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Synopsis 
There is increasing use of commercial components in space technology and it is 

important to recognize that the space radiation environment poses the risk of permanent 

malfunction due to radiation. Therefore, the integrated circuits used for spacecraft 

electronics must be resistant to radiation. 

 

The effect of using the MOSFET device in a radiation environment is that the gate oxide 

becomes ionized by the dose it absorbs due to the radiation induced trapped charges in 

the gate-oxide. The trapped charges in the gate-oxide generate additional space charge 

fields at the oxide-substrate interface. After a sufficient dose, a large positive charge 

builds up, having the same effect as if a positive voltage was applied to the gate terminal. 

Therefore, the transistor source to drain current can no longer be controlled by the gate 

terminal and the device remains on permanently resulting in device failure.  

 

There are four processes involved in the radiation response of MOS devices. First, the 

ionizing radiation acts with the gate oxide layer to produce electron-hole pairs. Some 

fraction of the electron-hole pairs recombine depending on the type of incident particle 

and the applied gate to substrate voltage, i.e. the electric field. The mobility of the 

electron is orders of magnitude larger than that of the holes in the gate oxide, and is swept 

away very quickly in the direction of the gate terminal. The time for the electrons to be 

swept away is on the order of 1ps. The holes that escape recombination remain near their 

point of origin. The number of these surviving holes determines the initial response of the 

device after a short pulse of radiation. The cause of the first process, i.e. the presence 

of the electric field, is the main motivation for design method described in this 

dissertation. 

 

The second process is the slow transport of holes toward the oxide-silicon interface due 

to the presence of the electric field. When the holes reach the interface, process 3, they 

become captured in long term trapping sites and this is the main cause of the permanent 
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threshold voltage shift in MOS devices. The fourth process is the buildup of interface 

states in the substrate near the interface 

 

The main contribution of this dissertation is the development of the novel Switched 

Modular Redundancy (SMR) method for mitigating the effects of space radiation on 

satellite electronics. The overall idea of the SMR method is as follows: A charged 

particle is accelerated in the presence of an electric field. However, in a solid, electrons 

will move around randomly in the absence of an applied electric field. Therefore if one 

averages the movement over time there will be no overall motion of charge carriers in 

any particular direction. On applying an electric field charge carriers will on average 

move in a direction aligned with the electric field, with positive charge carriers such as 

holes moving in the direction of field, and negative charge carriers moving in the 

opposite direction. As is the case with process one and two above. 

 

It is proposed in this dissertation that if we apply the flatband voltage (normaly a zero 

bias for the ideal NMOS transistor) to the gate terminal of a MOS transistor in the 

presence of ionizing radiation, i.e. no electric field across the gate oxide, both the free 

electrons and holes will on average remain near their point of origin, and therefore have a 

greater probability of recombination. Thus, the threshold voltage shift in MOS devices 

will be less severe for the gate terminal in an unbiased condition. The flatband conditions 

for the real MOS transistor is discussed in appendix E. 

 

It was further proposed that by adding redundancy and applying a resting policy, 

one can significantly prolong the useful life of MOS components in space. The fact 

that the rate of the threshold voltage shift in MOS devices is dependant on the bias 

voltage applied to the gate terminal is a very important phenomenon that can be 

exploited, since we have direct control and access to the voltage applied to the gate 

terminal.  If for example, two identical gates were under the influence of radiation and 

the gate voltage is alternated between the two, then the two gates should be able to 

withstand more total dose radiation than using only one gate. This redundancy could be 

used in a circuit to mitigate for total ionizing dose. 
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The SMR methodology would be to duplicate each gate in a circuit, then selectively only 

activating one gate at a time allowing the other to anneal during its off cycle. The SMR 

algorithm was code in the “C” language. In the proposed design methodology, the design 

engineer need not be concerned about radiation effects when describing the hardware 

implementation in a hardware description language. Instead, the design engineer makes 

use of conventional design techniques. When the design is complete, it is synthesized to 

obtain the gate level netlist in edif format. The edif netlist is converted to structural 

VHDL code during synthesis. The structural VHDL netlist is fed into the SMR “C” 

algorithm to obtain the identical redundant circuit components. The resultant file is also a 

structural VHDL netlist. The generated VHDL netlist or SMR circuit can then be mapped 

to a Field Programmable Gate Array (FPGA).  

 

Spacecraft electronic designers increasingly demand high performance microprocessors 

and FPGAs, because of their high performance and flexibility. Because FPGAs are 

reprogrammable, they offer the additional benefits of allowing on-orbit design changes. 

Data can be sent after launch to correct errors or to improve system performance. System 

including FPGAs covers a wide range of space applications, and consequently, they are 

the object of this study in order to implement and test the SMR algorithm. 

 

We apply the principles of reconfigurable computing to implement the Switched Modular 

Redundancy Algorithm in order to mitigate for Total Ionizing Dose (TID) effects in 

FPGA’s. It is shown by means of experimentation that this new design technique 

provides greatly improved TID tolerance for FPGAs. 

 

This study was necessary in order to make the cost of satellite manufacturing as low as 

possible by making use of Commercial off-the-shelf (COTS) components. However, 

these COTS components are very susceptible to the hazards of the space environment. 

 

One could also make use of Radiation Hard components for the purpose of satellite 

manufacturing, however, this will defeat the purpose of making the satellite 

manufacturing cost as low as possible as the cost of the radiation hard electronic 
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components are significantly higher than their commercial counterparts. Added to this is 

the undesirable fact that the radiation hard components are a few generations behind as 

far as speed and performance is concerned, thus providing even greater motivation for 

making use of Commercial components. 

 

Radiation hardened components are obtained by making use of special processing 

methods in order to improve the components radiation tolerance. Modifying the process 

steps is one of the three ways to improve the radiation tolerance of an integrated circuit. 

The two other possibilities are to use special layout techniques or special circuit and 

system architectures. 

 

Another method, in which to make Complementary Metal Oxide Silicon (CMOS) circuits 

tolerant to ionizing radiation is to distribute the workload among redundant modules 

(called Switched Modular Redundancy above) in the circuit. This new method will be 

described in detail in this thesis. 
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Opsomming 
Daar is ‘n verhoogde gebruik van kommersieële komponente in die ruimte en dit is 

belangrik om die risiko van bestaling in die ruimte omgewing in erken agv die risiko van 

permanente beskadiging te wyte aan bestraling.  Dit is vir hierdie rede, dat die 

geintegreerde stroombane wat gebruik word vir ruimte elektronika bestand teen 

bestraling moet wees. 

 

Die effek van die gebruik van die MOSFET toerusting in ‘n bestralings omgewing is dat 

die hek oksied ge-ioniseer word deur die gevangde bestralings ge-induseerde gevange 

ladings in die hek-oksied.  Die vaste lading in die hek-oksied produseer ’n addisioneele 

spannings veld by die oxide-substraat intervlak.  Na 'n voldoende dosis, vorm ‘n groot 

positieve lading, en dit het dieselfde effek as 'n positief spanning wat oor die hek aangelê 

word.  Om hierdie rede, kan die transistor die stroom tussen die drein en “source” nie 

meer afskakel nie en die transistor bly permanent aan geskakel wat die stroombaan laat 

faal.  

 

Daar is vier prosesse betrokke in die bestralings effek op MOS komponente.  Eerstens, 

die ioniseering bestraling se impak op die hek oksied laag produseer elektron-holte pare.  

‘n Fraksie van die elektroon-holte pare herkombineer afhangend op die soort van partikel 

en die hek tot substraat spanning, agv byvoorbeeld die elektries veld op die hek. Die 

mobilisasie van die elektrone is veel groter as die van die holtes in die hek oksied, en die 

elektrone beweeg baie gou in die rigting van die hek terminaal.  Die tyd vir die elektrone 

om te weg te beweeg is in die orde van 1ps.  Die holtes wat herkombinasie ontsnap bly 

naby hul punt van oorsprong. Die aantal van die oorlewende holtes bepaal die 

aanvanklike effek van die komponent na 'n kort pols van bestraling.  Die oorsaak van die 

eerste proses en die teenwoordigheid van die elektriese veld is die hoof motivering vir die 

ontwerp metode wat beskryf word in hierdie verhandeling. 
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Die tweede proses is die stadige vervoer van holtes na die oksied-silikon koppelvlak as 

gevolg van die teenwoordigheid van die elektriese veld.  Wanneer die holtes die 

koppelvlak bereik, proses 3, word hulle gevang in lank termyn areas en die positiewe 

lading is die hoof oorsaak van die permanente drumpel spanning verskuiwing in MOS 

komponente.  Die vierde proses is die opbou van koppelvlak toestande in die substraat 

naby die koppelvlak. 

 

Die hoof bydrae van hierdie verhandeling is die ontwikkeling van die Skakel Modulêr  

Oortolligheid (SMR) metode om die effekte van die ruimte bestraling op sateliet 

elektronika te verminder.  Die uitgangspunt van die SMR metode is as volg: 'n elektron 

word versnel in die teenwoordigheid van 'n elektriese veld.  Maar in ’n vaste stof, sal die 

elektrone na willekeur rond beweeg in die afwesigheid van 'n aangelegde elektriese veld.  

Om hierdie rede, as ons die beweging gemiddelt oor tyd meet sal daar geen algehele 

beweging van lading draers in enige presiese rigting wees nie.  Met die aanwending van 

'n elektries veld sal lading draers op gemiddeld beweeg in 'n rigting gerig met die 

elektries veld, met positief lading draers soos holtes, beweeg in die rigting van die veld, 

en negatiewe ladind draers beweeg in die teenoorgestelde rigting.  

 

Dit word voorgestel in hierdie verhandeling dat indien ons 'n nul spanning aan wend oor 

die hek terminaal van 'n MOS transistor in die teenwoordigheid van ioniseerende 

bestraling, deur byvoorbeeld geen elektriese veld oor die hek aan te lê nie, dan sal beide 

die vry elektrone en holtes gemiddeld naby hul punt van oorsprong bly, en om hierdie 

rede het hulle ‘n groter waarskynlikheid van herkombinasie.  Dus, die drempel spanning 

aanpassing in MOS komponente sal kleiner wees vir die hek terminaal in 'n nul spannings 

kondisie. 

 

Dit word verder voorgestel dat deur oortolligheid by te voeg en die aanwending van 'n rus 

beleid, dat die leeftyd van MOS komponente beduidend verleng kan word in die ruimte. 

Die feit dat die tempo van die drumpel spanning verandering in MOS komponente 

afhanklik is van die spanning wat aangewend word tot die hek terminal, is 'n baie 

belangrike verskynsel wat uitgebuit kan word.  Met direkte beheer en toegang tot die 
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spanning wat aangelê word op die hek terminaal.  Indien byvoorbeeld, twee identiese 

hekke onder die invloed van bestraling was, en die hek spanning word gewissel tussen 

die twee, dan behoort die twee hekke instaat te wees om meer bestand te wees teen totale 

dosis bestraling, in vergelyking wanner net een hek gebruik word.  Hierdie oortolligheid 

kan gebruik word in elektronika om die totale ioniseerings dosis te verminder. 

 

Die SMR metode behels die dupliseering van elke hek in 'n elektroniese stroombaan.  

Daarna word selektief een hek op 'n tyd ge-aktifeer om toe te laat dat die ander herstel 

gedurende sy “af” kringloop.  Die SMR algoritme is gekode in die “C” taal. In die 

voorgestelde ontwerp metode, hoef die ontwerp ingeneur nie bekommerd te wees omtrent 

bestraling effekte wanneer die hardeware implementasie in 'n hardeware beskrywing taal 

beskryf word nie. In plaas daarvan, maak die ontwerp ingeneur gebruik van 

konvensionele ontwerp tegnieke.  Wanneer die ontwerp voltooi is, word dit gesintetiseer 

om die hek vlak netlist in edif formaat te verkry. Die edif netlist word dan omgekeer na 

strukturele VHDL kode gedurende sintese. Die strukturele VHDL netlist word dan 

gevoed binne-in die SMR “C” algoritme om die identiese oorbodige stroombaan 

komponente te verkry. Die resultaat is ook 'n strukturele VHDL netlist. Die ontwikkelde 

VHDL netlist of SMR stroombaan kan dan oorgedra word tot 'n veld programmeerbare 

hek struktuur (FPGA). 

 

Ruimtetuig elektroniese ontwerpers benodig meer en meer hoë werkverrigting 

mikroprosesseerders en FPGAs weens hul hoë werkverrigting en buigsaamheid. Omdat 

FPGAs herprogrameerbaar is, bied hulle die addisioneel voordele om dit moontlik te 

maak om ruimte wentelbaan ontwerp veranderings te doen.  Data kan gestuur word na 

lansering om foute te korigeer of om stelsel werkverrigting te verbeter.  Stelsels wat  

FPGAs insluit word gebruik in 'n wye reeks van die ruimte applikasies, en gevolglik, is 

FPGAs die objek van hierdie studie ten einde die SMR algoritme te implementeer en te 

toets. 

 

Ons gebruik die beginsels van her-konfigureerbare logika om die SMR algoritme te 

implementeer ten einde ’n groter toleransie van elektronika te kry in die teenwoordigheid 
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van totaal ioniseering dosis (TID) effekte in FPGAs.  Daar is eksperimenteel aangetoon 

dat hierdie nuwe ontwerp tegniek voorsien ’n groot verbetering in TID toleransie vir 

FPGAs. 

 

Hierdie studie was nodig ten einde die koste van sateliet vervaardiging so laag as 

moontlik te maak deur gebruik te maak van kommersieële “af-die-rak” (COTS) 

komponente. Die problem is dat hierdie COTS komponente is nooit ontwerp om 

bestralings bestand te wees nie en hulle is baie vatbaar vir bestraling in ’n ruimte 

omgewing. 

 

Ons kan ook gebruik maak van bestralings verharde komponente vir die doel van sateliet 

vervaardiging,   Maar dit sal die doel om sateliet vervaardiging koste so laag as moontlik 

te hou ondermyn, omdat die koste van die bestralings verharde elektroniese komponente 

beduidend hoër is as hul kommersieële alternatiewe.  Voorts is bestralings verharde 

komponent gewoonlik ’n generasie of twee agter sover as spoed en werkverrigting 

aangaan en daarom is daar dus is ’n groter motivering vir die gebruik van kommersieële 

komponente. 

 

Bestralings verharde  komponente word verkry deur gebruik te maak van spesiaal 

prosessering metodes ten einde die komponente bestralings toleransie te verbeter. 

Modifisering van die proses stappe is een van die drie maniere om die bestralings 

toleransie van 'n geintegreer stroombaan te verbeter.  Die twee ander moontlikhede is om 

gebruik te maak van spesiale uitleg tegnieke of spesiale stroombaan en stelsel argitekture. 

 

'n Ander metode, om aanvullende metaal oksied silicium (CMOS) stroombane meer 

bestand te maak teen ioniseering uitstraling is om die werk-las tussen oorbodig modules 

(genoem SMR) in die stroombaan te versprei.  Hierdie nuwe metode word in detail in 

hierdie tesis beskryf. 
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Chapter 1 

Introduction 
 

1.1 Introduction 
 

The study of radiation effects on semiconductor devices started about forty years ago, 

when the first satellites experienced serious problems due to the detrimental effect on 

their electronic circuits as a result of space radiation. Since then, there has been an 

increasing interest in the study of circuits which can work in a radiation environment, 

driven by all the possible applications of these kinds of circuits, such as advanced 

weaponry, instrumentation for nuclear power plants, high-energy physics experiments 

and, last but not least space missions and satellites [ANEL00]. 

 

In the 1970s the view was widely held that designing radiation-hardened spacecraft and 

systems would become “redundant” with the development of radiation-hardened 

electronic components. Unfortunately that is not the reality of today. In fact, reducing 

radiation effects on spacecraft systems to manageable levels is more complex than ever. 

There are currently no completely radiation hardened devices in existence. The need for a 

system with high levels of performance has exceeded the capabilities of available 

radiation hardened components and technology. At the same time, the demand for 

electronics goods in commercial markets has greatly decreased the manufacturer’s 

interest in developing radiation hardened components, driving up the cost of radiation 

hardened parts and making them increasingly unavailable [BAR97]. 
 

The design of digital circuits for space application needs first to consider the space 

radiation environment and the satellite orbits. It is essential to study the radiation effects 

in digital circuits and the ways to qualify these digital circuits for space applications. In 

space, integrated circuits are subjected to hostile environments composed of a variety of 

particles including photons, charged particles, neutrons and others. The charged particles 
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can hit the ICs resulting in non-destructive or destructive effects according to the charge 

intensity and to the hit location. 
 

The analysis of radiation effects on integrated circuits and the development of mitigation 

techniques are strongly associated to the target device architecture. For each different 

circuit, there is a most suitable mitigation solution to be applied [LIMA02]. 

Consequently, in order to suggest a mitigation solution, first it is necessary to 

investigate the architecture. In the past years the integrated circuit industry has 

designed complex architectures in order to improve performance and logic density and to 

reduce cost. Examples of this development are Application Specific Integrated Circuits 

(ASICs) such as microprocessors and the high-density Field Programmable Gate Arrays 

(FPGAs). Microprocessors have made a dramatic impact in the way systems are 

designed, providing a high information process in a single chip. FPGAs have also made a 

major improvement in system designs by adding the reconfigurability feature. More 

complex structures are constantly being added in the FPGA architecture, supported by 

substantial increase in logic density and performance in the last few years. Both 

architectures contain million of transistors located in many distinct logic blocks, 

making the modeling, test and understanding of such complex architecture very 

difficult. 

 
Due to the constant advances in technology in the last few years, the gap between FPGAs 

and ASICs in terms of performance has been reduced to a negligible level, for the 

majority of applications. Consequently, next generation architectures do not claim to 

reduce that gap anymore, but to merge microprocessors and reconfigurability features in 

the same device in order to improve performance and flexibility. However, it is not 

defined yet which architecture will be embedded in the other one. While some traditional 

ASIC companies are adding embedded programmable logic cores in their devices, FPGA 

companies are adding ASIC IP cores in the FPGA programmable matrix.  

 
In the paper “(When) Will FPGA kill ASICs?” [RUTE01], many ASIC and FPGA 

companies discussed next generations trends. Which solution is going to be more 

attractive, the ASIC with embedded programmable logic or FPGAs with embedded soft 
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and hard IP cores? None has given a final answer, but all have agreed that different 

markets need different solutions, and there is always a price to pay when performance, 

high density and flexibility are all required together. Both choices force changes in the 

software design flow. However, it seems that fewer changes must be done in the case of 

FPGA with IP cores and more advantages can be easily achieved with that.  
 

What is important to note for the purposes of this study is that the space and military 

market, just as the commercial market, requires high performance devices with low 

power, low cost, high flexibility and time to market. Added to that, the space and military 

applications also request an extra feature: the radiation tolerance.  

