik te

maak om ruimte wentelbaan ontwerp veranderings te doen. Data kan gestuur word na

lansering om foute te korigeer of om stelsel werkverrigting te verbeter. Stelsels wat

FPGAs insluit word gebruik in 'n wye reeks van die ruimte applikasies, en gevolglik, is

FPGAs die objek van hierdie studie ten einde die SMR algoritme te implementeer en te

toets.

Ons gebruik die beginsels van her-konfigureerbare logika om die SMR algoritme te

implementeer ten einde ’n groter toleransie van elektronika te kry in die teenwoordigheid

 x

van totaal ioniseering dosis (TID) effekte in FPGAs. Daar is eksperimenteel aangetoon

dat hierdie nuwe ontwerp tegniek voorsien ’n groot verbetering in TID toleransie vir

FPGAs.

Hierdie studie was nodig ten einde die koste van sateliet vervaardiging so laag as

moontlik te maak deur gebruik te maak van kommersieële “af-die-rak” (COTS)

komponente. Die problem is dat hierdie COTS komponente is nooit ontwerp om

bestralings bestand te wees nie en hulle is baie vatbaar vir bestraling in ’n ruimte

omgewing.

Ons kan ook gebruik maak van bestralings verharde komponente vir die doel van sateliet

vervaardiging, Maar dit sal die doel om sateliet vervaardiging koste so laag as moontlik

te hou ondermyn, omdat die koste van die bestralings verharde elektroniese komponente

beduidend hoër is as hul kommersieële alternatiewe. Voorts is bestralings verharde

komponent gewoonlik ’n generasie of twee agter sover as spoed en werkverrigting

aangaan en daarom is daar dus is ’n groter motivering vir die gebruik van kommersieële

komponente.

Bestralings verharde komponente word verkry deur gebruik te maak van spesiaal

prosessering metodes ten einde die komponente bestralings toleransie te verbeter.

Modifisering van die proses stappe is een van die drie maniere om die bestralings

toleransie van 'n geintegreer stroombaan te verbeter. Die twee ander moontlikhede is om

gebruik te maak van spesiale uitleg tegnieke of spesiale stroombaan en stelsel argitekture.

'n Ander metode, om aanvullende metaal oksied silicium (CMOS) stroombane meer

bestand te maak teen ioniseering uitstraling is om die werk-las tussen oorbodig modules

(genoem SMR) in die stroombaan te versprei. Hierdie nuwe metode word in detail in

hierdie tesis beskryf.

 xi

To my father and in loving memory of my mother.

 xii

Acknowledgements

I wish to thank the following people and organizations for their support in this research.

• Telkom, for their generous support during the duration of this project.

• A special thank-you to my supervisor Prof. Sias Mostert, for your advice and

helping me to stay motivated. Your efforts and time are well appreciated.

• Mr. Arno Barnard, for his advice and assistance with setting up the radiation test

bed.

• Mr Johan Arendse for the quick turn around time of the PCB soldering.

• Mr Quintis Brandt, also for his quick response in ordering the electronic

components

• Praveen Samudrala for his assistance and making his STMR code available

• My other friends and fellow students in the ESL Lab group for making the ESL

lab a friendly center for learning

• My parents, for always believing in me and for their constant encouragement

throughout my academic career.

• To my wife and son, for their understanding, love and support during the four

years that I have spent on this project. And to my beautiful new born daughter, for

making me smile the past few weeks.

 xiii

Table of Contents

Declaration... ii

Synopsis... iii

Opsomming.. vii

Acknowledgements ... xii

Table of Contents ... xiii

List of Figures... xvi

List of Tables .. xix

Glossary of Acronyms .. xx

Chapter 1 ... 1

Introduction... 1

1.1 Introduction... 1

1.2 Outline of this Dissertation... 4

1.3 Published Work... 5

Chapter 2 ... 8

Background and Related Work for TID effects .. 8

2.1 The Space Radiation Environment.. 8
2.1.1 Units... 10
2.1.2 The Radiation Belts.. 10
2.1.3 Cosmic Rays .. 11
2.1.4 Solar Flares .. 12
2.1.5 Satellite Orbits Environments .. 12

2.1.5.1 Low Earth Orbits... 13
2.1.5.2 Highly Elliptical Orbits... 13
2.1.5.3 Geostationary Orbits ... 14

2.2 Total Ionizing Dose Effects... 17

2.3 Ionizing Radiation Effects on MOS devices and IC’s... 21
2.3.1 Overview of Ionizing Radiation response of MOS Structures 21

2.3.1.1 Electron Hole-pair (e-h) creation .. 23

 xiv

2.3.1.2 Hopping transport of holes.. 24
2.3.1.3 Deep Hole Trapping.. 24
2.3.1.4 Radiation induce interface traps.. 25

2.4 Consequences of radiation on the electrical parameters of a MOS 26

Transistor.. 26
2.4.1 The time-dependant response of MOS structures.. 30
2.4.2 Increase in Transistor leakage current ... 32

2.5 Single Event Effects... 34
2.5.1 Single Event Effects classifications ... 34

2.5.1.1 Single Event Upset.. 34
2.5.1.2 Single Event Latch-up... 35
2.5.1.3 Single Event Burnout.. 35
2.5.1.4 Single Event Gate Rupture.. 36
2.5.1.5 Single Event Snapback ... 36

2.5.2 SEU effects .. 37

2.6 Displacement Damage .. 40

2.7 Approaches toward Radiation Hardened Integrated Circuits for TID................... 40

2.8 Radiation Effects in FPGA’s... 44
2.8.1 FPGA Architectures... 44

2.8.1.1 SRAM Based FPGA’s .. 45
2.8.1.2 Antifuse Based FPGA’s.. 49
2.8.1.3 Flash Based FPGA’s ... 50

2.8.2 SEE Effects in FPGA... 51
2.8.3 Impact of FPGA architecture on radiation response.. 52

Chapter 3 ... 53

Switched Modular Redundancy .. 53

3.1 Introduction... 53

3.2 The Effect of Gate Bias on the MOS Radiation Response 53

3.3 The Switched Modular Redundancy Method .. 55

3.4 Applying the SMR Principle in FPGA’s ... 63

Chapter 4 ... 70

Experimental Setup and Methodology ... 70

4.1 Introduction... 70

4.2 Radiation Source and Facility .. 70

4.3 Test Methodology.. 77

4.4 Devices Tested: ... 80

 xv

4.4.1 Altera Flex10K Architecture.. 81
4.4.2 Altera Max Plus II Floorplan Editor .. 84

4.5 Radiation testing PCB boards .. 86

Chapter 5 ... 88

Experimental Results.. 88

5.1 Testing the Resting Policy on the effects of the FPGA radiation response 88

5.2 Testing the effect of the clock and configuration memory on the FPGA radiation
response .. 92

5.3 Testing the SMR Algorithm by means of reconfigurable FPGA computing........... 94

Chapter 6 ... 99

Conclusions and Recommendations.. 99

6.1 Conclusions... 99

6.2 Recommendations ... 102

References.. 104

Appendix A.. 113

Appendix B .. 123

Appendix C.. 127

Appendix D.. 133

Appendix E .. 195

Appendix F .. 196

The Accompanying CD-ROM ... 196

 xvi

List of Figures
Fig 2.1 The Van Allen radiation belts [MONR03]. .. 11

Fig 2.2 Total ionizing dose-depth curves for various orbits around the Earth

[BART97]... 16

Fig 2.3 Cross section of NMOS device with trapped charge in the oxide 18

Fig. 2.4 The basic radiation effect in MOS transistors.. 22

Fig 2.5 NMOS transistor .. 23

Fig 2.6 Summary of the transient response of an NMOS transistor’s threshold

voltage to a radiation pulse [OLDH99]... 26

Fig 2.7 Charge generation, recombination, transport and trapping [OLDH99] 31

Fig 2.9 Energetic Particle strike in the MOS Transistor... 35

Fig 2.10 Competition between the feedback process and Recover process governs the

SEU response of a latch (or SRAM cell) ... 38

Fig 2.11 Typical sequential circuit topology... 39

Fig 2.12 SET occurs when the ion induced pulse can propagate through the circuit

network [WANG04].. 40

Fig 2.13 General FPGA Architecture.. 45

Fig 2.14 FPGA Logic Block.. 46

Fig 2.15 Routing Switch Topology... 47

Fig. 2.16 SRAM Based Routing Switches using pass-transistors 47

Fig. 2.17 SRAM Based Routing Switches using multiplexers..................................... 48

Fig 2.18 The Actel Antifuse Structure... 49

Fig 2.19 Schematic of the physical structure of the floating gate switch [SAMI04] . 50

Fig. 2.20 Flash transistor .. 51

Fig 3.1 CMOS Inverter Circuit.. 56

Fig 3.2 CMOS AND Gate Circuit.. 57

Fig 3.3 The CMOS NAND Gate Circuit ... 58

Fig 3.4 The CMOS OR Gate Circuit... 59

Fig 3.5 The CMOS NOR Gate Circuit .. 60

Fig 3.6 The CMOS XOR Gate Circuit .. 61

 xvii

Fig 3.7 The CMOS XNOR Gate Circuit ... 62

Fig 3.8 Internal architecture of the SRAM FPGA... 64

Fig 3.9 Comparative use of SRAM bits in the internal structure of the SRAM

FPGA.. 66

Fig 3.10 Configuration memory and Logic interconnection....................................... 68

Fig 3.11 Configuration memory swapping ... 69

Fig 4.1 Radiation Facility Layout .. 73

Fig 4.2 Radiation facility entrance .. 74

Fig 4.3 Inside the radiation room .. 75

Fig 4.4 Devices under test suspended on the movable trolley 76

Fig 4.5 Two PC’s and power supplies are located outside the radiation facility 76

Fig. 4.6 FPGA TID Test setup.. 78

Fig 4.7 Monitoring devices at the back of the radiation trolley.................................. 79

Fig 4.8 Flex 10K Logic Element [ALTE03] .. 81

Fig 4.9 Flex 10K logic array block [ALTE03] .. 82

Fig. 4.10 Flex 10K architecture.. 83

Fig 4.11 Floorplan layout with internal FPGA placement of OR-gate logic cell and

IO pins.. 85

Fig. 4.12 FPGA PCB test board with IO and Core power supply separated 86

Fig. 4.13 FPGA PCB test board with clock signal select jumper 87

Fig. 5.1 Comparison between normal FPGA operation (Case 1) and FPGA power

cycling (Case 2) for the Altera EPF10K10TC144-4 SRAM based FPGA 89

Fig. 5.2 FPGA IO errors for Fig 5.1, case 1. ... 90

Fig 5.3 Floorplan for Fig 5.1, case 1 and case 2.. 91

Fig. 5.4 Case 1: Normal operation as in case 1 above. Case 2: The FPGA is

configured, but the clock signal is removed. Hence, no switching takes place in

the switch matrix. Case 3: Normal operation, however the configuration

memory were reset every 2.5 krad, and then reprogrammed again after a

further approx 2.5 krad. For the time that the configuration memory is cleared,

the power to the FPGA is still on... 93

 xviii

Fig. 5.5 Case 1: Normal Operation. Case 2, 3: Configuration memory is reset every

half hour to a different part of the configuration memory. Case 4:

Configuration memory is set to a different internal core as well as different IO

ports.. 95

Fig 5.6 Floorplan for Fig 5.5, case 2 and 3.. 96

Fig 5.7 Floorplan for Fig 5.5, case 4. ... 97

Fig 5.8 IO power supply TID Response .. 98

Fig. 4.12 FPGA PCB test board with IO and Core power supply separated 113

Fig. 4.13 FPGA PCB test board with clock signal select jumper 118

Fig E1 Flatband energy diagram of a metal-oxide-semiconductor (MOS) structure

consisting of an aluminum metal, silicon dioxide and silicon. 195

 xix

List of Tables

Table 2.1 .. 14

Table 2.2 .. 37

Table 3.1... 56

Table 3.2... 57

Table 3.3... 58

Table 3.4... 59

Table 3.5... 60

Table 3.6... 61

Table 3.7... 62

Table 3.8... 65

Table 4.1... 80

 xx

Glossary of Acronyms
ARC Agriculture Research Council

ASIC Application Specific Integrated Circuit

CMOS Complimentary metal-oxide semiconductor

field effect transistor

CTRW continuous-time random walk

DHP Dynamically loadable Hardware Plugin

DUT device under test

EAB embedded array blocks

FLEX flexible logic element matrix

FPGA Field Programmable Gate Arrays

GEO Geostationary Orbits

HEO Highly Elliptical Orbits

IC integrated circuit

Icc Power supply current

ICR In-circuit reconfigurability

ICT Information Communications and

Technology

IOE Input-output elements

LAB logic array block

LE logic element

LEO Low Earth Orbit

LET linear energy transfer

LETth LET threshold

LUT look-up table

MOS Metal Oxide Silicon

MOSFET

MOS

metal-oxide semiconductor field effect

transistor

NMOS n-channel MOS

 xxi

ONO oxide-nitrideoxide

PROM programmable read only memory

RHBD Radiation Hardened By Design

SAA South Atlantic Anomaly

SATNAC South African Telecommunication and

Network Application Conference

SEB Single Event Burnout

SEE Single Event Effects

SEFI single event functional interrupt

SEGR Single Event Gate Rupture

SEL Single Event Latch-up

SES Single Event Snapback

SET single event transient

SEU Single Event Upsets

SMR Switched Modular Redundancy

SOI Silicon-On-Insulator

SPI Serial Port Interface

SRAM static random access memory

TID Total Ionizing Dose

TMR Triple Module Redundancy

VFB flatband voltage

VT threshold voltage

 1

Chapter 1

Introduction

1.1 Introduction

The study of radiation effects on semiconductor devices started about forty years ago,

when the first satellites experienced serious problems due to the detrimental effect on

their electronic circuits as a result of space radiation. Since then, there has been an

increasing interest in the study of circuits which can work in a radiation environment,

driven by all the possible applications of these kinds of circuits, such as advanced

weaponry, instrumentation for nuclear power plants, high-energy physics experiments

and, last but not least space missions and satellites [ANEL00].

In the 1970s the view was widely held that designing radiation-hardened spacecraft and

systems would become “redundant” with the development of radiation-hardened

electronic components. Unfortunately that is not the reality of today. In fact, reducing

radiation effects on spacecraft systems to manageable levels is more complex than ever.

There are currently no completely radiation hardened devices in existence. The need for a

system with high levels of performance has exceeded the capabilities of available

radiation hardened components and technology. At the same time, the demand for

electronics goods in commercial markets has greatly decreased the manufacturer’s

interest in developing radiation hardened components, driving up the cost of radiation

hardened parts and making them increasingly unavailable [BAR97].

The design of digital circuits for space application needs first to consider the space

radiation environment and the satellite orbits. It is essential to study the radiation effects

in digital circuits and the ways to qualify these digital circuits for space applications. In

space, integrated circuits are subjected to hostile environments composed of a variety of

particles including photons, charged particles, neutrons and others. The charged particles

 2

can hit the ICs resulting in non-destructive or destructive effects according to the charge

intensity and to the hit location.

The analysis of radiation effects on integrated circuits and the development of mitigation

techniques are strongly associated to the target device architecture. For each different

circuit, there is a most suitable mitigation solution to be applied [LIMA02].

Consequently, in order to suggest a mitigation solution, first it is necessary to

investigate the architecture. In the past years the integrated circuit industry has

designed complex architectures in order to improve performance and logic density and to

reduce cost. Examples of this development are Application Specific Integrated Circuits

(ASICs) such as microprocessors and the high-density Field Programmable Gate Arrays

(FPGAs). Microprocessors have made a dramatic impact in the way systems are

designed, providing a high information process in a single chip. FPGAs have also made a

major improvement in system designs by adding the reconfigurability feature. More

complex structures are constantly being added in the FPGA architecture, supported by

substantial increase in logic density and performance in the last few years. Both

architectures contain million of transistors located in many distinct logic blocks,

making the modeling, test and understanding of such complex architecture very

difficult.

Due to the constant advances in technology in the last few years, the gap between FPGAs

and ASICs in terms of performance has been reduced to a negligible level, for the

majority of applications. Consequently, next generation architectures do not claim to

reduce that gap anymore, but to merge microprocessors and reconfigurability features in

the same device in order to improve performance and flexibility. However, it is not

defined yet which architecture will be embedded in the other one. While some traditional

ASIC companies are adding embedded programmable logic cores in their devices, FPGA

companies are adding ASIC IP cores in the FPGA programmable matrix.

In the paper “(When) Will FPGA kill ASICs?” [RUTE01], many ASIC and FPGA

companies discussed next generations trends. Which solution is going to be more

attractive, the ASIC with embedded programmable logic or FPGAs with embedded soft

 3

and hard IP cores? None has given a final answer, but all have agreed that different

markets need different solutions, and there is always a price to pay when performance,

high density and flexibility are all required together. Both choices force changes in the

software design flow. However, it seems that fewer changes must be done in the case of

FPGA with IP cores and more advantages can be easily achieved with that.

What is important to note for the purposes of this study is that the space and military

market, just as the commercial market, requires high performance devices with low

power, low cost, high flexibility and time to market. Added to that, the space and military

applications also request an extra feature: the radiation tolerance.

Spacecraft electronic designers increasingly demand high performance microprocessors

and FPGAs, because of their high performance and flexibility. Because FPGAs are

reprogrammable, they offer the additional benefits of allowing on-orbit design changes.

Data can be sent after launch to correct errors or to improve system performance. System

including FPGAs covers a wide range of space applications, and consequently, they are

the object of this study.

Fundamentally the radiation effects of FPGA’s are not different from any other CMOS-

based digital IC [WANG04]. Each FPGA is unique in its architecture, and each has its

unique response to radiation. However, the challenge is to correlate the radiation induced

response to the basic mechanisms of the Metal Oxide Silicon (MOS) transistor radiation

response.

The main contribution of this dissertation is the development of the novel Switched

Modular Redundancy (SMR) method for mitigating the effects of space radiation on

satellite electronics. Once the SMR principle was developed for the MOS transistor, it

was used to provide TID mitigation for the FPGA. This is possible, because at its lowest

level, the FPGA is constructed from MOS transistors.

 4

For implementation purposes the principles of reconfigurable computing was applied to

implement the Modular Redundancy Algorithm in order to mitigate for Total Ionizing

Dose (TID) effects in FPGA’s, and thereby increasing the FPGA’s functional lifetime

and performance in the presence of ionizing radiation.

1.2 Outline of this Dissertation

This introduction forms the first chapter of this thesis. The remainder of the document is

organized as follows:

Chapter 2: Background and Related Work for TID effects. Chapter 2 presents an

overall view of the important issues regarding TID effects on electronic components as

well as related research. The space radiation environment is first presented where various

important factors are identified that is important to consider as far as satellite electronics

are concerned. The chapter then introduces total ionizing dose effects as far as electronics

are concerned followed by an in depth discussion of the radiation response of the MOS

transistor. Various approaches used toward radiation hardened integrated circuits are then

discussed followed by a discussion of the radiation effects observed in FPGA’s which

concludes this chapter.

Chapter 3: Switched Modular Redundancy. In chapter 3 we present the proposed

Switched Modular Redundancy (SMR) method. The effect that the gate bias or electric

field across the MOS capacitor, has on the radiation response of the MOS oxide, is a very

import matter which will be considered more closely in this chapter and forms the basis

for the novel Total Ionizing Dose mitigation technique, called Switched Modular

Redundancy. The chapter includes an in depth discussion on how the SMR methodology

can be used in FPGA’s by means of reconfigurable computing in order to mitigate for

TID effects.

Chapter 4: Experimental Setup and Methodology. The response of MOS devices to

radiation is very variable and it is thus impossible at present to use theory alone to predict

the device response. Therefore, testing integrated circuits in a severe radiation

 5

environment in advance to their use in operational systems is very important and it will

help to reduce the probability of failures in future space applications. Fault injection is

normally used to perform Single Event Upset (SEU) testing on electronic circuits, while

actual ground tests are performed in order to test the ionizing dose performance of

electronic circuits. In this chapter we describe the experimental setup for the ground

testing as well as the radiation facility. We also describe the architecture of the FPGA

used in the testing as well as the layout of the radiation PCB test boards.

Chapter 5: Experimental Results. This chapter presents the results of the radiation

testing response of the FPGA’s with various configurations. The chapter starts of with the

experimental results of the resting policy applied to FPGA’s in a radiation environment

followed by the results of the effect of the clock and configuration memory on the FPGA

radiation response. The chapter concludes with the results of testing the SMR algorithm

by means of reconfigurable FPGA computing in a radiation environment.

Chapter 6: Conclusions and Recommendations. This chapter presents a set of

conclusions that were drawn from this study as well as recommendations that may be

used for future work regarding radiation effects on FPGA’s.

Appendices: Sets of appendices are presented to provide further background

information.

1.3 Published Work

Original work that we present in this thesis has been published at various conferences

including some IEEE conferences and IEEE journals. These publications are:

Local Conference Publications

1) F. Smith, S. Mostert, “Low Cost Satellite Communication – Space Weather

and Commercial Electronic Components”, SATNAC, September 2004.

 6

2) F. Smith, S. Mostert, “Low Cost Satellite Communication – Designing

Integrated Circuits to withstand Space Radiation”, SATNAC, September

2005.

3) F. Smith, S. Mostert, “Switched Modular Redundancy for TID Mitigation in

Digital Circuits”, SATNAC, September 2006.

4) F. Smith, S. Mostert, “Reconfigurable computing for TID Mitigation in

Digital Satellite Circuits”, Accepted for publication at SATNAC 2007.

The South African Telecommunication and Network Application Conference (SATNAC)

is the event for Industry, Academia and Operators to publish on matters concerning

progress achieved in applied research in the Information Communications and

Technology (ICT) sector.

International IEEE Conference Publications

5) F. Smith, S. Mostert, “Reconfigurable FPGA Computing to mitigate for

Total Ionizing Dose Effects”, 2007 IEEE Aerospace Conference, Big Sky,

Montana, USA, March 3 - 10, 2007.

The 2008 Aero Space conference will be the twenty-ninth in a series of annual weeklong

winter conferences designed for aerospace experts, academia, military personnel, and

industry leaders in a stimulating and thought-provoking environment. The Conference

promotes interdisciplinary understanding of aerospace systems, their underlying science

and technology, and their applications to government and commercial endeavors. Papers

are peer reviewed and typically provide the technical depth characteristic of journal

articles.

6) F. Smith, S. Mostert, “Total Ionizing Dose Mitigation by means of

Reconfigurable Computing”, Accepted for publication at IEEE RADECS

2007 conference, September 10-14, 2007, Deauville, France.

 7

9th European Conference Radiation and Its Effects on Components and Systems

(RADECS). Organized by the Commissariat à l'Energie Atomique, September 10-14,

2007 - Deauville, France. Since 1989, the goal of the European RADECS Conferences

and Workshops has been to serve the various international industrial and research

communities interested in radiation effects in electronics and optoelectronics. The 2007

theme is “Radiation Effects, from Materials to Systems: a Multi-Scale Approach”.

International IEEE Journal Publications

7) F. Smith, S. Mostert, “Total Ionizing Dose Mitigation by means of

Reconfigurable FPGA Computing” IEEE Transactions on Nuclear Science,

Vol. 54, No. 4, pp. 1343 – 1349, August 2007.

IEEE Transactions on Nuclear Science (TNS) was the number-four journal in nuclear

science and technology in 2002, according to the annual Journal Citation Report (2002

edition) published by the Institute for Scientific Information. The TNS journal devote

itself to publication or other dissemination of original contributions to the theory,

experiments, educational methods and applications of these fields, and to the

development of standards. Areas of technical activity shall include but not be limited to

the following: Nuclear science and engineering including: instrumentation for research;

detection and measurement of radiation; nuclear biomedical applications; radiation

monitoring and safety equipment; particle accelerators; nuclear instrumentation

development for reactor systems; effects of radiation on materials, components, and

systems; and applications of radiation and nuclear energy to other than utility power

generation.

 8

Chapter 2

Background and Related Work for

TID effects
The interaction of radiation with matter is a very broad and complex topic. In this chapter

we try to analyze the problem with the aim of explaining the more important aspects,

which are essential for a physical comprehension of the degradation observed in

electronic devices and circuits under radiation. The manner in which radiation interacts

with solid materials depends on the type, kinetic energy, mass and charge of the incident

particle and the mass, atomic number and density of the target material. The effects can

be classified in the following three ways: 1) Total dose as a result of ionization damage,

2) Bulk effects as a result of displacement damage and 3) Single Event Effects (SEE) as a

result of an energetic particle strike [SMIT94, LABE96]. In this study we concentrate on

the design techniques to mitigate for TID effects, and therefore only concentrate the

effects due to ionizing radiation. SEE effects and Displacement damage is merely

mentioned for completeness.

This chapter begins with a brief overview of the space radiation environment.

2.1 The Space Radiation Environment

The space radiation environment can have serious effects on satellite electronics

[STAS88]. Satellites in low Earth orbits are known to have detrimental radiation effects

when they are over the South Atlantic Anomaly due to the decrease in magnetic field

strength.

Space weather has been blamed for satellite failures that have cost the commercial

satellite industry millions. Solar conditions drive the space weather environment near

Earth. Explosions on the Sun send giga-watts of energy hurtling towards Earth via the

solar wind, causing space storms around Earth.

 9

The solar wind is a gusty ever-present stream of ions and electrons emitted by the Sun's

hot atmosphere. When solar wind conditions change sharply, for example during huge

solar events called coronal mass ejections, the Earth's magnetic environment is affected

and cause large fluxes of 'killer' electrons that encircle the Earth with a potentially deadly

effect on satellites. Also, satellite surfaces can charge to thousands of volts, ground-based

compass needles can shift by 10 degrees, communications can be affected and power

distribution systems can have problems [ANTA00].

Space is part of everybody's daily lives. Satellites transmit television, telephone and other

information around the world, and watch over our changing environment. As it tracks

destructive hurricanes on Earth, a satellite might itself be damaged by another kind of

storm - one that occurs in space. These magnetic storms disrupt radio communications

and have caused electricity blackouts.

Since the start of the space age we have known that space is far from being empty. Near-

Earth, high-energy radiation, which is hazardous to spacecraft and astronauts, is trapped

in the Van Allen belts. What we don't know is precisely how and why the particles are

accelerated to dangerous million-volt energies, it is believed that changes in the solar

wind are to blame.

It is currently impossible and uneconomic to design a satellite that is entirely

immune to variations in the space environment. It is vital for the satellite operator to

be aware of these conditions. There will be future satellite problems, and even failures.

But the gains and profits to be had are too great and have to be investigated in order to

ensure the safeguarding of the satellite operator’s investment.

It is important to define the radiation environment of a satellite orbit in order to quantify

the amount of radiation exposure the satellite will experience during its design lifetime.

This provides for an element of trade-off for orbit and component selection during the

design phase of the satellite. When a satellite mission is defined, the knowledge of the

radiation environment will allow an estimation of the suitability of a range of potential

components for successful mission completion [LABE98].

 10

A number of areas exist near earth that have unique radiation characteristics important to

satellite electronics. The sections that follow will examine these regions and the type of

radiation found in each. A Satellite orbit may intersect more than one of these regions.

2.1.1 Units

A radiation environment is defined when one knows the kind of particles, their energies

and their fluxes [HOLM02]. Further, if we are interested in the interaction with matter a

very common way of describing the radiation is to indicate the energy absorbed by a

specimen per mass unit. The most common particles are electrons, protons, neutrons,

heavy ions and photons ranging from UV to gamma energies. All these particles except

neutrons produce ionization effects in materials, so for them it is easy to find the energy

released passing through the matter (for instance with a photodiode) and we can use

correlations between the fluxes and the doses absorbed. On the other side neutron

interactions are just nuclear-like, and it is more common to account their effect by using

the flux (or the time-integrated flux, called fluence). The flux is the number of particles

passing during 1 s through a 1 cm2 area [cm-2s-1]; integrating over the time we get the

fluence, which is [cm-2]. The energy deposited is measured in rad, being 1rad = 10-2 Js-1.

The advantage in using the rad as radiation unit is evident if we consider that for instance

in 1 cm3 of Silicon 1 rad corresponds roughly to the generation of 4x1013 electron-hole

pairs [HOLM02]. This way one gets an immediate idea of the damage induced in Silicon-

based devices, in which the number of majority carriers is about 1016 carriers/cm3.

2.1.2 The Radiation Belts

The Earth’s radiation belts, also know as the Van Allen belts, consist mainly of electrons

of energy up to a few MeV and protons up to several hundred MeV which are trapped in

the Earth’s magnetic field. The field is basically that of a magnetic dipole and in those

regions where the field lines are ‘closed’, charged particles become trapped in the

magnetosphere [ADAM02]. The trapped electrons are classified into inner and outer

zones, Fig 2.1. The inner zone extends to about 2.4 Earth radii and the outer zone from

2.8 to 12 Earth radii. The gap between the two zones is referred to as the ‘slot’. The

 11

electron energies extend up to 7 MeV with the most energetic electrons being in the outer

zones. The proton environment varies with distance from earth inversely and peaks at

approximately 3.8 earth radii [STAS88]. Proton energies can reach values over 400 MeV

in this region. In 1998, there were a series of large, solar disturbances that caused a new

radiation belt to form in the so-called “slot region” between the inner and outer van Allen

belts. The new belt eventually disappeared once the solar activity subsided. The earth’s

magnetic field is not geographically symmetrical; local distortions are caused by an offset

and tilt of the magnetic axis and by geological influences; in the Southern Hemisphere,

one important distortion is known as the ‘South Atlantic Anomaly' (SAA). In this region,

field lines containing significant energetic-particle fluxes, approach the earth’s surface

giving flux enhancement at low altitudes in the region of South America. The SAA is

responsible for most of the radiation received by satellites in the Low Earth Orbit (LEO)

altitude.

Fig 2.1 The Van Allen radiation belts [MONR03].

2.1.3 Cosmic Rays

Cosmic Rays comprise 85% protons, 14 % alpha particles, and 1% heavier ions covering

the full range of elements, some of the more abundant being, for example, carbon and

iron nuclei. They are partly kept out by the earth’s magnetic field and have easier access

at the poles compared with the equator. From the point of view of space systems it is

particles in the energy range 1-20 GeV per nucleon that have most influence [STAS88].

For cosmic rays to reach a spacecraft in Earth orbit, they must penetrate the Earth’s

magnetic field. Since they are moving, charged particles, they will tend to be deflected by

 12

the magnetic field. However, this tendency is opposed by the energy of the particles as

they move at high velocity towards the Earth. Its momentum divided by its charge

determines a particle’s penetrating ability, and this quotient is referred to as its ‘magnetic

rigidity’. A cosmic ray will require a minimum magnetic rigidity to reach each point

within the Earth’s magnetic field [ADAM02]. Particles below the minimum will be

deflected and this minimum is called the geomagnetic cutoff value. The cutoff value falls

to zero at the edges of the magnetosphere and at the Earth’s magnetic poles. Since the

cosmic ray flux is highest at low energies, a satellite in Earth orbit will be protected to

some extent from cosmic rays by the magnetic field. The degree of protection will

depend on the altitude and inclination of the orbit. The geostationary orbit at an

altitude of 35860 km and of crucial importance to communication satellites is

afforded virtually no magnetic shielding against cosmic rays; polar orbits,

important for Earth observation satellites, are also significantly exposed. Low Earth

orbits used by commercial satellite constellations will have variable protection; the

most exposed being those in high inclination orbits.

2.1.4 Solar Flares

In the years around solar maximum the sun is an additional sporadic source of lower

energy particles accelerated during certain solar flares and in the subsequent coronal mass

ejections [DYER01]. These solar particle events last for several days at a time and

comprise both protons and heavier ions with variable composition from event to event.

Energies typically range up to several hundred MeV and have most influence on high

inclination or high altitude systems. Occasional events produce particles of several GeV

in energy and these can reach equatorial latitudes.

2.1.5 Satellite Orbits Environments

The main sources of energetic particles that are of concern to spacecraft designers are:

1) protons and electrons trapped in the Van Allen belts,

2) heavy ions trapped in the magnetosphere,

3) cosmic ray protons and heavy ions, and

 13

4) protons and heavy ions from solar flares.

The levels of all of these sources are affected by the activity of the sun. The solar cycle is

divided into two activity phases: the solar minimum and the solar maximum. The cycle

lasts about eleven years, with approximately four years of solar minimum and seven

years of solar maximum.

There are also extremely large variations in the levels of SEE inducing flux that a given

spacecraft encounters, depending on its trajectory through the radiation sources. Missions

flying at Low Earth Orbits, Highly Elliptical Orbits (HEOs), and Geostationary Orbits

(GEOs), and Planetary and Interplanetary missions have vastly different environmental

concerns [DYER01].

2.1.5.1 Low Earth Orbits

Satellites in LEOs pass through the particles trapped in the Van Allen belts several times

each day. The level of fluxes seen during these passes varies greatly with orbit inclination

and altitude. The location of the peak fluxes depends on the energy of the particle. For

protons with E > 10 MeV, the peak is at about 3000 km. For normal geomagnetic and

solar activity conditions, the flux level drops rapidly at altitudes over 3000 km. However,

high-energy protons have been detected in the regions above 3000 km after large

geomagnetic storms and solar flare events.

2.1.5.2 Highly Elliptical Orbits

Highly elliptical orbits are similar to LEO orbits, they pass through the Van Allen belts

each day. However, because of their high altitude, they also have long exposures to the

cosmic ray and solar flare environments regardless of their inclination. The levels of

trapped proton fluxes that HEOs encounter depends on the perigee position of the orbit

including altitude, latitude, and longitude. If this position drifts during the course of the

mission, the degree of drift must be taken into account when predicting proton flux

 14

levels. HEOs also accumulate high total ionization dose levels due to both the trapped

proton exposure and the electrons in the outer belts where the spacecraft spends a

significant amount of time during each apogee pass.

2.1.5.3 Geostationary Orbits

At geostationary altitudes, the only trapped protons that are present are below energy

levels necessary to initiate the nuclear events in materials surrounding the sensitive

region of the device that cause SEE. However, GEOs are almost fully exposed to the

galactic cosmic ray and solar flare particles. Protons below about 40-50 MeV are

normally geomagnetically attenuated, however, this attenuation breaks down during solar

flare events and geomagnetic storms. Field lines that cross the equator at about 7 earth

radii during normal conditions can be compressed down to about 4 earth radii during

these events. As a result, particles that were previously deflected have access to much

lower latitudes and altitudes. Further, GEO satellites are continuously exposed to trapped

electrons, hence, the total dose ionization accumulated in GEO orbits can be severe for

locations on the satellite with little shielding.

Table 2.1 Summary of Radiation Sources

Radiation
Source Effects of Solar Cycle Variations Types of Orbits

Affected

Trapped
Protons

Solar Min - Higher;
Solar Max - Lower

Geomagnetic Field; Solar
Flares; Geomagnetic
Storms

LEO; HEO;
Transfer Orbits

Galactic
Cosmic Ray
Ions

Solar Min - Higher;
Solar Max - Lower Ionization Level LEO; GEO; HEO;

Interplanetary

Solar Flare
Protons

Large Numbers
During Solar Max;
Few During Solar Min

Distance from Sun Outside
1 AU; Orbit Attenuation;
Location of Flare on Sun

LEO (I>45°); GEO;
HEO; Interplanetary

Solar Flare
Heavy Ions

Large Numbers
During Solar Max;
Few During Solar Min

Distance from Sun Outside
1 AU; Orbit Attenuation;
Location of Flare on Sun

LEO; GEO; HEO;
Interplanetary

 15

The following rules must be observed for estimating total dose environments [SPAC96]:

a) For satellites in low inclination (< 28 degrees) LEO, (< 500 km) in both northern and

southern hemispheres, typical dose rates due to trapped Van Allen electrons and protons

are 100-1000 rad(Si)/year.

b) For satellites in higher inclinations (between 20 and 85 degrees) LEO orbits in both

northern and southern hemispheres, typical dose rates due to increased number of trapped

electrons are 1000-10,000 rad(Si)/year.

2.1.6 Total Ionizing Dose

Total ionizing dose is a cumulative effect which causes degradation of microelectronics

and materials. As TID accumulates, parametric degradation occurs, degrading

performance, and components can eventually fail to function. TID is caused by exposure

to electrons and protons. As mentioned in the previous chapter, some technologies are

hardened to TID effects through specialized processing. However, shielding is often used

to mitigate the effects of TID on unhardened components. Fig. 2.2 is a plot of total

ionizing dose in krads of silicon as a function of aluminum shield thickness for various

orbits around the Earth per annum. The two curves in the lower half of the graph are for

LEOs that pass through the SAA. The curves that are higher on the graph are orbits that

pass through more intense regions of radiation that are at higher altitudes in the belts. At

> 300 mils (7.6 mm) of shielding, highly energetic trapped protons dominate the dose

levels [BART97].

 16

Fig 2.2 Total ionizing dose-depth curves for various orbits around the Earth

[BART97]

 17

2.2 Total Ionizing Dose Effects

Ionizing radiation dose is defined as the amount of energy deposited by ionization per

unit mass of material. SI Units are J/Kg (Gray). The majority of radiation effects depend

on rate of delivery and so dose-rate information is required. In particular, TID radiation

induced charge buildup in MOS devices depends on: dose, dose rate, type of ionizing

radiation, applied and internal electric fields, device geometry, operating temperature,

post-irradiation conditions (e.g. time and temperature), dielectric material properties,

fabrication processing, oxide impurities, nitrogen and sodium, final processing

packaging, burn-in reliability screens, and aging [HUGE03]. As stated before, issues of

IC architecture also impact survivability against radiation effects.

Accumulated dose leads to threshold voltage shifts in CMOS devices due to trapped

holes in the oxide and the formation of interface states. In addition increased leakage

currents and gain degradation in bipolar devices can occur [LABE96]. It has been shown

that the dominant radiation effects in MOS devices are due to TID effects, and not

due to displacement damage, the usual cause of radiation-induced degradation in

bipolar devices [HUGE03].

To understand the operation of the metal-oxide semiconductor field effect transistor

(MOSFET or MOS), which is the basic building block of modern digital circuits, refer to

Fig. 2.3. The diagram illustrates the cross-section of an n-channel using a p-type

substrate. The normal operation of the n-channel MOS (NMOS) transistor is as follows:

When a positive voltage is applied to the gate terminal, an electric field is created

between the gate and the silicon substrate. In effect, this behaviour is very much the same

as a parallel plate capacitor. Due to the presence of the electric field, the majority carriers

in the substrate (holes in p-type) will be repelled from the gate-oxide substrate interface

and minority carriers (electrons) will be attracted, forming what is termed an inversion

layer. When a potential difference is applied between the source and drain terminals, the

inversion layer provides a low resistance path for electrons to flow. The device is said to

be turned on, and the gate voltage at which the inversion layer just begin to transmit

current is termed the threshold voltage of the device.

 18

Source Drain
Gate

Field Oxide
Gate Oxide
- - - - - - - -

P-type silicon

Source Drain
Gate

Field Oxide
Gate Oxide
- - - - - - - -

electron
Inversion Layer

++++++n+ n+ n+ n+

Field
Oxide

Field
Oxide

Field
Oxide

Fig 2.3 Cross section of NMOS device with trapped charge in the oxide

The effect of using the MOSFET device in a radiation environment is that the gate oxide

becomes ionized by the dose it absorbs due to the radiation induced trapped charges in

the gate-oxide. The trapped charges in the gate-oxide generate additional space charge

fields at the oxide-substrate interface. After a sufficient dose, a large positive charge

builds up, having the same effect as if a positive voltage was applied to the gate terminal.

Therefore, the transistor source to drain current can no longer be controlled by the gate

terminal and the device remains on permanently resulting in device failure.

The radiation response of the PMOS transistor exhibits the same pattern, but the effect is

opposite. The normal operation of the PMOS transistor is as follows: When a negative

voltage is applied to the gate terminal with respect to the substrate, an electric field is also

created between the gate and substrate. However, this field is in the opposite direction as

in the case of NMOS. When exposed to ionizing radiation, the free electrons move in the

direction of the silicon substrate, whereas the positive holes move in the direction of the

gate oxide interface where they become trapped. This means that positive charge buildup

in PMOS devices is less severe than in NMOS, because the charges get trapped at the

gate oxide interface. Thus, the charge buildup in PMOS devices is less effective in

shifting the threshold voltage of the device [SROU82]. Already it should be clear that

the electric field in the gate oxide (and in this case its direction) has a major effect

on the radiation response of the device.

 19

The trapped oxide charge distribution can depend on time, and more specifically, on how

the electric field in the oxide changes with time. Ionization effects depend not only on the

dose, but the response is also time dependent. Fig. 2.3 also shows a thick field oxide,

which serves to control the silicon surface charge adjacent to the MOS device and

prevent parasitic channels to adjacent devices. Positive charge build-up also occurs here.

Both bulk and Silicon-On-Insulator (SOI) CMOS structures, are subject to the effects

described above. SOI is often cited as a specifically radiation-hard technology because of

its resistance to transient radiation effects, primarily single-event effects caused by heavy

ions or photo-currents produced by high dose-rate ionizing radiation. Although SOI can

provide superior device speed because of reduced parasitic capacitance, this technology is

not inherently more resistant to total-dose radiation. If anything, the additional oxide

interfaces tend to complicate matters.

Of most concern in the total dose effects is the creation of hole-electron pairs in silicon

dioxide, an insulator used to: 1) isolate neighbouring transistors (field oxide), 2) provide

gate isolation in silicon MOSFET technology, and 3) provide surface passivation in

silicon bipolar technology. In any silicon technology in which silicon dioxide is in

contact with low acceptor doping level (p-type) silicon, total-dose effects must be

considered. The dominant effects are due to holes being trapped at the interface of the Si-

SiO2, causing free electrons to be attracted to the interface, and resulting in inversion in

the silicon near the interface. If the low doped p-region isolates two n-doped regions, then

isolation is compromised and leakage currents may flow between the two n-regions.

In addition to hole trapping, interface traps, which may be charged positively or

negatively depending upon bias condition, are also generated at the Si-SiO2 interface.

Two effects are associated with interface traps. In n-channel MOS transistors under

positive bias conditions, electrons are trapped in these states. This increases the threshold

voltage. Electrons transporting through n-channels, or holes transporting through p-

channels, undergo Coulomb scattering from the charged interface states. This results in

reduction in carrier channel mobility and hence increased channel “on” resistance.

 20

In sub-micron devices, the hole trapping near the Si/SiO2 interface is the primary effect.

Charge inversion in the silicon at the interface and as a consequence parasitic leakage

paths can be created due to the hole trapping near the Si/SiO2 interface. There are two

kinds of leakage paths. The first is the edge-leakage path between the drain and source at

the edge of a NMOSFET. The other kind, called field-leakage path is between any two

n+-junctions separated by a field oxide. The edge leakage is usually more serious than the

field leakage because the shorter path length.

In sub-micron devices studied in this thesis, the radiation effects due to the gate

oxide is negligible because the oxide thickness is too thin to trap net charges and the

interface quality is too good to be activated by radiations. For a PMOSFET, the

leakages are reduced because the silicon surface is induced to favor the

accumulation [WANG04, OLDH99].

Dose Rate Effects that are related to the rate at which radiation is absorbed in circuits

include upset, latch-up, snap back in integrated circuits, and burn-out in bipolar and n-

channel power transistors. All these effects are a consequence of radiation generated

photocurrents in p-n junctions. Electron-hole pairs generated in the depletion region of a

p-n junction by ionizing radiation are swept out by the high electric field present in this

region. This promptly collected charge is termed the prompt photocurrent. Carriers

generated within a diffusion length of the depletion region will diffuse to the depletion

region where they are collected. These photocurrents sum in digital integrated circuits to

produce transient currents that can cause changes in logic levels at digital gates due to

charging and discharging of gate capacitance, or transistors being turned on or off. If the

dose rate is high enough, the product of photocurrent and resistance causes a drop in

power supply voltage across the metal resistance and power supply voltage actually

present at the memory cell, and an error is introduced in the memory cell. This

phenomenon is called rail-span collapse.

 21

2.3 Ionizing Radiation Effects on MOS devices and IC’s

The total-dose ionization problem that occurs in MOS systems is due to the radiation-

induced charging, normally positive, of the thin gate-oxide region and isolation oxides,

and in the buried oxide for Silicon On Insulator technology. The charge-induced fields

result in voltage offsets or shifts in the turn-on voltages of the devices; these offsets or

shifts lead to circuit degradation and failure. The incident radiation creates electron-hole

(e-h) pairs. The energy required is approximately 17±1 eV [BENE86] to generate an e-h

pair in SiO2. This will result in a total number of e-h pairs generated per unit dose in

SiO2 of approximately 4×1013cm-3rad-1(SiO2). The radiation-induced oxide charging

problem is complicated by the details of the time dependence of the radiation response of

the simple MOS structure shown in Fig 2.6, having to do with a wide variation in the

characteristic time scales for the various physical processes involved. The complexity of

the time-dependent response has implications in prediction of circuit response.

In this section we try to analyze the problem of radiation interaction with MOS structures

with the aim of explaining the more important aspects, which are essential for a physical

comprehension of the degradation observed in electronic devices and circuits under

radiation, and its understanding is also essential to design effective radiation damage

mitigation techniques.

2.3.1 Overview of Ionizing Radiation response of MOS Structures

The MOS radiation response involves several different processes [MCLE99]. Each of

these processes depends on time, temperature, applied field, process history, etc. as

mentioned in the previous section. A basic illustration of the overall radiation response of

the MOS transistor is shown in Fig. 2.4.

 22

+

-

+

+

+

+
+

+

+

+

+

-

-
-
-

-

Gate

(1) Electron-hole pairs
are created by ionizing
radiation

(2) Hopping transportof
holes throughoxide

(3) Hole trapping in
trapping sites near
Si/SiO interface2

(4) Interface trap
buildup at Si/SiO
interface.

2

SiO 2

-

-
-
-

-

Si
Substrate

0VV+

Ionizing
Radiation

Fig. 2.4 The basic radiation effect in MOS transistors

The four main processes involved in the radiation response of MOS devices are

illustrated in Fig. 2.4, [OLDH99, MCLE99]. First, the ionizing radiation acts with the

gate oxide layer to produce electron-hole pairs.

The second process in Fig. 2.4 is the slow transport of holes toward the oxide-silicon

interface due to the presence of the electric field. It is this transport that explains the

short term recovery of MOS devices. When the holes reach the interface, process 3, they

become trapped in vacancy sites and this is the main cause of the permanent threshold

voltage shift in MOS devices.

The fourth process is the buildup of interface states in the substrate near the interface. A

negative space charge region is created near the interface because of the positive charge

buildup of process 3. These four processes are discussed in greater detail in the sections

that follow.

 23

2.3.1.1 Electron Hole-pair (e-h) creation

As previously mentioned, the part of a MOS transistor that is most sensitive to ionizing

radiation is the oxide insulating layers. Consider Fig. 2.5, a positive bias voltage is

applied to the gate terminal as in the case of NMOS. When ionizing radiation strikes the

gate oxide, electrons are freed from the oxide molecules and are swept by the direction of

the electric field towards the gate terminal. The free holes move in the direction of the

substrate.

Source Drain
Gate

Field Oxide
Gate Oxide
- - - - - - - -

P-type silicon

n+ n+

Field
Oxide

Field
Oxide

NMOS Transistor

Fig 2.5 NMOS transistor

Some fraction of the electron-hole pairs recombine depending on the type of incident

particle and the applied gate to substrate voltage, i.e. the electric field. The mobility of

the electron is orders of magnitude larger than that of the holes in the gate oxide, and is

swept away very quickly in the direction of the gate terminal. The time for the electrons

to be swept away is on the order of 1 ps [MCLE99].

Two primary models of recombination have been developed. The columnar model

applies when the e-h pairs are close together, and thus a large number recombine. The

geminate model applies when the e-h pairs are widely separated, so that a much smaller

 24

number of carriers will recombine [MA89]. The surviving holes cause a negative voltage

shift in the electrical characteristics of MOS devices. These changes appear in the

threshold voltage (VT) or flatband voltage (VFB) for MOS capacitors. These changes can

be separated into two components: the voltage shift due to charge in the oxide, ∆Vot, and

that due to the interface traps, ∆Vit. The fractional yield of carriers, those escaping

recombination in SiO2, is discussed as a function of the applied field for various sources

of radiation in [MA89]. The number of the surviving holes determines the initial response

of the device after a short pulse of radiation.

2.3.1.2 Hopping transport of holes

At room temperature and over a period of time, on the order of a few picoseconds to

seconds, the holes undergo a hopping transport through the oxide in response to any

electric field present. They move to the Si substrate for the figure depicted above. This

hole transport is the second major effect of the MOS response.

The hole transport process is dispersive in time. Two models have been proposed for this

dispersive transport: a) hopping transport where the holes directly tunnel between

localized trap sites within the SiO2 band gap, and b) multiple trapping, where the holes

are trapped at localized trap sites moving within the oxide due to drift and diffusion

between trapping events. This dispersive transport process is sensitive to applied field,

temperature and oxide thickness. Both of these models can be mathematically described

by the continuous-time random walk (CTRW) model [MA89].

2.3.1.3 Deep Hole Trapping

When the holes reach the SiO2 interface, some are captured in long term trapping sites

causing negative voltage shifts. This long-lived, radiation induced voltage shift

component is the most commonly observed form of radiation damage in MOS devices.

Hole trapping and annealing are sensitive to the processing of the oxide, applied field,

 25

and temperature [MACL89]. This long-term trapping of holes near the SiO2 interface is

the third major effect of the MOS radiation response.

2.3.1.4 Radiation induce interface traps

The radiation induced interface traps at the SiO2 interface is the fourth and final

component of the MOS radiation response. The interface traps gives rise to a voltage shift

component that depends on the silicon surface potential [MCLE99]. Both prompt

interface traps, present immediately after a radiation pulse, and a delayed time-dependent

buildup of states that can continue for thousands to tens of thousands of seconds at room

temperature can be seen. It is also important to note that the radiation induced interface

trap generation is strongly dependent on the processing steps of MOS devices, as well as

on other variables, such as temperature and applied field [MA89, LENA99].

The time-dependent recovery curve in Fig 2.6 shows the radiation-induced shift in

threshold voltage as a function of log time. The NMOS device is under positive gate bias

at room temperature after exposure to an ionizing radiation pulse of ~1 ms. This figure

relates the major features of the response to each of the primary processes discussed

above. The initial shift (shown in red) is governed by the electron/hole pair creation in the

SiO2 bulk and by the initial recombination processes. The early annealing (shown in

blue) is due to the hole transport process. The remaining shift in VT is due to the deep

hole trapping near the SiO2/Si interface. This anneals linearly with log time. The solid

curve in Fig 2.6 corresponds to transport, trapping, and annealing of holes alone. In

addition to long-term annealing of trapped holes, however, a buildup of radiation induced

interface traps may occur, typically in the time regime between ~10-2 and 10-3 s, which is

indicated by the green curve in Fig 2.6. If the interface trap contribution is large, the

change in threshold voltage becomes positive, giving rise to what is called super recovery

or rebound [MA89].

 26

Fig 2.6 Summary of the transient response of an NMOS transistor’s threshold

voltage to a radiation pulse [OLDH99]

2.4 Consequences of radiation on the electrical parameters of a MOS
 Transistor

As the dose absorbed by a device increase, more electron-hole pairs are created and

becomes trapped in the silicon oxide or interface traps. The number of electron-hole pairs

is proportional to the amount of energy absorbed in the device, hence, the total damage is

roughly proportional to the dose absorbed by the device [OLDH99, MCLE99].

The number of deep hole traps in the bulk of a thermally grown silicon dioxide layer

given today’s techniques is usually fairly small. Most of the traps are located near the

Si/SiO2 interface, or near the gate electrode/SiO2 interface. The holes generated by

ionizing radiation in the bulk of an oxide layer will be swept under a positive gate bias

towards the SiO2/Si interface, and some fraction of them will be trapped, depending on

the hole trap density and capture cross-section.

 27

One of the major electrical consequences of the radiation induced charging of the silicon

oxide is a shift in the voltage operating points for the devices such as the threshold

voltage VT for MOSFETs. The threshold voltage can be written as

 () ()tVVtV TTT ∆+= 0
 (1)

where 0
TV is the threshold voltage before irradiation and ()tVT∆ is the change in the

threshold voltage due to radiation exposure and is time dependant [OLDH99].

Based on the discussion in section 2.3.1, the threshold voltage shift can be broken into

three components:

 () () () ()tVtVtVtV ITOTSTT ∆+∆+∆=∆ (2)

- ()tVST∆ is due to the generated mobile holes transporting in the oxide.

- ()tVOT∆ is due to the trapped holes near the oxide-silicon interface.

- ()tVIT∆ is due to the charged interface traps.

These components can be expressed explicitly as [OLDH99]:

 () ()dx
t

tx
C

qtV
oxt

oxox
ST ∫

−
=∆

0

,ρ
 (3)

 () ()tN
C

qtV OT
ox

OT ∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=∆ (4)

 28

 () ()
ox

IT
IT C

tQtV ∆−
=∆ (5)

q is the electronic charge,

tox is the oxide thickness,

Cox is the oxide capacitance per unit area (
ox

ox
ox t

C
ε

= where oxε is the dielectric constant

of the oxide).

()tx,ρ is the charge distribution in the oxide per unit volume as a function of the

distance from the gate oxide interface (x) and time.

The first observation from equation 3 is that the voltage shift due to this contribution is

negative when the charge is positive. This can easily be understood by considering for

example the p-channel transistor. The positive charge trapped in the oxide repels the

holes in the inversion channel. Hence, one needs to apply a more negative voltage to the

gate to create the same inversion condition. Another important consideration is that the

closer the charge distribution to the silicon-oxide interface, the bigger the threshold

voltage shift. For example, if we have a charge distribution close to the gate-oxide

interface with a constant density of A, for x < Z and zero for Z< x < tox, i.e.

 () Atx =,ρ for x < Z and (6)

 () 0, =txρ for Z < x < tox (7)

Thus, we have,

 ()
ox

ST
AZtV
ε
−

=∆ (8)

Suppose now we have a similar distribution in the oxide but this time close to the silicon-

oxide interface, i.e.

 29

 () 0, =txρ for 0< x < tox - Z (9)

 () Atx =,ρ for tox – Z < x < tox (10)

The voltage shift becomes,

 ())1(−
−

=∆
Z
tAZtV ox

ox
ST ε (11)

From equation 11, we have an additional multiplicative factor > 1 (since tox > Z) which

is not present in equation 8. Thus the change in threshold voltage shift is indeed larger for

the charge distribution closer to the silicon-oxide interface. This conclusion was also

mentioned earlier. (The positive charge buildup in PMOS devices is less severe than in

NMOS, because the charges get trapped at the gate oxide interface. Thus, the charge

buildup in PMOS devices is less effective in shifting the threshold voltage of the device

[SROU82]).

Trapped holes can be removed or neutralized by compensating electron trapping, either

by thermal annealing, or by tunneling of electrons from the silicon substrate or gate.

Complete thermal annealing often requires temperatures above 300°C. The temperature

for annealing depends on the distribution of energies inside the SiO2 band gap for the

trapped holes, as shallower trap levels emit charge at lower temperature [MA89]. The

tunneling annealing process is roughly linear with log(t) dependence, where t is the time

after irradiation. Tunneling probability decreases with distance. Because of this decrease

in probability due to distance, only defects within 4-5 nm from either interface are

neutralized due to tunneling. However, this also means that for very thin oxides (< 10

nm), significant neutralization of trapped holes could occur via tunneling in a relatively

short time interval.

 30

Field oxides used to isolate MOS devices, inclusive of isolation layers used in SOI

technology, all suffer the same type of changes described in the above sections. These

changes result in parasitic leakage currents that must be correctly taken into account

when a particular device or architecture radiation analysis is performed.

2.4.1 The time-dependant response of MOS structures

In this section we further try to aid in the understanding of the time-dependant response

of the MOS structure by means of Fig. 2.7.