 

Spacecraft electronic designers increasingly demand high performance microprocessors 

and FPGAs, because of their high performance and flexibility. Because FPGAs are 

reprogrammable, they offer the additional benefits of allowing on-orbit design changes. 

Data can be sent after launch to correct errors or to improve system performance. System 

including FPGAs covers a wide range of space applications, and consequently, they are 

the object of this study. 
 

Fundamentally the radiation effects of FPGA’s are not different from any other CMOS-

based digital IC [WANG04]. Each FPGA is unique in its architecture, and each has its 

unique response to radiation. However, the challenge is to correlate the radiation induced 

response to the basic mechanisms of the Metal Oxide Silicon (MOS) transistor radiation 

response.  

 

The main contribution of this dissertation is the development of the novel Switched 

Modular Redundancy (SMR) method for mitigating the effects of space radiation on 

satellite electronics. Once the SMR principle was developed for the MOS transistor, it 

was used to provide TID mitigation for the FPGA. This is possible, because at its lowest 

level, the FPGA is constructed from MOS transistors.   
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For implementation purposes the principles of reconfigurable computing was applied to 

implement the Modular Redundancy Algorithm in order to mitigate for Total Ionizing 

Dose (TID) effects in FPGA’s, and thereby increasing the FPGA’s functional lifetime 

and performance in the presence of ionizing radiation. 

 

1.2 Outline of this Dissertation 

This introduction forms the first chapter of this thesis. The remainder of the document is 

organized as follows: 

Chapter 2: Background and Related Work for TID effects. Chapter 2 presents an 

overall view of the important issues regarding TID effects on electronic components as 

well as related research. The space radiation environment is first presented where various 

important factors are identified that is important to consider as far as satellite electronics 

are concerned. The chapter then introduces total ionizing dose effects as far as electronics 

are concerned followed by an in depth discussion of the radiation response of the MOS 

transistor. Various approaches used toward radiation hardened integrated circuits are then 

discussed followed by a discussion of the radiation effects observed in FPGA’s which 

concludes this chapter. 

 

Chapter 3: Switched Modular Redundancy. In chapter 3 we present the proposed 

Switched Modular Redundancy (SMR) method. The effect that the gate bias or electric 

field across the MOS capacitor, has on the radiation response of the MOS oxide, is a very 

import matter which will be considered more closely in this chapter and forms the basis 

for the novel Total Ionizing Dose mitigation technique, called Switched Modular 

Redundancy. The chapter includes an in depth discussion on how the SMR methodology 

can be used in FPGA’s by means of reconfigurable computing in order to mitigate for 

TID effects. 

 

Chapter 4: Experimental Setup and Methodology. The response of MOS devices to 

radiation is very variable and it is thus impossible at present to use theory alone to predict 

the device response. Therefore, testing integrated circuits in a severe radiation 
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environment in advance to their use in operational systems is very important and it will 

help to reduce the probability of failures in future space applications. Fault injection is 

normally used to perform Single Event Upset (SEU) testing on electronic circuits, while 

actual ground tests are performed in order to test the ionizing dose performance of 

electronic circuits. In this chapter we describe the experimental setup for the ground 

testing as well as the radiation facility. We also describe the architecture of the FPGA 

used in the testing as well as the layout of the radiation PCB test boards. 

 

Chapter 5: Experimental Results. This chapter presents the results of the radiation 

testing response of the FPGA’s with various configurations. The chapter starts of with the 

experimental results of the resting policy applied to FPGA’s in a radiation environment 

followed by the results of the effect of the clock and configuration memory on the FPGA 

radiation response. The chapter concludes with the results of testing the SMR algorithm 

by means of reconfigurable FPGA computing in a radiation environment.  

Chapter 6: Conclusions and Recommendations. This chapter presents a set of 

conclusions that were drawn from this study as well as recommendations that may be 

used for future work regarding radiation effects on FPGA’s. 

Appendices: Sets of appendices are presented to provide further background 

information. 

1.3 Published Work 
 

Original work that we present in this thesis has been published at various conferences 

including some IEEE conferences and IEEE journals. These publications are: 

 

Local Conference Publications 

1) F. Smith, S. Mostert, “Low Cost Satellite Communication – Space Weather 

and Commercial Electronic Components”, SATNAC, September 2004. 
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2) F. Smith, S. Mostert, “Low Cost Satellite Communication – Designing 

Integrated Circuits to withstand Space Radiation”, SATNAC, September 

2005. 

3) F. Smith, S. Mostert, “Switched Modular Redundancy for TID Mitigation in 

Digital Circuits”, SATNAC, September 2006. 

4) F. Smith, S. Mostert, “Reconfigurable computing for TID Mitigation in 

Digital Satellite Circuits”, Accepted for publication at SATNAC 2007. 

The South African Telecommunication and Network Application Conference (SATNAC) 

is the event for Industry, Academia and Operators to publish on matters concerning 

progress achieved in applied research in the Information Communications and 

Technology (ICT) sector. 

International IEEE Conference Publications 

5) F. Smith, S. Mostert, “Reconfigurable FPGA Computing to mitigate for 

Total Ionizing Dose Effects”, 2007 IEEE Aerospace Conference, Big Sky, 

Montana, USA, March 3 - 10, 2007. 

The 2008 Aero Space conference will be the twenty-ninth in a series of annual weeklong 

winter conferences designed for aerospace experts, academia, military personnel, and 

industry leaders in a stimulating and thought-provoking environment. The Conference 

promotes interdisciplinary understanding of aerospace systems, their underlying science 

and technology, and their applications to government and commercial endeavors. Papers 

are peer reviewed and typically provide the technical depth characteristic of journal 

articles.  

 

6) F. Smith, S. Mostert, “Total Ionizing Dose Mitigation by means of 

Reconfigurable Computing”, Accepted for publication at IEEE RADECS 

2007 conference, September 10-14, 2007, Deauville, France. 
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9th European Conference Radiation and Its Effects on Components and Systems 

(RADECS). Organized by the Commissariat à l'Energie Atomique, September 10-14, 

2007 - Deauville, France. Since 1989, the goal of the European RADECS Conferences 

and Workshops has been to serve the various international industrial and research 

communities interested in radiation effects in electronics and optoelectronics. The 2007 

theme is “Radiation Effects, from Materials to Systems: a Multi-Scale Approach”. 

International IEEE Journal Publications 

7) F. Smith, S. Mostert, “Total Ionizing Dose Mitigation by means of 

Reconfigurable FPGA Computing” IEEE Transactions on Nuclear Science, 

Vol. 54, No. 4, pp. 1343 – 1349, August 2007. 

IEEE Transactions on Nuclear Science (TNS) was the number-four journal in nuclear 

science and technology in 2002, according to the annual Journal Citation Report (2002 

edition) published by the Institute for Scientific Information. The TNS journal devote 

itself to publication or other dissemination of original contributions to the theory, 

experiments, educational methods and applications of these fields, and to the 

development of standards. Areas of technical activity shall include but not be limited to 

the following: Nuclear science and engineering including: instrumentation for research; 

detection and measurement of radiation; nuclear biomedical applications; radiation 

monitoring and safety equipment; particle accelerators; nuclear instrumentation 

development for reactor systems; effects of radiation on materials, components, and 

systems; and applications of radiation and nuclear energy to other than utility power 

generation. 
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Chapter 2 

Background and Related Work for 

TID effects 
The interaction of radiation with matter is a very broad and complex topic. In this chapter 

we try to analyze the problem with the aim of explaining the more important aspects, 

which are essential for a physical comprehension of the degradation observed in 

electronic devices and circuits under radiation. The manner in which radiation interacts 

with solid materials depends on the type, kinetic energy, mass and charge of the incident 

particle and the mass, atomic number and density of the target material. The effects can 

be classified in the following three ways: 1) Total dose as a result of ionization damage, 

2) Bulk effects as a result of displacement damage and 3) Single Event Effects (SEE) as a 

result of an energetic particle strike [SMIT94, LABE96]. In this study we concentrate on 

the design techniques to mitigate for TID effects, and therefore only concentrate the 

effects due to ionizing radiation. SEE effects and Displacement damage is merely 

mentioned for completeness. 

 

This chapter begins with a brief overview of the space radiation environment. 
 

2.1 The Space Radiation Environment 
 
The space radiation environment can have serious effects on satellite electronics 

[STAS88]. Satellites in low Earth orbits are known to have detrimental radiation effects 

when they are over the South Atlantic Anomaly due to the decrease in magnetic field 

strength.  

Space weather has been blamed for satellite failures that have cost the commercial 

satellite industry millions. Solar conditions drive the space weather environment near 

Earth. Explosions on the Sun send giga-watts of energy hurtling towards Earth via the 

solar wind, causing space storms around Earth.  
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The solar wind is a gusty ever-present stream of ions and electrons emitted by the Sun's 

hot atmosphere. When solar wind conditions change sharply, for example during huge 

solar events called coronal mass ejections, the Earth's magnetic environment is affected 

and cause large fluxes of 'killer' electrons that encircle the Earth with a potentially deadly 

effect on satellites. Also, satellite surfaces can charge to thousands of volts, ground-based 

compass needles can shift by 10 degrees, communications can be affected and power 

distribution systems can have problems [ANTA00]. 

Space is part of everybody's daily lives. Satellites transmit television, telephone and other 

information around the world, and watch over our changing environment. As it tracks 

destructive hurricanes on Earth, a satellite might itself be damaged by another kind of 

storm - one that occurs in space. These magnetic storms disrupt radio communications 

and have caused electricity blackouts. 

Since the start of the space age we have known that space is far from being empty. Near-

Earth, high-energy radiation, which is hazardous to spacecraft and astronauts, is trapped 

in the Van Allen belts. What we don't know is precisely how and why the particles are 

accelerated to dangerous million-volt energies, it is believed that changes in the solar 

wind are to blame.  

It is currently impossible and uneconomic to design a satellite that is entirely 

immune to variations in the space environment. It is vital for the satellite operator to 

be aware of these conditions. There will be future satellite problems, and even failures. 

But the gains and profits to be had are too great and have to be investigated in order to 

ensure the safeguarding of the satellite operator’s investment. 

It is important to define the radiation environment of a satellite orbit in order to quantify 

the amount of radiation exposure the satellite will experience during its design lifetime. 

This provides for an element of trade-off for orbit and component selection during the 

design phase of the satellite. When a satellite mission is defined, the knowledge of the 

radiation environment will allow an estimation of the suitability of a range of potential 

components for successful mission completion [LABE98]. 
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A number of areas exist near earth that have unique radiation characteristics important to 

satellite electronics.  The sections that follow will examine these regions and the type of 

radiation found in each. A Satellite orbit may intersect more than one of these regions. 

2.1.1 Units 

A radiation environment is defined when one knows the kind of particles, their energies 

and their fluxes [HOLM02]. Further, if we are interested in the interaction with matter a 

very common way of describing the radiation is to indicate the energy absorbed by a 

specimen per mass unit. The most common particles are electrons, protons, neutrons, 

heavy ions and photons ranging from UV to gamma energies. All these particles except 

neutrons produce ionization effects in materials, so for them it is easy to find the energy 

released passing through the matter (for instance with a photodiode) and we can use 

correlations between the fluxes and the doses absorbed. On the other side neutron 

interactions are just nuclear-like, and it is more common to account their effect by using 

the flux (or the time-integrated flux, called fluence). The flux is the number of particles 

passing during 1 s through a 1 cm2 area [cm-2s-1]; integrating over the time we get the 

fluence, which is [cm-2]. The energy deposited is measured in rad, being 1rad = 10-2 Js-1. 

The advantage in using the rad as radiation unit is evident if we consider that for instance 

in 1 cm3 of Silicon 1 rad corresponds roughly to the generation of 4x1013 electron-hole 

pairs [HOLM02]. This way one gets an immediate idea of the damage induced in Silicon-

based devices, in which the number of majority carriers is about 1016 carriers/cm3. 

2.1.2 The Radiation Belts 

The Earth’s radiation belts, also know as the Van Allen belts, consist mainly of electrons 

of energy up to a few MeV and protons up to several hundred MeV which are trapped in 

the Earth’s magnetic field. The field is basically that of a magnetic dipole and in those 

regions where the field lines are ‘closed’, charged particles become trapped in the 

magnetosphere [ADAM02]. The trapped electrons are classified into inner and outer 

zones, Fig 2.1. The inner zone extends to about 2.4 Earth radii and the outer zone from 

2.8 to 12 Earth radii. The gap between the two zones is referred to as the ‘slot’. The 
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electron energies extend up to 7 MeV with the most energetic electrons being in the outer 

zones. The proton environment varies with distance from earth inversely and peaks at 

approximately 3.8 earth radii [STAS88]. Proton energies can reach values over 400 MeV 

in this region. In 1998, there were a series of large, solar disturbances that caused a new 

radiation belt to form in the so-called “slot region” between the inner and outer van Allen 

belts. The new belt eventually disappeared once the solar activity subsided. The earth’s 

magnetic field is not geographically symmetrical; local distortions are caused by an offset 

and tilt of the magnetic axis and by geological influences; in the Southern Hemisphere, 

one important distortion is known as the ‘South Atlantic Anomaly' (SAA). In this region, 

field lines containing significant energetic-particle fluxes, approach the earth’s surface 

giving flux enhancement at low altitudes in the region of South America. The SAA is 

responsible for most of the radiation received by satellites in the Low Earth Orbit (LEO) 

altitude. 
 

 

Fig 2.1 The Van Allen radiation belts [MONR03]. 

2.1.3 Cosmic Rays 

Cosmic Rays comprise 85% protons, 14 % alpha particles, and 1% heavier ions covering 

the full range of elements, some of the more abundant being, for example, carbon and 

iron nuclei. They are partly kept out by the earth’s magnetic field and have easier access 

at the poles compared with the equator. From the point of view of space systems it is 

particles in the energy range 1-20 GeV per nucleon that have most influence [STAS88]. 

For cosmic rays to reach a spacecraft in Earth orbit, they must penetrate the Earth’s 

magnetic field. Since they are moving, charged particles, they will tend to be deflected by 
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the magnetic field. However, this tendency is opposed by the energy of the particles as 

they move at high velocity towards the Earth. Its momentum divided by its charge 

determines a particle’s penetrating ability, and this quotient is referred to as its ‘magnetic 

rigidity’. A cosmic ray will require a minimum magnetic rigidity to reach each point 

within the Earth’s magnetic field [ADAM02]. Particles below the minimum will be 

deflected and this minimum is called the geomagnetic cutoff value. The cutoff value falls 

to zero at the edges of the magnetosphere and at the Earth’s magnetic poles. Since the 

cosmic ray flux is highest at low energies, a satellite in Earth orbit will be protected to 

some extent from cosmic rays by the magnetic field. The degree of protection will 

depend on the altitude and inclination of the orbit. The geostationary orbit at an 

altitude of 35860 km and of crucial importance to communication satellites is 

afforded virtually no magnetic shielding against cosmic rays; polar orbits, 

important for Earth observation satellites, are also significantly exposed. Low Earth 

orbits used by commercial satellite constellations will have variable protection; the 

most exposed being those in high inclination orbits.  

2.1.4 Solar Flares 

In the years around solar maximum the sun is an additional sporadic source of lower 

energy particles accelerated during certain solar flares and in the subsequent coronal mass 

ejections [DYER01]. These solar particle events last for several days at a time and 

comprise both protons and heavier ions with variable composition from event to event. 

Energies typically range up to several hundred MeV and have most influence on high 

inclination or high altitude systems. Occasional events produce particles of several GeV 

in energy and these can reach equatorial latitudes. 

2.1.5 Satellite Orbits Environments 

The main sources of energetic particles that are of concern to spacecraft designers are: 

1) protons and electrons trapped in the Van Allen belts, 

2) heavy ions trapped in the magnetosphere, 

3) cosmic ray protons and heavy ions, and 
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4) protons and heavy ions from solar flares.  

 

The levels of all of these sources are affected by the activity of the sun. The solar cycle is 

divided into two activity phases: the solar minimum and the solar maximum. The cycle 

lasts about eleven years, with approximately four years of solar minimum and seven 

years of solar maximum.  

 

There are also extremely large variations in the levels of SEE inducing flux that a given 

spacecraft encounters, depending on its trajectory through the radiation sources. Missions 

flying at Low Earth Orbits, Highly Elliptical Orbits (HEOs), and Geostationary Orbits 

(GEOs), and Planetary and Interplanetary missions have vastly different environmental 

concerns [DYER01]. 

 

2.1.5.1 Low Earth Orbits 
 

Satellites in LEOs pass through the particles trapped in the Van Allen belts several times 

each day. The level of fluxes seen during these passes varies greatly with orbit inclination 

and altitude. The location of the peak fluxes depends on the energy of the particle. For 

protons with E > 10 MeV, the peak is at about 3000 km. For normal geomagnetic and 

solar activity conditions, the flux level drops rapidly at altitudes over 3000 km. However, 

high-energy protons have been detected in the regions above 3000 km after large 

geomagnetic storms and solar flare events. 

 

2.1.5.2 Highly Elliptical Orbits 

 

Highly elliptical orbits are similar to LEO orbits, they pass through the Van Allen belts 

each day. However, because of their high altitude, they also have long exposures to the 

cosmic ray and solar flare environments regardless of their inclination. The levels of 

trapped proton fluxes that HEOs encounter depends on the perigee position of the orbit 

including altitude, latitude, and longitude. If this position drifts during the course of the 

mission, the degree of drift must be taken into account when predicting proton flux 
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levels. HEOs also accumulate high total ionization dose levels due to both the trapped 

proton exposure and the electrons in the outer belts where the spacecraft spends a 

significant amount of time during each apogee pass. 

 

2.1.5.3 Geostationary Orbits 

 

At geostationary altitudes, the only trapped protons that are present are below energy 

levels necessary to initiate the nuclear events in materials surrounding the sensitive 

region of the device that cause SEE. However, GEOs are almost fully exposed to the 

galactic cosmic ray and solar flare particles. Protons below about 40-50 MeV are 

normally geomagnetically attenuated, however, this attenuation breaks down during solar 

flare events and geomagnetic storms. Field lines that cross the equator at about 7 earth 

radii during normal conditions can be compressed down to about 4 earth radii during 

these events. As a result, particles that were previously deflected have access to much 

lower latitudes and altitudes. Further, GEO satellites are continuously exposed to trapped 

electrons, hence, the total dose ionization accumulated in GEO orbits can be severe for 

locations on the satellite with little shielding. 
 