Consider Fig 2.7 the pre-irradiation condition is depicted in part (a). The corresponding

C-V curve for this condition is depicted in Fig. 2.8 with t = 0-. At t = 0 (part (b) of Fig

2.7), the radiation pulse occurs causing electron/hole pairs across the oxide bulk. In a

time on the order of picoseconds (part (c) of Fig. 2.7), some of the electron hole pairs

recombine, while the highly mobile electrons gets swept toward the gate and collected

(part (d) of Fig 2.7), under the influence of the positive gate voltage applied. The

magnitude of the shift in the flatband voltage (()+∆ 0fbV) is maximum at this time. The

holes then begin their relatively slow transport toward the silicon-oxide interface, where a

fraction of them become trapped in long term trapping sites, while others gets collected

by the substrate electrode. This is illustrated in part (e) of Fig. 2.7. Because less positive

charge remains in the oxide, the C-V curve has annealed back partially. The final charge

configuration (at t = t2) after completion of the hole transport is depicted in part (f) of Fig

2.7.

 31

Metal

Oxide

Semiconductor

Metal

Oxide

Semiconductor

+ - + - + - + - + -
- + - + - + - + - +
+ - + - + - + - + -
- + - + - + - + - +

Metal

Oxide

Semiconductor

+ - + - +
- + - +

+ - + - +
- + - +

Metal

Oxide

Semiconductor

+ + +
 + +

+ + +
 + +

Metal

Oxide

Semiconductor

+ + +
+ + +

Metal

Oxide

Semiconductor
+ + + ++

(a) (b) (c)

(d) (e) (f)

t = 0- t = 0 t = 0+

t = 0+ t = t1 t = t2

(preirradiation) (ionizing burst) (after initial recombination)

(after electron transport) (hole transport in progress) (after hole transport)

+ V + V + V

+ V + V + V

Fig 2.7 Charge generation, recombination, transport and trapping [OLDH99]

Only the long term, trapped holes remain near the silicon-oxide interface, giving rise to a

long-term flatband voltage shift in the C-V characteristics.

The actual situation is more complicated, since there can be long term annealing of the

trapped holes near the silicon-oxide interface due to either electron tunneling from the Si

substrate or thermal injection from the traps [OLDH99].

Because of several processes that are involved in the radiation response of MOS oxides,

with each having different characteristic times, the overall time history of the recovery

can be very complex [MCLE89, OLDH99]. This has important implications for testing

procedures, hardness assurance, and prediction.

 32

Capacitance

Voltage

Accumulation

Flatband

Inversion

t = 0
+ t 1 t 2 0 -

Vfb

Fig 2.8 Radiation induced shift of the C-V curves for a MOS capacitor [OLDH99]

2.4.2 Increase in Transistor leakage current

Another major problem with CMOS circuits is latchup, where a low resistance path

between the power supply and ground is formed. These paths can be formed by parasitic

bipolar transistors which are built into the CMOS structure, one pnp and one npn, if the

gains of these transistors are large enough that they are driven into saturation.

In integrated circuits using MOS and CMOS technology, radiation damage results in

device malfunction. One of the most significant effects of radiation damage in MOS

structures is an increase in leakage current [WANG04].

The leakage current is current flowing through a transistor which should be biased off, or

current flowing between adjacent transistors. Low resistance paths which allow leakage

 33

currents can be formed by the increase in density of interface traps, or by shifts in a

transistor's threshold voltage caused by trapped oxide charges.

In linear CMOS devices, leakage currents impair the high input impedance which

MOSFETs usually have. In an MOS transistor which is normally biased off, the drain to

source leakage currents is less than 1 pA before irradiation, but increase to about 1 nA at

100 krad(Si), and hundreds of nanoamperes after 300 krad(Si) [MA89].

For complex integrated circuits, this can lead to significant increases in the power supply

current. In the studies of total dose effects on FPGAs, the first sign of damage noted

was an increase in power supply current due to the onset of leakage currents

[WANG04].

As the individual transistors making up a complicated CMOS integrated circuit such as a

microprocessor or FPGA are damaged by ionizing radiation, the characteristics of the

overall circuit will change. The damage to individual transistors and CMOS inverters can

result in such effects as increased power supply current (due to leakage currents or

transistors which should be off turning on), logic failures, latchup effects, or changes in

circuit timing. The response to radiation of an integrated circuit made up of thousands of

logic gates is, however, difficult to predict [WANG04].

 34

2.5 Single Event Effects

SEE are caused by ionization, as a consequence of the impact of a heavy ion (cosmic ray)

or proton. The ionization induces a current pulse in a p-n junction. SEE covers both SEU,

or ‘soft error’, and Single Event Latch-up (SEL).

2.5.1 Single Event Effects classifications

SEE covers [LABE96]:

• Single Event Upset (SEU), or ‘soft error’

• Single Event Latch-up (SEL)

• Single Event Burnout (SEB)

• Single Event Gate Rupture (SEGR)

• Single Event Snapback (SES)

2.5.1.1 Single Event Upset

The deposited charge is sufficient to flip the value of a digital signal. Single Event Upsets

normally refer to bit flips in memory circuits, but may also in some cases directly affect

digital signals in logic circuits. Fig 2.9 illustrates how an energetic particle can produce a

spurious electrical signal. The particle produces charges along its path, in the form of

electrons and holes. These are collected at the source and drain, and a current pulse

appears. This can be large enough to produce an effect like that of a normal signal

applied to the transistor.

 35

Source Drain
Gate

Field Oxide
Gate Oxide
- - - - - - - -

P-type silicon

n+ n+

Field
Oxide

Field
Oxide

++
++

++
++

- -
 -

- -
 -

- -
 -

Energetic Particle Strike

Fig 2.9 Energetic Particle strike in the MOS Transistor

2.5.1.2 Single Event Latch-up

Bulk CMOS technologies (not Silicon On Insulator) have parasitic bipolar transistors that

can be triggered by a locally deposited charge to generate a kind of short circuit between

the power supply and ground. CMOS processes are made to prevent this from occurring

under normal operating conditions, but a local charge deposition from a traversing

particle may potentially trigger this effect. Single event latch-up may be limited to a

small local region, or may propagate to affect large parts of the chip. The large currents

caused by this short circuit effect can permanently damage components if they are not

externally protected against the large short circuit current and the related power

dissipation.

2.5.1.3 Single Event Burnout

Single event burnout refers to destructive failures of power MOSFET transistors. This

destructive failure mechanism is normally associated with failures in the main switching

 36

transistors of switching mode power supplies. In SEB an ion that traverses the transistor

structure through the source can induce a current flow that turns on the parasitic npn

transistor below the source thereby initiating forward biased second breakdown. This

leads to device destruction if sufficient short-circuit energy is available.

2.5.1.4 Single Event Gate Rupture

In SEGD an ion that traverses the transistor through the gate, but avoids the p-regions,

can generate a plasma filament through the n-epi layer that applies the drain potential to

the gate oxide, damaging (increased gate leakage) or rupturing the gate oxide insulation

(device destruction).

2.5.1.5 Single Event Snapback

Single event snapback is similar to SEL, but without the PNPN structure. It is induced in

N-channel MOS transistors that switch large currents. The effect is that the transistor

drain junction is forced open and stays open.

Table 2.2 shows a resume of different Single Event Effects classified by device and by
sensitive areas [DENT00].

 37

Table 2.2 SEE categories by device and by sensitive areas

Device Type Sensitive Area SEU Types
Memories Memory cells

Control logic
Bit flips
Bit flips if sequential,
transient if combinational

Combinational Logic Combinational logic Transient
Sequential Logic Sequential Logic Bit flips
FPGA’s Combinational Logic

Sequential Logic

Transient if combinational
CLBs, bit flips if CLBs
based on LUTs.
Bit flips

Microprocessors Registers, caches,
sequential, control logic
Combinatorial logic

Bit flips

Transients

ADCs, DACs Analog Portion
Digital Portion

Transients
Bit flips or transient
depending of the design

Linear ICs Analog area Transients
Photodiodes Photodiode Transients

2.5.2 SEU effects

The most common circuit sensitive to SEU is the memory element. The memory cell is

designed so that it has two stable states, one that represents a stored '0' and one that

represents a stored '1.' In each state, two transistors are turned on and two are turned off

(SEU target drains). A bit-flip in the memory element occurs when an energetic particle

causes the state of the transistors in the circuit to reverse. This phenomenon occurs in

many microelectronic circuits including memory chips and microprocessors. In a

spaceborne computer, for example, a bit-flip could randomly change critical data,

randomly change the program, or confuse the processor to the point that it crashes.

The occurrence of the SEU in a CMOS latch or SRAM cell is illustrated in Fig 2.10.

When ion strikes at the reverse biased drain junction of the NMOSFET in the "off" state,

it causes the node voltage to drop from high to low. This transition propagates along the

feedback loop and tries to rewrite the state. In the mean time there is a recovery process

 38

that the "on" PMOSFET keeps pulling the struck node back to the original high state. The

competition between the feedback process and recover process governs the SEU response

[WANG04]. If the feedback process is longer, the node is recovered. If the recover

process is longer, the node changes state and an SEU occurred.

Vdd

"on" P channel

"off" N channel

feedback

Fig 2.10 Competition between the feedback process and Recover process governs the

SEU response of a latch (or SRAM cell)

 39

Charged particles can also induce transient current pulses in combinatorial logic, in

global clock lines, and in global control lines. These single event transients (SETs) have

only minor effects in present 0.8 to 0.7 micron technologies since the speed of these

circuits is insufficient to propagate a 100 to 200 ps SET over any appreciable distance

through the circuit. Fig 2.11 shows a typical sequential circuit topology. An upset in the

combinational logic can generate an error that is going to be stored in the flip-flop U2 if

the speed of the circuit is high enough to propagate the error before the clock change the

state of the flip-flop. If the speed is not high enough, the upset in the combinational logic

will disappear before the clock change the state of the flip-flop U2, for example.

D Q
D

Flip-
Flip

D Q
D

Flip-
FlipCombinatorial Logic

U1 U2

Fig 2.11 Typical sequential circuit topology

However, as smaller feature size and thus faster technologies are becoming strongly used

in spacecraft systems where transient pulses generated by charged particle hits can be

indistinguishable from normal circuit signals, an upset in the combinational logic can be

propagated fast to flip-flops input provoking errors in the circuit.

Consider Fig 2.12, if the ion-strike-induced transient pulse can propagate through the

network and result in an error in a storage element, an SEU occurs. This type of SEU is

often referred as combinational logic SEU, SET, or SET-induced SEU.

 40

Data In

Cosmic particle hit Transient pulse
passed one buffer

Fig 2.12 SET occurs when the ion induced pulse can propagate through the circuit

network [WANG04].

2.6 Displacement Damage

An incident particle or photon capable of imparting energy of about 20 eV to a silicon

atom can dislodge it from its lattice site [MA89, MESS92]. Displacement damage creates

defect clusters. For example, a 1 MeV neutron transfers about 60 to 70 keV to the Si

recoil atom, which in turn can displace roughly 1000 additional atoms in a region of

about 0.1 µm radius. Displacement damage manifests itself in two ways; the formation of

mid-gap states, and/or a change in doping characteristics. The formation of mid-gap

states facilitates the transition of electrons from the valence to the conduction band. In

depletion regions, this leads to an increase in the generation current of reverse-biased pn

diodes. In forward biased junctions, or non-depleted regions, mid-gap states facilitate

charge loss by recombination. States close to the band edges facilitate trapping, where

charge is captured and released after a certain time.

2.7 Approaches toward Radiation Hardened Integrated Circuits for TID

Commercial electronics can frequently survive 3-10 krad(Si) of total dose without

significant parametric degradation. The failure mechanism is typically field-oxide

inversion, resulting in increased leakage current. They can also remain functional

(although degraded) from 10-30 krad(Si), but they may suffer a high single-event upset

rate or possible latch-up when struck by heavy ions.

 41

There are three possible levels on which the radiation tolerance of a CMOS IC can be

improved [KERN88, ALEX96, HUGE03]. The first method would be to modify the

manufacturing process of the IC’s. For example, by reducing the oxide thickness in a

MOS transistor, the device becomes less susceptible to TID degradation, because fewer

charges can become trapped in the smaller oxide volume. However, with the shrinking

device volume, it becomes more susceptible to SEE, due to a smaller particle energy

being necessary to cause an upset.

Some fabrication processes used to harden integrated circuits (ICs) against total ionizing

dose are closely guarded secrets, protected either by government classification or

company proprietary restrictions. What can be examined, though, are some particulars

about the principal process factors affecting the total dose tolerance [NICK03].

The first step in hardening a CMOS IC against total dose radiation is to minimize voltage

shifts, or their impact in the circuit, due to radiation induced charge trapping in the gate

and field oxides. Two approaches can be used, either individually or in parallel: reducing

the number of holes trapped in dielectric layers, and compensating for the trapped holes

with trapped electrons.

The easiest way to minimize the trapped-hole density, as mentioned above, is to thin the

oxide [MA89]. A clean gate oxide less than 4-5 nm thick, which is typical of today’s

commercial integrated circuits, can usually survive up to 100 krad(Si) or more with no

process changes. On the other hand, where local oxidation of silicon is used, field oxides

must remain thick to meet isolation and planarity requirements.

Minimizing the trapped-hole density in them is much trickier and requires special

processing. Adding electron traps to offset hole traps is another method of countering

radiation effects on field or isolation oxide structures. The addition of electron traps

within the a-SiO2 structure is achieved through implantation or introduction of an

element. Hardness levels in excess of 300 krad(Si) can be achieved [MA89]. A specific

approach for radiation hardened ICs by manufacturing changes is outlined below.

 42

Use of ion implanted silicon-dioxide films: It is observed that radiation-induced

interface-trap buildup is suppressed using ion implanted SiO2. By using a large arsenic

ion dose, the interface-state buildup can be suppressed by one order of magnitude. It is

found that interface-state buildup depends on the ion dose, the gate bias during irradiation

and the annealing atmosphere [MA89].

After applying this technique to a conventional bipolar process, the current gain in lateral

pnp transistors degraded by only 10% after 10 Mrad(SiO2) irradiation. Radiation induced

trapped positive charges can be compensated by implanting aluminium. Aluminium in

SiO2 films acts as an electron trap, compensating for the positive trapped charges when

in the right concentrations. Si atoms can also be implanted into silicon dioxide films. The

Si changes the SiO2 stoichiometry to an SiOx stoichiometry, providing electron traps.

Process conditions must be controlled. Temperatures over 900_C cause Si to diffuse

rapidly. The diffusing Si tends to form nano-crystals, reducing its compensating

properties [NICK00].

The advancement in modern fabrication technologies and a need for faster and smaller

IC’s, have led to devices evolving to become immune to TID effects, though not

completely. There is not much that the system engineer can do as far as the fabrication

method is concerned, and to use radiation hard components would defeat the main

objective of keeping the satellite cost as low as possible. Therefore, although important,

we will not concentrate on this aspect.

The second method involves the use of special layout techniques, which solved the

problem of radiation induced leakage currents and SEL and reduce the vulnerability of

error due to SEU. A new radiation tolerant transistor structure can be obtained without

any process fabrication modifications [SAMI04]. The NMOS transistor and field leakage

normally induced by ionizing radiation can be remedied by acting on the work function

of the transistor gate at the transistor edges. The technique also works in a CMOS process

where transistor source and drains are silicided. This method decreases device density

 43

that can be achieved with the technology and slows down digital circuits due to an

increase in node capacitances. It was demonstrated that the functionality of the transistor

structure and its radiation tolerance was intact up to 40 Mrad(SiO2) [SAMI04].

The third method in which to make CMOS IC’s radiation tolerant is to use special circuit

architectures that are less sensitive than others to the changes in the device characteristics

due to radiation. Several methods can be employed to harden a circuit for TID induced

effects. Modeling the radiation-induced variation as a function of the total dose of several

transistor parameters, such as the trans-conductance and the threshold voltage, allows to

foresee the drift of the circuit operating point, and therefore one can design the circuit in

order to make it flexible enough to tolerate these drifts.

Using special circuit architectures is also an effective way to obtain SEU hardening

(design hardening) [MCCO99]. The basic idea is to provide memory elements with an

appropriate feedback devoted to restoring data when corrupted by an ion hit. Radiation

Hardened By Design (RHBD) methodology is described in [ALEX96].

Using radiation shields, typically of a tungsten/copper alloy, is another choice. They can

either be built into the package structure, or be attached to the top and bottom [MA89].

While they are effective in reducing the electron component of the total dose radiation,

they are much less effective in lessening the proton radiation.

Conceptually, the radiation induced oxide charge buildup problem is a simple principle. It

is only when one tries to quantify the details of the radiation response that one realizes

the complexities involved in the radiation response of the MOS transistor. For example,

the radiation response of a MOS transistor has a very complex time-dependant response

which is not only important to understand the physics of the response, but also for the

practical issues of testing, predicting and hardness assurance [OLD99].

 44

2.8 Radiation Effects in FPGA’s

A field-programmable gate array is a semiconductor device containing programmable

logic components and programmable interconnects. It is the densest and most advanved

programmable logic device. The FPGA allows a designer to implement large digital

designs with relative ease at any time and location.

There is increasing interest in the use of FPGAs for many space-based computing

operations. FPGAs are generally slower than their ASIC counterparts, can't handle as

complex a design, and draw more power. However, they have several advantages such as

a shorter time to market, ability to re-program in the field to correct errors, and lower

engineering costs. Since this is ideal for spacecraft applications, the space community has

actively evaluated radiation effects for most new FPGAs being introduced. While FPGAs

offer several benefits for space-based electronics, they are sensitive to TID as well as

SEE [WHIR03].

2.8.1 FPGA Architectures

FPGA’s typically consists of multiple copies of a basic programmable logic element (LE)

or logic blocks, Fig. 2.13. The logic element can implement a network of several logic

gates that can then feed into 1 or two flip-flops. Logic elements are arranged in a column

or matrix on the chip. To perform more complex operations, logic elements can be

connected to other logic elements on the chip using a programmable interconnection

network (Switching Architecture) [HAMB03].

A key aspect in the design of an FPGA is its switching architecture, which comprises the

resources that are used to interconnect the device’s logic blocks. There are three different

FPGA switch technologies, SRAM, Flash and Antifuse.

 45

IO Block

IO Block

I
O

B
l
o
c
k

I
O

B
l
o
c
k

Logic Block Routing SwitchWires

Fig 2.13 General FPGA Architecture

2.8.1.1 SRAM Based FPGA’s

SRAM-based FPGA’s are increasingly being utilized for satellite and deep space

applications [FABU00]. The advantages of these types of devices in these applications

are numerous and well known, including the ability to create standard multi-platform

application modules, the ability to re-configure the architecture on orbit or in space in

response to changing mission requirements, the ability to make last minute design

changes and the reduced time from design to flight.

A simplified version of the FPGA Logic Block is illustrated in Fig. 2.14.

 46

4-Input
LUT D Flip

Flop

OUTInputs

Clock

Fig 2.14 FPGA Logic Block

The Logic Block consists of a 4 input look-up table (LUT), a flip flop and a multiplexer.

There is one output which can either be the registered or unregistered depending on the

multiplexer output [BETZ05].

Each logic block input pin can connect to any one of the wiring segments in the channel

adjacent to it. Each logic block output pin can connect to any of the wiring segments in

the channels adjacent to it.

Similarly, an I/O block can connect to any one of the wiring segments in the channel

adjacent to it. For example, an I/O block at the top of the chip can connect to any of the

W wires (where W is the channel width) in the horizontal channel immediately below it.

The FPGA routing can be unsegmented or segmented. In unsegmented routing, each

wiring segment spans only one logic block before it terminates in a switch or routing box.

By turning on some of the programmable switches within a switch box, longer paths can

be constructed. In segmented routing, row and column channels spans the entire device.

Whenever a vertical and a horizontal channel intersect there is a switch or routing box. In

this architecture, when a wire enters a switch box, there are programmable switches that

allow it to connect to other wires in adjacent channel segments. The pattern, or topology,

of switches used in this architecture is the planar or domain-based switch box topology.

In this switch box topology, a wire in track number one connects only to wires in track

number one in adjacent channel segments, wires in track number 2 connect only to other

 47

wires in track number 2 and so on. The Fig. 2.15 illustrates the connections in a routing

box.

Wire Segment

Programmable Switch

Fig 2.15 Routing Switch Topology

An example of how SRAM cells could be used to implement the routing switch in this

type of FPGA is illustrated in Fig. 2.16. The SRAM cell controls a single NMOS pass-

transistor.

SRAM
cell

wire segmentwire segment

Fig. 2.16 SRAM Based Routing Switches using pass-transistors

The routing architecture above is not the routing architecture that is actually implemented

by SRAM-based FPGAs. As shown below Fig. 2.17, commercial SRAM-based FPGAs

normally place a buffer between routing tracks and the input pins to which they can

 48

connect to enhance speed. As well, to save area, the connection from routing wire

segment to input pin is made via a multiplexer, not via a set of independent pass

transistors. The select lines of the multiplexer are controlled by SRAM cells. It is possible

to connect a logic block output pin to multiple wire segments in commercial FPGAs.

Fig. 2.17 SRAM Based Routing Switches using multiplexers

 49

2.8.1.2 Antifuse Based FPGA’s

The other type of programmable switch used in FPGAs is the antifuse. Antifuses are

originally open-circuits and take on low resistance only when programmed. Antifuses are

suitable for FPGAs because they can be built using modified CMOS technology

[BROW97]. As an example, Actel’s antifuse structure, known as PLICE, is depicted in

Fig. 2.18. The figure shows that an antifuse is positioned between two interconnect wires

and physically consists of three sandwiched layers: the top and bottom layers are

conductors, and the middle layer is an insulator. When unprogrammed, the insulator

isolates the top and bottom layers, but when programmed the insulator changes to

become a low-resistance link. PLICE uses Poly-Si and n+ diffusion as conductors and

ONO as an insulator, but other antifuses rely on metal for conductors, with amorphous

silicon as the middle layer.

Antifuse

Wire

Oxide

dielectric

Poly-Si

Silicon substrate
n+ diffusion

Fig 2.18 The Actel Antifuse Structure

 50

2.8.1.3 Flash Based FPGA’s

This section gives a brief description of the structure and operation of the floating gate

switch as shown in Fig. 2.19 [WANG04]. The switch element consists of two floating

gate NMOS-transistors: A switch transistor turns on-or-off the data path, and a

program/sense transistor programs the floating gate voltage and senses the current during

threshold voltage measurement. These two transistors share the same control gate and the

same floating gate. The modulation of the threshold voltage enables turn-on/off of the

switch transistor. The threshold is determined by the charge stored in the floating gate.

Fowler-Nordheim tunneling through the thin gate oxide is the mechanism that modulates

the stored charge during programming and erasing. The floating gate switch is

“programmed” to a low threshold state to turn the switch on, and “erased” to a high

threshold state to turn it off. Fig. 2.20 shows the structure of the floating gate transistor. It

is an NMOS transistor with a stacked gate. Between the Si substrate and floating gate is

the tunnel oxide, and between the floating gate and control gate is the inter-poly oxide-

nitrideoxide (ONO) composite dielectric.

Control Gate
Floating Gate

Switch Transistor Program Transistor

Fig 2.19 Schematic of the physical structure of the floating gate switch [SAMI04]

 51

Source Drain

Tunnel Oxide

Control gate

Floating gate
ONO

Vcc

Fig. 2.20 Flash transistor

2.8.2 SEE Effects in FPGA

Single-event upsets in the FPGA affect the user design flip- flops, the FPGA

configuration bitstream, and any hidden FPGA registers, latches, or internal state.

Configuration bitstream upsets are especially important because such upsets affect both

the state and operation of the design. Configuration upsets may perturb the routing

resources and logic functions in a way that changes the operation of the circuit. The

effects of SEUs in the device configuration memory are not limited to modifications in

the memory elements, but they may also produce modifications in the interconnections

inside CLBs and among different CLBs, thus giving rise to totally different circuits from

those intended [BELL04].

Triple Module Redundancy (TMR) is often exploited for hardening digital logic against

SEUs in safety-critical applications. As an instance, TMR is often exploited to design

fault-tolerant memory elements to be employed in sequential digital logic. Unfortunately,

non radiation-hardened FPGAs present insufficient protection of memory elements in

both the mapped circuit, and the configuration memory. As a result, particles hitting the

configuration memory can change dramatically the logic functionally of the mapped

 52

circuit, as well as the circuit’s memory elements. Techniques are therefore required to

evaluate the impact of SEUs affecting FPGAs configuration memory, and to avoid

undesired changes of the circuit mapped on the FPGA [STER].

2.8.3 Impact of FPGA architecture on radiation response

The differences in the radiation response in different FPGA technologies originate in the

switches [WANG04]. The Antifuse FPGA routing switch is completely immune to TID

effects, and its sensitivity is only determined by its logic part. This is intuitive correct if

one considers that the Antifuse switch structure consists of an insulator isolating the top

and bottom layers, but when programmed the insulator changes to become a low-

resistance link. Therefore, when programmed the switch basically becomes metal or one

routing wire touching another routing wire.

The SRAM FPGA’s on the other hand consists of SRAM memory cells comprising the

configuration memory of the device. Therefore, compared to an Antifuse FPGA, its

sensitivity is increased because of the added effects on the SRAM switches. The TID

sensitivity of Flash Based FPGA’s will likely be determined by the floating gate switches

[WANG04, SNYD89].

The non-volatile antifuse and Flash switches are insensitive to SEE. The logic modules

thus determine the sensitivity of the device. SRAM-based FPGA has the biggest

disadvantage in that its switch is very sensitive to the SEU. For example, even in real

time operation, cosmic-neutron induced soft errors in the SRAM switches can be detected

at a typical ground location anywhere.

Hardwired SEU hardenings of non-volatile switch based FPGAs are economically viable

because only the logic modules need to be hardened. SRAM-based is difficult to be SEU

hardened by hardware solutions. So far, there is no solution without very expensive area

penalties. Some software mitigation techniques were proposed and used. However, due to

the complexity of the SEU effects on the SRAM-based FPGA, its understanding and

subsequent hardening are still open for research at this moment.

 53

Chapter 3

Switched Modular Redundancy

3.1 Introduction

The reader may have noticed in the previous chapter that the author highlighted sentences

where the electric field is mentioned. This was done deliberately, because the effect that

the gate bias or electric field across the MOS capacitor, has on the radiation response of

the MOS oxide, is a very import matter which will be considered more closely in this

chapter and forms the basis for the novel Total Ionizing Dose mitigation technique, called

Switched Modular Redundancy.

3.2 The Effect of Gate Bias on the MOS Radiation Response

This section forms the theoretical basis for the novel modular redundancy method. It is a

well known fact in the physics that a charged particle is accelerated in the presence of an

electric field. However, in a solid, electrons will move around randomly in the absence of

an applied electric field. Therefore if one averages the movement over time there will be

no overall motion of charge carriers in any particular direction. On applying an electric

field charge carriers will on average move in a direction aligned with the electric field,

with positive charge carriers such as holes moving in the direction of field, and negative

charge carriers moving in the opposite direction. In process 1 of Fig 2.4, if we apply a

zero bias to the gate terminal in the presence of ionizing radiation, both the free

electrons and holes will remain near their point of origin, and therefore have a

greater probability of recombination.

Further, since no electric field is present, the holes will not be transported toward the

silicon-oxide interface for a NMOS transistor and visa versa for the PMOS transistor

(process 2 of Fig. 2.4). Hence, the holes will remain near their point of origin. If the

 54

radiation field is removed without a gate bias being applied, the effect of the

radiation field on the response on the MOS oxide should be minimal.

Several studies have been done that considers the effect of the gate bias on the radiation

response of MOS oxides. The amount of threshold shift in MOS devices caused by

ionizing radiation is strongly dependant on the bias voltage applied to the gate both

during and after radiation. Further, it has been reported that the trapped positive charge

near the oxide-silicon interface anneal quickly when irradiated in an unbiased condition

[STAN85].

The research by [STAN85] showed that the effect of alternating bias on the radiation

response of MOS devices were a reduced amount of hole trapping and interface state

buildup in N-channel devices. In P-channel devices a reduced amount of hole trapping

were also evident.

[OKAB90] studied the effects of high frequency ac bias on the response of MOS devices

due to ionizing radiation. Radiation induced interface traps were annealed out during

irradiation and post-irradiation annealing when an ac bias was applied with a zero offset

voltage. Further, the recovery of 40 MHz biased devices agreed with that of 860 MHz

biased ones for the same number of alternating cycles of ac gate bias voltage. The authors

concluded that the high frequency ac bias was responsible and the total number of cycles

may be relevant for the annealing of radiation induced interface traps.

Very large annealing rates have been reported for the total dose damage in a commercial

microprocessor by [JOHN83]. The annealing rates had a complex dependence on bias

conditions and dose rate. It was reported that these effects can cause large errors in total

dose testing procedures.

The effect of bias switching on the growth and annealing of trapped holes and interface

states were investigated by [FREI87]. Radiation induced annealing of the trapped charges

 55

under zero bias has been observed. The work has confirmed the importance, as reported

by [STAN85], of radiation induced annealing.

Since the trapped positive charge near the oxide-silicon interface anneal quickly when

irradiated in an unbiased condition, it therefore follows that the threshold voltage shift in

MOS devices will be less severe for the gate terminal in an unbiased condition. Thus, for

devices which are subject to gate bias cycling, the maximum acceptable dose is higher

than if the irradiation bias were applied continuously.

By adding redundancy and applying a resting policy, one can significantly prolong

the useful life of MOS components in space. However, a significant buildup of

interface states continues during irradiation, even at zero bias [STAN85]. Therefore

caution should be applied.

3.3 The Switched Modular Redundancy Method

The fact that the rate of the threshold voltage shift in MOS devices is strongly dependant

on the bias voltage applied to the gate terminal is a very important phenomenon that can

be exploited, since we have direct control and access to the voltage applied to the gate

terminal.

If for example, two identical gates were under the influence of radiation and the gate

voltage is alternated between the two, then the two gates should be able to withstand

more total dose radiation than using only one gate. This redundancy could be used in a

circuit to mitigate for total ionizing dose.

The more a MOS transistor is in use (i.e. switched ON); the more positive charge will be

accumulated over time. This implies that gates that are longer in the ON state in a circuit

will degrade faster than their idle (OFF) counter parts. Hence “ON” gates will suffer first

and cause a circuit malfunction.

 56

Consider Fig. 3.1. When input A is 0, Transistor T1 is in the ON state and T2 in the OFF

state. Thus, in this situation, T1 is degrading in the influence of ionizing radiation, and T2

is annealing. This is illustrated in Table 3.1 with an X for degrading and √ for annealing.

Therefore, if we have a 50% duty cycle between the two transistors, the circuit should

last longer than any other duty cycle. In a real digital circuit, the 50% duty cycle will not

be the case. Hence, A might be 0 more often and the result is that T1 will degrade faster.

The only requirement for this circuit to malfunction is for one transistor to fail. A solution

to this problem would be to add redundancy with an identical module in parallel.

Vcc

OutputA

CMOS Inverter

T1

T2

Fig 3.1 CMOS Inverter Circuit

Table 3.1

A T1 T2

0 X √

1 √ X

 57

The redundant group consists of two identical components. While the one is in use, the

other components inputs are varied between logic 1 and 0. Hence, while the one

component is in use, the other component is given a time to anneal.

The same method can be applied similarly to the other fundamental logic gates. This is

illustrated in the following diagrams. Functionally, the circuit is still the same as the

original circuit, however, it is more radiation tolerant than the original.

A

B

Vcc
Vcc

Output

CMOS AND Gate

T1 T2

T3

T4

T5

T6

Fig 3.2 CMOS AND Gate Circuit

Table 3.2

A B T1 T2 T3 T4 T5 T6

0 0 X X √ √ X √

0 1 X √ X √ X √

1 0 √ X √ X X √

1 1 √ √ X X √ X

 58

A

B

Vcc

Output

CMOS NAND Gate

T1 T2

T3

T4

Fig 3.3 The CMOS NAND Gate Circuit

Table 3.3

A B T1 T2 T3 T4

0 0 X X √ √

0 1 X √ X √

1 0 √ X √ X

1 1 √ √ X X

 59

Vcc

Output

Vcc

A

B

CMOS OR Gate

T1

T2

T3 T4

T5

T6

Fig 3.4 The CMOS OR Gate Circuit

Table 3.4

A B T1 T2 T3 T4 T5 T6

0 0 X X √ √ X √

0 1 X √ X √ √ X

1 0 √ X √ X √ X

1 1 √ √ X X √ X

 60

Output

Vcc

A

B

CMOS NOR Gate

T1

T2

T3 T4

Fig 3.5 The CMOS NOR Gate Circuit

Table 3.5

A B T1 T2 T3 T4

0 0 X X √ √

0 1 X √ X √

1 0 √ X √ X

1 1 √ √ X X

 61

Vcc
Output

A

B

CMOS XOR Gate

T1
T2

T3
T4T5 T6

Fig 3.6 The CMOS XOR Gate Circuit

Table 3.6

A B T1 T2 T3 T4 T5 T6

0 0 X X X √ √ X

0 1 √ X X X √ X

1 0 X √ √ √ X √

1 1 √ √ √ X X √

 62

Output

A

B

CMOS XNOR Gate

T1
T2

T3
T4

Vcc

T5 T6

Fig 3.7 The CMOS XNOR Gate Circuit

Table 3.7

A B T1 T2 T3 T4 T5 T6

0 0 X √ √ √ √ X

0 1 √ √ √ X √ X

1 0 X X X √ X √

1 1 √ X X X X √

The results from the tables clearly show that in order for the transistors to anneal in each

gate, the inputs have to be varied between logic 0 and 1. Hence, both inputs has to be

logic 0, thereafter both inputs has to be logic 1.

This concept is best explained by means of an example. Consider Fig 3.2 together with

Table 3.2. When both inputs to the circuit is logic 0; T1, T2 and T5 are degrading while

T3, T4 and T6 are annealing in the presence of ionizing radiation. When both inputs are

logic 1; T1, T2 and T5 are degrading, while T3, T4 and T6 are annealing. However, the

time for the transistors to anneal is much shorter than the time it takes to degrade

[STAN85, DRES86, SCHW83]. The net results being that the transistors would be able

to withstand more total dose radiation.

 63

3.4 Applying the SMR Principle in FPGA’s

As mentioned above, the SMR methodology would be to duplicate each gate in a circuit,

then selectively only activating one gate at a time allowing the other to anneal during its

off cycle. The SMR algorithm is coded in the “C” language and the code is provided in

Appendix D as well as on the accompanying CD.

In the proposed design methodology, the design engineer need not be concerned about

radiation effects when describing the hardware implementation in a hardware description

language. Instead, the design engineer makes use of conventional design techniques.

When the design is complete, it is synthesized to obtain the gate level netlist in edif

format. The edif netlist is converted to structural VHDL code during synthesis. The

structural VHDL netlist is fed into the SMR “C” algorithm to obtain the identical

redundant circuit components. The resultant file is also a structural VHDL netlist.

The generated VHDL netlist or SMR circuit is then mapped to the FPGA. However, the

SMR algorithm as explained will not provide TID tolerance for an FPGA

implementation as the internal structure of the FPGA is much more complicated. For one,

the design engineer has no access to individual gates in an FPGA, and in fact, there are

no fundamental gates in FPGA’s. The FPGA consists of logic blocks that are configured

to implement a function that represents a fundamental gate. Consider Fig 3.8 which is a

representation of the internal architecture of the SRAM FPGA. It consists of the routing

the routing matrix, LUT, Flip Flops and output buffers as discussed in the previous

chapter.

 64

4-Input
LUT D Flip

Flop

Routing
Matrix

4-Input
LUT D Flip

Flop

Routing
Matrix

Fig 3.8 Internal architecture of the SRAM FPGA

FPGA devices contain dense arrays of memory cells with a large amount of memory state

within a relatively small amount of circuit area. Much like SRAM and DRAM, SRAM-

based FPGAs contain large amounts of memory cells within a device and are especially

sensitive to radiation. As an example, the Virtex V1000 FPGA contains almost six-

million bits of internal state. As suggested in Table 3.8, this relatively large amount of

internal state is used for several important purposes.

 65

Table 3.8

Memory Type No. of Bits FPGA %

Configuration 5 810 048

97.4 %

Block RAM 131 072

2.2 %

User Flip-Flops 26 112

0.4 %

Total 5 967 232

100 %

User Flip-Flops: An important architectural component of all FPGAs are user

programmable flip-flops. User designs exploit these flip-flops to implement common

sequential logic circuits such as state machines, counters, and registers. User flip-flops in

most digital technologies are susceptible to ionizing radiation because the flip-flops are

configured with SRAM bits.

User Memory: Modern FPGAs provide blocks of internal memory larger than the typical

look-up table. This block memory is used for traditional random access memory

functions such as data storage, buffering, FIFO, etc. For example, the Virtex family

includes a set of internal dual-ported BlockRAM memories that each provide 4096-bits of

randomly accessible memory. With 32 BlockRAM memories, the Virtex V1000 FPGA

offers 131,072 bits of internal memory. Dense static memory such as the BlockRAM is

especially susceptible to ionizing radiation.

Configuration Memory: As shown in Table 3.8, 97% of the known memory cells within

the Virtex V1000 device are devoted to configuration memory. These memory cells

define the operation of the configurable logic blocks, routing resources, input/output

blocks, and other programmable FPGA resources. Like other static memory cells,

configuration memory is susceptible to ionizing radiation. Errors within the configuration

memory are especially troublesome as they may change the operation of the circuit. Any

spacecraft that utilizes SRAM-based FPGAs must anticipate and mitigate against

radiation degradation within the device configuration memory.

 66

4-Input
LUT D Flip

Flop

Routing
Matrix

4-Input
LUT D Flip

Flop

Routing
Matrix

1011001101
1001001001
1000101010
0011010100
1001010001

1011001101
1001001001
1000101010
0011010100
1001010001

101010
010101
101001

101010
010101
101001

0101
0101
1100

0101
0101
1100

1
0

1
1

Fig 3.9 Comparative use of SRAM bits in the internal structure of the SRAM

FPGA.

Fig 3.9 illustrates the importance and comparative use of SRAM bits in the internal

structure of the SRAM FPGA.

As previously mentioned, the SMR algorithm as explained in section 3.3 will not

provide TID tolerance for an FPGA. Even if we provided redundancy in the logic part

of the FPGA, we still would have a configuration memory that is constant for a particular

FPGA implementation. For the SRAM based FPGA as well as the Flash-based FPGA,

switched redundancy has to be provided in its configuration memory.

When the SRAM and Flash based FPGA is configured, the configuration memory

determines the logic functionality of the FPGA. Hence, for a particular SRAM or Flash

 67

based FPGA implementation, the configuration memory is constant. Therefore, if we

apply the SMR algorithm to an SRAM or Flash based FPGA implementation, we not

only duplicate the logic part of the FPGA, but as a consequence, we also duplicate the

configuration memory.

The configuration memory controls the functionality of the FPGA, and depending on the

FPGA architecture, consists of either SRAM or Flash memory cells. However, even if we

provided cycled redundancy in the logic part of the SRAM or Flash based FPGA, we still

have a constant and static configuration memory that degrades under the influence if

ionizing radiation. Thus, for the SRAM or Flash based FPGA, in order to mitigate for

TID effects, we also have to provide the cycled redundancy to the configuration memory

of the FPGA.

This reduces the problem of TID mitigation for the SRAM and Flash based FPGA to that

of reconfigurable computing. This concept can be best explained by means of a diagram.

Consider Fig 3.10, which illustrates a simplified depiction of the interconnection between

the configuration memory, and the logic part of the FPGA.

If we apply the SMR algorithm to this system, the configuration memory will also be

duplicated. Thus, for the SRAM FPGA, we can reset one SRAM cell in the redundant

group, while the original circuit is still configured with the other SRAM cell. This

basically amounts to in-circuit reconfiguration.

FPGA’s can be partially reconfigured to implement Dynamically loadable Hardware

Plugin (DHP) modules. A tool called PARBIT has been developed that transforms FPGA

configuration bitfiles to enable DHP modules. With this tool it is possible to define a

partial reconfigurable area inside the FPGA and download it into a specified region of the

FPGA device [EDSO01]. Thus, the above theory can be physically implemented in

FPGA’s.

 68

1

1
0 0

0
0

0
0

1

1
11

1

0
0

0

0 1
1 1 1 1

0

FPGA Logic Part
Configuration

Memory

1

IO Block

IO Block

I
O

B
l
o
c
k

I
O

B
l
o
c
k

Logic Block Routing SwitchWires

Fig 3.10 Configuration memory and Logic interconnection

Another, and much simpler, way of solving this problem would be to provide no

redundancy at all. We can simply load the same circuit into a different part of the

configuration memory dynamically, as depicted in Fig 3.11. After some time, the circuit

will be reconfigured as in Fig 3.10, and then back to that in Fig 3.11, and so on.

Thus, we define a partial reconfigurable area inside the FPGA and download it into a

specified region of the FPGA device. In essence, configuration memory swapping is

provided between the duplicated memory cells while the FPGA circuit is in operation.

 69

1

1
0 0

0
0

0
0

1

1
11

1

0
0

0

0 1
1 1 1 1

0

FPGA Logic Part
Configuration

Memory

1

IO Block

IO Block

I
O

B
l
o
c
k

I
O

B
l
o
c
k

Logic Block Routing SwitchWires

Fig 3.11 Configuration memory swapping

 70

Chapter 4

Experimental Setup and Methodology
4.1 Introduction

The response of MOS devices to radiation is very variable and it is thus impossible at

present to use theory alone to predict the device response [HOLM02]. Therefore, testing

integrated circuits in a severe radiation environment in advance to their use in operational

systems is very important and it will help to reduce the probability of failures in future

space applications.

The sensitivity evaluation of a circuit with respect to radiation can be done by:

• the analysis of flight data issued from spacecraft operating in the actual

environment, i.e. space projects.

• ground testing,

• fault injection.

Fault injection is normally used to perform SEU testing on electronic circuits, while

actual ground tests are performed in order to test the ionizing dose performance of

electronic circuits. In this chapter we describe the experimental setup for the ground

testing as well as the radiation facility.

4.2 Radiation Source and Facility

The source most often used for ionizing radiation testing and the source used in this study

is Co-60, which emits gamma rays (photons) of energy 1.173 and 1.332 MeV. Co-60 is

used for industrial irradiations, sterilization, radiotherapy and biological research. The

radiation testing for this study was performed utilizing the Co-60 source at the

Agriculture Research Council (ARC) in Stellenbosch, Western Cape, South Africa and

was readily available.

 71

Ionization due to gamma rays provides useful simulation of the ionization due to the

radiation environment of space [HOLM02]. In the radiator facility at the ARC, a cylinder

of Co-60 is suspended underground in the radiation room. A diagram of the radiation

facility is given in Fig 4.1.

The device under test (DUT) is arranged on a moving tray and is placed near the Co-60

source and their response to the radiation can be monitored continuously by means of the

extension wires leading out of the radiation room.

The source at the ARC facility has a radiation dose rate of 2.5 krad/hour (0.7 rad/s) at a

distance of 1.3m. Depending on the distance from the source, the radiation dose can be

varied, however, testing was performed at a dose rate of 2.5 krad/hour. The dose rate

used is considerably larger than that found in space applications, and it can easily be

argued that the evolution of the power consumption increase and consequent failure

would not at all be the same in a real environment. However, that the radiation response

of the CMOS transistor depends on the dose rate is a common misconception. What is

true is that the response is time dependent. For example, if one irradiates two samples to

100 krad, one at 10 krad/min for 10 minutes, and the other at 5 krad/min for 20 minutes,

then the response at the end of the exposure will probably be different, because damage is

annealing during the exposure. If one measures a time dependent quantity at 10 minutes

and also at 20 minutes, there is no reason to expect the results to be the same. But for

CMOS, if you measure both samples at the same time (20 minutes), the results will be

exactly the same, even though the dose rate was different. This was first identified by

Derbenwick as an apparent dose rate effect (as opposed to a true dose rate effect) in 1977

[DERB77]. Since then, numerous others have reached the same conclusion. The most

elegant experimental demonstration of this idea was by Fleetwood et al. [FLEE88]. They

varied exposure rate by 11 orders of magnitude, and annealing time by up to nine orders

of magnitude, and found no true dose rate effects. That is, there were no dose rate effects

if different annealing times were properly accounted for.

 72

A very recent experimental verification is provided in [SCHW07] where the authors

investigated dose rate effects in CMOS ICs at dose rates from 0.2 to 2 x 109 rad/s.

Radiation-induced degradation of CMOSIIIA 16KSRAMs was dominated by radiation

induced charge buildup in gate oxide transistors for dose rates of 100 rad/s and lower. For

these devices, laboratory irradiations can be used to estimate device radiation-induced

degradation at lower dose rates (e.g., space), because the same mechanism led to

radiation-induced degradation.

 73

Security Doors

1m thick concrete walls

Co-60 source

device under test

extension cables

C

video camera

cable ducts

monitoring pc

Fig 4.1 Radiation Facility Layout

 74

Fig 4.2 Radiation facility entrance

Fig 4.2 shows the entrance to the radiation facility at the ARC. Past the entrance security

door in the passage, various monitoring equipment can be seen, as well as the cable ducts.

The security camera provides a visual of the radiation room on a monitor. Our monitoring

PC connected to the extension cables can also be seen.

 75

Fig 4.3 Inside the radiation room

Fig 4.3 shows the inside of the radiation room. The Co-60 source is suspended

underground via a steel rod in the middle of the room. The DUT is located on a movable

trolley in front of the Co-60 source, as indicated in the diagram. The distance from the

source determines the radiation dose rate. In our case, the DUT is at a distance of 1.3m

which translates into a radiation dose rate of 2.5 krad per hour. Also indicated in Fig 4.3

are the extension cables which link the internal monitoring equipment with the PC

outside in the passage via the cable ducts.

Two layers of solid lead bricks of 5cm thickness is located between the back of the

trolley and the front plane where the DUT’s are suspended. The purpose of the lead

bricks is to protect the internal monitoring equipment from radiation damage.

 76

Fig 4.4 Devices under test suspended on the movable trolley

Fig 4.5 Two PC’s and power supplies are located outside the radiation facility

 77

4.3 Test Methodology

The test methodology depends on the DUT type. For example, the methodology used for

memories consists mainly in to write a data pattern, to wait a loop read out and to

compare to expected values. The methodology for processors is more complex. The test

can be [BRY98]:

• Dynamic - actively exercise a DUT during beam exposure while counting errors,

generally by comparing DUT output with a reference device or other expected

output. Devices may have several dynamic test modes, such as Read/Write or

Program-Only, depending on their function. Clock speeds may also affect

radiation test results.

• Static - load device prior to beam irradiation, then retrieve data post-run, counting

errors. In this case there is the worst case estimation of the error rate.

• Biased (SEL only) - DUT is biased and clocked while ICC (power consumption) is

monitored for latch-up or other destructive conditions.

Electronic test equipment for controlling and observing the DUT behavior during its

exposition to radiation must be built according to the system and the radiation facility.

Total Ionizing Dose Performance was examined at a dose rate of 0.7 rads (Si)/sec (2.5

kRad/hour). Testing included in-situ monitoring of key parameters such as Icc, as well as

full functional test pre- and post-dose. In addition, at various cumulative dose steps,

devices were tested for full functional circuit behavior using the specific vendor’s

comprehensive test programs. Devices were also reconfigured at various dose steps in

order to implement the SMR algorithm, as explained in the previous chapter. Variation in

the performance of the devices with total absorbed dose is presented in the following

chapter, together with the enhanced performance obtained by the SMR method. An

illustration of the test setup is shown in Fig 4.6 and Fig 4.7.

The FPGA’s are connected to the PC via current sensors, a 12-bit Analogue to Digital

 78

Converter and a microprocessor. A software program runs on the PC that monitors and

logs the FPGA power supply currents every 2s. The interface between the FPGA IO

blocks and the PC was a FPGA based processor (Actel ProASIC Plus APA075PQ208).

The purpose of the microprocessor was to monitor and log the FPGA IO’s logic values

every 2s. The expected values of the IO ports are stored on the processor and compared

to the FPGA IO logic values, if correct a 0 is sent to the PC, if incorrect (i.e. an error), a 1

is sent to the PC.

FPGA 1 FPGA 2 FPGA 3

12-bit ADCPC

IO and
Core

IIO and
Core

I IO and
Core

I

Microprocessor

IO monitor IO monitor IO monitor

Serial

Serial

SPISPISPI

Current
Sensors

Fig. 4.6 FPGA TID Test setup

 79

Current
Sensors

Analogue to
Digital

Converter

Processors to
monitor FPGA

IO's

JTAG Interface
cables

FPGA Power
supply cables

used to
monitor Icc via

current
sensors

Fig 4.7 Monitoring devices at the back of the radiation trolley

In-circuit reconfiguration and JTAG monitoring is provided by means of the Serial Port

Interface (SPI). During irradiation testing, the FPGA’s were reconfigured; successful

reconfiguration is an indication that the configuration memory of the FPGA is still

functional. Separate design files were compiled with the Altera Quartus VHDL design

software, with each design file representing a different part of the configuration memory.

During reconfiguration, a different design file was loaded into memory. For example,

design file 1 would be loaded, after some accumulated dose design file 2 would be

loaded, then design file 1 again and so on. No extra functionality is needed; the new

design is simply downloaded to the FPGA by means of the SPI.

The following table gives a summary of the parameters that were tested during the TID

 80

tests of the FPGA’s. However, the Power supply current (ICC) is the most important

parameter for monitoring TID effects [WANG04].

Slight annealing at room temperature was observed over night for each test, as the

radiation facility was shut down. These anneals resulted in degraded devices returning to

a slightly improved performance.

Table 4.1
 Parameter Logic

Function
1 ICC FPGA Power

Supply
2 Configuration Configuration

Memory
3 IO Ports FPGA

functionality

The devices were tested with a voltage regulator (LM7805) on board and without the

regulator. It was thought that the regulator’s TID tolerance exceeds that of the FPGA and

therefore the FPGA could be tested with the regulator on board. However, no difference

in the FPGA radiation response was observed with or without the regulator on the PCB

board.

4.4 Devices Tested:

SRAM-based FPGA: 10K10TC144-4 CMOS based from Altera with 10,000 to 250,000

typical gates.

Operating voltage: 5V

Configuration: In-circuit reconfigurability (ICR) via a SPI.

Gate Oxide: SiO2

The FPGA devices were configured with a ring counter code circuit that will be used to

configure the device. The circuit is a synchronous digital logic design clocked at 25 MHz.

The circuit occupied 8% of the logic elements in the EPF10K10TC144-4 FPGA. The ring

counter code is given in appendix B.

 81

4.4.1 Altera Flex10K Architecture

The flexible logic element matrix (FLEX), is a FPGA device with 10 000 gates. The Flex

device is configured by loading internal static random access memory (SRAM), and thus

looses its configuration memory whenever power to the device is lost [ALTE03]. Thus is

a real system, an external low cost serial programmable read only memory (PROM) is

normally used to automatically load programming information when the device powers

up.

Fig 4.8 Flex 10K Logic Element [ALTE03]

Consider Fig 4.8 which shows the Flex 10K logic element (LE). A logic gate is

implemented by making use of LUT’s. The LUT is a high speed 16x1 SRAM. Four

inputs are used to access the LUT’s memory. The truth table for the gate can be loaded in

the LUT’s SRAM during configuration. A single LUT can thus model any network of

gates with 4 inputs and 1 output.

 82

More complex gate networks require interconnections with additional neighboring logic

elements. The LUT output is fed into a D flip-flop and then to the interconnection

network. The clock, Clear and Preset can be driven by the internal logic or an external Io

pin. Carry and Cascade chains connect to all LE’s in the same row.

Fig 4.9 shows the logic array block (LAB). A LAB is composed of 8 LE’s. Both

programmable local LAB and chip-wide row and column interconnects are available.

Carry chains are provided to support faster addition operations.

Fig 4.9 Flex 10K logic array block [ALTE03]

 83

Fig 4.10 shows the flex 10K device architecture. A matrix of LAB’s and embedded array

blocks (EAB) are connected via programmable row and column interconnects. The flex

10K device contains 72 LAB’s and 3 EAB’s.

Fig. 4.10 Flex 10K architecture

An EAB contains 2048 bits of memory. Each EAB can be configured as 256x8, 512x4,

1024x2, or 2048x1 SRAM. In some cases, EAB’s can be used to implement gate level

logic. As an example, a 4x4 multiplier can be implemented by storing the multiply truth

table in a single EAB.

Input-output elements (IOE) are located at each of the devices IO pins. IOE’s contain a

programmable tri-state driver and an optional 1-bit flip-flop register. Each IO pin can be

programmed as input, output, output with a tri-state driver, or even tri-state bi-directional

with or without a register.

 84

4.4.2 Altera Max Plus II Floorplan Editor

The CAD tool used to program the FPGA was the Altera Max Plus II software with the

code written in VHDL as previously stated. A very useful feature of the Max Plus II

CAD tool is the Floorplan editor.

The floorplan editor is a visual tool to assist expert users in manually placing and moving

portions of logic circuits to different logic cells inside the FPGA. This is normally done

in an attempt to achieve faster timing or better utilization of the FPGA. Floorplanning is

typically used only on very large designs that contain subsections of hardware with

critical high-speed timing [KLUW01].

For non-expert users, use of the Max Plus II compiler’s automatic place and route tools is

normally used. Automatic place and route is performed during the compile process.

The floorplan editor was used to implement the SMR algorithm as stated in chapter 3.

We load the circuit into a different part of the configuration memory dynamically by

making use of the floorplan editor.

Fig 4.11 shows a diagram of the floorplan editor. Different versions of the Max Plus II

software may place the logic at different locations within the chip. One implementation

of the OR-gate design is shown in Fig 4.11.

There is a lot of empty space in the floorplan of Fig 4.11 since the Flex 10K10 can

contain up to 10 000 logic gates. Pins and logic cells used in the design are color coded.

If you move the logic cell to another location, it will make small changes to the circuit

timing because of changes in the interconnect delays inside the FPGA.

 85

Fig 4.11 Floorplan layout with internal FPGA placement of OR-gate logic cell and

IO pins

 86

4.5 Radiation testing PCB boards

The PCB board’s that was designed and manufactured for the purpose of radiation testing

of the FPGA’s is shown in Figures 4.12 and 4.13. These boards were designed for the

TID testing of the Altera SRAM FPGA. The schematics can be found in appendix A.

Core Power
supply

JTAG
Interface

Flex10K10
FPGA

Oscillator IO Power
supply

IO header interface

Fig. 4.12 FPGA PCB test board with IO and Core power supply separated

 87

FPGA Power supply JTAG Interface Oscillator Oscillator select
jumper

IO interface

Fig. 4.13 FPGA PCB test board with clock signal select jumper

 88

Chapter 5

Experimental Results

5.1 Testing the Resting Policy on the effects of the FPGA radiation response

In order to test the resting policy on SRAM FPGA’s, the following setup was used. In the

first instance, the FPGA was tested using normal operation and running a ring counter

code (Case 1 in Fig. 5.1), while in the second case the FPGA was tested, also running the

same code, however the power to the FPGA’s were cycled (Case 2 in Fig. 5.1). The idea,

as described in chapter 3, would be that the FPGA components would not degrade under

the influence of ionizing radiation during its off cycle and therefore increasing its

lifetime. Fig. 5.1 shows a comparison between normal FPGA operation (Case 1) and

FPGA power cycling (Case 2). The dose rate as previously stated was 0.7 rads (Si)/sec, or

about 2.5 krad/h. The floor plan for the ring counter code as placed in the FPGA is shown

in Fig 5.3. Whenever power to the FPGA was restored, the same floorplan was loaded

into the FPGA.

The FPGA’s in case 1 of Fig. 5.1 started consuming more power supply current at about

15 krad and gradually increased in power supply current. Intermittent IO errors started

occurring at 18 kRad (Fig 5.2) until about 22 kRad when functional failure occurred, at

which point current monitoring was stopped for case 1 of Fig. 5.1. The FPGA’s in case 2

of Fig. 5.1 also started consuming more power supply current, however at a slower rate as

case 1. In this case, when the current drops to zero, power to the FPGA is switched off.

Spacing of the power cycling dips towards the end of the test was different to the spacing

before about 21krad. The reasons for this is that after 21krad, the slope of the curve

increases dramatically with increasing absorbed dose, thus, power to the FPGA’s has to

be cycled faster to prevent functional failure.