Table 2.1 Summary of Radiation Sources 
 

Radiation 
Source  Effects of Solar Cycle Variations  Types of Orbits 

Affected 

Trapped 
Protons  

Solar Min - Higher; 
Solar Max - Lower  

Geomagnetic Field; Solar 
Flares; Geomagnetic 
Storms  

LEO; HEO; 
Transfer Orbits 

Galactic 
Cosmic Ray 
Ions  

Solar Min - Higher; 
Solar Max - Lower  Ionization Level  LEO; GEO; HEO; 

Interplanetary 

Solar Flare 
Protons  

Large Numbers 
During Solar Max; 
Few During Solar Min 

Distance from Sun Outside 
1 AU; Orbit Attenuation; 
Location of Flare on Sun  

LEO (I>45°); GEO; 
HEO; Interplanetary

Solar Flare 
Heavy Ions  

Large Numbers 
During Solar Max; 
Few During Solar Min 

Distance from Sun Outside 
1 AU; Orbit Attenuation; 
Location of Flare on Sun  

LEO; GEO; HEO; 
Interplanetary 
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The following rules must be observed for estimating total dose environments [SPAC96]: 
 

a) For satellites in low inclination (< 28 degrees) LEO, (< 500 km) in both northern and 

southern hemispheres, typical dose rates due to trapped Van Allen electrons and protons 

are 100-1000 rad(Si)/year. 

b) For satellites in higher inclinations (between 20 and 85 degrees) LEO orbits in both 

northern and southern hemispheres, typical dose rates due to increased number of trapped 

electrons are 1000-10,000 rad(Si)/year. 

 

2.1.6 Total Ionizing Dose 
 
Total ionizing dose is a cumulative effect which causes degradation of microelectronics 

and materials. As TID accumulates, parametric degradation occurs, degrading 

performance, and components can eventually fail to function. TID is caused by exposure 

to electrons and protons. As mentioned in the previous chapter, some technologies are 

hardened to TID effects through specialized processing. However, shielding is often used 

to mitigate the effects of TID on unhardened components. Fig. 2.2 is a plot of total 

ionizing dose in krads of silicon as a function of aluminum shield thickness for various 

orbits around the Earth per annum. The two curves in the lower half of the graph are for 

LEOs that pass through the SAA. The curves that are higher on the graph are orbits that 

pass through more intense regions of radiation that are at higher altitudes in the belts. At 

> 300 mils (7.6 mm) of shielding, highly energetic trapped protons dominate the dose 

levels [BART97]. 
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Fig 2.2 Total ionizing dose-depth curves for various orbits around the Earth 

[BART97] 
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2.2 Total Ionizing Dose Effects 
 

Ionizing radiation dose is defined as the amount of energy deposited by ionization per 

unit mass of material. SI Units are J/Kg (Gray). The majority of radiation effects depend 

on rate of delivery and so dose-rate information is required. In particular, TID radiation 

induced charge buildup in MOS devices depends on: dose, dose rate, type of ionizing 

radiation, applied and internal electric fields, device geometry, operating temperature, 

post-irradiation conditions (e.g. time and temperature), dielectric material properties, 

fabrication processing, oxide impurities, nitrogen and sodium, final processing 

packaging, burn-in reliability screens, and aging [HUGE03]. As stated before, issues of 

IC architecture also impact survivability against radiation effects. 

 

Accumulated dose leads to threshold voltage shifts in CMOS devices due to trapped 

holes in the oxide and the formation of interface states. In addition increased leakage 

currents and gain degradation in bipolar devices can occur [LABE96]. It has been shown 

that the dominant radiation effects in MOS devices are due to TID effects, and not 

due to displacement damage, the usual cause of radiation-induced degradation in 

bipolar devices [HUGE03]. 

 

To understand the operation of the metal-oxide semiconductor field effect transistor 

(MOSFET or MOS), which is the basic building block of modern digital circuits, refer to 

Fig. 2.3. The diagram illustrates the cross-section of an n-channel using a p-type 

substrate. The normal operation of the n-channel MOS (NMOS) transistor is as follows: 

When a positive voltage is applied to the gate terminal, an electric field is created 

between the gate and the silicon substrate. In effect, this behaviour is very much the same 

as a parallel plate capacitor. Due to the presence of the electric field, the majority carriers 

in the substrate (holes in p-type) will be repelled from the gate-oxide substrate interface 

and minority carriers (electrons) will be attracted, forming what is termed an inversion 

layer. When a potential difference is applied between the source and drain terminals, the 

inversion layer provides a low resistance path for electrons to flow. The device is said to 

be turned on, and the gate voltage at which the inversion layer just begin to transmit 

current is termed the threshold voltage of the device.  
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Fig 2.3 Cross section of NMOS device with trapped charge in the oxide 

 

The effect of using the MOSFET device in a radiation environment is that the gate oxide 

becomes ionized by the dose it absorbs due to the radiation induced trapped charges in 

the gate-oxide. The trapped charges in the gate-oxide generate additional space charge 

fields at the oxide-substrate interface. After a sufficient dose, a large positive charge 

builds up, having the same effect as if a positive voltage was applied to the gate terminal. 

Therefore, the transistor source to drain current can no longer be controlled by the gate 

terminal and the device remains on permanently resulting in device failure.  

 

The radiation response of the PMOS transistor exhibits the same pattern, but the effect is 

opposite. The normal operation of the PMOS transistor is as follows: When a negative 

voltage is applied to the gate terminal with respect to the substrate, an electric field is also 

created between the gate and substrate. However, this field is in the opposite direction as 

in the case of NMOS. When exposed to ionizing radiation, the free electrons move in the 

direction of the silicon substrate, whereas the positive holes move in the direction of the 

gate oxide interface where they become trapped. This means that positive charge buildup 

in PMOS devices is less severe than in NMOS, because the charges get trapped at the 

gate oxide interface. Thus, the charge buildup in PMOS devices is less effective in 

shifting the threshold voltage of the device [SROU82]. Already it should be clear that 

the electric field in the gate oxide (and in this case its direction) has a major effect 

on the radiation response of the device. 
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The trapped oxide charge distribution can depend on time, and more specifically, on how 

the electric field in the oxide changes with time. Ionization effects depend not only on the 

dose, but the response is also time dependent. Fig. 2.3 also shows a thick field oxide, 

which serves to control the silicon surface charge adjacent to the MOS device and 

prevent parasitic channels to adjacent devices. Positive charge build-up also occurs here. 

 

Both bulk and Silicon-On-Insulator (SOI) CMOS structures, are subject to the effects 

described above. SOI is often cited as a specifically radiation-hard technology because of 

its resistance to transient radiation effects, primarily single-event effects caused by heavy 

ions or photo-currents produced by high dose-rate ionizing radiation. Although SOI can 

provide superior device speed because of reduced parasitic capacitance, this technology is 

not inherently more resistant to total-dose radiation. If anything, the additional oxide 

interfaces tend to complicate matters. 

 

Of most concern in the total dose effects is the creation of hole-electron pairs in silicon 

dioxide, an insulator used to: 1) isolate neighbouring transistors (field oxide), 2) provide 

gate isolation in silicon MOSFET technology, and 3) provide surface passivation in 

silicon bipolar technology. In any silicon technology in which silicon dioxide is in 

contact with low acceptor doping level (p-type) silicon, total-dose effects must be 

considered. The dominant effects are due to holes being trapped at the interface of the Si-

SiO2, causing free electrons to be attracted to the interface, and resulting in inversion in 

the silicon near the interface. If the low doped p-region isolates two n-doped regions, then 

isolation is compromised and leakage currents may flow between the two n-regions.  

 

In addition to hole trapping, interface traps, which may be charged positively or 

negatively depending upon bias condition, are also generated at the Si-SiO2 interface. 

Two effects are associated with interface traps. In n-channel MOS transistors under 

positive bias conditions, electrons are trapped in these states. This increases the threshold 

voltage. Electrons transporting through n-channels, or holes transporting through p-

channels, undergo Coulomb scattering from the charged interface states. This results in 

reduction in carrier channel mobility and hence increased channel “on” resistance. 
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In sub-micron devices, the hole trapping near the Si/SiO2 interface is the primary effect. 

Charge inversion in the silicon at the interface and as a consequence parasitic leakage 

paths can be created due to the hole trapping near the Si/SiO2 interface. There are two 

kinds of leakage paths. The first is the edge-leakage path between the drain and source at 

the edge of a NMOSFET. The other kind, called field-leakage path is between any two 

n+-junctions separated by a field oxide. The edge leakage is usually more serious than the 

field leakage because the shorter path length.  

 

In sub-micron devices studied in this thesis, the radiation effects due to the gate 

oxide is negligible because the oxide thickness is too thin to trap net charges and the 

interface quality is too good to be activated by radiations. For a PMOSFET, the 

leakages are reduced because the silicon surface is induced to favor the 

accumulation [WANG04, OLDH99]. 

 

Dose Rate Effects that are related to the rate at which radiation is absorbed in circuits 

include upset, latch-up, snap back in integrated circuits, and burn-out in bipolar and n-

channel power transistors. All these effects are a consequence of radiation generated 

photocurrents in p-n junctions. Electron-hole pairs generated in the depletion region of a 

p-n junction by ionizing radiation are swept out by the high electric field present in this 

region. This promptly collected charge is termed the prompt photocurrent. Carriers 

generated within a diffusion length of the depletion region will diffuse to the depletion 

region where they are collected. These photocurrents sum in digital integrated circuits to 

produce transient currents that can cause changes in logic levels at digital gates due to 

charging and discharging of gate capacitance, or transistors being turned on or off. If the 

dose rate is high enough, the product of photocurrent and resistance causes a drop in 

power supply voltage across the metal resistance and power supply voltage actually 

present at the memory cell, and an error is introduced in the memory cell. This 

phenomenon is called rail-span collapse. 
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2.3 Ionizing Radiation Effects on MOS devices and IC’s 
 
 
The total-dose ionization problem that occurs in MOS systems is due to the radiation-

induced charging, normally positive, of the thin gate-oxide region and isolation oxides, 

and in the buried oxide for Silicon On Insulator technology. The charge-induced fields 

result in voltage offsets or shifts in the turn-on voltages of the devices; these offsets or 

shifts lead to circuit degradation and failure. The incident radiation creates electron-hole 

(e-h) pairs. The energy required is approximately 17±1 eV [BENE86] to generate an e-h 

pair in SiO2. This will result in a total number of e-h pairs generated per unit dose in 

SiO2 of approximately 4×1013cm-3rad-1(SiO2). The radiation-induced oxide charging 

problem is complicated by the details of the time dependence of the radiation response of 

the simple MOS structure shown in Fig 2.6, having to do with a wide variation in the 

characteristic time scales for the various physical processes involved. The complexity of 

the time-dependent response has implications in prediction of circuit response.  

 

In this section we try to analyze the problem of radiation interaction with MOS structures 

with the aim of explaining the more important aspects, which are essential for a physical 

comprehension of the degradation observed in electronic devices and circuits under 

radiation, and its understanding is also essential to design effective radiation damage 

mitigation techniques. 
  

2.3.1 Overview of Ionizing Radiation response of MOS Structures 

The MOS radiation response involves several different processes [MCLE99]. Each of 

these processes depends on time, temperature, applied field, process history, etc. as 

mentioned in the previous section. A basic illustration of the overall radiation response of 

the MOS transistor is shown in Fig. 2.4.   
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Fig. 2.4 The basic radiation effect in MOS transistors 

 

The four main processes involved in the radiation response of MOS devices are 

illustrated in Fig. 2.4, [OLDH99, MCLE99]. First, the ionizing radiation acts with the 

gate oxide layer to produce electron-hole pairs. 

 

The second process in Fig. 2.4 is the slow transport of holes toward the oxide-silicon 

interface due to the presence of the electric field. It is this transport that explains the 

short term recovery of MOS devices. When the holes reach the interface, process 3, they 

become trapped in vacancy sites and this is the main cause of the permanent threshold 

voltage shift in MOS devices.  

 

The fourth process is the buildup of interface states in the substrate near the interface. A 

negative space charge region is created near the interface because of the positive charge 

buildup of process 3. These four processes are discussed in greater detail in the sections 

that follow. 
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2.3.1.1 Electron Hole-pair (e-h) creation 
 

As previously mentioned, the part of a MOS transistor that is most sensitive to ionizing 

radiation is the oxide insulating layers. Consider Fig. 2.5, a positive bias voltage is 

applied to the gate terminal as in the case of NMOS. When ionizing radiation strikes the 

gate oxide, electrons are freed from the oxide molecules and are swept by the direction of 

the electric field towards the gate terminal. The free holes move in the direction of the 

substrate.  
 

Source Drain
Gate

Field Oxide
Gate Oxide
- - - - - - - -

P-type silicon

n+ n+

Field
Oxide

Field
Oxide

NMOS Transistor
 

Fig 2.5 NMOS transistor 

 

Some fraction of the electron-hole pairs recombine depending on the type of incident 

particle and the applied gate to substrate voltage, i.e. the electric field. The mobility of 

the electron is orders of magnitude larger than that of the holes in the gate oxide, and is 

swept away very quickly in the direction of the gate terminal. The time for the electrons 

to be swept away is on the order of 1 ps [MCLE99]. 

 

Two primary models of recombination have been developed. The columnar model 

applies when the e-h pairs are close together, and thus a large number recombine. The 

geminate model applies when the e-h pairs are widely separated, so that a much smaller 
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number of carriers will recombine [MA89]. The surviving holes cause a negative voltage 

shift in the electrical characteristics of MOS devices. These changes appear in the 

threshold voltage (VT) or flatband voltage (VFB) for MOS capacitors. These changes can 

be separated into two components: the voltage shift due to charge in the oxide, ∆Vot, and 

that due to the interface traps, ∆Vit. The fractional yield of carriers, those escaping 

recombination in SiO2, is discussed as a function of the applied field for various sources 

of radiation in [MA89]. The number of the surviving holes determines the initial response 

of the device after a short pulse of radiation.  
 

2.3.1.2 Hopping transport of holes 
    

At room temperature and over a period of time, on the order of a few picoseconds to 

seconds, the holes undergo a hopping transport through the oxide in response to any 

electric field present. They move to the Si substrate for the figure depicted above. This 

hole transport is the second major effect of the MOS response. 

 

The hole transport process is dispersive in time. Two models have been proposed for this 

dispersive transport: a) hopping transport where the holes directly tunnel between 

localized trap sites within the SiO2 band gap, and b) multiple trapping, where the holes 

are trapped at localized trap sites moving within the oxide due to drift and diffusion 

between trapping events. This dispersive transport process is sensitive to applied field, 

temperature and oxide thickness. Both of these models can be mathematically described 

by the continuous-time random walk (CTRW) model [MA89]. 
 

2.3.1.3 Deep Hole Trapping 
 

When the holes reach the SiO2 interface, some are captured in long term trapping sites 

causing negative voltage shifts. This long-lived, radiation induced voltage shift 

component is the most commonly observed form of radiation damage in MOS devices. 

Hole trapping and annealing are sensitive to the processing of the oxide, applied field, 
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and temperature [MACL89]. This long-term trapping of holes near the SiO2 interface is 

the third major effect of the MOS radiation response. 

 

2.3.1.4 Radiation induce interface traps 
 

The radiation induced interface traps at the SiO2 interface is the fourth and final 

component of the MOS radiation response. The interface traps gives rise to a voltage shift 

component that depends on the silicon surface potential [MCLE99]. Both prompt 

interface traps, present immediately after a radiation pulse, and a delayed time-dependent 

buildup of states that can continue for thousands to tens of thousands of seconds at room 

temperature can be seen. It is also important to note that the radiation induced interface 

trap generation is strongly dependent on the processing steps of MOS devices, as well as 

on other variables, such as temperature and applied field [MA89, LENA99]. 

 

The time-dependent recovery curve in Fig 2.6 shows the radiation-induced shift in 

threshold voltage as a function of log time. The NMOS device is under positive gate bias 

at room temperature after exposure to an ionizing radiation pulse of ~1 ms. This figure 

relates the major features of the response to each of the primary processes discussed 

above. The initial shift (shown in red) is governed by the electron/hole pair creation in the 

SiO2 bulk and by the initial recombination processes. The early annealing (shown in 

blue) is due to the hole transport process. The remaining shift in VT is due to the deep 

hole trapping near the SiO2/Si interface. This anneals linearly with log time. The solid 

curve in Fig 2.6 corresponds to transport, trapping, and annealing of holes alone. In 

addition to long-term annealing of trapped holes, however, a buildup of radiation induced 

interface traps may occur, typically in the time regime between ~10-2  and 10-3 s, which is 

indicated by the green curve in Fig 2.6. If the interface trap contribution is large, the 

change in threshold voltage becomes positive, giving rise to what is called super recovery 

or rebound [MA89]. 
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Fig 2.6 Summary of the transient response of an NMOS transistor’s threshold 

voltage to a radiation pulse [OLDH99] 

 

2.4 Consequences of radiation on the electrical parameters of a MOS  
   Transistor 
 

As the dose absorbed by a device increase, more electron-hole pairs are created and 

becomes trapped in the silicon oxide or interface traps. The number of electron-hole pairs 

is proportional to the amount of energy absorbed in the device, hence, the total damage is 

roughly proportional to the dose absorbed by the device [OLDH99, MCLE99].  

 

The number of deep hole traps in the bulk of a thermally grown silicon dioxide layer 

given today’s techniques is usually fairly small. Most of the traps are located near the 

Si/SiO2 interface, or near the gate electrode/SiO2 interface. The holes generated by 

ionizing radiation in the bulk of an oxide layer will be swept under a positive gate bias 

towards the SiO2/Si interface, and some fraction of them will be trapped, depending on 

the hole trap density and capture cross-section.  
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One of the major electrical consequences of the radiation induced charging of the silicon 

oxide is a shift in the voltage operating points for the devices such as the threshold 

voltage VT for MOSFETs. The threshold voltage can be written as  

 

   ( ) ( )tVVtV TTT ∆+= 0
    (1) 

 

where 0
TV  is the threshold voltage before irradiation and  ( )tVT∆  is the change in the 

threshold voltage due to radiation exposure and is time dependant [OLDH99].  

 

Based on the discussion in section 2.3.1, the threshold voltage shift can be broken into 

three components: 

 

   ( ) ( ) ( ) ( )tVtVtVtV ITOTSTT ∆+∆+∆=∆   (2) 

 

- ( )tVST∆    is due to the generated mobile holes transporting in the oxide. 

- ( )tVOT∆    is due to the trapped holes near the oxide-silicon interface. 

- ( )tVIT∆    is due to the charged interface traps. 

 

These components can be expressed explicitly as [OLDH99]: 
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q is the electronic charge, 

tox is the oxide thickness, 

Cox is the oxide capacitance per unit area (
ox

ox
ox t

C
ε

=  where oxε is the dielectric constant 

of the oxide). 

( )tx,ρ  is the charge distribution in the oxide per unit volume as a function of the 

distance from the gate oxide interface (x) and time. 