 89

For case 2, the FPGA’s were still functionally intact after 30 krad when the testing was

stopped. This result shows that one can make use of system or device redundancy to

increase the lifetime of SRAM FPGA’s in space. However, in order to increase the

FPGA’s lifetime without making use of redundancy at the system level, one would have

to provide redundancy internally by means of the SMR algorithm. Further testing was

performed with the Altera FPGA, with the conditions as shown in Fig. 5.4.

50

100

150

200

250

300

350

400

C
or

e
cu

rr
en

t (
m

A
)

50

100

150

200

250

300

350

400

Functional Failure

Fig. 5.1 Comparison between normal FPGA operation (Case 1) and FPGA power

cycling (Case 2) for the Altera EPF10K10TC144-4 SRAM based FPGA

 90

1

Fig. 5.2 FPGA IO errors for Fig 5.1, case 1.

 91

Fig 5.3 Floorplan for Fig 5.1, case 1 and case 2

 92

5.2 Testing the effect of the clock and configuration memory on the FPGA
radiation response

For the FPGA configured, but not clocked (case 2, Fig 5.4), the TID response is the same

as with the normal operation (Case 1). Thus for case 2 of Fig. 5.4, the configuration

memory is constant, but the switching matrix is not clocked. The zero clocking appears to

have no effect. Thus, one could infer that the configuration memory plays an important

role in the radiation response of the SRAM FPGA. This is because, although the FPGA is

not clocked, the configuration memory is still constant, and degrades under the influence

of ionizing radiation, as stated in chapter 3. The floorplan for the configured FPGA is the

same as in the previous section.

In case 3 of Fig 5.4, the FPGA is configured, and then tested in a radiation field as in case

1. However, after 2.5 krad, the configuration memory is reset, without switching off the

FPGA power. For this case, the TID tolerance is much better than normal operation (Case

1). In fact, it is similar to when power was completely reset as in Fig. 5.1.

This result agrees with the theoretical analysis of chapter 3. Since when the FPGA

configuration memory is reset, its SRAM cells (or transistors) are reset and thus does not

degrade in the presence of ionizing radiation. This is a very favorable result, because by

building redundancy into the configuration memory (i.e. internally to the FPGA), one

could significantly increase the lifetime of the SRAM FPGA in a radiation environment.

Spacing of the reconfiguration cycling dips towards the end of the test was different to

the spacing at the beginning. The reasons for this is that toward the end of the test, as

previously observed with the power cycling case where the slope of the curve increases

dramatically with increasing absorbed dose, the power to the FPGA’s has to be cycled

faster to prevent functional failure.

 93

50

100

150

200

250

300

350

400

Case 1

Case 2

Case 3

C
or

e
C

ur
re

nt
 (m

A
)

Functional Failure

Fig. 5.4 Case 1: Normal operation as in case 1 above. Case 2: The FPGA is

configured, but the clock signal is removed. Hence, no switching takes place in the

switch matrix. Case 3: Normal operation, however the configuration memory were

reset every 2.5 krad, and then reprogrammed again after a further approx 2.5 krad.

For the time that the configuration memory is cleared, the power to the FPGA is

still on.

 94

5.3 Testing the SMR Algorithm by means of reconfigurable FPGA
computing

Consider Fig. 5.5, after the FLEX 10K device has been configured, it was reconfigured

in-circuit by loading to a different part of the configuration memory as described in

chapter 4. However, the same IO ports were used during each reconfiguration. Hence,

only the internal FPGA core is different for each reconfiguration. This is represented by

case 2 and 3. The floorplan for case 1 of Fig 5.5 is the same as indicated in Fig 5.3.

However, the floorplan for case 2 and 3 is given in Fig 5.6. As can be seen, the internal

core is different to that in Fig 5.3, however the same IO ports are used.

Reconfiguration requires less than 320 ms during system operation. The FPGA with

normal operation (case 1) failed functionally at about 20 krad, at which point current

monitoring was stopped, whereas the reconfigured FPGA’s failed functionally at about

33 krad. With the FPGA reconfiguration a 65% increase in functional lifetime is

observed.

In case 4 of Fig 5.5, the FPGA was reconfigured with both a different part of the

configuration memory as well as different IO ports. Hence, a different internal core was

used during each reconfiguration, as well as different IO ports. The floorplan for this

scenario is shown in Fig 5.7.

There seems to be an improved performance in case 4 compared to cases 2 and 3.

However, with increasing absorbed dose, case 4’s current soon increases and the FPGA

failed functionally at 34 krad. The above results indicate that FPGA internal core

redundancy provided TID mitigation, however, by provided IO port redundancy does not

further add to the functional lifetime of the FPGA.

 95

50

100

150

200

250

300

350

400

Case 1

Case 2

Case 3

Case 4

C
or

e
C

ur
re

nt
 (m

A
)

Functional Failure

Fig. 5.5 Case 1: Normal Operation. Case 2, 3: Configuration memory is reset every

half hour to a different part of the configuration memory. Case 4: Configuration

memory is set to a different internal core as well as different IO ports.

 96

Fig 5.6 Floorplan for Fig 5.5, case 2 and 3

 97

Fig 5.7 Floorplan for Fig 5.5, case 4.

 98

Further, if one looks at Fig 5.8, which shows the IO current of the FPGA versus the

absorbed dose, the IO current does not increase for an increase in absorbed radiation dose

for the entire measurement period.

This does not mean that the IO ports are immune against TID, however, the results does

suggest that the IO ports have a higher tolerance to the radiation than the FPGA core for

the measured absorbed dose. One can thus safely say that the FPGA core is the first and

main source of the FPGA power supply current increase.

Thus one can make use of the same IO ports for each reconfiguration and thus do not

have to make changes to the PCB board.

50

100

10

20

30

40

60

70

80

90

Fig 5.8 IO power supply TID Response

 99

Chapter 6

Conclusions and Recommendations
6.1 Conclusions

For many years, the space radiation community has studied and evaluated radiation hard

technologies suitable for space applications. During that time, vendors of radiation

hardened technologies have faced a considerable reduction, and the space community has

focused its interest more on the use of Commercial-Off-The-Shelf (COTS) components

rather than the highly expensive and less advanced Radiation hard components that they

traditionally used in the past.

As a consequence of this evolution several semiconductor companies have abandoned the

radiation hard electronics market, and now only a very few companies in the world offer

radiation-hard technologies. In view of this market trend, and as an answer to the

requirement of space applications that requires high performance devices with low

power, low cost, high flexibility and time to market as well as the radiation tolerance, we

have investigated an alternative approach based on radiation tolerant design techniques in

CMOS FPGA COTS technology.

The main contribution of this dissertation was the development of the novel Switched

Modular Redundancy (SMR) method for mitigating the effects of space radiation on

satellite electronics. It was proposed in this dissertation that if we apply a zero bias to the

gate terminal of a MOS transistor in the presence of ionizing radiation, i.e. no electric

field across the gate oxide, both the free electrons and holes will on average remain near

their point of origin, and therefore have a greater probability of recombination. Thus, the

threshold voltage shift in MOS devices will be less severe for the gate terminal in an

unbiased condition.

 100

It was further proposed that by adding redundancy and applying a resting policy,

one can significantly prolong the useful life of MOS components in space. This

redundancy could be used in a circuit to mitigate for total ionizing dose.

We applied the principles of reconfigurable computing to implement the Switched

Modular Redundancy Algorithm in order to mitigate for Total Ionizing Dose (TID)

effects in FPGA’s. It was shown by means of experimentation that this new design

technique provides greatly improved TID tolerance for FPGAs.

The method consists of applying Switched Modular Redundancy to the configuration

memory in the FPGA. For devices which are subject to gate bias cycling, the maximum

acceptable dose is higher than if the irradiation bias were applied continuously. By

adding redundancy and applying a resting policy, one can significantly prolong the useful

life of MOS components in space. It was shown experimentally that by applying FPGA

system redundancy on a power cycling basis, the system lifetime is increased

significantly. By resetting the configuration memory, the functional lifetime of the FPGA

resembles that of power cycling. By applying redundancy in the configuration memory,

the lifetime of the SRAM FPGA was increased in the presence of ionizing radiation. It

was also shown through the current consumption of the IO ports, that the IO ports are not

as susceptible to radiation as the FPGA core, which is the main cause of the increase in

power supply current in the presence of ionizing radiation.

In the experiments presented in this dissertation, two times redundancy was provided.

However, in a space application, depending on the size of the circuit compared to the

capacity of the FPGA, more than two times redundancy can be used to prolong the

lifetime of the device. For example, in order to use the above SMR methodology, the

circuit should be at most 50% of the device capacity in order to duplicate the circuit

internally. Depending on the satellite orbit, and hence the required total absorbed dose of

the mission, the amount of redundancy can be increased to meet the mission

requirements.

 101

In our experiments with the Altera EPF10K10TC144-4 SRAM FPGA, we obtained a

65% increase in functional lifetime with two times redundancy, i.e. instead of failing at

20krad, the FPGA failed functionally at 33 krad. In order to further increase the FPGA

functional lifetime, one would have to add additional redundancy. However, what

complicates the matter is that it does not appear that the total absorbed dose at which

functional failure occurs is linear with the number of redundancies. For example, one

would have expected two times redundancy to correspond to a functional failure dose of

40 krad, if functional failure with no redundancy occurs at 20 krad. Thus, in order to use

this methodology, one would have to test the percentage increase in functional lifetime

for each amount of circuit duplication in order to assess the required amount of

redundancy. Also, because each FPGA technology is unique in its architecture, and each

has its unique response to radiation, every new FPGA has to be tested to determine the

percentage increase in functional lifetime. Although the principle of removing the bias on

the gate of the MOS transistor should lead to a linear improvement in prolonging the

MOS lifetime in the presence of ionizing radiation, the complexity of the circuit in an

FPGA and lack of transistor gate bias control, leads to a lower lifetime value than one

would expect.

It was shown experimentally that by applying FPGA system or device redundancy on a

power cycling basis, the system lifetime is increased significantly. Device redundancy

mitigation is an alternative method to internal FPGA mitigation. In terms of prolonged

functional lifetime, no distinction can be made between device redundancy and internal

FPGA redundancy. However, device redundancy is the most costly solution in terms of

both PCB board space and device costs.

It is noted that the scheme does not make provision for Single Event Effects mitigation,

however, whenever a reconfiguration cycle is started, the configuration memory is reset

and hence any configuration errors due to SEE will be corrected. However, it is not

sufficient to update the configuration SRAM memory continuously to remove any bit

errors induced by SEEs, since the effect of the configuration change will change the logic

which in turn will potentially lead to the change of the internal state of the design, i.e. the

 102

state of the various registers and flip-flops [HABI02]. By correcting the configuration

SRAM memory, one can repair the logic, but not re-establish the state of the design.

Thus, to properly provide for any SEE effects, one would have to apply Triple Modular

Redundancy in addition to the SMR methodology.

6.2 Recommendations

1. The proposed technique to enhance TID tolerance of SRAM-based FPGA is

based on the availability of additional free resources in the device. Since

hardening FPGA to SEEs, which is also mandatory for Space applications, also

typically require additional resources and actions involving configuration

memory, further research should address how this approach can combine with

SEE hardening strategies.

The author is currently working on a proposal to use the SMR algorithm in order

to mitigate for SEU effects in FPGAs. We propose a new design technique for

SEU mitigation in the Field Programmable Gate Array configuration memory.

The method consists of applying Switched Modular Redundancy to the

configuration memory in the FPGA. Used in conjunction with the TID mitigation

features as indicated in this thesis, this dual mitigation feature would make it the

only known method to cater for both SEU and TID simultaneously. However,

further research has to be done in order to confirm the proposed SEU mitigation

method experimentally.

Two papers were written on the new SEU mitigation methods and remain

unpublished. The papers can be found on the accompanying CD under the folder

“SMR SEU Mitigation Papers” and the simulation code in appendix C. However,

it must be stressed that further research needs to be done in order to consider it

complete.

 103

2. SRAM and FLASH based FPGA devices are very different, and radiation effects

are as a consequence very different. In particular, the configuration memory is

fundamentally different. Further testing needs to be done on Flash based FPGA’s

in order to demonstrate that our approach is also applicable to them.

3. The SMR methodology, as described in chapter 3, would be to duplicate each gate

in a circuit, then selectively only activating one gate at a time allowing the other

to anneal during its off cycle. The SMR algorithm is coded in the “C” language.

In the proposed design methodology, the design engineer need not be concerned

about radiation effects when describing the hardware implementation in a

hardware description language. Instead, the design engineer makes use of

conventional design techniques. When the design is complete, it is synthesized to

obtain the gate level netlist in edif format.

The edif netlist is converted to structural VHDL code during synthesis. The

structural VHDL netlist is fed into the SMR “C” algorithm to obtain the identical

redundant circuit components. The resultant file is also a structural VHDL netlist.

The generated VHDL netlist or SMR circuit is then mapped to the FPGA.

However, we never made use of the above method in FPGAs for the reasons

given in chapter 3, since there are no fundamental gates in FPGA’s and we were

more interested in the FPGA configuration memory.

The SMR code that was developed is capable of the functions mentioned above

and further research need to be done that use the SMR code to the gate level in

digital circuits.

4. We have used the redundancy method in order to provided TID mitigation to

FPGAs. However, there is no reason that the theory of chapter 3 cannot be

extended to include other digital electronic circuits as well as analogue

electronics. This needs to be further investigated.

 104

References

1. [ADAM02] L. Adams, “Guidelines for the use of Electronic Components in the

Space Radiation Environment”, Technical Report, Issue 2, 18th March 2002.

2. [ALEX96] D. R. Alexander, “Design issues for radiation tolerant microcircuits

for space”, Notes of the Short Course of the IEEE Nuclear and Space Radiation

Effects Conference, Indian Wells (California), July 1996, Section V.

3. [ALEX96] D. R. Alexander, Design Issues for Radiation Tolerant Microciruits

for Space, IEEE Nuclear Science and Radiation Effects Conference Short Course,

1996.

4. [ALTE03] “Flex 10K Embedded Programmable Logic Device Family” Data

Sheet, January 2003, ver. 4.2.

5. [ANEL00] GM Anelli, “CONCEPTION ET CARACTERISATION DE

CIRCUITS INTEGRES RESISTANTS AUX RADIATIONS POUR LES

DETECTEURS DE PARTICULES DU LHC EN TECHNOLOGIES CMOS

SUBMICRONIQUES PROFONDES” PhD thesis, INSTITUT NATIONAL

POLYTECHNIQUE DE GRENOBLE, page 29, 2000.

6. [ANTA00] www.antarctica.ac.uk / News and Information / Press Releases / 2000

. Insurance industry funds new research into satellite failures.

http://www.antarctica.ac.uk/News_and_Information/Press_Releases/2000/200007

12-1.html.

7. [BARR] M.J. Barry, “Radiation resistant SRAM memory cell”, US Patent No.

5,157,625.

8. [BART97] BARTH, Janet. Radiation Environment. In: IEEE NSREC Short

Course, July 21, 1997. http://flick.gsfc.nasa.gov/radhome/ RPO_slides.htm.

9. [BELL04] M. Bellato P. Bernardi1, D. Bortolato, A. Candelori, M. Ceschia, A.

Paccagnella, M. Rebaudengo1, M. Sonza Reorda1, M. Violante1 and P.

Zambolin, “Evaluating the effects of SEUs affecting the configuration memory of

an SRAM based FPGAs”, Proceedings of the Design, Automation and Test in

Europe Conference and Exhibition, 2004.

 105

10. [BENE86] J. M. Benedetto and H. E. Boesch, “The Relationship Between Co60

and 10 keV X-Ray- Damage in MOS Devices”, IEEE Transactions on Nuclear

Science, vol. 33, no. 6, pp. 1318–1323, Dec. 1986.

11. [BETZ05] V. BETZ, “FPGA Place-and-Route Challenge”, 2005.

12. [BROW97] S. Brown, J. Rose, “Architecture of FPGAs and CPLDs: A Tutorial”,

Department of Electrical and Computer Engineering, University of Toronto, 1997.

13. [BUNS00] P. E. Bunson, M. Di Ventra, S. T. Pantelides, D. M. Fleetwood, and R.

D. Schrimpf, “Hydrogen-Related Defects in Irradiated SiO2”, IEEE Transactions

on Nuclear Science, vol. 47, no. 6, pp. 2289–2296, Dec. 2000.

14. [BUNS99] P. E. Bunson, M. Di Ventra, S. T. Pantelides, R. D. Schrimpf, and K.

F. Galloway, “Ab initio calculations of H+ energetics in SiO2: Implications for

transport”, IEEE Transactions on Nuclear Science, vol. 46, no. 6, pp. 1568–1573,

Dec. 1999.

15. [CANA91] J. Canaris, S. Whitaker, and M.N. Lui, “SEU hardened memory cells

for a CCSDS Reed Solomon encoder”, IEEE Trans. on Nuc. Sci, vol 38(6), pages

1471 – 1477, December 1991.

16. [CANA95] J. Canaris, S. Whitaker, “Circuit techniques for the radiation

environment of space”, IEEE 1995 Custom Integrated Circuits Conference, pages

5.4.1 – 5.4.4, 1995.

17. [CONL92] J. F. Conley, Jr. and P. M. Lenahan, “Room-Temperature Reactions

Involving Silicon Dangling Bond Centers and Molecular-Hydrogen in

Amorphous SiO2 Thin-Films on Silicon”, IEEE Transactions on Nuclear Science,

vol. 39, no. 6, pp. 2186–2191, Dec. 1992.

18. [CONL93] J. F. Conley, Jr. and P. M. Lenahan, “Room-Temperature Reactions

Involving Silicon Dangling Bond Centers and Molecular-Hydrogen in

Amorphous SiO2 Thin-Films on Silicon”, Applied Physics Letters, vol. 62, no. 1,

pp. 40–42, 1993.

19. [CONY93] J. F. Conley, Jr. and P. M. Lenahan, “Molecular Hydrogen, E0 Center

Hole Traps, and Radiation-Induced Interface Traps in MOS Devices”, IEEE

Transactions on Nuclear Science, vol. 40, no. 6, pp. 1335–1340, 1993.

 106

20. [DENT00] Martin Dentan. RADIATION EFFECTS ON ELECTRONIC

COMPONENTS AND CIRCUITS. In: CERN Training Course. April 11, 2000.

(http://atlas.web.cern.ch/Atlas/GROUPS/FRONTEND /radhard.htm).

21. [DERB77] G. F. Derbenwick and H. H. Sander, "CMOS Hardness Prediction for

Low-Dose-Rate Environments," IEEE Trans. Nucl. Sci., NS-24, 2244-2247

(1977).

22. [DODD03] P. Dodd, L.W. Massengill, “Basic Mechanisms and Modeling of

Single-Event Upset in Digital Microelectronics”, IEEE Transactions on Nuclear

Science,, VOL. 50, NO. 3, June 2003.

23. [DOOL] J.G. Dooley, “SEU-immune for gate array, standard cell, and other

ASIC applications”, US Patent No. 5,311,070.

24. [DRES86] P. Dressendorfer, J. Soden, J. Harrington, T. Nordstrom, “The effects

of test conditions on MOS radiation-hardness results”, IEEE Trans. Nucl. Sci.

Vol. NS-28, No. 6, Dec 1986.

25. [DYER01] C. Dyer, “Radiation Effects on Spacecraft & Aircraft”, Space

Department, QinetiQ, Cody Technology Park, Farnborough, Hampshire, 2001.

26. [EDSO01] Edson L. Horta, John W. Lockwood, “PARBIT: A Tool to Transform

Bitfiles to Implement Partial Reconfiguration of Field Programmable Gate Arrays

(FPGA’s)”, Washington University, July 06, 2001.

27. [FLEE03] D.M. Fleetwood, “Total-Dose Radiation Hardness Assurance”, IEEE

Trans. Nuclear Science, Vol. 50, No. 3, June 2003.

28. [FLEE88] Fleetwood, D.M.; Winokur, P.S.; Schwank, J.R, “Using laboratory X-

ray and cobalt-60 irradiations to predict CMOS device response in strategic and

space environments” IEEE Trans. on Nucl. Sci, Vol. 35, No. 6, December 1988.

29. [FLEE95] D. M. Fleetwood, W. L. Warren, J. R. Schwank, P. S. Winokur, M. R.

Shaneyfelt, and L. C. Riewe, “Effects of Interface Traps and Border Traps on

MOS Postirradiation Annealing Response”, IEEE Transactions on Nuclear

Science, vol. 42, pp. 1698–1707, 1995.

30. [FREI87] R.K. Freitag, C.M. Dozier, D.B. Brown, “ Growth and annealing of

trapped holes and interface states using time dependent biases”, IEEE Trans on

Nucl Sci, Vol. NS-34, No. 6, December 1987.

 107

31. [FREI93] R. K. Freitag, D. B. Brown, and C. M. Dozier, “Experimental Evidence

of Two Species of Radiation-Induced Trapped Positive Charge”, IEEE

Transactions on Nuclear Science, vol. 40, no. 6, pp. 1316–1322, 1993.

32. [GALL84] K. F. Galloway, M. Gaitan, and T. J. Russell, “A Simple Model for

Separating Interface and Oxide Charge Effects in MOS Device Characteristics”,

IEEE Transactions on Nuclear Science, vol. NS-31, no. 6, pp. 1497–1501, 1984.

33. [HABI02] S. Habinc, “functional triple modular redundancy,” Gaisler Research,

Dec. 2002, Design and Assessment Rep.

34. [HAMB03] J.O. Hamblen, M.D. Furman, “Rapid prototyping of digital systems”,

Kluwer Academic Publishers, 2003.

35. [HOLM02] A. Holm-Siedle, L. Adams, “Handbook of Radiation Effects: Second

Edition”, Oxford University Press, 2002.

36. [HUGE03] H.L. Huges and J.M. Benedetto, “Radiation Effects and Hardening of

MOS Technology: Devices and Circuits”, IEEE Transactions on Nuclear Science,

Vol.50, No. 3, June 2003.

37. [JOHN83] A. H. Johnston, “ Annealing of total dose damage in the Z80

Microprocessor”, IEEE Trans on Nucl Sci, Vol NS-30, No. 6, December 1983.

38. [KATZ97] R. Katz’, K. LaBel’, J.J. Wang, B. Cronquist2, R. Koga’, S. Penzin’,

and G. Swift, “Radiation Effects on Current Field Programmable Technologies”

IEEE Trans. on Nucl. Sci., Vol. 44, NO. 6, December 1997.

39. [KERN88] S. E. Kerns, B. D. Shafer, L. R. Rockett et al., “The Design of

Radiation-Hardened ICs for Space: A Compendium of Approaches”, Proceedings

of the IEEE, vol. 76, no. 11, November 1988, pp. 1470-1509.

40. [KLUW01] J.O. Hamblen, M.D. Furman, “Rapid Prototyping of Digital Systems,

Second Edition”, Kluwer Academic Publishers, 2003.

41. [LABE96] K.A. LaBel and M.M. Gates, “Single Event Effect Mitigation from the

System Perspective”, IEEE Trans. on Nuclear Science, vol 43, no. 2, pp. 654-660,

Apr. 1996.

42. [LABE98] K. LaBel, A.H. Johnson, J.L. Barth, R.A. Reed, C.E.

Barnes,”Emerging Radiation Hardness Assurance issues: A NASA approach for

space flight programs”, NASA Jet Propulsion Laboratory, 1998.

 108

43. [LABE99] LABEL, K. et al. Commercial Microelectronics Technologies for

Applications in the Satellite Radiation Environment. In: http://flick.gsfc.nasa.gov/

radhome.htm (Nov. 1999).

44. [LENA99] P. M. Lenahan, J. J. Mele, J. F. Conley, Jr., R. K. Lowry, and D.

Woodbury, “Predicting Radiation Response From Process Parameters:

Verification Of A Physically Based Predictive Model”, IEEE Transactions on

Nuclear Science, vol. 46, no. 6, pp. 1534–1543, Dec. 1999.

45. [LIMA02] F.G. Lima, “DESIGNING SINGLE EVENT UPSET MITIGATION

TECHNIQUES FOR LARGE SRAM-based FPGA DEVICES” Porto Alegre,

February 11th, 2002

46. [LIU92] M.N. Lui and S. Whitaker, “Low power SEU immune CMOS memory

circuits”, IEEE Trans. on Nuc. Sci, vol. 39(6), pages 1679 – 1684, December

1992.

47. [MA89] T.P. Ma, P.V. Dressendorfer, “Ionizing radiation effects in MOS Devices

and Circuits”, John Willey & Sons, 1989.

48. [MACL89] F. B. McLean and H. E. Boesch, Jr., “Time-Dependent Degradation

of MOSFET Channel Mobility Following Pulsed Irradiation”, IEEE Transactions

on Nuclear Science, vol. 36, no. 6, pp. 1772–1783, Dec. 1989.

49. [MCC099] J. McCollum, "Programmable Elements and Their Impact on FPGA

Architecture, Performance, and Radiation Hardness," MAPLD 1999 Proceedings,

Laurel, Maryland, Sept. 1999.

50. [MCLE99] T.R. Oldham, F.B. Mclean, H.E. Boesch, J.M. McGarrity, “An

overview of radiation-induced interface traps in MOS structures”, Semicond. Sci.

Technol. 4 (1999) 986 – 999.

51. [MESS92] George C. Messenger and Milton S. Ash, The Effects of Radiation on

Electronic Systems, Van Nostrand Reinhold, July 1992.

52. [MONR03] D.Monroe,http://www.louisville.edu/~djmonr01/vanallen.html ,

April 2003.

53. [NICK00] C. J. Nicklaw, M. P. Pagey, S. T. Pantelides, D. M. Fleetwood, R. D.

Schrimpf, K. F. Galloway, J. E. Wittig, B. M. Howard, E. Taw, W. H. McNeil,

and J. F. Conley, “Defects and Nanocrystals Generated by Si Implantation into a-

 109

SiO2”, IEEE Transactions on Nuclear Science, vol. 47, no. 6, pp. 2269–2275,

Dec. 2000.

54. [NICK03] C.J. Nicklaw, “MULTI-LEVEL MODELING OF TOTAL IONIZING

DOSE IN a-SiO2: FIRST PRINCIPLES TO CIRCUITS”, PhD Thesis, Graduate

School of Vanderbilt University, 2003.

55. [NICO95] M. Nicolaidis, T. Calin, F. Vargas, R. Velazco, “A low cost, highly

reliable SEU-tolerant SRAM: Prototype and test results”, IEEE Trans. on Nuc.

Sci, vol. 42(6), pages 1592 – 1598, 1995.

56. [NICO96] M. Nicolaidis, T. Calin, and R. Velazco, “Upset hardened memory

design for submicron CMOS technology”, IEEE Trans. on Nuc. Sci, vol. 43,

pages 2874 – 2878, December 1996.

57. [OKAB90] T. Okabe, M. Kato, M. Katsueda, H. Kamimura, I. Takei, “ High

Frequency annealing effects on Ionizing Radiation response of MOSFET”, IEEE

Trans. On Nucl. Sci, Vol 37, No6, December 1990.

58. [OLDH99] T.R. Oldham, “Ionizing Radiation Effects in MOS Oxides”, World

Scientific Publishing, 1999.

59. [POIN84] E. H. Poindexter, G. J. Gerardi, M.-E. Rueckel, P. J. Caplan, N. M.

Johnson, and D. K. Biegelsen, “Electronic Traps and Pb Centers at the Si/SiO2

Interface: Band-Gap Energy Distribution”, Journal of Applied Physics, vol. 56,

no. 10, pp. 2844–2849, 15 Nov. 1984.

60. [RASH01] S. N. Rashkeev, D. M. Fleetwood, R. D. Schrimpf, and S. T.

Pantelides, “Defect Generation by Hydrogen at Si-SiO2 Interface”, Physical

Review Letters, vol. 87, no. 16, pp. 165506– 1–165506–4, 15 Oct. 2001.

61. [RUTE01] R. Rutenbar et. al. “ (When) Will FPGA’s kill ASIC’s”, Proceedings

of the 38th conference on Design automation, Las Vegas, Nevada, United

States, pg 221 -222, 2001.

62. [SAKS93] N. S. Saks, R. B. Klein, R. E. Stahlbush, B. J. Mrstik, and R. W.