 

The first observation from equation 3 is that the voltage shift due to this contribution is 

negative when the charge is positive. This can easily be understood by considering for 

example the p-channel transistor. The positive charge trapped in the oxide repels the 

holes in the inversion channel. Hence, one needs to apply a more negative voltage to the 

gate to create the same inversion condition. Another important consideration is that the 

closer the charge distribution to the silicon-oxide interface, the bigger the threshold 

voltage shift. For example, if we have a charge distribution close to the gate-oxide 

interface with a constant density of A, for x < Z and zero for Z< x < tox, i.e. 

 

  ( ) Atx =,ρ   for  x < Z  and   (6) 

 

  ( ) 0, =txρ  for Z < x <  tox     (7) 

Thus, we have, 

  ( )
ox

ST
AZtV
ε
−

=∆       (8) 

Suppose now we have a similar distribution in the oxide but this time close to the silicon-

oxide interface, i.e. 
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  ( ) 0, =txρ  for   0< x <  tox - Z   (9) 

  ( ) Atx =,ρ  for   tox – Z < x < tox   (10) 

 

The voltage shift becomes, 

 

  ( ) )1( −
−
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Z
tAZtV ox

ox
ST ε     (11) 

 

From equation 11, we have an additional multiplicative factor > 1 (since tox > Z) which 

is not present in equation 8. Thus the change in threshold voltage shift is indeed larger for 

the charge distribution closer to the silicon-oxide interface. This conclusion was also 

mentioned earlier. (The positive charge buildup in PMOS devices is less severe than in 

NMOS, because the charges get trapped at the gate oxide interface. Thus, the charge 

buildup in PMOS devices is less effective in shifting the threshold voltage of the device 

[SROU82]). 

 

Trapped holes can be removed or neutralized by compensating electron trapping, either 

by thermal annealing, or by tunneling of electrons from the silicon substrate or gate.  

Complete thermal annealing often requires temperatures above 300°C. The temperature 

for annealing depends on the distribution of energies inside the SiO2 band gap for the 

trapped holes, as shallower trap levels emit charge at lower temperature [MA89]. The 

tunneling annealing process is roughly linear with log(t) dependence, where t is the time 

after irradiation. Tunneling probability decreases with distance. Because of this decrease 

in probability due to distance, only defects within 4-5 nm from either interface are 

neutralized due to tunneling. However, this also means that for very thin oxides (< 10 

nm), significant neutralization of trapped holes could occur via tunneling in a relatively 

short time interval. 
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Field oxides used to isolate MOS devices, inclusive of isolation layers used in SOI 

technology, all suffer the same type of changes described in the above sections. These 

changes result in parasitic leakage currents that must be correctly taken into account 

when a particular device or architecture radiation analysis is performed. 

2.4.1 The time-dependant response of MOS structures 

In this section we further try to aid in the understanding of the time-dependant response 

of the MOS structure by means of Fig. 2.7. 

 

Consider Fig 2.7 the pre-irradiation condition is depicted in part (a). The corresponding 

C-V curve for this condition is depicted in Fig. 2.8 with t = 0-. At t = 0 (part (b) of Fig 

2.7), the radiation pulse occurs causing electron/hole pairs across the oxide bulk. In a 

time on the order of  picoseconds (part (c) of Fig. 2.7), some of the electron hole pairs 

recombine, while the highly mobile electrons gets swept toward the gate and collected 

(part (d) of Fig 2.7), under the influence of the positive gate voltage applied. The 

magnitude of the shift in the flatband voltage ( ( )+∆ 0fbV ) is maximum at this time. The 

holes then begin their relatively slow transport toward the silicon-oxide interface, where a 

fraction of them become trapped in long term trapping sites, while others gets collected 

by the substrate electrode. This is illustrated in part (e) of Fig. 2.7. Because less positive 

charge remains in the oxide, the C-V curve has annealed back partially. The final charge 

configuration (at t = t2) after completion of the hole transport is depicted in part (f) of Fig 

2.7. 
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Fig 2.7 Charge generation, recombination, transport and trapping [OLDH99] 

 

Only the long term, trapped holes remain near the silicon-oxide interface, giving rise to a 

long-term flatband voltage shift in the C-V characteristics. 

 

The actual situation is more complicated, since there can be long term annealing of the 

trapped holes near the silicon-oxide interface due to either electron tunneling from the Si 

substrate or thermal injection from the traps [OLDH99]. 

 

Because of several processes that are involved in the radiation response of MOS oxides, 

with each having different characteristic times, the overall time history of the recovery 

can be very complex [MCLE89, OLDH99]. This has important implications for testing 

procedures, hardness assurance, and prediction. 
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Fig 2.8 Radiation induced shift of the C-V curves for a MOS capacitor [OLDH99] 

 

2.4.2 Increase in Transistor leakage current 

Another major problem with CMOS circuits is latchup, where a low resistance path 

between the power supply and ground is formed. These paths can be formed by parasitic 

bipolar transistors which are built into the CMOS structure, one pnp and one npn, if the 

gains of these transistors are large enough that they are driven into saturation. 

 

In integrated circuits using MOS and CMOS technology, radiation damage results in 

device malfunction. One of the most significant effects of radiation damage in MOS 

structures is an increase in leakage current [WANG04]. 

 

The leakage current is current flowing through a transistor which should be biased off, or 

current flowing between adjacent transistors. Low resistance paths which allow leakage 
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currents can be formed by the increase in density of interface traps, or by shifts in a 

transistor's threshold voltage caused by trapped oxide charges. 

  

In linear CMOS devices, leakage currents impair the high input impedance which 

MOSFETs usually have. In an MOS transistor which is normally biased off, the drain to 

source leakage currents is less than 1 pA before irradiation, but increase to about 1 nA at 

100 krad(Si), and hundreds of nanoamperes after 300 krad(Si) [MA89]. 

  

For complex integrated circuits, this can lead to significant increases in the power supply 

current. In the studies of total dose effects on FPGAs, the first sign of damage noted 

was an increase in power supply current due to the onset of leakage currents 

[WANG04].  

 

As the individual transistors making up a complicated CMOS integrated circuit such as a 

microprocessor or FPGA are damaged by ionizing radiation, the characteristics of the 

overall circuit will change. The damage to individual transistors and CMOS inverters can 

result in such effects as increased power supply current (due to leakage currents or 

transistors which should be off turning on), logic failures, latchup effects, or changes in 

circuit timing. The response to radiation of an integrated circuit made up of thousands of 

logic gates is, however, difficult to predict [WANG04]. 
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2.5 Single Event Effects 
 
SEE are caused by ionization, as a consequence of the impact of a heavy ion (cosmic ray) 

or proton. The ionization induces a current pulse in a p-n junction. SEE covers both SEU, 

or ‘soft error’, and Single Event Latch-up (SEL). 

2.5.1 Single Event Effects classifications 

SEE covers [LABE96]:  

• Single Event Upset (SEU), or ‘soft error’ 

• Single Event Latch-up (SEL)  

• Single Event Burnout (SEB)  

• Single Event Gate Rupture (SEGR)  

• Single Event Snapback (SES) 

 
2.5.1.1 Single Event Upset 
 

The deposited charge is sufficient to flip the value of a digital signal. Single Event Upsets 

normally refer to bit flips in memory circuits, but may also in some cases directly affect 

digital signals in logic circuits. Fig 2.9 illustrates how an energetic particle can produce a 

spurious electrical signal. The particle produces charges along its path, in the form of 

electrons and holes. These are collected at the source and drain, and a current pulse 

appears. This can be large enough to produce an effect like that of a normal signal 

applied to the transistor. 
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Fig 2.9 Energetic Particle strike in the MOS Transistor 

 

2.5.1.2 Single Event Latch-up  
 

Bulk CMOS technologies (not Silicon On Insulator) have parasitic bipolar transistors that 

can be triggered by a locally deposited charge to generate a kind of short circuit between 

the power supply and ground. CMOS processes are made to prevent this from occurring 

under normal operating conditions, but a local charge deposition from a traversing 

particle may potentially trigger this effect. Single event latch-up may be limited to a 

small local region, or may propagate to affect large parts of the chip. The large currents 

caused by this short circuit effect can permanently damage components if they are not 

externally protected against the large short circuit current and the related power 

dissipation. 
 

2.5.1.3 Single Event Burnout 
 

Single event burnout refers to destructive failures of power MOSFET transistors. This 

destructive failure mechanism is normally associated with failures in the main switching 
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transistors of switching mode power supplies. In SEB an ion that traverses the transistor 

structure through the source can induce a current flow that turns on the parasitic npn 

transistor below the source thereby initiating forward biased second breakdown. This 

leads to device destruction if sufficient short-circuit energy is available. 
 

2.5.1.4 Single Event Gate Rupture 
 

In SEGD an ion that traverses the transistor through the gate, but avoids the p-regions, 

can generate a plasma filament through the n-epi layer that applies the drain potential to 

the gate oxide, damaging (increased gate leakage) or rupturing the gate oxide insulation 

(device destruction). 
 

2.5.1.5 Single Event Snapback  
 

Single event snapback is similar to SEL, but without the PNPN structure. It is induced in 

N-channel MOS transistors that switch large currents. The effect is that the transistor 

drain junction is forced open and stays open. 

 
Table 2.2 shows a resume of different Single Event Effects classified by device and by 
sensitive areas [DENT00]. 
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Table 2.2 SEE categories by device and by sensitive areas  
 
Device Type Sensitive Area SEU Types 
Memories Memory cells 

Control logic 
Bit flips 
Bit flips if sequential, 
transient if combinational 

Combinational Logic Combinational logic Transient 
Sequential Logic Sequential Logic Bit flips 
FPGA’s Combinational Logic 

 
 
 
Sequential Logic 

Transient if combinational 
CLBs, bit flips if CLBs 
based on LUTs. 
Bit flips 

Microprocessors Registers, caches, 
sequential, control logic 
Combinatorial logic 

Bit flips 
 
Transients 

ADCs, DACs Analog Portion 
Digital Portion 

Transients 
Bit flips or transient 
depending of the design 

Linear ICs Analog area Transients 
Photodiodes Photodiode Transients 
 
 

2.5.2 SEU effects 

The most common circuit sensitive to SEU is the memory element. The memory cell is 

designed so that it has two stable states, one that represents a stored '0' and one that 

represents a stored '1.' In each state, two transistors are turned on and two are turned off 

(SEU target drains). A bit-flip in the memory element occurs when an energetic particle 

causes the state of the transistors in the circuit to reverse. This phenomenon occurs in 

many microelectronic circuits including memory chips and microprocessors. In a 

spaceborne computer, for example, a bit-flip could randomly change critical data, 

randomly change the program, or confuse the processor to the point that it crashes. 

 

The occurrence of the SEU in a CMOS latch or SRAM cell is illustrated in Fig 2.10. 

When ion strikes at the reverse biased drain junction of the NMOSFET in the "off" state, 

it causes the node voltage to drop from high to low. This transition propagates along the 

feedback loop and tries to rewrite the state. In the mean time there is a recovery process 
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that the "on" PMOSFET keeps pulling the struck node back to the original high state. The 

competition between the feedback process and recover process governs the SEU response 

[WANG04]. If the feedback process is longer, the node is recovered. If the recover 

process is longer, the node changes state and an SEU occurred. 
 

Vdd

"on" P channel

"off" N channel

feedback

 
 

Fig 2.10 Competition between the feedback process and Recover process governs the 

SEU response of a latch (or SRAM cell) 
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Charged particles can also induce transient current pulses in combinatorial logic, in 

global clock lines, and in global control lines. These single event transients (SETs) have 

only minor effects in present 0.8 to 0.7 micron technologies since the speed of these 

circuits is insufficient to propagate a 100 to 200 ps SET over any appreciable distance 

through the circuit. Fig 2.11 shows a typical sequential circuit topology. An upset in the 

combinational logic can generate an error that is going to be stored in the flip-flop U2 if 

the speed of the circuit is high enough to propagate the error before the clock change the 

state of the flip-flop. If the speed is not high enough, the upset in the combinational logic 

will disappear before the clock change the state of the flip-flop U2, for example. 
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Fig 2.11 Typical sequential circuit topology 

 

However, as smaller feature size and thus faster technologies are becoming strongly used 

in spacecraft systems where transient pulses generated by charged particle hits can be 

indistinguishable from normal circuit signals, an upset in the combinational logic can be 

propagated fast to flip-flops input provoking errors in the circuit.  
 

Consider Fig 2.12, if the ion-strike-induced transient pulse can propagate through the 

network and result in an error in a storage element, an SEU occurs. This type of SEU is 

often referred as combinational logic SEU, SET, or SET-induced SEU.  
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Fig 2.12 SET occurs when the ion induced pulse can propagate through the circuit 

network [WANG04]. 

 
2.6 Displacement Damage 
 

An incident particle or photon capable of imparting energy of about 20 eV to a silicon 

atom can dislodge it from its lattice site [MA89, MESS92]. Displacement damage creates 

defect clusters. For example, a 1 MeV neutron transfers about 60 to 70 keV to the Si 

recoil atom, which in turn can displace roughly 1000 additional atoms in a region of 

about 0.1 µm radius. Displacement damage manifests itself in two ways; the formation of 

mid-gap states, and/or a change in doping characteristics. The formation of mid-gap 

states facilitates the transition of electrons from the valence to the conduction band. In 

depletion regions, this leads to an increase in the generation current of reverse-biased pn 

diodes. In forward biased junctions, or non-depleted regions, mid-gap states facilitate 

charge loss by recombination. States close to the band edges facilitate trapping, where 

charge is captured and released after a certain time. 
 

2.7 Approaches toward Radiation Hardened Integrated Circuits for TID 
 

Commercial electronics can frequently survive 3-10 krad(Si) of total dose without 

significant parametric degradation. The failure mechanism is typically field-oxide 

inversion, resulting in increased leakage current. They can also remain functional 

(although degraded) from 10-30 krad(Si), but they may suffer a high single-event upset 

rate or possible latch-up when struck by heavy ions. 

 



 41

There are three possible levels on which the radiation tolerance of a CMOS IC can be 

improved [KERN88, ALEX96, HUGE03]. The first method would be to modify the 

manufacturing process of the IC’s. For example, by reducing the oxide thickness in a 

MOS transistor, the device becomes less susceptible to TID degradation, because fewer 

charges can become trapped in the smaller oxide volume. However, with the shrinking 

device volume, it becomes more susceptible to SEE, due to a smaller particle energy 

being necessary to cause an upset.  

 

Some fabrication processes used to harden integrated circuits (ICs) against total ionizing 

dose are closely guarded secrets, protected either by government classification or 

company proprietary restrictions. What can be examined, though, are some particulars 

about the principal process factors affecting the total dose tolerance [NICK03]. 

 

The first step in hardening a CMOS IC against total dose radiation is to minimize voltage 

shifts, or their impact in the circuit, due to radiation induced charge trapping in the gate 

and field oxides. Two approaches can be used, either individually or in parallel: reducing 

the number of holes trapped in dielectric layers, and compensating for the trapped holes 

with trapped electrons. 

 

The easiest way to minimize the trapped-hole density, as mentioned above, is to thin the 

oxide [MA89]. A clean gate oxide less than 4-5 nm thick, which is typical of today’s 

commercial integrated circuits, can usually survive up to 100 krad(Si) or more with no 

process changes. On the other hand, where local oxidation of silicon is used, field oxides 

must remain thick to meet isolation and planarity requirements. 

 

Minimizing the trapped-hole density in them is much trickier and requires special 

processing. Adding electron traps to offset hole traps is another method of countering 

radiation effects on field or isolation oxide structures. The addition of electron traps 

within the a-SiO2 structure is achieved through implantation or introduction of an 

element. Hardness levels in excess of 300 krad(Si) can be achieved [MA89]. A specific 

approach for radiation hardened ICs by manufacturing changes is outlined below. 
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Use of ion implanted silicon-dioxide films: It is observed that radiation-induced 

interface-trap buildup is suppressed using ion implanted SiO2. By using a large arsenic 

ion dose, the interface-state buildup can be suppressed by one order of magnitude. It is 

found that interface-state buildup depends on the ion dose, the gate bias during irradiation 

and the annealing atmosphere [MA89]. 

 

After applying this technique to a conventional bipolar process, the current gain in lateral 

pnp transistors degraded by only 10% after 10 Mrad(SiO2) irradiation. Radiation induced 

trapped positive charges can be compensated by implanting aluminium. Aluminium in 

SiO2 films acts as an electron trap, compensating for the positive trapped charges when 

in the right concentrations. Si atoms can also be implanted into silicon dioxide films. The 

Si changes the SiO2 stoichiometry to an SiOx stoichiometry, providing electron traps. 

Process conditions must be controlled. Temperatures over 900_C cause Si to diffuse 

rapidly. The diffusing Si tends to form nano-crystals, reducing its compensating 

properties [NICK00]. 

 

The advancement in modern fabrication technologies and a need for faster and smaller 

IC’s, have led to devices evolving to become immune to TID effects, though not 

completely. There is not much that the system engineer can do as far as the fabrication 

method is concerned, and to use radiation hard components would defeat the main 

objective of keeping the satellite cost as low as possible. Therefore, although important, 

we will not concentrate on this aspect. 

 

The second method involves the use of special layout techniques, which solved the 

problem of radiation induced leakage currents and SEL and reduce the vulnerability of 

error due to SEU. A new radiation tolerant transistor structure can be obtained without 

any process fabrication modifications [SAMI04]. The NMOS transistor and field leakage 

normally induced by ionizing radiation can be remedied by acting on the work function 

of the transistor gate at the transistor edges. The technique also works in a CMOS process 

where transistor source and drains are silicided. This method decreases device density 
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that can be achieved with the technology and slows down digital circuits due to an 

increase in node capacitances. It was demonstrated that the functionality of the transistor 

structure and its radiation tolerance was intact up to 40 Mrad(SiO2) [SAMI04].  

 

The third method in which to make CMOS IC’s radiation tolerant is to use special circuit 

architectures that are less sensitive than others to the changes in the device characteristics 

due to radiation. Several methods can be employed to harden a circuit for TID induced 

effects. Modeling the radiation-induced variation as a function of the total dose of several 

transistor parameters, such as the trans-conductance and the threshold voltage, allows to 

foresee the drift of the circuit operating point, and therefore one can design the circuit in 

order to make it flexible enough to tolerate these drifts.  

 

Using special circuit architectures is also an effective way to obtain SEU hardening 

(design hardening) [MCCO99]. The basic idea is to provide memory elements with an 

appropriate feedback devoted to restoring data when corrupted by an ion hit. Radiation 

Hardened By Design (RHBD) methodology is described in [ALEX96]. 

 

Using radiation shields, typically of a tungsten/copper alloy, is another choice. They can 

either be built into the package structure, or be attached to the top and bottom [MA89]. 

While they are effective in reducing the electron component of the total dose radiation, 

they are much less effective in lessening the proton radiation. 