Rendell, “Effects of Post- Stress Hydrogen Annealing on MOS Oxides After

60Co Irradiation or Fowler-Nordheim Injection”, IEEE Transactions on Nuclear

Science, vol. 40, no. 6, pp. 1341–1349, 1993.

 110

63. [SAMI04] JJ. Wang, et. el. “Total Ionizing Dose Effects on Flash-based Field

Programmable Gate Array”, IEEE Trans. on Nucl. Sci., Vol. 51, No. 6, December

2004.

64. [SAND02] Sandi Habinc, “Functional Triple Modular Redundancy”, Design and

assessment report, Gaisler Research, December 2002.

65. [SANT03] A.C.F. Santos, A Frohlich, “Collision Cross Section and the size of a

coin”, 2003 Phys. Educ. 38 336-339.

66. [SCHW07] J. R. Schwank, F. W. Sexton, M. R. Shaneyfelt, D. M. Fleetwood,”

Total Ionizing Dose Hardness Assurance Issues for High Dose Rate

Environments”, IEEE Trans. on Nucl. Sci, Vol. 54, No. 4, August 2007.

67. [SCHW83] J. Schwank, W. Dawes, “Irradiated silicon gate MOS device bias

annealing”, IEEE Trans. Nucl. Sci. Vol. NS-30, No. 6, Dec 1983

68. [SCHW92] J. R. Schwank, D. M. Fleetwood, M. R. Shaneyfelt, P. S. Winokur, C.

L. Axness, and L. C. Riewe, “Latent Interface-Trap Buildup and Its Implications

for Hardness Assurance”, IEEE Transactions on Nuclear Science, vol. 39, no. 6,

pp. 1953–1963, Dec. 1992.

69. [SEXT85] F. W. Sexton and J. R. Schwank, “Correlation of Radiation Effects in

Transistors and Integrated-Circuits”, IEEE Transactions on Nuclear Science, vol.

32, no. 6, pp. 3975–3981, Dec. 1985.

70. [SHAN90] M.R. Shaneyfelt, J.R. Schwank, D.M. Fleetwood, P.S. Winokur, K.L.

Hughes, F.W. Sexton, “ Field dependence of Interface-trap buildup in Polysilicon

and Metal Gate MOS devices” IEEE Trans on Nucl Sci, Vol 37, No. 6, December

1990.

71. [SHAN91] M.R. Shaneyfelt, J.R. Schwank, D.M. Fleetwood, K.L. Hughes, “

Charge yield for Cobalt-60 and 10-keV X-ray irradiations of MOS Devices”,

IEEE Trans on Nucl Sci, Vol. 38, No. 6, December 1991.

72. [SMIT94] Ed Smith “Effects of Realistic Satellite Shielding on SEE Rates”,

IEEE Trans. on Nuclear Science, vol 41, no. 6, pp. 0018-9499, Dec. 1994.

73. [SNOE99] W.J. Snoeys, T.A.P. Gutierrez and G. Anelli,” A New NMOS Layout

Structure for Radiation Tolarance”, IEEE Trans. Nucl. Sci, Vol. 49, No. 4, August

1999.

 111

74. [SNYD89] E.S. Snyder, P.J. McWhorter, T.A. Dellin, J.D. Sweetman, “Radiation

response of Floating Gate EEPROM Memory Cells”, IEEE Trans. On Nucl. Sci.,

Vol. 36, No. 6, December 1989

75. [SPAC96] “SPACE RADIATION EFFECTS ON ELECTRONIC

COMPONENTS IN LOW-EARTH ORBIT” NASA, PRACTICE NO. PD-ED-

1258, April 1996.

76. [SROU03] J.R. Srour, C.J. Marshall, P.W Marshall, “Review of Displacement

Damage Effects in Silicon Devices”, IEEE Trans. Nucl. Sci., Vol. 50, No.3, June

2003.

77. [SROU82] J.R. Srour, “Basic Mechanism of Radiation Effects on electronic

Materials, Devices, and Integrated Circuits”, Technical Report, Defense Nuclear

Agency, Washington, 1982

78. [STAN85] T. Stanley, D. Neaman, P. Dressendorfer, J. Schwank, P. Winokur, M.

Ackermann, K.Jungling, C. Hawkins, W. Grannemann, “ The effect of operating

frequency in the radiation induced buildup of trapped holes and interface states in

MOS devices”, IEEE Trans. Nucl. Sci. Vol NS-32, No. 6, Dec 1985.

79. [STAS88] E.G. Stassinopoulos, J.P. Raymond, “The Space Radiation

Environment for Electronics”, Proceedings of the IEEE, Vol. 76, No. 11,

November 1988.

80. [STER] L. Sterpone, M. Violante, “Analysis of the robustness of the TMR

architecture in SRAM-based FPGAs”, Politecnico di Torino, Dip. Automatica e

Informatica, C.so Duca degli Abruzzi 24, 10129 Torino, Italy

81. [STES96] A. Stesmans and V. V. Afanasev, “Thermally Induced Interface

Degradation in (111) Si/SiO2 Traced by Electron Spin Resonance”, Physical

Review B, vol. 54, no. 16, pp. R11 129–132, 15 Oct. 1996.

82. [STET04] M. Stettler, M. Caffrey, P. Graham, J. Krone, “ Radiation effects and

mitigation strategies for modern FPGAs”, 10th annual workshop for the LHC and

future experiments, Los Almos National Laboratory, USA, 2004.

83. [TPMA89] T.P. Ma, “Interface trap transformation in radiation or hot-electron

damaged MOS structures”, Semicond. Sci. Technol. 4 (1989) 1061 -1079.

 112

84. [USRA] U.S. Centennial of Flight Commission,

http://www.centennialofflight.gov/essay/Dictionary/RADIATION_BELTS/DI160

.htm

85. [VARG94] F. Vargas and M. Nicolaidis, “SEU-tolerant SRAM design based on

current monitoring”, 24th International Symposium on Fault Tolerant Computing,

pages 106 – 115, June 1994.

86. [VELA94] R. Velazco, D. Bessot, “Two CMOS memory cells suitable for the

design of SEU-tolerant VLSI circuits”, IEEE Trans. on Nuc. Sci, vol. 41(6), pages

2229 – 2234, 1994.

87. [VENB93] J. Venbrux et. el., “Designing and testing of SEU/SEL immune

memory and logic circuits in a commercial CMOS process”, Record of the 1993

Radiation Effects Data workshop, pages 51 – 55, July 1993.

88. [WANG04] J.J. Wang, “Radiation effects in FPGA’s“, Actel Corporation, 11

May 2004.

89. [WANG99] J.J. Wang, R.B. Katz, J.S. Sun, B.E. Cronquist, J.L. McCollum,

“SRAM Based Re-programmable FPGA for Space Applications”, IEEE Trans. on

Nucl. Sci., Vol. 46, NO. 6, December 1999.

90. [WHIR03] M. Wirthlin, N. Rollins, M. Caffrey, and P. Graham, “Hardness By

Design Techniques for Field Programmable Gate Arrays”, Technical Report,

Department of Electrical and Computer Engineering, Brigham Young University,

Provo, UT, 2003.

91. [WHIT] S. Whitaker, “Single event upset hardening CMOS memory circuit”, US

Patent No 5,111,429.

92. [ZUKA02] h.dr. V.Gavryushin, h.dr. A.Žukauskas, "Functional combinations in

solidstates”,http://www.mtmi.vu.lt/pfk/funkc_dariniai/transistor/mos_capacitors.h

tm

 113

Appendix A

Schematics for Fig 4.12 and 4.13

Core Power
supply

JTAG
Interface

Flex10K10
FPGA

Oscillator IO Power
supply

IO header interface

Fig. 4.12 FPGA PCB test board with IO and Core power supply separated

 114

 115

 116

 117

 118

FPGA Power supply JTAG Interface Oscillator Oscillator select
jumper

IO interface

Fig. 4.13 FPGA PCB test board with clock signal select jumper

 119

 120

 121

 122

 123

Appendix B

Ring Counter VHDL Code

-- Summary: This is the Selective Modular Redundancy (SMR)
-- algorithm test code written as a part of my PhD thesis.
--
-- Purpose: The program implements the SMR Algorithm on the VHDL code.
--
-- Author Farouk Smith
-- Electronic Systems Laboratory
-- Department of Electronics Engineering
-- University of Stellenbosch
-- South Africa
-- email fsmith@sun.ac.za
-- Time Stamp October 2005(Cape Town)
-- Current Version 1.3
-- (C) 2005 Farouk Smith
-- Ring Counter

LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;

ENTITY ring IS
 PORT (clock : in STD_LOGIC;
 reset : in std_logic;
 C0, C1, C2 : out std_logic);
END ENTITY ring;

ARCHITECTURE Behavior of ring IS
 TYPE state_type IS (s0, s1, s2, s3, s4, s5, s6, s7, s8);
 SIGNAL state: state_type;
BEGIN
 next_state_logic: process (clock, reset)
 BEGIN
 IF(reset = '0') THEN
 state <= s8;
 ELSIF (clock'EVENT AND clock = '1') THEN
 CASE state IS
 WHEN s0 =>
 IF(reset = '1') THEN
 state <= s1;
 ELSE
 state <= s8;

 124

 END IF;
 WHEN s1 =>
 IF(reset = '1') THEN
 state <= s2;
 ELSE
 state <= s8;
 END IF;
 WHEN s2 =>
 IF(reset = '1') THEN
 state <= s3;
 ELSE
 state <= s8;
 END IF;
 WHEN s3 =>
 IF(reset = '1') THEN
 state <= s4;
 ELSE
 state <= s8;
 END IF;
 WHEN s4 =>
 IF(reset = '1') THEN
 state <= s5;
 ELSE
 state <= s8;
 END IF;
 WHEN s5 =>
 IF(reset = '1') THEN
 state <= s6;
 ELSE
 state <= s8;
 END IF;
 WHEN s6 =>
 IF(reset = '1') THEN
 state <= s7;
 ELSE
 state <= s8;
 END IF;
 WHEN s7 =>
 IF(reset = '1') THEN
 state <= s8;
 ELSE
 state <= s0;
 END IF;
 WHEN s8 =>
 IF(reset = '1') THEN
 state <= s0;

 125

 ELSE
 state <= s8;
 END IF;
 END CASE;
 END IF;
END process;

output_logic: process (state)
BEGIN
CASE state IS
 WHEN s0 =>
 C0 <= '0';
 C1 <= '0';
 C2 <= '0';
 WHEN s1 =>
 C0 <= '1';
 C1 <= '0';
 C2 <= '0';
 WHEN s2 =>
 C0 <= '0';
 C1 <= '1';
 C2 <= '0';
 WHEN s3 =>
 C0 <= '1';
 C1 <= '1';
 C2 <= '0';
 WHEN s4 =>
 C0 <= '0';
 C1 <= '0';
 C2 <= '1';
 WHEN s5 =>
 C0 <= '1';
 C1 <= '0';
 C2 <= '1';
 WHEN s6 =>
 C0 <= '0';
 C1 <= '1';
 C2 <= '1';
 WHEN s7 =>
 C0 <= '1';
 C1 <= '1';
 C2 <= '1';
 WHEN s8 =>
 C0 <= '0';
 C1 <= '0';
 C2 <= '0';

 126

END CASE;
END process;
END Behavior;

 127

Appendix C
/*
 * Summary: This is the Selective Modular Redundancy (SMR)
 * algorithm SEU simulation written in my PhD thesis.
 *
 * Purpose: The algorithm is a simulation model to study the number of SEU's
 * that occur as we change the target density, reaction distance, no of SRAM
 * cells in the matrix and the incoming cosmic ray particle flux.
 *
 * Constraints:
 *
 * Inputs: no_of_srams , reaction_distance,density, Io.
 * Outputs: No of SEU's, cross section.
 *
 * Author Farouk Smith
 * Electronic Systems Laboratory
 * Department of Electronics Engineering
 * University of Stellenbosch
 * South Africa
 * email fsmith@sun.ac.za
 * Time Stamp April 2007(Cape Town)
 * Version 1.1
 * (C) 2005 Farouk Smith
 */

#include <stdlib.h>
#include <string.h>
#include <string.h>
#include <stdio.h>
#include <time.h>
#include <math.h>

void Usage(char *programName)
{
 fprintf(stderr,"%s usage:\n",programName);
 /* Modify here to add your usage message when the program is
 * called without arguments */
}

/* returns the index of the first argument that is not an option; i.e.
 does not start with a dash or a slash
*/
int HandleOptions(int argc,char *argv[])
{

 128

 int i,firstnonoption=0;

 for (i=1; i< argc;i++) {
 if (argv[i][0] == '/' || argv[i][0] == '-') {
 switch (argv[i][1]) {
 /* An argument -? means help is requested */
 case '?':
 Usage(argv[0]);
 break;
 case 'h':
 case 'H':
 if (!stricmp(argv[i]+1,"help")) {
 Usage(argv[0]);
 break;
 }
 /* If the option -h means anything else
 * in your application add code here
 * Note: this falls through to the default
 * to print an "unknow option" message
 */
 /* add your option switches here */
 default:
 fprintf(stderr,"unknown option %s\n",argv[i]);
 break;
 }
 }
 else {
 firstnonoption = i;
 break;
 }
 }
 return firstnonoption;
}

int main(int argc,char *argv[])
{
 /*
 if (argc == 1) {
 // If no arguments we call the Usage routine and exit
 Usage(argv[0]);
 return 1;
 }
 */
 /* handle the program options */
 HandleOptions(argc,argv);

 129

 /* The code of the application follows */

 int val;
 int i,j,k,scanned,l,m,h;
 int temp[10000];
 double maxrand; // The maximum number that the rand() funtion can output.
 int seu;
 int noseu;
 float cross;
 float unit_length; // unit lenght of the matrix, used to determine the density

//and Io flux.
 float Io_flux; // This is the input flux of particles
 float Io; //(i.e. number of incident particles).
 float reaction_distance; // Reaction distance (i.e. the max distance a particle

//should be from a SRAM cell to cause a SEU).
 int no_of_srams; // Represents the number of SRAM cells in the

//memory matrix.
 float density; // The number of SRAM cells per unit area. The

//higher this number, the lower the density.
// float matrix_size; // The size of the matrix with respect to the total

//size of the SRAM cells. For example the density
//can stay the same, but the matrix size can increase.
//Thus the SRAM cells will occupy a small
//congested part of the space.

 struct {
 char name;
 double x,y,r;
 double x_position, y_position; // Represents the position of the

 //SRAM cells in the memory matrix.
 } sram[20000];

 FILE *fp;
 fp = fopen("temp.txt", "w+r"); // Create and open a temporary file to write the

//output.
 srand((unsigned int)time(NULL));
 maxrand = 32767;

/**/
//These are the Parameters that can be changed.
// Io = 5000;
 unit_length = 1;
 Io_flux = 20000;
 no_of_srams = 500;
 reaction_distance = 0.01;
 density = 1;

 130

/**/
 cross = 0;
// float averageseu = 0;
//for(h=0;h<100;h++)
// {
// density = density - 0.01;
// int totalseu = 0;
 for(m=0;m <300;m++)
 {

 no_of_srams = no_of_srams + 100;
// printf("matrix size : %3.6f\n", matrix_size);
// unit_length = unit_length + 1;
// density = density - 0.1;
// unit_length = no_of_srams/density;
 Io = Io_flux*unit_length;
// no_of_srams = density*unit_length;
// density = no_of_srams/unit_length;
// reaction_distance = reaction_distance + 0.01;

 for(k=0; k< no_of_srams; k++) // Create sram cells that equal no_of_srams

//spaced equally.
 {
 sram[k].x_position = density*k;
 sram[k].y_position = density*k;
// fprintf(fp, "%3.10f,%3.10f\n",sram[k].x_position,
sram[k].y_position);
 }
 Io = density*Io;
 for(k=0; k<Io; k++)
 {
 sram[k].x = density*no_of_srams*rand()/maxrand;
 // Create a floating random number between 0 and no_of_srams.
 sram[k].y = density*no_of_srams*rand()/maxrand;
// sram[k].r = sqrt(sram[k].x*sram[k].x +
sram[k].y*sram[k].y);
// fprintf(fp,"%3.10f\n", sram[k].x); // send the random number to

// a file.
 }

 seu = 0;
 noseu = 0;
 for (k=0; k<no_of_srams; k++) // For each SRAM position, check if a

//incident cosmic particle struct the SRAM.
 {
 // If the cosmic particle is within a distance of reaction_distance of the SRAM

 131

//then a SEU occurs. The radius of interaction is given by reaction_distance.
 for (j= 0; j<Io; j++)
 {
 if((sram[j].x < (sram[k].x_position +
reaction_distance))&&(sram[j].x > (sram[k].x_position - reaction_distance)))
 {
 for(l=0; l<Io; l++)
 {
 if((sram[l].y < (sram[k].x_position +
reaction_distance))&&(sram[l].y > (sram[k].x_position - reaction_distance)))
 {
 // scanned = 1;
 seu++;
 }
 }
 /*
 if(scanned == 1)
 {
 break;
 }
 */
 }
 else
 {
 // scanned = 0;
 noseu++;
 }

 }
/*
 if(scanned == 1)
 {
 seu++;
 }
 else
 {
 noseu++;
 }
*/
 }

 cross = seu/(density*Io);
 fprintf(fp, "%d,%d,%3.10f\n",no_of_srams, seu, cross); // send the random

// number to a file.
// totalseu = totalseu + seu;
 }

 132

// averageseu = totalseu/100;
// fprintf(fp,"%2.2f,%2.2f\n",density, averageseu);
// printf("%d,%2.2f\n",h,averageseu);

//}
 return 0;
}

 133

Appendix D
/*
 * Summary: This is the Selective Modular Redundancy (SMR)
 * algorithm written as a part of my PhD thesis. This is a gate level
 * version of the algorithm. The original code was written by Praveen Samudrala as part
 * of his MSc thesis on Selective Triple Modular Redundancy and modified for the SMR.
 * Purpose: The program implements the SMR Algorithm on the VHDL code.
 *
 * Constraints: The input VHDL file has to be in a definite order for the
 * algorithm to scan. The VHDL file must be in the structural format as
 * obtained from the Synopsys FPGA Compiler II software.
 *
 * Inputs: Structural VHDL file name.
 * Outputs: SMR file.
 *
 * Author Farouk Smith
 * Electronic Systems Laboratory
 * Department of Electronics Engineering
 * University of Stellenbosch
 * South Africa
 * email fsmith@sun.ac.za
 * Time Stamp October 2005(Cape Town)
 * Modified Ver 1.2 November 2005 for Synopsys FPGA Compiler II
 * Structural VHDL Input.
 * Modified Ver 1.2.1 December 2005 to include the SMR Algorithm.
 *
 * Version 1.3 Modified to delete the technology dependant components
 * from the MAXPLUS EDIF file, February 2006.
 * Version 1.4 Modified to include the user defined libraries created
 * for the fundamental primitive gates. March 2006.
 * (C) 2005 Farouk Smith
 *
 *
 * NOTE: For more information on the SMR method read
 *
 *
 * STDMR and SMR has patent pending as of August 2005
 */

#include "stdmr.h"

namespace Compo
{

 134

 /*
 * This is a Function that counts the number of components from the VHDL netlist
 * The this is done to obtain the structure of the components, and the number of
 * inputs and outputs. The result is stored in gates.num_inputs.
 */

 void num_compo (char* cktname)
 {
 char start[MAXLENGTH] ;
 char cnamefield[MAXLENGTH] ;
 int file_start, file_count;
 char buf[MAXLENGTH];
 char buf_temp[MAXLENGTH];

 /*
 * Open the input vhdl file for reading
 */

 FILE *fp;
 fp = fopen(cktname,"r");

 if(NULL == fp)
 {
 printf("Error Reading input file!\n");
 exit(1) ;
 }

 /*
 * Scan the VHDL input file; start storing the values after
 * the last "entity" statement. This is done by first counting
 * the number of "entity" statements in the file and storing
 * the value in entity_count. The file is then closed and opened
 * again so that we know at which position the last "entity"
 * statement is, and can now start counting the number of components
 * in the main VHDL entity.
 */

 file.num_entity = 0;
 file.end_entity = 0;
 int help = 0;
 int entity_comp;
 int entity_count = 0;
 do{
 entity_comp = fscanf(fp,"%s",&start);
 if(!strcmp(start,"entity"))
 {

 135

 file.num_entity++;
 }
 else if(!strcmp(start, "end"))
 {
 file.end_entity++;
 }
 else
 {
 }
 }while(entity_comp != EOF);

 fp = fopen(cktname,"r");

 while(1)
 {
 fscanf(fp,"%s",&start);
 if(!strcmp(start,"entity"))
 {
 entity_count++;
 }
 if(entity_count == file.num_entity)
 {
 break;
 }
 }

 while(1)
 {
 fscanf(fp, "%s", &buf_temp);
 if(!strcmp(buf_temp,"is"))
 {
 break;
 }
 }

 /*
 * After the "is" statement, start reading the first component.
 */

 do{
 entity_comp = fscanf(fp,"%s",&start);
 if(!strcmp(start,"component"))
 {
 file.num_component++;
 }
 else if(!strcmp(start, "end"))

 136

 {
 file.end_component++;
 }
 else
 {
 }
 }while(entity_comp != EOF);

 printf("Number of entities : %d\n", file.num_entity);
 printf("Number of components : %d\n", file.num_component);

 fp = fopen(cktname,"r");

 int entity_FPGA = 0;
 do{
 entity_FPGA = fscanf(fp,"%s",&start);
 if(!strcmp(start,"FPGA_Compiler_II;"))
 {
 file.num_FPGA++;
 }
 }while(entity_FPGA != EOF);

 fclose(fp);

 }
}

namespace Component_signals
{

 /*
 * This is a Function that counts the number of inputs and outputs for each component
 * in the main VHDL entity.
 * The this is done to obtain the structure of the components, and the number of
 * inputs and outputs. The result is stored in gates.num_inputs.
 */

 void in_out (char* cktname)
 {
 bool start_scan = false ;
 char start[MAXLENGTH] ;
 char cnamefield[MAXLENGTH], st[MAXLENGTH], s1[MAXLENGTH], s2,
s3[MAXLENGTH], s4[MAXLENGTH], s5[MAXLENGTH];
 int file_start, file_count, i, b;
 char buf[MAXLENGTH], buf1[MAXLENGTH], buf_temp[MAXLENGTH];

 137

 /*
 * Open the input vhdl file for reading
 */

 FILE *fp;
 fp = fopen(cktname,"r");

 if(NULL == fp)
 {
 printf("Error Reading input file!\n");
 exit(1) ;
 }

 /*
 * Scan the VHDL input file; start storing the values after
 * the last "entity" statement. This is done by first counting
 * the number of "entity" statements in the file and storing
 * the value in entity_count. The file is then closed and opened
 * again so that we know at which position the last "entity"
 * statement is, and can start storing the VHDL file from there.
 */

 int entity_comp;
 int entity_count = 0;

 while(1)
 {
 fscanf(fp,"%s",&start);
 if(!strcmp(start,"entity"))
 {
 entity_count++;
 }
 if(entity_count == file.num_entity)
 {
 break;
 }
 }

 int c_is = 0;
 int in = 0;
 int out = 0;
 while(1)
 {
 fscanf(fp, "%s", &buf_temp);
 if(!strcmp(buf_temp,"is"))

 138

 {
 c_is++;
 break;
 }
 }

 // The following assigns the primary inputs and primary outputs of the entity.

 if(c_is == 1)
 {
 fscanf(fp, "%s %s", &buf_temp, &buf);
 while(1)
 {
 fscanf(fp,"%s %c %s %s %s", &s1, &s2, &s3, &s4, &s5);

 if(!strcmp(s3, "in"))
 {
 strcpy(pri_in[in].name, s1);
 in++;
 }
 else if(!strcmp(s3, "out"))
 {
 strcpy(pri_out[out].name, s1);
 out++;
 }
 else if(!strcmp(s5, ");"))
 {
 break;
 }
 else
 {
 break;
 }
 }
 }

 while(1)
 {
 fscanf(fp, "%s", &buf_temp);
 if(!strcmp(buf_temp,"is"))
 {
 c_is++;
 break;
 }
 }

 139

 pri_inputs = in;
 pri_outputs = out;

 /*
 * After the second "is" statement, start reading the first component.
 */

 for(i = 0; i < file.num_component; i++)
 {

 /*
 * Start scanning in line at a time.
 */

 fscanf(fp, "%s %s", &cnamefield, &st);
 strcpy(components[i].kind, st);
 fscanf(fp, "%s %s", &cnamefield, &st);
 int c_num_inputs = 0;
 int c_num_outputs = 0;
 printf("\n");
 b = 0;
 while(1)
 {

 fscanf(fp,"%s %c %s %s %s", &s1, &s2, &s3, &s4, &s5);

 strcpy(components[i].tri_elim, s1);
 b++;
 if(!strcmp(s3, "in"))
 {
 c_num_inputs++;
 strcpy(components[i].identity, s3);
 }
 if(!strcmp(s3, "out"))
 {
 c_num_outputs++;
 strcpy(components[i].identity, s3);
 }
 if(!strcmp(s5, ");"))
 {
 break;
 }
// printf("Signal identity: %s\n",components[i].identity);
 printf("Components_ tri_elim : %s\n", components[i].tri_elim);

 140

 }

 fscanf(fp,"%s %s", &s1, &s3);

 components[i].num_inputs = c_num_inputs;
 components[i].num_outputs = c_num_outputs;

 printf("Component %s inputs : %d\n",components[i].kind,
components[i].num_inputs);
 printf("Component %s outputs : %d\n",components[i].kind,
components[i].num_outputs);
 printf("Signal identity: %s\n",components[i].identity);
 }
 fclose(fp);
 }
}

namespace Circuit
{

 /*
 * This is a Function that "builds the circuit" from the VHDL netlist
 * The gates and netlists are stored as arrays of the base Gate and
 * Net classes they are scanned.
 */

 void BuildCkt (char* cktname)
 {
 bool start_scan = false ;
 bool scanned = false ;
 char start[MAXLENGTH] ;

 char gnamefield[MAXLENGTH] ;
 int scannet = 0 ;
 int scangate = 0;
 int i, j, b, k, l, file_start, file_count;
 char buf[MAXLENGTH];
 char buf_temp[MAXLENGTH];
 char temp1[MAXLENGTH], temp2[MAXLENGTH], temp3[MAXLENGTH],
temp4[MAXLENGTH], temp5[MAXLENGTH];
 char elim[MAXLENGTH], selim[MAXLENGTH], elim2[MAXLENGTH];
 char temp_in[MAXLENGTH] ;
 char temp_out[MAXLENGTH] ;
 char temp_w[MAXLENGTH], temp_x[MAXLENGTH], temp_y[MAXLENGTH];

 141

 char s2[MAXLENGTH], s3, s4, s5[MAXLENGTH], s6, s7[MAXLENGTH],
s8[MAXLENGTH], s9[MAXLENGTH], st[MAXLENGTH] ;
 char s10, s11, s12, s14, s15, s16, s17, s18, s19,
s22[MAXLENGTH],s24,s25,s26,s27,s28,
s29[MAXLENGTH],s30,s31[MAXLENGTH],s32,s33,s34[MAXLENGTH],s35,s36,s37[
MAXLENGTH];

 /*
 * Open the input vhdl file for reading
 */

 FILE *fp;
 fp = fopen(cktname,"r");

 if(NULL == fp)
 {
 printf("Error Reading input file!\n");
 exit(1) ;
 }

 /*
 * Scan the VHDL input file; start storing the values after
 * the last "begin" statement. This is done by first counting
 * the number of "begin" statements in the file and storing
 * the value in file_start. The file is then closed and opened
 * again so that we know at which position the last "begin"
 * statement is, and can start storing the VHDL file from there.
 */

 file.start = 0;
 file.end = 0;
 file.sig = 0;
 int help = 0;
 int file_comp;
 do{
 file_comp = fscanf(fp,"%s",&start);
 if(!strcmp(start,"begin"))
 {
 file.start++;
 }
 else if(!strcmp(start, "end"))
 {
 file.end++;
 }
 else
 {

 142

 }
 }while(file_comp != EOF);

 fp = fopen(cktname,"r");
 file_comp = 0;