 

Conceptually, the radiation induced oxide charge buildup problem is a simple principle. It 

is only when one tries to quantify the details of the radiation response that one realizes 

the complexities involved in the radiation response of the MOS transistor. For example, 

the radiation response of a MOS transistor has a very complex time-dependant response 

which is not only important to understand the physics of the response, but also for the 

practical issues of testing, predicting and hardness assurance [OLD99]. 
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2.8 Radiation Effects in FPGA’s 
 

A field-programmable gate array is a semiconductor device containing programmable 

logic components and programmable interconnects. It is the densest and most advanved 

programmable logic device. The FPGA allows a designer to implement large digital 

designs with relative ease at any time and location.  

 

There is increasing interest in the use of FPGAs for many space-based computing 

operations. FPGAs are generally slower than their ASIC counterparts, can't handle as 

complex a design, and draw more power. However, they have several advantages such as 

a shorter time to market, ability to re-program in the field to correct errors, and lower 

engineering costs. Since this is ideal for spacecraft applications, the space community has 

actively evaluated radiation effects for most new FPGAs being introduced. While FPGAs 

offer several benefits for space-based electronics, they are sensitive to TID as well as 

SEE [WHIR03]. 

2.8.1 FPGA Architectures 

FPGA’s typically consists of multiple copies of a basic programmable logic element (LE) 

or logic blocks, Fig. 2.13. The logic element can implement a network of several logic 

gates that can then feed into 1 or two flip-flops. Logic elements are arranged in a column 

or matrix on the chip. To perform more complex operations, logic elements can be 

connected to other logic elements on the chip using a programmable interconnection 

network (Switching Architecture) [HAMB03].  

 

A key aspect in the design of an FPGA is its switching architecture, which comprises the 

resources that are used to interconnect the device’s logic blocks. There are three different 

FPGA switch technologies, SRAM, Flash and Antifuse. 
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Fig 2.13 General FPGA Architecture 

 

2.8.1.1 SRAM Based FPGA’s 

 

SRAM-based FPGA’s are increasingly being utilized for satellite and deep space 

applications [FABU00]. The advantages of these types of devices in these applications 

are numerous and well known, including the ability to create standard multi-platform 

application modules, the ability to re-configure the architecture on orbit or in space in 

response to changing mission requirements, the ability to make last minute design 

changes and the reduced time from design to flight. 

 

A simplified version of the FPGA Logic Block is illustrated in Fig. 2.14. 

 



 46

4-Input
LUT D Flip

Flop

OUTInputs

Clock

 

Fig 2.14 FPGA Logic Block 

 

The Logic Block consists of a 4 input look-up table (LUT), a flip flop and a multiplexer. 

There is one output which can either be the registered or unregistered depending on the 

multiplexer output [BETZ05].  

 

Each logic block input pin can connect to any one of the wiring segments in the channel 

adjacent to it. Each logic block output pin can connect to any of the wiring segments in 

the channels adjacent to it. 

 

Similarly, an I/O block can connect to any one of the wiring segments in the channel 

adjacent to it. For example, an I/O block at the top of the chip can connect to any of the 

W wires (where W is the channel width) in the horizontal channel immediately below it.  

 

The FPGA routing can be unsegmented or segmented. In unsegmented routing, each 

wiring segment spans only one logic block before it terminates in a switch or routing box. 

By turning on some of the programmable switches within a switch box, longer paths can 

be constructed. In segmented routing, row and column channels spans the entire device. 

 

Whenever a vertical and a horizontal channel intersect there is a switch or routing box. In 

this architecture, when a wire enters a switch box, there are programmable switches that 

allow it to connect to other wires in adjacent channel segments. The pattern, or topology, 

of switches used in this architecture is the planar or domain-based switch box topology. 

In this switch box topology, a wire in track number one connects only to wires in track 

number one in adjacent channel segments, wires in track number 2 connect only to other 
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wires in track number 2 and so on. The Fig. 2.15 illustrates the connections in a routing 

box.  

 

Wire Segment

Programmable Switch

 

Fig 2.15 Routing Switch Topology 

 

An example of how SRAM cells could be used to implement the routing switch in this 

type of FPGA is illustrated in Fig. 2.16. The SRAM cell controls a single NMOS pass-

transistor. 

 

SRAM
cell

wire segmentwire segment
 

Fig. 2.16 SRAM Based Routing Switches using pass-transistors 

The routing architecture above is not the routing architecture that is actually implemented 

by SRAM-based FPGAs. As shown below Fig. 2.17, commercial SRAM-based FPGAs 

normally place a buffer between routing tracks and the input pins to which they can 
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connect to enhance speed. As well, to save area, the connection from routing wire 

segment to input pin is made via a multiplexer, not via a set of independent pass 

transistors. The select lines of the multiplexer are controlled by SRAM cells. It is possible 

to connect a logic block output pin to multiple wire segments in commercial FPGAs. 

 

 

Fig. 2.17 SRAM Based Routing Switches using multiplexers 
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2.8.1.2 Antifuse Based FPGA’s 

 

The other type of programmable switch used in FPGAs is the antifuse. Antifuses are 

originally open-circuits and take on low resistance only when programmed. Antifuses are 

suitable for FPGAs because they can be built using modified CMOS technology 

[BROW97]. As an example, Actel’s antifuse structure, known as PLICE, is depicted in 

Fig. 2.18. The figure shows that an antifuse is positioned between two interconnect wires 

and physically consists of three sandwiched layers: the top and bottom layers are 

conductors, and the middle layer is an insulator. When unprogrammed, the insulator 

isolates the top and bottom layers, but when programmed the insulator changes to 

become a low-resistance link. PLICE uses Poly-Si and n+ diffusion as conductors and 

ONO as an insulator, but other antifuses rely on metal for conductors, with amorphous 

silicon as the middle layer. 
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Fig 2.18 The Actel Antifuse Structure 
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2.8.1.3 Flash Based FPGA’s 
 

This section gives a brief description of the structure and operation of the floating gate 

switch as shown in Fig. 2.19 [WANG04]. The switch element consists of two floating 

gate NMOS-transistors: A switch transistor turns on-or-off the data path, and a 

program/sense transistor programs the floating gate voltage and senses the current during 

threshold voltage measurement. These two transistors share the same control gate and the 

same floating gate. The modulation of the threshold voltage enables turn-on/off of the 

switch transistor. The threshold is determined by the charge stored in the floating gate. 

Fowler-Nordheim tunneling through the thin gate oxide is the mechanism that modulates 

the stored charge during programming and erasing. The floating gate switch is 

“programmed” to a low threshold state to turn the switch on, and “erased” to a high 

threshold state to turn it off. Fig. 2.20 shows the structure of the floating gate transistor. It 

is an NMOS transistor with a stacked gate. Between the Si substrate and floating gate is 

the tunnel oxide, and between the floating gate and control gate is the inter-poly oxide-

nitrideoxide (ONO) composite dielectric. 

 

Control Gate
Floating Gate

Switch Transistor Program Transistor

 

Fig 2.19 Schematic of the physical structure of the floating gate switch [SAMI04] 
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Fig. 2.20 Flash transistor 

2.8.2 SEE Effects in FPGA 

Single-event upsets in the FPGA affect the user design flip- flops, the FPGA 

configuration bitstream, and any hidden FPGA registers, latches, or internal state.  

Configuration bitstream upsets are especially important because such upsets affect both 

the state and operation of the design. Configuration upsets may perturb the routing 

resources and logic functions in a way that changes the operation of the circuit. The 

effects of SEUs in the device configuration memory are not limited to modifications in 

the memory elements, but they may also produce modifications in the interconnections 

inside CLBs and among different CLBs, thus giving rise to totally different circuits from 

those intended [BELL04]. 

 

Triple Module Redundancy (TMR) is often exploited for hardening digital logic against 

SEUs in safety-critical applications. As an instance, TMR is often exploited to design 

fault-tolerant memory elements to be employed in sequential digital logic. Unfortunately, 

non radiation-hardened FPGAs present insufficient protection of memory elements in 

both the mapped circuit, and the configuration memory. As a result, particles hitting the 

configuration memory can change dramatically the logic functionally of the mapped 
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circuit, as well as the circuit’s memory elements. Techniques are therefore required to 

evaluate the impact of SEUs affecting FPGAs configuration memory, and to avoid 

undesired changes of the circuit mapped on the FPGA [STER].  

2.8.3 Impact of FPGA architecture on radiation response 

The differences in the radiation response in different FPGA technologies originate in the 

switches [WANG04]. The Antifuse FPGA routing switch is completely immune to TID 

effects, and its sensitivity is only determined by its logic part. This is intuitive correct if 

one considers that the Antifuse switch structure consists of an insulator isolating the top 

and bottom layers, but when programmed the insulator changes to become a low-

resistance link. Therefore, when programmed the switch basically becomes metal or one 

routing wire touching another routing wire. 

 

The SRAM FPGA’s on the other hand consists of SRAM memory cells comprising the 

configuration memory of the device. Therefore, compared to an Antifuse FPGA, its 

sensitivity is increased because of the added effects on the SRAM switches. The TID 

sensitivity of Flash Based FPGA’s will likely be determined by the floating gate switches 

[WANG04, SNYD89]. 

 

The non-volatile antifuse and Flash switches are insensitive to SEE. The logic modules 

thus determine the sensitivity of the device. SRAM-based FPGA has the biggest 

disadvantage in that its switch is very sensitive to the SEU. For example, even in real 

time operation, cosmic-neutron induced soft errors in the SRAM switches can be detected 

at a typical ground location anywhere. 

 

Hardwired SEU hardenings of non-volatile switch based FPGAs are economically viable 

because only the logic modules need to be hardened. SRAM-based is difficult to be SEU 

hardened by hardware solutions. So far, there is no solution without very expensive area 

penalties. Some software mitigation techniques were proposed and used. However, due to 

the complexity of the SEU effects on the SRAM-based FPGA, its understanding and 

subsequent hardening are still open for research at this moment.  
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Chapter 3 

Switched Modular Redundancy 
 
3.1 Introduction 
 
The reader may have noticed in the previous chapter that the author highlighted sentences 

where the electric field is mentioned. This was done deliberately, because the effect that 

the gate bias or electric field across the MOS capacitor, has on the radiation response of 

the MOS oxide, is a very import matter which will be considered more closely in this 

chapter and forms the basis for the novel Total Ionizing Dose mitigation technique, called 

Switched Modular Redundancy. 

 

3.2 The Effect of Gate Bias on the MOS Radiation Response 
 

This section forms the theoretical basis for the novel modular redundancy method. It is a 

well known fact in the physics that a charged particle is accelerated in the presence of an 

electric field. However, in a solid, electrons will move around randomly in the absence of 

an applied electric field. Therefore if one averages the movement over time there will be 

no overall motion of charge carriers in any particular direction. On applying an electric 

field charge carriers will on average move in a direction aligned with the electric field, 

with positive charge carriers such as holes moving in the direction of field, and negative 

charge carriers moving in the opposite direction. In process 1 of Fig 2.4, if we apply a 

zero bias to the gate terminal in the presence of ionizing radiation, both the free 

electrons and holes will remain near their point of origin, and therefore have a 

greater probability of recombination. 

 

Further, since no electric field is present, the holes will not be transported toward the 

silicon-oxide interface for a NMOS transistor and visa versa for the PMOS transistor 

(process 2 of Fig. 2.4). Hence, the holes will remain near their point of origin. If the 
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radiation field is removed without a gate bias being applied, the effect of the 

radiation field on the response on the MOS oxide should be minimal. 

 

Several studies have been done that considers the effect of the gate bias on the radiation 

response of MOS oxides. The amount of threshold shift in MOS devices caused by 

ionizing radiation is strongly dependant on the bias voltage applied to the gate both 

during and after radiation. Further, it has been reported that the trapped positive charge 

near the oxide-silicon interface anneal quickly when irradiated in an unbiased condition 

[STAN85].  

 

The research by [STAN85] showed that the effect of alternating bias on the radiation 

response of MOS devices were a reduced amount of hole trapping and interface state 

buildup in N-channel devices. In P-channel devices a reduced amount of hole trapping 

were also evident. 

 

[OKAB90] studied the effects of high frequency ac bias on the response of MOS devices 

due to ionizing radiation. Radiation induced interface traps were annealed out during 

irradiation and post-irradiation annealing when an ac bias was applied with a zero offset 

voltage. Further, the recovery of 40 MHz biased devices agreed with that of 860 MHz 

biased ones for the same number of alternating cycles of ac gate bias voltage. The authors 

concluded that the high frequency ac bias was responsible and the total number of cycles 

may be relevant for the annealing of radiation induced interface traps. 

 

Very large annealing rates have been reported for the total dose damage in a commercial 

microprocessor by [JOHN83]. The annealing rates had a complex dependence on bias 

conditions and dose rate. It was reported that these effects can cause large errors in total 

dose testing procedures. 

 

The effect of bias switching on the growth and annealing of trapped holes and interface 

states were investigated by [FREI87]. Radiation induced annealing of the trapped charges 
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under zero bias has been observed. The work has confirmed the importance, as reported 

by [STAN85], of radiation induced annealing. 

 

Since the trapped positive charge near the oxide-silicon interface anneal quickly when 

irradiated in an unbiased condition, it therefore follows that the threshold voltage shift in 

MOS devices will be less severe for the gate terminal in an unbiased condition. Thus, for 

devices which are subject to gate bias cycling, the maximum acceptable dose is higher 

than if the irradiation bias were applied continuously. 

 

By adding redundancy and applying a resting policy, one can significantly prolong 

the useful life of MOS components in space. However, a significant buildup of 

interface states continues during irradiation, even at zero bias [STAN85]. Therefore 

caution should be applied. 
 

3.3 The Switched Modular Redundancy Method 
 

The fact that the rate of the threshold voltage shift in MOS devices is strongly dependant 

on the bias voltage applied to the gate terminal is a very important phenomenon that can 

be exploited, since we have direct control and access to the voltage applied to the gate 

terminal.  

 

If for example, two identical gates were under the influence of radiation and the gate 

voltage is alternated between the two, then the two gates should be able to withstand 

more total dose radiation than using only one gate. This redundancy could be used in a 

circuit to mitigate for total ionizing dose. 

 

The more a MOS transistor is in use (i.e. switched ON); the more positive charge will be 

accumulated over time. This implies that gates that are longer in the ON state in a circuit 

will degrade faster than their idle (OFF) counter parts. Hence “ON” gates will suffer first 

and cause a circuit malfunction. 
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Consider Fig. 3.1.  When input A is 0, Transistor T1 is in the ON state and T2 in the OFF 

state. Thus, in this situation, T1 is degrading in the influence of ionizing radiation, and T2 

is annealing. This is illustrated in Table 3.1 with an X for degrading and √ for annealing. 

Therefore, if we have a 50% duty cycle between the two transistors, the circuit should 

last longer than any other duty cycle. In a real digital circuit, the 50% duty cycle will not 

be the case. Hence, A might be 0 more often and the result is that T1 will degrade faster. 

The only requirement for this circuit to malfunction is for one transistor to fail. A solution 

to this problem would be to add redundancy with an identical module in parallel.  
 

Vcc

OutputA

CMOS Inverter

T1

T2

 

Fig 3.1 CMOS Inverter Circuit 

 

Table 3.1  
 

A T1 T2 

0 X √ 

1 √ X 
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The redundant group consists of two identical components. While the one is in use, the 

other components inputs are varied between logic 1 and 0. Hence, while the one 

component is in use, the other component is given a time to anneal.  

 

The same method can be applied similarly to the other fundamental logic gates. This is 

illustrated in the following diagrams. Functionally, the circuit is still the same as the 

original circuit, however, it is more radiation tolerant than the original. 
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Fig 3.2 CMOS AND Gate Circuit 

 

Table 3.2 
 

A   B T1 T2 T3 T4 T5 T6 

0    0 X X √ √ X √ 

0    1 X √ X √ X √ 

1    0 √ X √ X X √ 

1    1 √ √ X X √ X 

 

 



 58

A

B

Vcc

Output

CMOS NAND Gate

T1 T2

T3

T4

 

Fig 3.3 The CMOS NAND Gate Circuit 

 

Table 3.3 
 

A   B T1 T2 T3 T4 

0    0 X X √ √ 

0    1 X √ X √ 

1    0 √ X √ X 

1    1 √ √ X X 
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Fig 3.4 The CMOS OR Gate Circuit 

 

Table 3.4 
 

A   B T1 T2 T3 T4 T5 T6 

0    0 X X √ √ X √ 

0    1 X √ X √ √ X 

1    0 √ X √ X √ X 

1    1 √ √ X X √ X 
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Fig 3.5 The CMOS NOR Gate Circuit 

 

Table 3.5 
 

A   B T1 T2 T3 T4 

0    0 X X √ √ 

0    1 X √ X √ 

1    0 √ X √ X 

1    1 √ √ X X 
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Fig 3.6 The CMOS XOR Gate Circuit 

 

Table 3.6 
 

A   B T1 T2 T3 T4 T5 T6 

0    0 X X X √ √ X 

0    1 √ X X X √ X 

1    0 X √ √ √ X √ 

1    1 √ √ √ X X √ 
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Fig 3.7 The CMOS XNOR Gate Circuit 

 

Table 3.7 
 

A   B T1 T2 T3 T4 T5 T6 

0    0 X √ √ √ √ X 

0    1 √ √ √ X √ X 

1    0 X X X √ X √ 

1    1 √ X X X X √ 

 

 

The results from the tables clearly show that in order for the transistors to anneal in each 

gate, the inputs have to be varied between logic 0 and 1. Hence, both inputs has to be 

logic 0, thereafter both inputs has to be logic 1.  

 

This concept is best explained by means of an example. Consider Fig 3.2 together with 

Table 3.2. When both inputs to the circuit is logic 0; T1, T2 and T5 are degrading while 

T3, T4 and T6 are annealing in the presence of ionizing radiation. When both inputs are 

logic 1; T1, T2 and T5 are degrading, while T3, T4 and T6 are annealing. However, the 

time for the transistors to anneal is much shorter than the time it takes to degrade 

[STAN85, DRES86, SCHW83]. The net results being that the transistors would be able 

to withstand more total dose radiation. 
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3.4 Applying the SMR Principle in FPGA’s 
 
As mentioned above, the SMR methodology would be to duplicate each gate in a circuit, 

then selectively only activating one gate at a time allowing the other to anneal during its 

off cycle. The SMR algorithm is coded in the “C” language and the code is provided in 

Appendix D as well as on the accompanying CD. 

 

In the proposed design methodology, the design engineer need not be concerned about 

radiation effects when describing the hardware implementation in a hardware description 

language. Instead, the design engineer makes use of conventional design techniques.  