/* Count the number of signal statements in the VHDL file */

 do{
 file_comp = fscanf(fp,"%s",&start);
 if(!strcmp(start,"signal"))
 {
 file.sig++;
 }
 }while(file_comp != EOF);

 fp = fopen(cktname,"r");
 file_count = 0;

 while(1)
 {
 fscanf(fp,"%s",&start);
 if(!strcmp(start,"begin"))
 {
 file_count++;
 }
 if(file_count == file.start)
 {
 start_scan = true;
 break;
 }
 }

 int gatenum = ZERO;
 int netnum = ZERO;
 int file_done;
 int outnum = ZERO;
 int in_num = ZERO;

 while(start_scan)
 {
 printf("\n");

 /* Start scanning in one word at a time, after the last "begin" statement.
 * Only scan until a ");" or ";" is found. This represents one line statement

 143

 * in VHDL.
 */

 *buf = NULL;
 do{
 file_done = fscanf(fp, "%s", &buf_temp);
 strcat(buf, buf_temp);
 strcat(buf," ");
 if(!strcmp(buf_temp,");") || !strcmp(buf_temp,";"))
 {
 break;
 }
 }while(file_done != EOF);

 printf("\n%s \n ", buf);

 sscanf(buf, "%s %s", &gnamefield, &st);
// printf("\n%s %s\n ", gnamefield, st);

// strcpy(gates[gatenum].contents, strchr(buf, ':'));
// printf("%s\n", gates[gatenum].contents);

 /*
 * If the first field is not "end" then store it as the
 * name of the gate
 */

 if(!strcmp(gnamefield, "end"))
 {
 break;
 }
 else
 {
 strcpy (gates[gatenum].name, gnamefield) ;
 }

 if(strcmp(st, "<="))
 {
 sscanf(buf, "%s %s %s %s %s %s", &gnamefield, &s2, &s5, &s7, &s9, &s8);

 printf("\nGates name %s\n", gates[gatenum].name);

 strcpy(gates[gatenum].redun, s2);
// printf("%s \n ", gates[gatenum].redun);

 /*

 144

 * String s5 hold the gate kind field
 */

 strncpy(gates[gatenum].kind, s5, (strlen(s5)-1));
 strcpy(gates[gatenum].kindname, s5);

 /*
 * We now determine the number of inputs and outputs for this gate by
 * looking at what type of gate it is (from s5), then comparing it to
 * what we got in the first funtion above. Also if input or output is
 * listed first (gates[gatenum].sig_order).
 */

 strcpy(elim, strchr(buf, '('));
 sscanf(elim, "%s %s", &selim, &elim2);
 strcpy(gates[gatenum].tri_elim, elim2); // This is to see if IN1 is listed first.
Used to determine the Sig_order for the TRIBUF.

 for(i = 0; i < file.num_component; i++)
 {
 if(!strcmp(s5, components[i].kind))
 {
 gates[gatenum].num_inputs = components[i].num_inputs;
 gates[gatenum].num_outputs = components[i].num_outputs;
 if(!strcmp(s5, "TRIBUF"))
 {
 if(!strncmp(gates[gatenum].tri_elim, "IN1", 3))
 {
 strcpy(gates[gatenum].sig_order, "out");
 }
 else
 {
 strcpy(gates[gatenum].sig_order, components[i].identity);
 }
 }
 else
 {
 strcpy(gates[gatenum].sig_order, components[i].identity);
 }
 }
 }

 printf("The number of gate inputs are : %d\n",gates[gatenum].num_inputs);
 printf("The number of gate outputs are : %d\n",gates[gatenum].num_outputs);
 printf("SI order : %s\n", gates[gatenum].sig_order);
 /*

 145

 * Store the kind and type of gate.
 */

 if(!strncmp(gates[gatenum].kind, "AND", 3))
 {
 gates[gatenum].type = 100;
 if(gates[gatenum].num_inputs == 1)
 {
 strcpy(gates[gatenum].ttlname, "LCELL");
 }
 else if(gates[gatenum].num_inputs == 2)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_and2");
 }
 else if(gates[gatenum].num_inputs == 3)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_and3");
 }
 else if(gates[gatenum].num_inputs == 4)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_and4");
 }
 else if(gates[gatenum].num_inputs == 5)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_and5");
 }
 else if(gates[gatenum].num_inputs == 6)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_and6");
 }
 else if(gates[gatenum].num_inputs == 7)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_and7");
 }
 else if(gates[gatenum].num_inputs == 8)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_and8");
 }
 else if(gates[gatenum].num_inputs == 9)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_and9");
 }
 else if(gates[gatenum].num_inputs == 10)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_and10");
 }

 146

 else if(gates[gatenum].num_inputs == 11)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_and11");
 }
 else if(gates[gatenum].num_inputs == 12)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_and12");
 }
 else
 {}
 }
 else if(!strncmp(gates[gatenum].kind, "NAND",4))
 {
 gates[gatenum].type = 101;
 if(gates[gatenum].num_inputs == 1)
 {
 strcpy(gates[gatenum].ttlname, "LCELL");
 }
 else if(gates[gatenum].num_inputs == 2)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nand2");
 }
 else if(gates[gatenum].num_inputs == 3)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nand3");
 }
 else if(gates[gatenum].num_inputs == 4)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nand4");
 }
 else if(gates[gatenum].num_inputs == 5)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nand5");
 }
 else if(gates[gatenum].num_inputs == 6)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nand6");
 }
 else if(gates[gatenum].num_inputs == 7)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nand7");
 }
 else if(gates[gatenum].num_inputs == 8)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nand8");
 }

 147

 else if(gates[gatenum].num_inputs == 9)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nand9");
 }
 else if(gates[gatenum].num_inputs == 10)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nand10");
 }
 else if(gates[gatenum].num_inputs == 11)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nand11");
 }
 else if(gates[gatenum].num_inputs == 12)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nand12");
 }
 else
 {}
 }
 else if(!strncmp(gates[gatenum].kind,"OR", 2))
 {
 gates[gatenum].type = 102;
 if(gates[gatenum].num_inputs == 1)
 {
 strcpy(gates[gatenum].ttlname, "LCELL");
 }
 else if(gates[gatenum].num_inputs == 2)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_or2");
 }
 else if(gates[gatenum].num_inputs == 3)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_or3");
 }
 else if(gates[gatenum].num_inputs == 4)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_or4");
 }
 else if(gates[gatenum].num_inputs == 5)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_or5");
 }
 else if(gates[gatenum].num_inputs == 6)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_or6");
 }

 148

 else if(gates[gatenum].num_inputs == 7)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_or7");
 }
 else if(gates[gatenum].num_inputs == 8)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_or8");
 }
 else if(gates[gatenum].num_inputs == 9)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_or9");
 }
 else if(gates[gatenum].num_inputs == 10)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_or10");
 }
 else if(gates[gatenum].num_inputs == 11)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_or11");
 }
 else if(gates[gatenum].num_inputs == 12)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_or12");
 }
 else
 {}
 }
 else if(!strncmp(gates[gatenum].kind, "NOR", 3))
 {
 gates[gatenum].type = 103;
 if(gates[gatenum].num_inputs == 1)
 {
 strcpy(gates[gatenum].ttlname, "LCELL");
 }
 else if(gates[gatenum].num_inputs == 2)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nor2");
 }
 else if(gates[gatenum].num_inputs == 3)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nor3");
 }
 else if(gates[gatenum].num_inputs == 4)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nor4");
 }

 149

 else if(gates[gatenum].num_inputs == 5)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nor5");
 }
 else if(gates[gatenum].num_inputs == 6)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nor6");
 }
 else if(gates[gatenum].num_inputs == 7)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nor7");
 }
 else if(gates[gatenum].num_inputs == 8)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nor8");
 }
 else if(gates[gatenum].num_inputs == 9)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nor9");
 }
 else if(gates[gatenum].num_inputs == 10)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nor10");
 }
 else if(gates[gatenum].num_inputs == 11)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nor11");
 }
 else if(gates[gatenum].num_inputs == 12)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_nor12");
 }
 else
 {}
 }
 else if(!strncmp(gates[gatenum].kind,"XOR",3))
 {
 gates[gatenum].type = 104;
 if(gates[gatenum].num_inputs == 1)
 {
 strcpy(gates[gatenum].ttlname, "LCELL");
 }
 else if(gates[gatenum].num_inputs == 2)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xor2");
 }

 150

 else if(gates[gatenum].num_inputs == 3)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xor3");
 }
 else if(gates[gatenum].num_inputs == 4)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xor4");
 }
 else if(gates[gatenum].num_inputs == 5)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xor5");
 }
 else if(gates[gatenum].num_inputs == 6)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xor6");
 }
 else if(gates[gatenum].num_inputs == 7)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xor7");
 }
 else if(gates[gatenum].num_inputs == 8)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xor8");
 }
 else if(gates[gatenum].num_inputs == 9)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xor9");
 }
 else if(gates[gatenum].num_inputs == 10)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xor10");
 }
 else if(gates[gatenum].num_inputs == 11)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xor11");
 }
 else if(gates[gatenum].num_inputs == 12)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xor12");
 }
 else
 {}
 }
 else if(!strncmp(gates[gatenum].kind,"XNOR",4))
 {
 gates[gatenum].type = 105;

 151

 if(gates[gatenum].num_inputs == 1)
 {
 strcpy(gates[gatenum].ttlname, "LCELL");
 }
 else if(gates[gatenum].num_inputs == 2)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xnor2");
 }
 else if(gates[gatenum].num_inputs == 3)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xnor3");
 }
 else if(gates[gatenum].num_inputs == 4)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xnor4");
 }
 else if(gates[gatenum].num_inputs == 5)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xnor5");
 }
 else if(gates[gatenum].num_inputs == 6)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xnor6");
 }
 else if(gates[gatenum].num_inputs == 7)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xnor7");
 }
 else if(gates[gatenum].num_inputs == 8)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xnor8");
 }
 else if(gates[gatenum].num_inputs == 9)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xnor9");
 }
 else if(gates[gatenum].num_inputs == 10)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xnor10");
 }
 else if(gates[gatenum].num_inputs == 11)
 {
 strcpy(gates[gatenum].ttlname, "stdmr_xnor11");
 }
 else if(gates[gatenum].num_inputs == 12)
 {

 152

 strcpy(gates[gatenum].ttlname, "stdmr_xnor12");
 }
 else
 {}
 }
 else if(!strncmp(gates[gatenum].kind, "INV", 3))
 {
 gates[gatenum].type = 106;
 strcpy(gates[gatenum].ttlname, "stdmr_inv");
 }
 else if(!strncmp(gates[gatenum].kind, "FLIP", 4))
 {
 gates[gatenum].type = 107;
 strcpy(gates[gatenum].ttlname, "stdmr_flip_flop");
 }
 else if(!strncmp(gates[gatenum].kind, "TRIBU", 5))
 {
 gates[gatenum].type = 108;
 strcpy(gates[gatenum].ttlname, "TRI");
 }
 else if(!strncmp(gates[gatenum].kind, "FILTE", 5))
 {
 strcpy(gates[gatenum].ttlname, "LCELL");
 }
 else if(!strncmp(gates[gatenum].kind, "DELA", 4))
 {
 strcpy(gates[gatenum].ttlname, "LCELL");
 }
 else
 {
 // printf("Error in input file at %s\n", gates[gatenum].name);
 // exit(1);
 }

 printf("Gate kind : %s\n", gates[gatenum].kind);

// printf("Gate output is : %s\n", &temp_out);

 int inctr = 0 ;

 /*
 * Now that we have got the number of inputs and outputs for this
 * gate, the next input number of fields(...ofcourse not
 * counting the "(" and other fields) will be net names. But first
 * we need to take care of the order. i.e. input or output first.

 153

 */

 /* sscanf does not work like fscanf. It reads the buffer from the start again.
 * Thus have to get rid of the stuff before the "(", i.e. after the port map.
 */

 strcpy(temp4, strchr(buf, '('));

 if((!strcmp(gates[gatenum].sig_order, "in")))
 {

 /*
 * Now perform the output net operations.
 */

 sscanf(temp4, "%s %s %s %s", &s31, &temp2, &temp3, &temp_out);
 strcpy(temp4, strstr(temp4, temp_out));

 /*
 * Check if the output net has been scanned before. If scanned
 * get the net number and store it in the variable
 * "scannet"
 */

 for (i = 0; i < MAXNETS ; i++)
 {
 if (! strcmp(nets[i].name, temp_out))
 {
 scanned = true ;
 scannet = i ;
 break ;
 }
 else
 {
 scanned = false ;
 }
 }

 /*
 * same as what we had done for inputs
 */

 if(!scanned)
 {
 /*
 * Store the name of the net scanned

 154

 */
 strcpy (nets[netnum].name, temp_out) ;
 /*
 * Store only the outputs of all gates
 */
 strcpy(nets[outnum].outname, temp_out);

 if(!strcmp(gates[i].kind, "IN")&&(gates[i].num_inputs!=1))
 {
 nets[netnum].int_output = true;
 }

 /*
 * Add the net number to the output net of gate
 */
 gates[gatenum].out_netnum = netnum;

 /*
 * Store the gate number as the gate whose output is this
 * net
 */
 nets[netnum].fan_out_gateid = gatenum;
 /*
 * Increae the number of nets scanned
 */
 netnum++;
 outnum++;

 }

 /*
 * Net has been scanned before
 */
 else
 {
 /*
 * scan the net number as the number of its output net
 */
 gates[gatenum].out_netnum = scannet;
 /*
 * Store the gate number as the gate whose output is this
 * net
 */
 nets[scannet].fan_out_gateid = gatenum;
 }

 155

 for(j = 1; j < gates[gatenum].num_outputs; j++)
 {
 sscanf(temp4, "%s %s %s %s %s", &s31,&temp1, &temp2, &temp3,
&temp_out);
 strcpy(temp4, strstr(temp4, temp_out));
 /*
 * Check if the output net has been scanned before. If scanned
 * get the net number and store it in the variable
 * "scannet"
 */

 for (i = 0; i < MAXNETS ; i++)
 {
 if (! strcmp(nets[i].name, temp_out))
 {
 scanned = true ;
 scannet = i ;
 break ;
 }
 else
 {
 scanned = false ;
 }
 }

 /*
 * same as what we had done for inputs
 */
 if(!scanned)
 {
 /*
 * Store the name of the net scanned
 */
 strcpy (nets[netnum].name, temp_out) ;

 /*
 * Add the net number to the output net of gate
 */
 gates[gatenum].out_netnum = netnum;

 if(!strcmp(gates[i].kind, "IN")&&(gates[i].num_inputs!=1))
 {
 nets[netnum].int_output = true;
 }

 156

 /*
 * Store the gate number as the gate whose output is this
 * net
 */
 nets[netnum].fan_out_gateid = gatenum;
 /*
 * Increae the number of nets scanned
 */
 netnum++;

 }

 /*
 * Net has been scanned before
 */
 else
 {
 /*
 * scan the net number as the number of its output net
 */
 gates[gatenum].out_netnum = scannet;
 /*
 * Store the gate number as the gate whose output is this
 * net
 */
 nets[scannet].fan_out_gateid = gatenum;
 }
 }

 strcpy(temp4, strstr(temp4, temp_out));

 for(j = 0; j < gates[gatenum].num_inputs; j++)
 {

 /* sscanf does not work like fscanf. It reads the buffer from the start again.
 * Thus have to get rid of the stuff before the inputs.
 */

 sscanf(temp4, "%s %s %s %s %s", &s31,&s37, &temp2, &temp3,
&temp_in);
 printf("Input Net name : %s and its number %d\n",&temp_in,j);
 strcpy(temp4, strstr(temp4, temp_in));
 // printf("%s\n", &temp4);

 /*
 * Check if the net has been scanned before. If scanned

 157

 * get the net number and store it in the variable
 * "scannet"
 */
 for (i = 0; i < MAXNETS ; i++)
 {
 if (!strcmp (nets[i].name, temp_in))
 {
 scanned = true ;
 scannet = i ;
 break ;
 }
 else
 {
 scanned = false ;
 }
 }

 /*
 * Net not scanned before
 */
 if(!scanned)
 {
 /*
 * Store the name of the net scanned
 */
 strcpy(nets[netnum].name, temp_in) ;

 strcpy(nets[in_num].inname, temp_in) ;

 /*
 * Add the net number to the input list of the gate
 */
 gates[gatenum].input_list[inctr] = netnum ;
 // printf("Net number %d\n", netnum);
 /*
 * Add the gate number to the input list of the net
 */
 nets[netnum].fan_in_gateid[nets[netnum].fan_out] = gatenum ;
 /*
 * Increase the count of nets scanned
 */
 netnum++ ;
 in_num++;
 inctr++ ;
 }

 158

 /*
 * Net has been scanned before
 */
 else
 {
 /*
 * Add the net number to the input list of the gate
 */
 gates[gatenum].input_list[inctr] = scannet ;
 /*
 * Since it has been scanned before increase the
 * fanout of the net
 */
 nets[scannet].fan_out++ ;
 /*
 * Add the gate number to the input list of the net
 */
 nets[scannet].fan_in_gateid[nets[scannet].fan_out] = gatenum;
 inctr++;
 }
 }
 }

 /*
 * If the "in" signal is listed first, then do this.
 */

 else
 {

 /* sscanf does not work like fscanf. It reads the buffer from the start again.
 * Thus have to get rid of the stuff before the inputs.
 */

 sscanf(temp4, "%s %s %s %s", &s31, &temp2, &temp3, &temp_in);
 printf("Input Net name : %s and its number %d\n",&temp_in,0);
 strcpy(temp4, strstr(temp4, temp_in));
 // printf("%s\n", &temp4);

 /*
 * Check if the net has been scanned before. If scanned
 * get the net number and store it in the variable
 * "scannet"
 */
 for (i = 0; i < MAXNETS ; i++)

 159

 {
 if (!strcmp (nets[i].name, temp_in))
 {
 scanned = true ;
 scannet = i ;
 break ;
 }
 else
 {
 scanned = false ;
 }
 }

 /*
 * Net not scanned before
 */
 if(!scanned)
 {
 /*
 * Store the name of the net scanned
 */
 strcpy(nets[netnum].name, temp_in) ;

 strcpy(nets[in_num].inname, temp_in) ;
 /*
 * Add the net number to the input list of the gate
 */
 gates[gatenum].input_list[inctr] = netnum ;
 // printf("Net number %d\n", netnum);
 /*
 * Add the gate number to the input list of the net
 */
 nets[netnum].fan_in_gateid[nets[netnum].fan_out] = gatenum ;
 /*
 * Increase the count of nets scanned
 */
 netnum++ ;
 inctr++ ;
 in_num++;
 }

 /*
 * Net has been scanned before
 */
 else

 160

 {
 /*
 * Add the net number to the input list of the gate
 */
 gates[gatenum].input_list[inctr] = scannet ;
 /*
 * Since it has been scanned before increase the
 * fanout of the net
 */
 nets[scannet].fan_out++ ;
 /*
 * Add the gate number to the input list of the net
 */
 nets[scannet].fan_in_gateid[nets[scannet].fan_out] = gatenum;
 inctr++;
 }

 for(j = 1; j < gates[gatenum].num_inputs; j++)
 {

 /* sscanf does not work like fscanf. It reads the buffer from the start again.
 * Thus have to get rid of the stuff before the inputs.
 */

 sscanf(temp4, "%s %s %s %s %s", &s31, &temp1, &temp2, &temp3,
&temp_in);
 printf("Input Net name : %s and its number %d\n",&temp_in,j);
 strcpy(temp4, strstr(temp4, temp_in));
 // printf("%s\n", &temp4);

 /*
 * Check if the net has been scanned before. If scanned
 * get the net number and store it in the variable
 * "scannet"
 */
 for (i = 0; i < MAXNETS ; i++)
 {
 if (!strcmp (nets[i].name, temp_in))
 {
 scanned = true ;
 scannet = i ;
 break ;
 }
 else
 {
 scanned = false ;

 161

 }
 }

 /*
 * Net not scanned before
 */
 if(!scanned)
 {
 /*
 * Store the name of the net scanned
 */
 strcpy(nets[netnum].name, temp_in) ;

 strcpy(nets[in_num].inname, temp_in) ;
 /*
 * Add the net number to the input list of the gate
 */
 gates[gatenum].input_list[inctr] = netnum ;
 // printf("Net number %d\n", netnum);
 /*
 * Add the gate number to the input list of the net
 */
 nets[netnum].fan_in_gateid[nets[netnum].fan_out] = gatenum ;
 /*
 * Increase the count of nets scanned
 */
 netnum++ ;
 inctr++ ;
 in_num++;
 }

 /*
 * Net has been scanned before
 */
 else
 {
 /*
 * Add the net number to the input list of the gate
 */
 gates[gatenum].input_list[inctr] = scannet ;
 /*
 * Since it has been scanned before increase the
 * fanout of the net
 */
 nets[scannet].fan_out++ ;

 162

// nets[scannet].gate_in =
 /*
 * Add the gate number to the input list of the net
 */
 nets[scannet].fan_in_gateid[nets[scannet].fan_out] = gatenum;
 inctr++;
 }
 }

 /*
 * Now perform the output net operations.
 */

// strcpy(temp4, strstr(temp4, temp_in));

 for(j = 0; j < gates[gatenum].num_outputs; j++)
 {
 sscanf(temp4, "%s %c %s %s %s", &s31,&s37, &temp2, &temp3,
&temp_out);
 strcpy(temp4, strstr(temp4, temp_out));
 /*
 * Check if the output net has been scanned before. If scanned
 * get the net number and store it in the variable
 * "scannet"
 */

 for (i = 0; i < MAXNETS ; i++)
 {
 if (! strcmp(nets[i].name, temp_out))
 {
 scanned = true ;
 scannet = i ;
 break ;
 }
 else
 {
 scanned = false ;
 }
 }

 /*
 * same as what we had done for inputs
 */
 if(!scanned)
 {

 163

 /*
 * Store the name of the net scanned
 */
 strcpy (nets[netnum].name, temp_out) ;
 /*
 * Store only the outputs of all gates
 */
 strcpy(nets[outnum].outname, temp_out);

 if(!strcmp(gates[i].kind, "IN")&&(gates[i].num_inputs!=1))
 {
 nets[netnum].int_output = true;
 }
 /*
 * Add the net number to the output net of gate
 */
 gates[gatenum].out_netnum = netnum;

 /*
 * Store the gate number as the gate whose output is this
 * net
 */
 nets[netnum].fan_out_gateid = gatenum;
 /*
 * Increae the number of nets scanned
 */
 netnum++;
 outnum++;

 }

 /*
 * Net has been scanned before
 */
 else
 {
 /*
 * scan the net number as the number of its output net
 */
 gates[gatenum].out_netnum = scannet;
 /*
 * Store the gate number as the gate whose output is this
 * net
 */
 nets[scannet].fan_out_gateid = gatenum;
 }

 164

 }

 }

 gatenum++;
 printf("gate no %d No of nets = %d\n",gatenum, netnum);

 } /*Closing the if(strcmp(st, "<=")) */

 else
 {
 sscanf(buf, "%s %s %s", &gnamefield, &s2, &temp_out);
 printf("\nGates name %s\n", gates[gatenum].name);
 strcpy(gates[gatenum].redun, s2);
 strcpy(gates[gatenum].outname, temp_out);
 printf("\n%s \n ", gates[gatenum].redun);
 strcpy(gates[gatenum].buf, buf);
 gatenum++;

 // printf("%s\n", gates[gatenum].buf);
 }

 } /*Closing the while(start_scan) */

 fclose(fp);
 totalgates = gatenum;
 totalnets = netnum;
 totaloutputs = outnum;
 totalinputs = in_num;
 printf("Total no of gates is %d Total no of nets is %d\n\n",totalgates, totalnets);

 }
}

/*
 * This routine checks and sets int isinput, isoutput flag of that
 * particular net. This is done to find out the primary inputs and
 * primary outputs of the circuit
 */

void SetNetInOut(Gate* gates, Net* nets)
{
 int gatenum, netnum, outnum, in_num ;
 int status, i ;
/*
 for (outnum = 0; outnum < totaloutputs; outnum++)

 165

 {
 printf("Output : %s and its number : %d\n", nets[outnum].outname, outnum);
 }
 for (in_num = 0; in_num < totalinputs; in_num++)
 {
 printf("Input : %s and its number : %d\n", nets[in_num].inname, in_num);
 }
*/

 for(netnum = 0 ; netnum < totalnets ; netnum++)
 {
 /*
 * The net is a primary input net only if this net was not
 * scanned as a output of any gate..or its fan_out_gateid still
 * holds the default value which is "-1" (for some reason i
 * chose -1 ;))
 */
// printf("Netnum %d => fanout : %d\n",netnum, nets[netnum].fan_out);
/*
 if(-1 != nets[netnum].fan_out_gateid)
 {
 printf("Net %s is an internal signal\n", nets[netnum].name);
 }

 if(-1 == nets[netnum].fan_out_gateid)
 {
 nets[netnum].isinput = true ;
 printf("Net %s is a primary input\n", nets[netnum].name);
 strcpy(primary[pri_in].name, nets[netnum].name);
 pri_in++;
 }
 else
 {

 // A net is a primary output only if is not an input to any
 // gates.

 // NOTE: There is a flaw here, in-outs are left out this
 // way. I am trying to fix this.
 //

 for(gatenum = 0; gatenum <= nets[netnum].fan_out; gatenum++)
 {
 if(-1 == nets[netnum].fan_in_gateid[gatenum])
 {
 status = 2 ;

 166

 }
 else
 {
 status = 0;
 break ;
 }
 }
 if(status == 2)
 {
 nets[netnum].isoutput = true;
 printf("Net %s is a primary output\n", nets[netnum].name);
 }
 }
 */

 for (i = 0; i < pri_inputs; i++)
 {
 if(!strcmp(nets[netnum].name, pri_in[i].name))
 {
 nets[netnum].isinput = true;
 }
 }

 for (i = 0; i < pri_outputs; i++)
 {
 if(!strcmp(nets[netnum].name, pri_out[i].name))
 {
 nets[netnum].isoutput = true;
 }
 }

 for (i =0; i < totalgates; i++)
 {
 if(!strcmp(nets[netnum].name, gates[i].outname))
 {
 nets[netnum].isoutput = true;
 printf("TRUE\n");
 }
 }

 }
 return ;
}

 /*

 167

 * This is a routine inserts the signals clock, reset and VDD as inputs to the
 * DFF.
 */

namespace DFlip_Flop
{

 void dffsignal(Gate *gates, Net *nets)
 {
 int i, j;
 bool scanned = false;
 int scangate = 0;
 printf("Total gates : %d\n", totalgates);
 printf("Total nets : %d\n", totalnets);
 /*
 for(i = 0; i < totalgates ; i++)
 {
 if(!strncmp(gates[i].kind, "DF", 2))
 {
 strcpy(nets[gates[i].input_list[1]].name, "clock");
 strcpy(nets[gates[i].input_list[2]].name, "VCC");
 strcpy(nets[gates[i].input_list[3]].name, "VCC");
 }
 if(!strncmp(gates[i].kind,"XOR",3))
 {
 strcpy(nets[gates[i].input_list[1]].name, "GND");
 }
 }
 */
 }
}

 /*
 * This is a routine that removes (not really) the technology dependant delay
components from the VHDL netlist, as
 * obtained from MAXPLUS II or QUARTUS. Actually it reassigns the signals.
 */
/*
namespace Remove_Delay
{

 void remove(Gate *gates, Net *nets)
 {
 int i, j, k, l;

 for(i = 0; i < totalgates ; i++)

 168

 {
 l = 0;
 if(strcmp(gates[i].kind, "IN")&&(gates[i].num_inputs==1))
 {
 for(j = 0; j < totalgates ; j++)
 {
 for(k = 0; k < gates[j].num_inputs; k++)
 {
 if(!strcmp(nets[gates[i].out_netnum].name,
nets[gates[j].input_list[k]].name))
 {
 // strcpy(nets[gates[j].input_list[k]].name,
nets[gates[i].input_list[0]].name);
 // printf("Gate delay num
 l++;

 }
 }

 }
 }

 }

 //Get rid of the TRIBUF at the output.

 for(i = 0; i < totalgates ; i++)
 {
 if(!strcmp(gates[i].ttlname, "TRI"))
 {
 for(j = 0; j < totalgates ; j++)
 {
 if((gates[j].num_inputs!=1)||!strcmp(gates[j].name, "IN")) // To get rid
of the delay elements.
 {
 if(!strcmp(nets[gates[i].input_list[0]].name,
nets[gates[j].out_netnum].name))
 {
 strcpy(nets[gates[j].out_netnum].name,
nets[gates[i].out_netnum].name);
 nets[gates[j].out_netnum].isoutput = true;

 // printf("%s input : %s\n",gates[i].name,
nets[gates[i].input_list[0]].name);

 169

 // printf("%s output : %s\n",gates[i].name,
nets[gates[i].out_netnum].name);
 // printf("%s output : %s\n",gates[j].name,
nets[gates[j].out_netnum].name);
 // printf("i = %d, j = %d\n\n", i, j);

 }
 }
 }

 }
 }

 }
}
*/

/*
 The following routine determines the no of modules required per redundant group
according
 to the STDMR algorith.
*/

namespace Redundant_Modules
{
 void R_modules (Gate *gates)
 {
 int gatenum;

 /* Now we determine the no of redundant modules required for each gate
 based on the activity of the most idle path according to STDMR.
 */

 for (gatenum = 0; gatenum < totalgates; gatenum++)
 {
 if(!strcmp(gates[gatenum].redun, ":"))
 {
 gates[gatenum].add_redundancy = 1;
 gates[gatenum].modules = 2;
 }
 else
 {
 gates[gatenum].add_redundancy = 0;
 }
 }
 }

 170

}

/*
 * This routine inserts the redundant modules in the VHDL gatelevel netlist file.
 * The control circuitry is in accordingly.
 */

namespace Insert_Redundancy
{
 void InsertStdmr(Gate *gates, Net *nets, Multi *tempnets, char* cktname, char* outfile)
 {
 long int i, j, q, r, k = 0, count = 0, countn = 0, index, c = 0, b, d, e, f, g;
 int a;
 char temp[200];
 char *separate = " ";
 char gateinstance[10][instance];
 char muxinstance[10][instance];
 char muxinput0[10][instance];
 char muxinput1[10][instance];
 char muxtemp[10][instance];
 char signals[1000][1000];
 bool linescan = false;
 bool muxscan0 = false;
 bool muxscan1 = false;
 char buf_temp[MAXLENGTH];
 char buf_new[50];
 char line_temp[50];
 char buf[MAXLENGTH];
 char buf_smr1[MAXLENGTH], buf_smr2[MAXLENGTH],
buf_smr3[MAXLENGTH] ;
 char ent[10];
 int intro, aa;
 bool sigscan = false;

 FILE *fp,*fp1,*fp2,*fp3,*fp4;
 fp = fopen("temp.out", "w+r"); /* Create and open a temporary file to write the output
*/
 fp1 = fopen(cktname,"r"); /* Open the original file for reading */
 fp2 = fopen(outfile,"w+a"); /* open the file in write mode..to append it */
 fp3 = fopen("intro.txt","r"); /* Open the intro file */
 fp4 = fopen("components.txt","r"); /* Open the file with the component declarations */

 if(fp == NULL)
 {
 printf("Unable to Create File temp.out");
 exit(0);

 171

 }
 if(fp1 == NULL)
 {
 printf("Unable to Open the Original File..Exiting!!");
 exit(0);
 }
 if(fp2 == NULL)
 {
 printf("Unable to create the _smr File");
 exit(0);
 }

 /* At this stage the intro is added to the start of the VHDL file */

 for(i=0;i<34;i++)
 {
 fgets(buf,200,fp3);
 fputs(buf, fp2);
 }
//printf("TEST 0\n");
 /*
 * Get rid of all the entities before the last (MAIN) entity.
 * These are basically the entities that describes the components
 * within the MAIN entity, but is not needed since we use the
 * predefined components in the STDMR Library.
 */
/*
 int FPGA_count = 0;
 while(1)
 {
 fgets(buf,200,fp1);
 sscanf(buf, "%s %s",&buf_new, &line_temp);
 if(!strcmp(line_temp,"FPGA_Compiler_II;"))
 {
 FPGA_count++;
 }
 if(FPGA_count == (file.num_FPGA - 1))
 {
 break;
 }
 }
*/

//printf("TEST 1\n");
/* Now Start scanning the VHDL file until the first component of the last entity is found
*/

 172

 r = 0;
 int s = 0;
 while(1)
 {
 fgets(buf,200,fp1);
 sscanf(buf, "%s %s %s %s %s", &line_temp, &buf_temp, &buf_new, &temp,
&ent);
// printf("TEST 2\n");
 if(!strcmp(line_temp, "use")&&(s == 0))
 {
 fprintf(fp2, "use IEEE.std_logic_1164.all;\n");
 fprintf(fp2, "library work;\n");
 fprintf(fp2, "use work.stdmr_package.ALL;\n\n");
 s++;
 }
 else if(!strcmp(line_temp, "entity"))
 {
 sprintf(buf_smr1, "%s %s_smr %s\n", &line_temp, &buf_temp,
&buf_new);
 fputs(buf_smr1, fp2);
 }
 else if(!strcmp(line_temp, "port"))
 {
 fprintf(fp2, " port (\n");
 fprintf(fp2, " s0 : in std_logic ;\n");
 fprintf(fp2, " s1 : in std_logic ;\n");
 fprintf(fp2, " clk_out : in std_logic ;\n");
 }
 else if(!strcmp(line_temp, "end")&&(r == 0))
 {
 fprintf(fp2, "%s %s_smr %s\n", &line_temp, &buf_temp, &buf_new);
 r++;
 }
 else if(!strcmp(line_temp, "architecture"))
 {
 sprintf(buf_smr3, "%s %s %s %s_smr %s\n", &line_temp, &buf_temp,
&buf_new, &temp, &ent);
 fputs(buf_smr3, fp2);
 }
 else
 {
 fputs(buf, fp2);
 }

 if(!strcmp(ent,"is"))
 {

 173

 break;
 }
 }
 fputs("\n", fp2);

 /* Add the TTL components to the VHDL file */
 /*
 for(i=0;i<142;i++)
 {
 fgets(buf,200,fp4);
 fputs(buf, fp2);
 }
 fputs("\n", fp2);
 fputs("\n", fp2);
 */
/* Add the signals of the original VHDL file to the smr file at this stage */
//printf("TEST 2\n");
 while(1)
 {
 fgets(buf,200,fp1);
 sscanf(buf, "%s", &line_temp);
// printf("%s", buf);
 if(!strcmp(line_temp,"signal"))
 {
 break;
 }
 }
 fputs(buf, fp2);

 while(1)
 {
 fgets(buf,200,fp1);
 sscanf(buf, "%s", &line_temp);
 if(!strcmp(line_temp,"begin"))
 {
 break;
 }
 fputs(buf, fp2);
 }

 fclose(fp1);

 /*
 * The following section adds the input mux's to the primary inputs.
 */

 174

 for (a = 0; a < pri_inputs; a++)
 {
 printf("Net no %d and name = %s\n", a, pri_in[a].name);

 sprintf(muxinput0[a], "inmux_0_%d : stdmr_mux port map(s0, clk_out,
%s, %s_0);\n", a, pri_in[a].name, pri_in[a].name);
 muxinput0[a][strlen(muxinput0[a])] = '\0';

 sprintf(muxinput1[a], "inmux_1_%d : stdmr_mux port map(s1, clk_out,
%s, %s_1);\n", a, pri_in[a].name, pri_in[a].name);
 muxinput1[a][strlen(muxinput1[a])] = '\0';

 fputs(muxinput0[a], fp);
 fputs(muxinput1[a], fp);
 }

 for(i = 0; i < totalgates ; i++)
 {
 /*
 * Delete all the delay components, i.e. all components with a single input
 * except the inverter (INV).
 */
 /*
 if(!(strcmp(gates[i].kind, "IN")&&(gates[i].num_inputs==1)))
 {
 // This is to get rid of the TRI buffer (at the output).

 if(strcmp(gates[i].kind, "TRIBU"))
 {
 */

 for(b = 0; b < gates[i].modules; b++)
 {
 gateinstance[b][0] = '\0'; /*clear the gates string array*/
 }
 for(b = 0; b < gates[i].modules; b++)
 {
 muxinstance[b][0] = '\0'; /*clear the mux string array*/
 }

 for(b = 0; b < gates[i].modules; b++)
 {
 muxtemp[b][0] = '\0'; /*clear the mux string array*/
 }
 //printf("TEST %d\n", i);
 if(gates[i].add_redundancy == 0)

 175

 {
 fputs(gates[i].buf, fp);
 fputs("\n", fp);
 }
 else
 {
 /* Replicate the gate gates[i].modules times */

 for (a = 0; a < gates[i].modules; a++)
 {
 sprintf(gateinstance[a], "%s_%d : %s port map(",gates[i].name, a,
gates[i].ttlname);
 gateinstance[a][strlen(gateinstance[a])] = '\0';

 }

 for (a = 0; a < 2*gates[i].num_inputs; a++)
 {
 sprintf(muxinstance[a], "mux2_%s_%d : stdmr_mux port map(
",gates[i].name, a);
 muxinstance[a][strlen(muxinstance[a])] = '\0';
 }
 /*
 * Create 2 Input Mux's to each input of the gate.
 */

 for (a = 0; a < gates[i].num_inputs; a++)
 {
 sprintf(muxinstance[a] + strlen(muxinstance[a]), "s, clk_out, %s, %s_0",
nets[gates[i].input_list[a]].name, nets[gates[i].input_list[a]].name);

 }

 for (a = gates[i].num_inputs; a < 2*gates[i].num_inputs ; a++)
 {
 sprintf(muxinstance[a] + strlen(muxinstance[a]), "s, clk_out, %s, %s_1",
nets[gates[i].input_list[a - gates[i].num_inputs]].name, nets[gates[i].input_list[a -
gates[i].num_inputs]].name);

 }

 for(j=0; j < gates[i].num_inputs ; j++)
 {
 /*

 176

 * Do if the gate is replicated or its inputs signals are internal. In the stdmr
case
 * the gate is always replicated.
 */

if((gates[nets[gates[i].input_list[j]].fan_out_gateid].add_redundancy)||(nets[gates[i].input
_list[j]].fan_out_gateid == -1))
 {
 for (b = 0; b < gates[i].modules; b++)
 {
 sprintf(gateinstance[b] + strlen(gateinstance[b]), "%s_%d, ",
nets[gates[i].input_list[j]].name, b);
 }

 for (b = 0; b < gates[i].modules; b++)
 {
 strcpy(tempnets[b].name, nets[gates[i].input_list[j]].name);
 }

 char tempc[MAXLENGTH];
 for (b = 0; b < gates[i].modules; b++)
 {
 sprintf(tempc, "_%d", b);
 strcat(tempnets[b].name, tempc);
 }
 /*

 for (b = 0; b < gates[i].modules; b++)
 {
 strcpy(signals[k],tempnets[b].name);
 k++;
 }
 */
 }
 else
 {
 for (b = 0; b < gates[i].modules; b++)
 {
 sprintf(gateinstance[b] + strlen(gateinstance[b]), "%s, ",
nets[gates[i].input_list[j]].name);
 }
 }
 }

 177

 /***
************************/

 for(j=0; j < gates[i].num_inputs; j++)
 {

if((gates[nets[gates[i].input_list[j]].fan_out_gateid].add_redundancy)||(nets[gates[i].input
_list[j]].fan_out_gateid == -1))
 {

 for (b = 0; b < gates[i].modules; b++)
 {
 strcpy(tempnets[b].name, nets[gates[i].input_list[j]].name);
 }

 char tempc[MAXLENGTH];
 for (b = 0; b < gates[i].modules; b++)
 {
 sprintf(tempc, "_%d", b);
 strcat(tempnets[b].name, tempc);
 }

 for (b = 0; b < gates[i].modules; b++)
 {
 strcpy(signals[k],tempnets[b].name);
 k++;
 }

 }

 else
 {
 for (b = 0; b < gates[i].modules; b++)
 {
 sprintf(muxinstance[b] + strlen(muxinstance[b]), ", %s",
nets[gates[i].input_list[j]].name);

 }
 }
 }

 for(j = 0; j < gates[i].num_inputs; j++)

 178

 {
 for(index=0; index <= nets[gates[i].input_list[j]].fan_out;index++)
 {
 if(!gates[nets[gates[i].input_list[j]].fan_in_gateid[index]].add_redundancy)
 {
 c = 0;
 }
 else
 {
 c = 2;
 break;
 }
 }
 }

 if(c != 0)
 {
 for (b = 0; b < gates[i].modules; b++)
 {
 sprintf(gateinstance[b] + strlen(gateinstance[b]), "%s_%d
);\n",nets[gates[i].out_netnum].name,b);
 }

 for (b = 0; b < 2*gates[i].num_inputs; b++)
 {

 sprintf(muxinstance[b] + strlen(muxinstance[b]), ");\n");

 }

 for (b = 0; b < gates[i].modules; b++)
 {
 strcpy(tempnets[b].outname,nets[gates[i].out_netnum].name);
 }

 char tempc[MAXLENGTH];
 for (b = 0; b < gates[i].modules; b++)
 {
 sprintf(tempc, "_%d", b);
 strcat(tempnets[b].outname, tempc);
 }

 for(q = 0; q <= k; q++)
 {

 179

 if(strcmp(tempnets[0].outname,signals[q]) == 0)
 {
 r=2;
 break;
 }
 else
 r=0;
 }

 if(r==0)
 {
 for (b = 0; b < gates[i].modules; b++)
 {
 strcpy(signals[k],tempnets[b].outname);
 k++;
 }
 }

 /*
 * The following prints out the multiplexers thats is added to each input
gate.
 */

 /*
 for (b = 0; b < gates[i].num_inputs; b++)
 {
 if(nets[gates[i].input_list[b]].isinput == true) // Check if the net is a
primary input, if yes, then print as is without the _0 or _1.
 {
 printf("%s \n", muxinstance[b]);
 fputs(muxinstance[b], fp);
 }
 else
 {}
 }

 for (b = gates[i].num_inputs; b < 2*gates[i].num_inputs; b++)
 {
 if(nets[gates[i].input_list[b - gates[i].num_inputs]].isinput == true) //
Check if the net is a primary input, if yes, then print as is without the _0 or _1.
 {
 printf("%s \n", muxinstance[b]);
 fputs(muxinstance[b], fp);
 }

 180

 else
 {}
 }
 */

 for (b = 0; b < gates[i].modules; b++)
 {
 fputs(gateinstance[b], fp);
 }

 // The following prints out the multiplexers thats added to the output gate.
 // Only if it contains a primary output net.

 if(nets[gates[i].out_netnum].isoutput == true)
 {
 char tempcc2[MAXLENGTH] = "\0";
 char tempcc3[MAXLENGTH] = "\0";
 char tempcc4[MAXLENGTH] = "\0";

 sprintf(gateinstance[0], "outmux_%d : stdmr_mux port map (s1, ", count);
 count++;

 for (b = 0; b < gates[i].modules; b++)
 {
 sprintf(tempcc2, "%s_%d ,",nets[gates[i].out_netnum].name, b);
 strcat(tempcc3, tempcc2);
 }

 sprintf(tempcc4, "%s);\n",nets[gates[i].out_netnum].name);
 strcat(tempcc3, tempcc4);
 strcat(gateinstance[0], tempcc3);

 fputs(gateinstance[0], fp);
 }
 }

 else
 {
 for (b = 0; b < gates[i].modules; b++)
 {
 sprintf(gateinstance[b] + strlen(gateinstance[b]), "%s_%d);\n",
nets[gates[i].out_netnum].name,b);
 }

 181

 fputs(gateinstance[0], fp);
 for (b = 0; b < gates[i].modules; b++)
 {
 fputs(gateinstance[b], fp);
 }
 }
 }
// }
// }
// else
// {}
 }

 /* If there is only one instance of this gate then only its first input is
 listed in the signals part of the VHDL file. However, its fan out could
 be more than one of it is the input of a gate that is replicated. Thus,
 have to list its inputs as well. This problem is now solved. See
 explanation above.
 */

 fputs("\nend FPGA_Compiler_II;", fp);
 fclose(fp);

 fp = fopen("temp.out","r");
 int lineno = 0 ;
 float newline = 0;
 q = 0;
 printf("Value of K = %d\n", k);
 while(1)
 {
 // printf("TEST IT 1??? %d\n", q);
 fprintf(fp2,"signal %s", signals[0]);
 strcpy(lines[0].name, signals[0]);
 q++;
 // printf("TEST IT 2 %d\n", q);

 /*
 * Check if the signal has been added to the file before.
 */

 for(i=1; i < k; i++)
 {
 for (j = 0; j < k ; j++)
 {
 if (!strcmp (lines[j].name, signals[i]))
 {

 182

 linescan = true ;
 lineno = i ;
 break ;
 }
 else
 {
 linescan = false ;
 }
 }
 // printf("TEST IT 3 %d\n", i);

 // String contents not scanned before

 if(!linescan)
 {

 // Store the name of the signal scanned

 strcpy(lines[i].name, signals[i]);
 fprintf(fp2," ,%s", lines[i].name);
 lineno++;
 newline++;

 // The following comparison is needed so that we only have 7 signals
 // per line.

 if(roundf(newline/7) == newline/7)
 {
 fprintf(fp2, "\n");
 fprintf(fp2, " ");
 }

 }

 // String contents has been scanned before, then do not add it to the file, i.e.
 // do nothing.

 else
 {

 }
 }
// printf("TEST %d\n", -1);

 183

// fprintf(fp2," %s : std_logic;\n\n", signals[k-1]);
 fprintf(fp2," : std_logic;\n\n");
 fprintf(fp2,"%s\n\n", "begin");

 while(1)
 {
 fgets(temp,200,fp);
 if(strncmp(temp,"end FPGA_Compiler_II;",21) == 0)
 {
 fputs(temp,fp2);
 break;
 }
 fputs(temp,fp2);
 }
 fclose(fp2);
 fclose(fp);
 break;
 }
 }
}

int main()
{
 char cktname[MAXLENGTH] ;
 char timing[MAXLENGTH];
 char basename[MAXLENGTH] ;
 char outfile[MAXLENGTH] ;
 char probfile[MAXLENGTH] ;

 printf("Enter the circuit name without extension: \n") ;
 scanf("%s", cktname) ;

 strcpy(outfile, cktname) ;
 strcpy(basename, cktname) ;
 strcat(outfile,"_smr.vhd") ;
 strcat(cktname, ".vhd") ;

 Compo::num_compo (cktname) ;
 Component_signals::in_out (cktname) ;
 Circuit::BuildCkt (cktname) ;
 SetNetInOut(gates, nets);
// Remove_Delay::remove(gates,nets);
 DFlip_Flop::dffsignal(gates,nets);
 Redundant_Modules::R_modules (gates);
 Insert_Redundancy::InsertStdmr(gates, nets, tempnets, cktname, outfile);

 184

 return 0 ;
}

 185

//This is the stdmr.h library file for the main Code.

#include "iostream"
#include "string"
#include "cmath"
#include "fstream"
#include "stdio.h"
#include "iomanip"
#include "time.h"
#include "strings.h"

#define ZERO 0
#define JUNK 2.0
#define MAXINPUTS 100
#define MAXGATES 5000
#define MAXNETS 5000
#define MAXLENGTH 1000
#define MAXFANOUTS 1000
#define SHORTLENGTH 1000
#define instance 100000

const int AND = 100 ;
const int NAND = 101 ;
const int OR = 102 ;
const int NOR = 103 ;
const int XOR = 104 ;
const int XNOR = 105 ;
const int INV = 106 ;
const int DFF = 107 ;
const int TRIBU = 108;

class Gate
{
public:
 /*
 * Gate name
 */
 char name[MAXLENGTH] ;

 char outname[MAXLENGTH];

 /*
 * Used to eliminate the TRIBUF
 */
 char tri_elim[MAXLENGTH] ;

 186

 /*
 * Individual Gate line contents
 */
 char contents[MAXLENGTH];

 /*
 * Gates TTL part name
 */
 char ttlname[MAXLENGTH];

 /*
 * single assignment names
 */
 char buf[MAXLENGTH] ;

 char redun[10];
 /*
 * Gate kind (AND, NAND etc...)
 */
 char kind[SHORTLENGTH] ;

 char kindname[SHORTLENGTH] ;

 /*
 * Gate signal order, i.e. is the input or output listed first.
 */
 char sig_order[SHORTLENGTH];

 /*
 *Gate time information
 */
 char time[MAXLENGTH] ;
 /*
 * Gate type 100 for and and so on
 */
 int type ;
 /*
 * number of inputs
 */
 int num_inputs ;
 /*
 * number of outputs
 */
 int num_outputs ;

 187

 /*
 * List of inputs
 */
 int input_list[SHORTLENGTH] ;
 /*
 * output net number
 */
 int out_netnum ;
 /*
 * gate activity
 */
 float activity;
 /*
 * No of redundant modules required.
 */
 float modules;
 /*
 * flag to indicate whether this gate has to get redundancy.
 */
 int add_redundancy;

 bool sensitivity ;
 /*
 * flag to indicate whether this gate has to be triplicated ot no
 */
 bool triplicate ;
 /*
 * Default constructor
 /*
 * Default constructor
 */
 Gate () ;
} ;

Gate::Gate()
{
 /*
 * Assign default values
 */
 add_redundancy = false;
}

class Net
{
public:

 188

 /*
 * Net name
 */
 char name[MAXLENGTH] ;

 char outnew[MAXLENGTH];
 /*
 Net timing information
 */
 char timename[MAXLENGTH] ;
 /*Net logic state per clock cycle
 */
 char logic[MAXLENGTH];

 char output[MAXLENGTH];
 /*
 * fan out the net
 */
 int fan_out ;
 /*
 * Used to store the delay nets for comparison.
 */
 char delay_name[MAXLENGTH];
 char outname[MAXLENGTH];
 char inname[MAXLENGTH];
 /*
 * number of gates whose input is this net. Infact this array
 * store the gate numbers
 */
 int fan_in_gateid[MAXFANOUTS] ;
 /*
 * Gate number whose output is this net
 */
 int fan_out_gateid ;
 /*
 * Signal probability value of the net
 */
 float prob ;
 /*
 * flag to indicate if this net is a primary input
 */
 bool isinput ;
 /*
 * flag to indicate if this net is a primary output
 */
 bool isoutput ;

 189

 bool int_output;
 /*
 * Net activity
 */
 int activity;
 /*
 * Default constructor
 */

 Net() ;
};

Net::Net()
{
 /*
 * Assign default values
 */

 int j ;
 fan_out = 0 ;
 fan_out_gateid = -1 ;
 isinput = false ;
 isoutput = false ;
 int_output = false ;
 prob = JUNK ;
 for(j = 0 ; j <MAXFANOUTS ; j++)
 {
 fan_in_gateid[j] = -1 ;
 }

}

class Multi
{
public:
 /*
 * name
 */
 char name[MAXLENGTH] ;

 char outname[MAXLENGTH];

 /*
 * Default constructor
 */

 190

 Multi () ;
} ;

Multi::Multi()
{
 /*
 * Assign default values
 */

}

class Sig
{
public:
 /*
 * name
 */
 char name[MAXLENGTH] ;

 char outname[MAXLENGTH];

 /*
 * Default constructor
 */
 Sig () ;
} ;

Sig::Sig()
{
 /*
 * Assign default values
 */

}

class Line
{
public:
 /*
 * name
 */
 char name[MAXLENGTH] ;

 /*
 * Default constructor
 */

 191

 Line () ;
} ;

Line::Line()
{
 /*
 * Assign default values
 */

}

class Files
{
public:
 /*
 * name
 */
 int start ;
 int end ;
 int sig;
 int num_entity ;
 int end_entity ;
 int num_FPGA ;
 int num_component ;
 int end_component ;

 /*
 * Default constructor
 */
 Files () ;
} ;

Files::Files()
{
 /*
 * Assign default values
 */

}

class Component
{
public:
 /*
 * component kind (AND, NAND etc...)
 */

 192

 char kind[SHORTLENGTH] ;
 /*
 * component signal identity (i.e. input or output)
 */
 char identity[SHORTLENGTH] ;
 /*
 * number of inputs
 */
 int num_inputs ;
 /*
 * number of outputs
 */
 int num_outputs ;
 /*
 * Check if input or output is listed first
 */
 bool sig_order ;

 /*
 * Used to eliminate the TRIBUF
 */
 char tri_elim[MAXLENGTH] ;
 /*
 * Default constructor
 */
 Component () ;
} ;

Component::Component()
{
 /*
 * Assign default values
 */
 sig_order = false ;
}

class primary_in
{
public:
 /*
 * Insert only the primary inputs in the class.
 */
 char name[MAXLENGTH] ;

 primary_in () ;
} ;

 193

primary_in::primary_in()
{
 /*
 * Assign default values
 */
}

class primary_out
{
public:
 /*
 * Insert only the primary inputs in the class.
 */
 char name[MAXLENGTH] ;

 primary_out () ;
} ;

primary_out::primary_out()
{
 /*
 * Assign default values
 */
}

class gate_in
{
public:
 /*
 * Insert only the primary inputs in the class.
 */
 char name[MAXLENGTH] ;

 gate_in () ;
} ;

gate_in::gate_in()
{
 /*
 * Assign default values
 */
}
/*
 * Declare an array of classes

 194

 */
Gate gates[MAXGATES];
Net nets[MAXNETS];
Multi tempnets[MAXNETS];
Sig temp[MAXNETS];
Line lines[MAXLENGTH];
Files file;
Component components[MAXLENGTH];
primary_in pri_in[MAXNETS];
primary_out pri_out[MAXNETS];

/*
 * Global variables
 */
int totalgates = ZERO;
int totalnets = ZERO;
int totalouts = ZERO;
int pri_inputs = ZERO;
int pri_outputs = ZERO;
int totaloutputs;
int totalinputs;
int clock_cycle;
int outgates[2000];

 195

Appendix E
Flatband diagram [ZUKA02]

The flatband diagram is by far the easiest energy band diagram of the MOS transistor.

The term flatband refers to fact that the energy band diagram of the semiconductor is flat,

which implies that no charge exists in the semiconductor. The flatband diagram of an

aluminum-silicon dioxide-silicon MOS structure is shown in Figure E1. Note that a

voltage, VFB, must be applied to obtain this flat band diagram. Indicated on the figure is

also the work function of the aluminum gate, ΦM, the electron affinity of the oxide, χoxide,

and that of silicon, χ, as well as the bandgap energy of silicon, Eg. The bandgap energy of

the oxide is quoted in the literature to be between 8 and 9 electron volt. The reader should

also realize that the oxide is an amorphous material and the use of semiconductor

parameters for such material can justifiably be questioned.

The flat band voltage is obtained when the applied gate voltage equals the workfunction

difference between the gate metal and the semiconductor. If there is also a fixed charge in

the oxide and/or at the oxide-silicon interface, the expression for the flatband voltage

must be modified accordingly. This is necessary to offset any existing electric fields due

to the presence of a fixed charge.

Fig E1 Flatband energy diagram of a metal-oxide-semiconductor (MOS) structure

consisting of an aluminum metal, silicon dioxide and silicon.

 196

Appendix F

The Accompanying CD-ROM

A CD-ROM accompanies this thesis. This CD-ROM contains the following information:

• This thesis document in “.doc” as well as “.pdf” format can be found in the

“Thesis Document” directory.

• Many of the documents referenced in this thesis can be found in the “Referenced

papers and other useful documents” directory.

• Source code for the SMR algorithm can be found in the “code” directory.

• The images used in this thesis have been included in various formats in the

“Thesis Diagrams” directory.

• The papers published as part of this dissertation can be found in the directory

“Published Work”

• The PCB design files of the radiation test boards can be found in the directory

“PCB Files”

• The unpublished SMR papers can be found in the directory “SMR SEU mitigation

papers”

• Additional FPGA information can be found in the directory “FPGA info”

	Declaration
	Synopsis
	Opsomming
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Glossary of Acronyms
	1. Introduction
	2. Background and Related Work forTID effects
	3. Switched Modular Redundancy
	4. Experimental Setup and Methodology
	5. Experimental Results
	6. Conclusions and Recommendations
	References
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F