 

When the design is complete, it is synthesized to obtain the gate level netlist in edif 

format. The edif netlist is converted to structural VHDL code during synthesis. The 

structural VHDL netlist is fed into the SMR “C” algorithm to obtain the identical 

redundant circuit components. The resultant file is also a structural VHDL netlist. 

 

The generated VHDL netlist or SMR circuit is then mapped to the FPGA.  However, the 

SMR algorithm as explained will not provide TID tolerance for an FPGA 

implementation as the internal structure of the FPGA is much more complicated. For one, 

the design engineer has no access to individual gates in an FPGA, and in fact, there are 

no fundamental gates in FPGA’s. The FPGA consists of logic blocks that are configured 

to implement a function that represents a fundamental gate. Consider Fig 3.8 which is a 

representation of the internal architecture of the SRAM FPGA. It consists of the routing 

the routing matrix, LUT, Flip Flops and output buffers as discussed in the previous 

chapter. 
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Fig 3.8 Internal architecture of the SRAM FPGA 

 

FPGA devices contain dense arrays of memory cells with a large amount of memory state 

within a relatively small amount of circuit area. Much like SRAM and DRAM, SRAM-

based FPGAs contain large amounts of memory cells within a device and are especially 

sensitive to radiation. As an example, the Virtex V1000 FPGA contains almost six-

million bits of internal state. As suggested in Table 3.8, this relatively large amount of 

internal state is used for several important purposes. 
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Table 3.8 
 

Memory Type No. of Bits FPGA % 

Configuration 5 810 048 
 

97.4 % 

Block RAM 131 072 
 

2.2 % 

User Flip-Flops 26 112 
 

0.4 % 

Total 5 967 232 
 

100 % 

 

User Flip-Flops: An important architectural component of all FPGAs are user 

programmable flip-flops. User designs exploit these flip-flops to implement common 

sequential logic circuits such as state machines, counters, and registers. User flip-flops in 

most digital technologies are susceptible to ionizing radiation because the flip-flops are 

configured with SRAM bits.  

 

User Memory: Modern FPGAs provide blocks of internal memory larger than the typical 

look-up table. This block memory is used for traditional random access memory 

functions such as data storage, buffering, FIFO, etc. For example, the Virtex family 

includes a set of internal dual-ported BlockRAM memories that each provide 4096-bits of 

randomly accessible memory. With 32 BlockRAM memories, the Virtex V1000 FPGA 

offers 131,072 bits of internal memory. Dense static memory such as the BlockRAM is 

especially susceptible to ionizing radiation. 

 

Configuration Memory: As shown in Table 3.8, 97% of the known memory cells within 

the Virtex V1000 device are devoted to configuration memory. These memory cells 

define the operation of the configurable logic blocks, routing resources, input/output 

blocks, and other programmable FPGA resources. Like other static memory cells, 

configuration memory is susceptible to ionizing radiation. Errors within the configuration 

memory are especially troublesome as they may change the operation of the circuit. Any 

spacecraft that utilizes SRAM-based FPGAs must anticipate and mitigate against 

radiation degradation within the device configuration memory. 
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Fig 3.9 Comparative use of SRAM bits in the internal structure of the SRAM 

FPGA. 

 

Fig 3.9 illustrates the importance and comparative use of SRAM bits in the internal 

structure of the SRAM FPGA. 

 

As previously mentioned, the SMR algorithm as explained in section 3.3 will not 

provide TID tolerance for an FPGA. Even if we provided redundancy in the logic part 

of the FPGA, we still would have a configuration memory that is constant for a particular 

FPGA implementation. For the SRAM based FPGA as well as the Flash-based FPGA, 

switched redundancy has to be provided in its configuration memory.  

 

When the SRAM and Flash based FPGA is configured, the configuration memory 

determines the logic functionality of the FPGA. Hence, for a particular SRAM or Flash 
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based FPGA implementation, the configuration memory is constant. Therefore, if we 

apply the SMR algorithm to an SRAM or Flash based FPGA implementation, we not 

only duplicate the logic part of the FPGA, but as a consequence, we also duplicate the 

configuration memory. 

 

The configuration memory controls the functionality of the FPGA, and depending on the 

FPGA architecture, consists of either SRAM or Flash memory cells. However, even if we 

provided cycled redundancy in the logic part of the SRAM or Flash based FPGA, we still 

have a constant and static configuration memory that degrades under the influence if 

ionizing radiation. Thus, for the SRAM or Flash based FPGA, in order to mitigate for 

TID effects, we also have to provide the cycled redundancy to the configuration memory 

of the FPGA. 

 

This reduces the problem of TID mitigation for the SRAM and Flash based FPGA to that 

of reconfigurable computing. This concept can be best explained by means of a diagram.  

Consider Fig 3.10, which illustrates a simplified depiction of the interconnection between 

the configuration memory, and the logic part of the FPGA.  

 

If we apply the SMR algorithm to this system, the configuration memory will also be 

duplicated. Thus, for the SRAM FPGA, we can reset one SRAM cell in the redundant 

group, while the original circuit is still configured with the other SRAM cell. This 

basically amounts to in-circuit reconfiguration.  

 

FPGA’s can be partially reconfigured to implement Dynamically loadable Hardware 

Plugin (DHP) modules. A tool called PARBIT has been developed that transforms FPGA 

configuration bitfiles to enable DHP modules. With this tool it is possible to define a 

partial reconfigurable area inside the FPGA and download it into a specified region of the 

FPGA device [EDSO01]. Thus, the above theory can be physically implemented in 

FPGA’s. 
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Fig 3.10 Configuration memory and Logic interconnection 

 

Another, and much simpler, way of solving this problem would be to provide no 

redundancy at all. We can simply load the same circuit into a different part of the 

configuration memory dynamically, as depicted in Fig 3.11. After some time, the circuit 

will be reconfigured as in Fig 3.10, and then back to that in Fig 3.11, and so on. 

 

Thus, we define a partial reconfigurable area inside the FPGA and download it into a 

specified region of the FPGA device. In essence, configuration memory swapping is 

provided between the duplicated memory cells while the FPGA circuit is in operation. 
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Fig 3.11 Configuration memory swapping 
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Chapter 4 

Experimental Setup and Methodology 
4.1 Introduction 
 

The response of MOS devices to radiation is very variable and it is thus impossible at 

present to use theory alone to predict the device response [HOLM02]. Therefore, testing 

integrated circuits in a severe radiation environment in advance to their use in operational 

systems is very important and it will help to reduce the probability of failures in future 

space applications. 

 

The sensitivity evaluation of a circuit with respect to radiation can be done by: 

• the analysis of flight data issued from spacecraft operating in the actual 

environment, i.e. space projects. 

• ground testing, 

• fault injection. 

 

Fault injection is normally used to perform SEU testing on electronic circuits, while 

actual ground tests are performed in order to test the ionizing dose performance of 

electronic circuits. In this chapter we describe the experimental setup for the ground 

testing as well as the radiation facility. 

 

4.2 Radiation Source and Facility 
 

The source most often used for ionizing radiation testing and the source used in this study 

is Co-60, which emits gamma rays (photons) of energy 1.173 and 1.332 MeV. Co-60 is 

used for industrial irradiations, sterilization, radiotherapy and biological research. The 

radiation testing for this study was performed utilizing the Co-60 source at the 

Agriculture Research Council (ARC) in Stellenbosch, Western Cape, South Africa and 

was readily available. 
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Ionization due to gamma rays provides useful simulation of the ionization due to the 

radiation environment of space [HOLM02]. In the radiator facility at the ARC, a cylinder 

of Co-60 is suspended underground in the radiation room. A diagram of the radiation 

facility is given in Fig 4.1.  

 

The device under test (DUT) is arranged on a moving tray and is placed near the Co-60 

source and their response to the radiation can be monitored continuously by means of the 

extension wires leading out of the radiation room.  

 

The source at the ARC facility has a radiation dose rate of 2.5 krad/hour (0.7 rad/s) at a 

distance of 1.3m. Depending on the distance from the source, the radiation dose can be 

varied, however, testing was performed at a dose rate of 2.5 krad/hour. The dose rate 

used is considerably larger than that found in space applications, and it can easily be 

argued that the evolution of the power consumption increase and consequent failure 

would not at all be the same in a real environment. However, that the radiation response 

of the CMOS transistor depends on the dose rate is a common misconception. What is 

true is that the response is time dependent. For example, if one irradiates two samples to 

100 krad, one at 10 krad/min for 10 minutes, and the other at 5 krad/min for 20 minutes, 

then the response at the end of the exposure will probably be different, because damage is 

annealing during the exposure. If one measures a time dependent quantity at 10 minutes 

and also at 20 minutes, there is no reason to expect the results to be the same. But for 

CMOS, if you measure both samples at the same time (20 minutes), the results will be 

exactly the same, even though the dose rate was different. This was first identified by 

Derbenwick as an apparent dose rate effect (as opposed to a true dose rate effect) in 1977 

[DERB77]. Since then, numerous others have reached the same conclusion. The most 

elegant experimental demonstration of this idea was by Fleetwood et al. [FLEE88]. They 

varied exposure rate by 11 orders of magnitude, and annealing time by up to nine orders 

of magnitude, and found no true dose rate effects. That is, there were no dose rate effects 

if different annealing times were properly accounted for. 
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A very recent experimental verification is provided in [SCHW07] where the authors 

investigated dose rate effects in CMOS ICs at dose rates from 0.2 to 2 x 109 rad/s. 

Radiation-induced degradation of CMOSIIIA 16KSRAMs was dominated by radiation 

induced charge buildup in gate oxide transistors for dose rates of 100 rad/s and lower. For 

these devices, laboratory irradiations can be used to estimate device radiation-induced 

degradation at lower dose rates (e.g., space), because the same mechanism led to 

radiation-induced degradation. 
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Fig 4.1 Radiation Facility Layout 
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Fig 4.2 Radiation facility entrance 

 

Fig 4.2 shows the entrance to the radiation facility at the ARC. Past the entrance security 

door in the passage, various monitoring equipment can be seen, as well as the cable ducts. 

The security camera provides a visual of the radiation room on a monitor. Our monitoring 

PC connected to the extension cables can also be seen. 

 

 

 

 

 

 

 



 75

 

Fig 4.3 Inside the radiation room 

 

Fig 4.3 shows the inside of the radiation room. The Co-60 source is suspended 

underground via a steel rod in the middle of the room. The DUT is located on a movable 

trolley in front of the Co-60 source, as indicated in the diagram. The distance from the 

source determines the radiation dose rate. In our case, the DUT is at a distance of 1.3m 

which translates into a radiation dose rate of 2.5 krad per hour. Also indicated in Fig 4.3 

are the extension cables which link the internal monitoring equipment with the PC 

outside in the passage via the cable ducts. 

  

Two layers of solid lead bricks of 5cm thickness is located between the back of the 

trolley and the front plane where the DUT’s are suspended. The purpose of the lead 

bricks is to protect the internal monitoring equipment from radiation damage. 
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Fig 4.4 Devices under test suspended on the movable trolley 

 

Fig 4.5 Two PC’s and power supplies are located outside the radiation facility 
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4.3 Test Methodology 
 

The test methodology depends on the DUT type. For example, the methodology used for 

memories consists mainly in to write a data pattern, to wait a loop read out and to 

compare to expected values. The methodology for processors is more complex. The test 

can be [BRY98]: 

 

• Dynamic - actively exercise a DUT during beam exposure while counting errors, 

generally by comparing DUT output with a reference device or other expected 

output. Devices may have several dynamic test modes, such as Read/Write or 

Program-Only, depending on their function. Clock speeds may also affect 

radiation test results. 

• Static - load device prior to beam irradiation, then retrieve data post-run, counting 

errors. In this case there is the worst case estimation of the error rate. 

• Biased (SEL only) - DUT is biased and clocked while ICC (power consumption) is 

monitored for latch-up or other destructive conditions.  

 

Electronic test equipment for controlling and observing the DUT behavior during its 

exposition to radiation must be built according to the system and the radiation facility. 

 

Total Ionizing Dose Performance was examined at a dose rate of 0.7 rads (Si)/sec (2.5 

kRad/hour). Testing included in-situ monitoring of key parameters such as Icc, as well as 

full functional test pre- and post-dose. In addition, at various cumulative dose steps, 

devices were tested for full functional circuit behavior using the specific vendor’s 

comprehensive test programs. Devices were also reconfigured at various dose steps in 

order to implement the SMR algorithm, as explained in the previous chapter. Variation in 

the performance of the devices with total absorbed dose is presented in the following 

chapter, together with the enhanced performance obtained by the SMR method. An 

illustration of the test setup is shown in Fig 4.6 and Fig 4.7. 

 

The FPGA’s are connected to the PC via current sensors, a 12-bit Analogue to Digital 
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Converter and a microprocessor. A software program runs on the PC that monitors and 

logs the FPGA power supply currents every 2s. The interface between the FPGA IO 

blocks and the PC was a FPGA based processor (Actel ProASIC Plus APA075PQ208). 

The purpose of the microprocessor was to monitor and log the FPGA IO’s logic values 

every 2s. The expected values of the IO ports are stored on the processor and compared 

to the FPGA IO logic values, if correct a 0 is sent to the PC, if incorrect (i.e. an error), a 1 

is sent to the PC.  

 

FPGA 1 FPGA 2 FPGA 3

12-bit ADCPC

IO and
Core

IIO and
Core

I IO and
Core

I

Microprocessor

IO monitor IO monitor IO monitor

Serial

Serial

SPISPISPI
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Fig. 4.6 FPGA TID Test setup 
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Fig 4.7 Monitoring devices at the back of the radiation trolley 

 

In-circuit reconfiguration and JTAG monitoring is provided by means of the Serial Port 

Interface (SPI). During irradiation testing, the FPGA’s were reconfigured; successful 

reconfiguration is an indication that the configuration memory of the FPGA is still 

functional. Separate design files were compiled with the Altera Quartus VHDL design 

software, with each design file representing a different part of the configuration memory. 

 

During reconfiguration, a different design file was loaded into memory. For example, 

design file 1 would be loaded, after some accumulated dose design file 2 would be 

loaded, then design file 1 again and so on. No extra functionality is needed; the new 

design is simply downloaded to the FPGA by means of the SPI. 

 

The following table gives a summary of the parameters that were tested during the TID 
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tests of the FPGA’s. However, the Power supply current (ICC) is the most important 

parameter for monitoring TID effects [WANG04]. 

 

Slight annealing at room temperature was observed over night for each test, as the 

radiation facility was shut down. These anneals resulted in degraded devices returning to 

a slightly improved performance. 
 

Table 4.1 
 Parameter Logic 

Function 
1 ICC FPGA Power 

Supply 
2 Configuration Configuration 

Memory 
3 IO Ports FPGA 

functionality 
 

The devices were tested with a voltage regulator (LM7805) on board and without the 

regulator. It was thought that the regulator’s TID tolerance exceeds that of the FPGA and 

therefore the FPGA could be tested with the regulator on board. However, no difference 

in the FPGA radiation response was observed with or without the regulator on the PCB 

board. 

 

4.4 Devices Tested: 
 

SRAM-based FPGA:  10K10TC144-4 CMOS based from Altera with 10,000 to 250,000 

typical gates. 

Operating voltage: 5V 

Configuration:  In-circuit reconfigurability (ICR) via a SPI. 

Gate Oxide: SiO2 

 

The FPGA devices were configured with a ring counter code circuit that will be used to 

configure the device. The circuit is a synchronous digital logic design clocked at 25 MHz. 

The circuit occupied 8% of the logic elements in the EPF10K10TC144-4 FPGA. The ring 

counter code is given in appendix B. 
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4.4.1 Altera Flex10K Architecture 

The flexible logic element matrix (FLEX), is a FPGA device with 10 000 gates. The Flex 

device is configured by loading internal static random access memory (SRAM), and thus 

looses its configuration memory whenever power to the device is lost [ALTE03]. Thus is 

a real system, an external low cost serial programmable read only memory (PROM) is 

normally used to automatically load programming information when the device powers 

up. 

 

 

Fig 4.8 Flex 10K Logic Element [ALTE03] 

 

Consider Fig 4.8 which shows the Flex 10K logic element (LE). A logic gate is 

implemented by making use of LUT’s. The LUT is a high speed 16x1 SRAM. Four 

inputs are used to access the LUT’s memory. The truth table for the gate can be loaded in 

the LUT’s SRAM during configuration. A single LUT can thus model any network of 

gates with 4 inputs and 1 output. 
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More complex gate networks require interconnections with additional neighboring logic 

elements. The LUT output is fed into a D flip-flop and then to the interconnection 

network. The clock, Clear and Preset can be driven by the internal logic or an external Io 

pin. Carry and Cascade chains connect to all LE’s in the same row. 

 

Fig 4.9 shows the logic array block (LAB). A LAB is composed of 8 LE’s. Both 

programmable local LAB and chip-wide row and column interconnects are available. 

Carry chains are provided to support faster addition operations. 

 

 

Fig 4.9 Flex 10K logic array block [ALTE03] 
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Fig 4.10 shows the flex 10K device architecture. A matrix of LAB’s and embedded array 

blocks (EAB) are connected via programmable row and column interconnects. The flex 

10K device contains 72 LAB’s and 3 EAB’s. 

 

 

Fig. 4.10 Flex 10K architecture 

 

An EAB contains 2048 bits of memory. Each EAB can be configured as 256x8, 512x4, 

1024x2, or 2048x1 SRAM. In some cases, EAB’s can be used to implement gate level 

logic. As an example, a 4x4 multiplier can be implemented by storing the multiply truth 

table in a single EAB. 

 

Input-output elements (IOE) are located at each of the devices IO pins. IOE’s contain a 

programmable tri-state driver and an optional 1-bit flip-flop register. Each IO pin can be 

programmed as input, output, output with a tri-state driver, or even tri-state bi-directional  

with or without a register. 
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4.4.2 Altera Max Plus II Floorplan Editor 

The CAD tool used to program the FPGA was the Altera Max Plus II software with the 

code written in VHDL as previously stated. A very useful feature of the Max Plus II 

CAD tool is the Floorplan editor. 

 

The floorplan editor is a visual tool to assist expert users in manually placing and moving 

portions of logic circuits to different logic cells inside the FPGA. This is normally done 

in an attempt to achieve faster timing or better utilization of the FPGA. Floorplanning is 

typically used only on very large designs that contain subsections of hardware with 

critical high-speed timing [KLUW01]. 

 

For non-expert users, use of the Max Plus II compiler’s automatic place and route tools is 

normally used. Automatic place and route is performed during the compile process. 

 

The floorplan editor was used to implement the SMR algorithm as stated in chapter 3.  

We load the circuit into a different part of the configuration memory dynamically by 

making use of the floorplan editor. 

 

Fig 4.11 shows a diagram of the floorplan editor. Different versions of the Max Plus II 

software may place the logic at different locations within the chip. One implementation 

of the OR-gate design is shown in Fig 4.11. 

 

There is a lot of empty space in the floorplan of Fig 4.11 since the Flex 10K10 can 

contain up to 10 000 logic gates. Pins and logic cells used in the design are color coded. 

If you move the logic cell to another location, it will make small changes to the circuit 

timing because of changes in the interconnect delays inside the FPGA. 
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Fig 4.11 Floorplan layout with internal FPGA placement of OR-gate logic cell and 

IO pins 
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4.5 Radiation testing PCB boards 
 

The PCB board’s that was designed and manufactured for the purpose of radiation testing 

of the FPGA’s is shown in Figures 4.12 and 4.13. These boards were designed for the 

TID testing of the Altera SRAM FPGA. The schematics can be found in appendix A. 
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Fig. 4.12 FPGA PCB test board with IO and Core power supply separated 
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Fig. 4.13 FPGA PCB test board with clock signal select jumper 
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Chapter 5 

Experimental Results 
 
5.1 Testing the Resting Policy on the effects of the FPGA radiation response 
 

In order to test the resting policy on SRAM FPGA’s, the following setup was used. In the 

first instance, the FPGA was tested using normal operation and running a ring counter 

code (Case 1 in Fig. 5.1), while in the second case the FPGA was tested, also running the 

same code, however the power to the FPGA’s were cycled (Case 2 in Fig. 5.1). The idea, 

as described in chapter 3, would be that the FPGA components would not degrade under 

the influence of ionizing radiation during its off cycle and therefore increasing its 

lifetime. Fig. 5.1 shows a comparison between normal FPGA operation (Case 1) and 

FPGA power cycling (Case 2). The dose rate as previously stated was 0.7 rads (Si)/sec, or 

about 2.5 krad/h. The floor plan for the ring counter code as placed in the FPGA is shown 

in Fig 5.3. Whenever power to the FPGA was restored, the same floorplan was loaded 

into the FPGA. 

 

The FPGA’s in case 1 of Fig. 5.1 started consuming more power supply current at about 

15 krad and gradually increased in power supply current. Intermittent IO errors started 

occurring at 18 kRad (Fig 5.2) until about 22 kRad when functional failure occurred, at 

which point current monitoring was stopped for case 1 of Fig. 5.1. The FPGA’s in case 2 

of Fig. 5.1 also started consuming more power supply current, however at a slower rate as 

case 1. In this case, when the current drops to zero, power to the FPGA is switched off. 

Spacing of the power cycling dips towards the end of the test was different to the spacing 

before about 21krad. The reasons for this is that after 21krad, the slope of the curve 

increases dramatically with increasing absorbed dose,  thus, power to the FPGA’s has to 

be cycled faster to prevent functional failure.  
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For case 2, the FPGA’s were still functionally intact after 30 krad when the testing was 

stopped. This result shows that one can make use of system or device redundancy to 

increase the lifetime of SRAM FPGA’s in space. However, in order to increase the 

FPGA’s lifetime without making use of redundancy at the system level, one would have 

to provide redundancy internally by means of the SMR algorithm. Further testing was 

performed with the Altera FPGA, with the conditions as shown in Fig. 5.4. 
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Fig. 5.1 Comparison between normal FPGA operation (Case 1) and FPGA power 

cycling (Case 2) for the Altera EPF10K10TC144-4 SRAM based FPGA 
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1

 

Fig. 5.2 FPGA IO errors for Fig 5.1, case 1. 
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Fig 5.3 Floorplan for Fig 5.1, case 1 and case 2 
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5.2 Testing the effect of the clock and configuration memory on the FPGA 
radiation response 
 

For the FPGA configured, but not clocked (case 2, Fig 5.4), the TID response is the same 

as with the normal operation (Case 1). Thus for case 2 of Fig. 5.4, the configuration 

memory is constant, but the switching matrix is not clocked. The zero clocking appears to 

have no effect. Thus, one could infer that the configuration memory plays an important 

role in the radiation response of the SRAM FPGA. This is because, although the FPGA is 

not clocked, the configuration memory is still constant, and degrades under the influence 

of ionizing radiation, as stated in chapter 3. The floorplan for the configured FPGA is the 

same as in the previous section. 

 

In case 3 of Fig 5.4, the FPGA is configured, and then tested in a radiation field as in case 

1. However, after 2.5 krad, the configuration memory is reset, without switching off the 

FPGA power. For this case, the TID tolerance is much better than normal operation (Case 

1). In fact, it is similar to when power was completely reset as in Fig. 5.1. 

 

This result agrees with the theoretical analysis of chapter 3. Since when the FPGA 

configuration memory is reset, its SRAM cells (or transistors) are reset and thus does not 

degrade in the presence of ionizing radiation. This is a very favorable result, because by 

building redundancy into the configuration memory (i.e. internally to the FPGA), one 

could significantly increase the lifetime of the SRAM FPGA in a radiation environment. 

 

Spacing of the reconfiguration cycling dips towards the end of the test was different to 

the spacing at the beginning. The reasons for this is that toward the end of the test, as 

previously observed with the power cycling case where the slope of the curve increases 

dramatically with increasing absorbed dose,  the power to the FPGA’s has to be cycled 

faster to prevent functional failure. 
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Fig. 5.4 Case 1: Normal operation as in case 1 above. Case 2: The FPGA is 

configured, but the clock signal is removed. Hence, no switching takes place in the 

switch matrix. Case 3: Normal operation, however the configuration memory were 

reset every 2.5 krad, and then reprogrammed again after a further approx 2.5 krad. 

For the time that the configuration memory is cleared, the power to the FPGA is 

still on. 
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5.3 Testing the SMR Algorithm by means of reconfigurable FPGA 
computing 
 

Consider Fig. 5.5, after the FLEX 10K device has been configured, it was reconfigured 

in-circuit by loading to a different part of the configuration memory as described in 

chapter 4. However, the same IO ports were used during each reconfiguration. Hence, 

only the internal FPGA core is different for each reconfiguration. This is represented by 

case 2 and 3. The floorplan for case 1 of Fig 5.5 is the same as indicated in Fig 5.3. 

However, the floorplan for case 2 and 3 is given in Fig 5.6. As can be seen, the internal 

core is different to that in Fig 5.3, however the same IO ports are used. 

 

Reconfiguration requires less than 320 ms during system operation. The FPGA with 

normal operation (case 1) failed functionally at about 20 krad, at which point current 

monitoring was stopped, whereas the reconfigured FPGA’s failed functionally at about 

33 krad. With the FPGA reconfiguration a 65% increase in functional lifetime is 

observed. 

 

In case 4 of Fig 5.5, the FPGA was reconfigured with both a different part of the 

configuration memory as well as different IO ports. Hence, a different internal core was 

used during each reconfiguration, as well as different IO ports. The floorplan for this 

scenario is shown in Fig 5.7.  

 

There seems to be an improved performance in case 4 compared to cases 2 and 3. 

However, with increasing absorbed dose, case 4’s current soon increases and the FPGA 

failed functionally at 34 krad. The above results indicate that FPGA internal core 

redundancy provided TID mitigation, however, by provided IO port redundancy does not 

further add to the functional lifetime of the FPGA.  
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Fig. 5.5 Case 1: Normal Operation. Case 2, 3: Configuration memory is reset every 

half hour to a different part of the configuration memory. Case 4: Configuration 

memory is set to a different internal core as well as different IO ports. 
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Fig 5.6 Floorplan for Fig 5.5, case 2 and 3 
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Fig 5.7 Floorplan for Fig 5.5, case 4. 
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Further, if one looks at Fig 5.8, which shows the IO current of the FPGA versus the 

absorbed dose, the IO current does not increase for an increase in absorbed radiation dose 

for the entire measurement period. 

 

This does not mean that the IO ports are immune against TID, however, the results does 

suggest that the IO ports have a higher tolerance to the radiation than the FPGA core for 

the measured absorbed dose. One can thus safely say that the FPGA core is the first and 

main source of the FPGA power supply current increase.  

 

Thus one can make use of the same IO ports for each reconfiguration and thus do not 

have to make changes to the PCB board. 
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Fig 5.8 IO power supply TID Response 

 
 
 
 



 99

Chapter 6 

Conclusions and Recommendations 
6.1 Conclusions 
 
For many years, the space radiation community has studied and evaluated radiation hard 

technologies suitable for space applications. During that time, vendors of radiation 

hardened technologies have faced a considerable reduction, and the space community has 

focused its interest more on the use of Commercial-Off-The-Shelf (COTS) components 

rather than the highly expensive and less advanced Radiation hard components that they 

traditionally used in the past. 

 

As a consequence of this evolution several semiconductor companies have abandoned the 

radiation hard electronics market, and now only a very few companies in the world offer 

radiation-hard technologies. In view of this market trend, and as an answer to the 

requirement of space applications that requires high performance devices with low 

power, low cost, high flexibility and time to market as well as the radiation tolerance, we 

have investigated an alternative approach based on radiation tolerant design techniques in 

CMOS FPGA COTS technology. 

 

The main contribution of this dissertation was the development of the novel Switched 

Modular Redundancy (SMR) method for mitigating the effects of space radiation on 

satellite electronics. It was proposed in this dissertation that if we apply a zero bias to the 

gate terminal of a MOS transistor in the presence of ionizing radiation, i.e. no electric 

field across the gate oxide, both the free electrons and holes will on average remain near 

their point of origin, and therefore have a greater probability of recombination. Thus, the 

threshold voltage shift in MOS devices will be less severe for the gate terminal in an 

unbiased condition.  
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It was further proposed that by adding redundancy and applying a resting policy, 

one can significantly prolong the useful life of MOS components in space. This 

redundancy could be used in a circuit to mitigate for total ionizing dose. 

 

We applied the principles of reconfigurable computing to implement the Switched 

Modular Redundancy Algorithm in order to mitigate for Total Ionizing Dose (TID) 

effects in FPGA’s. It was shown by means of experimentation that this new design 

technique provides greatly improved TID tolerance for FPGAs. 

 

The method consists of applying Switched Modular Redundancy to the configuration 

memory in the FPGA. For devices which are subject to gate bias cycling, the maximum 

acceptable dose is higher than if the irradiation bias were applied continuously. By 

adding redundancy and applying a resting policy, one can significantly prolong the useful 

life of MOS components in space. It was shown experimentally that by applying FPGA 

system redundancy on a power cycling basis, the system lifetime is increased 

significantly. By resetting the configuration memory, the functional lifetime of the FPGA 

resembles that of power cycling. By applying redundancy in the configuration memory, 

the lifetime of the SRAM FPGA was increased in the presence of ionizing radiation. It 

was also shown through the current consumption of the IO ports, that the IO ports are not 

as susceptible to radiation as the FPGA core, which is the main cause of the increase in 

power supply current in the presence of ionizing radiation. 

 

In the experiments presented in this dissertation, two times redundancy was provided. 

However, in a space application, depending on the size of the circuit compared to the 

capacity of the FPGA, more than two times redundancy can be used to prolong the 

lifetime of the device. For example, in order to use the above SMR methodology, the 

circuit should be at most 50% of the device capacity in order to duplicate the circuit 

internally. Depending on the satellite orbit, and hence the required total absorbed dose of 

the mission, the amount of redundancy can be increased to meet the mission 

requirements.  
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In our experiments with the Altera EPF10K10TC144-4 SRAM FPGA, we obtained a 

65% increase in functional lifetime with two times redundancy, i.e. instead of failing at 

20krad, the FPGA failed functionally at 33 krad. In order to further increase the FPGA 

functional lifetime, one would have to add additional redundancy. However, what 

complicates the matter is that it does not appear that the total absorbed dose at which 

functional failure occurs is linear with the number of redundancies. For example, one 

would have expected two times redundancy to correspond to a functional failure dose of 

40 krad, if functional failure with no redundancy occurs at 20 krad. Thus, in order to use 

this methodology, one would have to test the percentage increase in functional lifetime 

for each amount of circuit duplication in order to assess the required amount of 

redundancy. Also, because each FPGA technology is unique in its architecture, and each 

has its unique response to radiation, every new FPGA has to be tested to determine the 

percentage increase in functional lifetime. Although the principle of removing the bias on 

the gate of the MOS transistor should lead to a linear improvement in prolonging the 

MOS lifetime in the presence of ionizing radiation, the complexity of the circuit in an 

FPGA and lack of transistor gate bias control, leads to a lower lifetime value than one 

would expect. 

 

It was shown experimentally that by applying FPGA system or device redundancy on a 

power cycling basis, the system lifetime is increased significantly. Device redundancy 

mitigation is an alternative method to internal FPGA mitigation. In terms of prolonged 

functional lifetime, no distinction can be made between device redundancy and internal 

FPGA redundancy. However, device redundancy is the most costly solution in terms of 

both PCB board space and device costs.  

 

It is noted that the scheme does not make provision for Single Event Effects mitigation, 

however, whenever a reconfiguration cycle is started, the configuration memory is reset 

and hence any configuration errors due to SEE will be corrected. However, it is not 

sufficient to update the configuration SRAM memory continuously to remove any bit 

errors induced by SEEs, since the effect of the configuration change will change the logic 

which in turn will potentially lead to the change of the internal state of the design, i.e. the 
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state of the various registers and flip-flops [HABI02]. By correcting the configuration 

SRAM memory, one can repair the logic, but not re-establish the state of the design. 

Thus, to properly provide for any SEE effects, one would have to apply Triple Modular 

Redundancy in addition to the SMR methodology. 

 

6.2 Recommendations 
 

1. The proposed technique to enhance TID tolerance of SRAM-based FPGA is 

based on the availability of additional free resources in the device. Since 

hardening FPGA to SEEs, which is also mandatory for Space applications, also 

typically require additional resources and actions involving configuration 

memory, further research should address how this approach can combine with 

SEE hardening strategies.  

 

The author is currently working on a proposal to use the SMR algorithm in order 

to mitigate for SEU effects in FPGAs. We propose a new design technique for 

SEU mitigation in the Field Programmable Gate Array configuration memory. 

The method consists of applying Switched Modular Redundancy to the 

configuration memory in the FPGA. Used in conjunction with the TID mitigation 

features as indicated in this thesis, this dual mitigation feature would make it the 

only known method to cater for both SEU and TID simultaneously. However, 

further research has to be done in order to confirm the proposed SEU mitigation 

method experimentally.  

 

Two papers were written on the new SEU mitigation methods and remain 

unpublished. The papers can be found on the accompanying CD under the folder 

“SMR SEU Mitigation Papers” and the simulation code in appendix C. However, 

it must be stressed that further research needs to be done in order to consider it 

complete. 
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2.  SRAM and FLASH based FPGA devices are very different, and radiation effects 

are as a consequence very different. In particular, the configuration memory is 

fundamentally different. Further testing needs to be done on Flash based FPGA’s 

in order to demonstrate that our approach is also applicable to them. 

 

3. The SMR methodology, as described in chapter 3, would be to duplicate each gate 

in a circuit, then selectively only activating one gate at a time allowing the other 

to anneal during its off cycle. The SMR algorithm is coded in the “C” language. 

In the proposed design methodology, the design engineer need not be concerned 

about radiation effects when describing the hardware implementation in a 

hardware description language. Instead, the design engineer makes use of 

conventional design techniques. When the design is complete, it is synthesized to 

obtain the gate level netlist in edif format. 

 

The edif netlist is converted to structural VHDL code during synthesis. The 

structural VHDL netlist is fed into the SMR “C” algorithm to obtain the identical 

redundant circuit components. The resultant file is also a structural VHDL netlist. 

The generated VHDL netlist or SMR circuit is then mapped to the FPGA. 

However, we never made use of the above method in FPGAs for the reasons 

given in chapter 3, since there are no fundamental gates in FPGA’s and we were 

more interested in the FPGA configuration memory. 

 

The SMR code that was developed is capable of the functions mentioned above 

and further research need to be done that use the SMR code to the gate level in 

digital circuits. 

 

4. We have used the redundancy method in order to provided TID mitigation to 

FPGAs. However, there is no reason that the theory of chapter 3 cannot be 

extended to include other digital electronic circuits as well as analogue 

electronics. This needs to be further investigated. 
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Appendix A 

 
Schematics for Fig 4.12 and 4.13 
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Fig. 4.12 FPGA PCB test board with IO and Core power supply separated 
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Fig. 4.13 FPGA PCB test board with clock signal select jumper 
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Appendix B 

Ring Counter VHDL Code 
 
-- Summary: This is the Selective Modular Redundancy (SMR) 
-- algorithm test code written as a part of my PhD thesis.  
--  
-- Purpose: The program implements the SMR Algorithm on the VHDL code. 
--  
-- Author                Farouk Smith 
--   Electronic Systems Laboratory 
--   Department of Electronics Engineering 
--   University of Stellenbosch 
--   South Africa 
-- email  fsmith@sun.ac.za 
-- Time Stamp             October 2005(Cape Town) 
-- Current Version      1.3 
-- (C) 2005 Farouk Smith  
-- Ring Counter 
 
LIBRARY IEEE; 
USE IEEE.STD_LOGIC_1164.ALL; 
 
ENTITY ring IS 
 PORT (clock : in STD_LOGIC; 
   reset : in std_logic; 
   C0, C1, C2 : out std_logic); 
END ENTITY ring; 
 
ARCHITECTURE Behavior of ring IS 
 TYPE state_type IS (s0, s1, s2, s3, s4, s5, s6, s7, s8); 
 SIGNAL state: state_type; 
BEGIN 
 next_state_logic: process (clock, reset) 
 BEGIN 
  IF( reset = '0') THEN 
    state <= s8;   
  ELSIF (clock'EVENT AND clock = '1') THEN 
  CASE state IS 
   WHEN s0 => 
   IF( reset = '1') THEN 
    state <= s1; 
   ELSE 
    state <= s8; 
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   END IF; 
   WHEN s1 => 
   IF( reset = '1') THEN 
    state <= s2; 
   ELSE 
    state <= s8; 
   END IF; 
   WHEN s2 => 
   IF( reset = '1') THEN 
    state <= s3; 
   ELSE 
    state <= s8; 
   END IF; 
   WHEN s3 => 
   IF( reset = '1') THEN 
    state <= s4; 
   ELSE 
    state <= s8; 
   END IF; 
   WHEN s4 => 
   IF( reset = '1') THEN 
    state <= s5; 
   ELSE 
    state <= s8; 
   END IF; 
   WHEN s5 => 
   IF( reset = '1') THEN 
    state <= s6; 
   ELSE 
    state <= s8; 
   END IF; 
   WHEN s6 => 
   IF( reset = '1') THEN 
    state <= s7; 
   ELSE 
    state <= s8; 
   END IF; 
   WHEN s7 => 
   IF( reset = '1') THEN 
    state <= s8; 
   ELSE 
    state <= s0; 
   END IF; 
   WHEN s8 => 
   IF( reset = '1') THEN 
    state <= s0; 
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   ELSE 
    state <= s8; 
   END IF; 
   END CASE; 
  END IF; 
END process; 
 
output_logic: process (state) 
BEGIN 
CASE state IS 
 WHEN s0 => 
  C0 <= '0'; 
  C1 <= '0'; 
  C2 <= '0';   
 WHEN s1 => 
  C0 <= '1'; 
  C1 <= '0'; 
  C2 <= '0';   
 WHEN s2 => 
  C0 <= '0'; 
  C1 <= '1'; 
  C2 <= '0';   
 WHEN s3 => 
  C0 <= '1'; 
  C1 <= '1'; 
  C2 <= '0';   
 WHEN s4 => 
  C0 <= '0'; 
  C1 <= '0'; 
  C2 <= '1';   
 WHEN s5 => 
  C0 <= '1'; 
  C1 <= '0'; 
  C2 <= '1';   
 WHEN s6 => 
  C0 <= '0'; 
  C1 <= '1'; 
  C2 <= '1';   
 WHEN s7 => 
  C0 <= '1'; 
  C1 <= '1'; 
  C2 <= '1';   
 WHEN s8 => 
  C0 <= '0'; 
  C1 <= '0'; 
  C2 <= '0';   



 126

 
END CASE; 
END process; 
END Behavior; 
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Appendix C 
/* 
 * Summary: This is the Selective Modular Redundancy (SMR) 
 * algorithm SEU simulation written in my PhD thesis. 
 *  
 * Purpose: The algorithm is a simulation model to study the number of SEU's 
 * that occur as we change the target density, reaction distance, no of SRAM 
 * cells in the matrix and the incoming cosmic ray particle flux. 
 *  
 * Constraints: 
 *  
 * Inputs: no_of_srams , reaction_distance,density, Io. 
 * Outputs: No of SEU's, cross section. 
 * 
 * Author               Farouk Smith 
 *   Electronic Systems Laboratory 
 *   Department of Electronics Engineering 
 *   University of Stellenbosch 
 *   South Africa 
 * email  fsmith@sun.ac.za 
 * Time Stamp           April 2007(Cape Town) 
 * Version 1.1 
 * (C) 2005 Farouk Smith  
 */ 
  
#include <stdlib.h> 
#include <string.h> 
#include <string.h> 
#include <stdio.h> 
#include <time.h> 
#include <math.h> 
 
void Usage(char *programName) 
{ 
 fprintf(stderr,"%s usage:\n",programName); 
 /* Modify here to add your usage message when the program is 
  * called without arguments */ 
} 
 
/* returns the index of the first argument that is not an option; i.e. 
   does not start with a dash or a slash 
*/ 
int HandleOptions(int argc,char *argv[]) 
{ 
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 int i,firstnonoption=0; 
 
 for (i=1; i< argc;i++) { 
  if (argv[i][0] == '/' || argv[i][0] == '-') { 
   switch (argv[i][1]) { 
    /* An argument -? means help is requested */ 
    case '?': 
     Usage(argv[0]); 
     break; 
    case 'h': 
    case 'H': 
     if (!stricmp(argv[i]+1,"help")) { 
      Usage(argv[0]); 
      break; 
     } 
     /* If the option -h means anything else 
      * in your application add code here 
      * Note: this falls through to the default 
      * to print an "unknow option" message 
     */ 
    /* add your option switches here */ 
    default: 
     fprintf(stderr,"unknown option %s\n",argv[i]); 
     break; 
   } 
  } 
  else { 
   firstnonoption = i; 
   break; 
  } 
 } 
 return firstnonoption; 
} 
 
int main(int argc,char *argv[]) 
{ 
 /* 
 if (argc == 1) { 
  // If no arguments we call the Usage routine and exit 
  Usage(argv[0]); 
  return 1; 
 } 
 */ 
 /* handle the program options */ 
 HandleOptions(argc,argv); 
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 /* The code of the application follows */ 
 
 int val; 
 int i,j,k,scanned,l,m,h; 
 int temp[10000]; 
 double maxrand; // The maximum number that the rand() funtion can output. 
 int seu; 
 int noseu; 
 float cross; 
 float unit_length; // unit lenght of the matrix, used to determine the density  

//and Io flux. 
 float Io_flux;   // This is the input flux of particles 
 float Io;   //(i.e. number of incident particles). 
 float reaction_distance; // Reaction distance (i.e. the max distance a particle  

//should be from a SRAM cell to cause a SEU). 
 int no_of_srams;  // Represents the number of SRAM cells in the  

//memory matrix. 
 float density;   // The number of SRAM cells per unit area. The  

//higher this number, the lower the density. 
// float matrix_size;  // The size of the matrix with respect to the total  

//size of the SRAM cells. For example the density  
//can stay the same, but the matrix size can increase.  
//Thus the SRAM cells will occupy a small  
//congested part of the space. 

 struct { 
      char name; 
      double x,y,r; 
   double x_position, y_position; // Represents the position of the  

 //SRAM cells in the memory matrix. 
      } sram[20000]; 
 
 FILE *fp; 
    fp = fopen("temp.txt", "w+r");   // Create and open a temporary file to write the  

//output. 
 srand( (unsigned int)time( NULL ) ); 
 maxrand = 32767; 
 
/**********************************************************************/ 
//These are the Parameters that can be changed. 
// Io = 5000; 
 unit_length = 1; 
 Io_flux = 20000; 
 no_of_srams = 500; 
 reaction_distance = 0.01; 
 density = 1; 
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/**********************************************************************/ 
 cross = 0; 
// float averageseu = 0; 
//for(h=0;h<100;h++) 
// { 
// density = density - 0.01; 
// int totalseu = 0; 
 for(m=0;m <300;m++) 
  { 
 
   no_of_srams = no_of_srams + 100; 
//   printf("matrix size : %3.6f\n", matrix_size); 
//   unit_length = unit_length + 1; 
//   density = density - 0.1; 
//   unit_length = no_of_srams/density; 
   Io = Io_flux*unit_length; 
//   no_of_srams = density*unit_length; 
//   density = no_of_srams/unit_length; 
//   reaction_distance = reaction_distance + 0.01; 
 
 for(k=0; k< no_of_srams; k++) // Create sram cells that equal no_of_srams  

//spaced equally. 
  { 
   sram[k].x_position = density*k; 
   sram[k].y_position = density*k; 
//   fprintf(fp, "%3.10f,%3.10f\n",sram[k].x_position, 
sram[k].y_position); 
  } 
 Io = density*Io; 
 for(k=0; k<Io; k++) 
  { 
    sram[k].x = density*no_of_srams*rand()/maxrand;  
  // Create a floating random number between 0 and no_of_srams. 
    sram[k].y = density*no_of_srams*rand()/maxrand; 
//    sram[k].r = sqrt(sram[k].x*sram[k].x + 
sram[k].y*sram[k].y); 
//   fprintf(fp,"%3.10f\n", sram[k].x); // send the random number to 

// a file. 
  } 
 
 seu = 0; 
 noseu = 0; 
 for (k=0; k<no_of_srams; k++) // For each SRAM position, check if a  

//incident cosmic particle struct the SRAM. 
  {          
 // If the cosmic particle is within a distance of reaction_distance of the SRAM  
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//then a SEU occurs. The radius of interaction is given by reaction_distance. 
  for (j= 0; j<Io; j++)        
 { 
    if((sram[j].x < (sram[k].x_position + 
reaction_distance))&&(sram[j].x > (sram[k].x_position - reaction_distance))) 
    { 
     for(l=0; l<Io; l++) 
     { 
     if((sram[l].y < (sram[k].x_position + 
reaction_distance))&&(sram[l].y > (sram[k].x_position - reaction_distance))) 
      { 
      // scanned = 1; 
      seu++; 
      } 
     } 
    /* 
     if(scanned == 1) 
      { 
       break; 
      } 
    */ 
    } 
    else 
    { 
    // scanned = 0; 
    noseu++; 
    } 
 
   } 
/* 
   if(scanned == 1) 
    { 
      seu++; 
    } 
   else 
    { 
      noseu++; 
    } 
*/ 
  } 
 
 cross = seu/(density*Io); 
 fprintf(fp, "%d,%d,%3.10f\n",no_of_srams, seu, cross); // send the random  

// number to a file. 
// totalseu = totalseu + seu; 
   } 
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// averageseu = totalseu/100; 
// fprintf(fp,"%2.2f,%2.2f\n",density, averageseu); 
// printf("%d,%2.2f\n",h,averageseu); 
 
//} 
 return 0; 
} 
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Appendix D 
/* 
 * Summary: This is the Selective Modular Redundancy (SMR) 
 * algorithm written as a part of my PhD thesis. This is a gate level 
 * version of the algorithm. The original code was written by Praveen Samudrala as part 
 * of his MSc thesis on Selective Triple Modular Redundancy and modified for the SMR. 
 * Purpose: The program implements the SMR Algorithm on the VHDL code. 
 *  
 * Constraints: The input VHDL file has to be in a definite order for the  
 * algorithm to scan. The VHDL file must be in the structural format as 
 * obtained from the Synopsys FPGA Compiler II software. 
 *  
 * Inputs: Structural VHDL file name. 
 * Outputs: SMR file. 
 * 
 * Author               Farouk Smith 
 *   Electronic Systems Laboratory 
 *   Department of Electronics Engineering 
 *   University of Stellenbosch 
 *   South Africa 
 * email  fsmith@sun.ac.za 
 * Time Stamp           October 2005(Cape Town) 
 * Modified Ver 1.2     November 2005 for Synopsys FPGA Compiler II 
 *   Structural VHDL Input. 
 * Modified Ver 1.2.1 December 2005 to include the SMR Algorithm. 
 * 
 * Version      1.3     Modified to delete the technology dependant components 
 *   from the MAXPLUS EDIF file, February 2006. 
 * Version  1.4 Modified to include the user defined libraries created 
 *   for the fundamental primitive gates. March 2006. 
 * (C) 2005 Farouk Smith  
 * 
 * 
 * NOTE: For more information on the SMR method read 
 *   
 * 
 * STDMR and SMR has patent pending as of August 2005 
 */ 
 
#include "stdmr.h"  
 
namespace Compo 
{ 
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  /*  
   * This is a Function that counts the number of components from the VHDL netlist 
   * The this is done to obtain the structure of the components, and the number of 
   * inputs and outputs. The result is stored in gates.num_inputs. 
   */ 
    
  void num_compo (char* cktname) 
  { 
    char start[MAXLENGTH] ; 
    char cnamefield[MAXLENGTH] ; 
    int file_start, file_count; 
    char buf[MAXLENGTH]; 
    char buf_temp[MAXLENGTH]; 
     
    /*  
     * Open the input vhdl file for reading  
     */ 
      
    FILE *fp; 
    fp = fopen(cktname,"r");     
 
    if(NULL == fp) 
      { 
 printf("Error Reading input file!\n"); 
 exit(1) ; 
      } 
 
    /* 
     * Scan the VHDL input file; start storing the values after 
     * the last "entity" statement. This is done by first counting 
     * the number of "entity" statements in the file and storing 
     * the value in entity_count. The file is then closed and opened 
     * again so that we know at which position the last "entity" 
     * statement is, and can now start counting the number of components 
     * in the main VHDL entity. 
     */ 
      
    file.num_entity = 0; 
    file.end_entity = 0; 
    int help = 0; 
    int entity_comp; 
    int entity_count = 0; 
    do{ 
 entity_comp = fscanf(fp,"%s",&start); 
 if(!strcmp(start,"entity"))   
   { 
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     file.num_entity++; 
   } 
 else if(!strcmp(start, "end")) 
   { 
     file.end_entity++; 
   } 
 else 
 { 
 } 
       }while( entity_comp != EOF); 
       
     fp = fopen(cktname,"r");  
      
     while(1) 
      { 
       fscanf(fp,"%s",&start); 
 if(!strcmp(start,"entity"))   
   { 
     entity_count++; 
   } 
 if(entity_count == file.num_entity) 
 {  
     break; 
 } 
      } 
       
      while(1) 
 { 
  fscanf(fp, "%s", &buf_temp); 
  if(!strcmp(buf_temp,"is"))   
    { 
       break; 
    } 
 } 
  
 /*  
  * After the "is" statement, start reading the first component. 
         */ 
          
        do{ 
 entity_comp = fscanf(fp,"%s",&start); 
 if(!strcmp(start,"component"))   
   { 
     file.num_component++; 
   } 
 else if(!strcmp(start, "end")) 
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   { 
     file.end_component++; 
   } 
 else 
 { 
 } 
       }while( entity_comp != EOF); 
        
       printf("Number of entities : %d\n", file.num_entity); 
       printf("Number of components : %d\n", file.num_component); 
        
        fp = fopen(cktname,"r");  
         
        int entity_FPGA = 0; 
        do{ 
 entity_FPGA = fscanf(fp,"%s",&start); 
 if(!strcmp(start,"FPGA_Compiler_II;"))   
   { 
     file.num_FPGA++; 
   } 
       }while( entity_FPGA != EOF); 
        
       fclose(fp); 
        
        
 } 
} 
 
namespace Component_signals 
{ 
 
  /*  
   * This is a Function that counts the number of inputs and outputs for each component 
   * in the main VHDL entity. 
   * The this is done to obtain the structure of the components, and the number of 
   * inputs and outputs. The result is stored in gates.num_inputs. 
   */ 
    
  void in_out (char* cktname) 
  { 
    bool start_scan = false ; 
    char start[MAXLENGTH] ; 
    char cnamefield[MAXLENGTH], st[MAXLENGTH], s1[MAXLENGTH], s2, 
s3[MAXLENGTH], s4[MAXLENGTH], s5[MAXLENGTH]; 
    int file_start, file_count, i, b; 
    char buf[MAXLENGTH], buf1[MAXLENGTH], buf_temp[MAXLENGTH]; 
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    /*  
     * Open the input vhdl file for reading  
     */ 
      
    FILE *fp; 
    fp = fopen(cktname,"r");     
 
    if(NULL == fp) 
      { 
 printf("Error Reading input file!\n"); 
 exit(1) ; 
      } 
 
    /* 
     * Scan the VHDL input file; start storing the values after 
     * the last "entity" statement. This is done by first counting 
     * the number of "entity" statements in the file and storing 
     * the value in entity_count. The file is then closed and opened 
     * again so that we know at which position the last "entity" 
     * statement is, and can start storing the VHDL file from there. 
     */ 
      
    int entity_comp; 
    int entity_count = 0; 
          
     while(1) 
      { 
       fscanf(fp,"%s",&start); 
 if(!strcmp(start,"entity"))   
   { 
     entity_count++; 
   } 
 if(entity_count == file.num_entity) 
 { 
     break; 
 } 
      } 
       
      int c_is = 0; 
      int in = 0; 
      int out = 0; 
      while(1) 
 { 
  fscanf(fp, "%s", &buf_temp); 
  if(!strcmp(buf_temp,"is"))   
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    {      
       c_is++; 
       break; 
    } 
 } 
  
 // The following assigns the primary inputs and primary outputs of the entity. 
  
    if(c_is == 1) 
    {      
     fscanf(fp, "%s %s", &buf_temp, &buf); 
     while(1) 
   {     
    fscanf(fp,"%s %c %s %s %s", &s1, &s2, &s3, &s4, &s5); 
         
    if(!strcmp(s3, "in")) 
    { 
     strcpy(pri_in[in].name, s1); 
     in++; 
    } 
    else if(!strcmp(s3, "out")) 
    {      
     strcpy(pri_out[out].name, s1); 
     out++; 
    } 
    else if(!strcmp(s5, ");")) 
    { 
         break; 
    } 
    else 
    { 
     break; 
    }    
   } 
    } 
     
 while(1) 
 { 
  fscanf(fp, "%s", &buf_temp); 
  if(!strcmp(buf_temp,"is"))   
    {      
       c_is++; 
       break; 
    }     
 } 
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 pri_inputs = in; 
 pri_outputs = out; 
  
 /*  
  * After the second "is" statement, start reading the first component. 
         */ 
  
      for(i = 0; i < file.num_component; i++)  
      { 
 
 /*  
  * Start scanning in line at a time.  
  */ 
  
 fscanf( fp, "%s %s", &cnamefield, &st); 
 strcpy(components[i].kind, st); 
 fscanf( fp, "%s %s", &cnamefield, &st); 
 int c_num_inputs = 0; 
 int c_num_outputs = 0; 
 printf("\n"); 
 b = 0; 
 while(1) 
 { 
     
  fscanf(fp,"%s %c %s %s %s", &s1, &s2, &s3, &s4, &s5); 
   
  strcpy(components[i].tri_elim, s1); 
  b++; 
  if(!strcmp(s3, "in")) 
  { 
   c_num_inputs++; 
   strcpy(components[i].identity, s3); 
  } 
  if(!strcmp(s3, "out")) 
  { 
   c_num_outputs++; 
   strcpy(components[i].identity, s3); 
  } 
  if(!strcmp(s5, ");")) 
  { 
      break; 
  } 
//  printf("Signal identity: %s\n",components[i].identity); 
  printf("Components_ tri_elim : %s\n", components[i].tri_elim); 
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 } 
  
 fscanf(fp,"%s %s", &s1, &s3); 
  
  
 components[i].num_inputs = c_num_inputs; 
 components[i].num_outputs = c_num_outputs; 
  
 printf("Component %s inputs : %d\n",components[i].kind, 
components[i].num_inputs); 
 printf("Component %s outputs : %d\n",components[i].kind, 
components[i].num_outputs); 
 printf("Signal identity: %s\n",components[i].identity);  
    }  
    fclose(fp); 
 } 
} 
 
namespace Circuit 
{ 
 
  /*  
   * This is a Function that "builds the circuit" from the VHDL netlist 
   * The gates and netlists are stored as arrays of the base Gate and 
   * Net classes they are scanned. 
   */ 
    
  void BuildCkt (char* cktname) 
  { 
    bool start_scan = false ; 
    bool scanned    = false ; 
    char start[MAXLENGTH] ; 
 
    char gnamefield[MAXLENGTH] ; 
    int scannet = 0 ; 
    int scangate = 0; 
    int i, j, b, k, l, file_start, file_count; 
    char buf[MAXLENGTH]; 
    char buf_temp[MAXLENGTH]; 
    char temp1[MAXLENGTH], temp2[MAXLENGTH], temp3[MAXLENGTH], 
temp4[MAXLENGTH], temp5[MAXLENGTH]; 
    char elim[MAXLENGTH], selim[MAXLENGTH], elim2[MAXLENGTH]; 
    char temp_in[MAXLENGTH] ; 
    char temp_out[MAXLENGTH] ; 
    char temp_w[MAXLENGTH], temp_x[MAXLENGTH], temp_y[MAXLENGTH]; 
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    char s2[MAXLENGTH], s3, s4, s5[MAXLENGTH], s6, s7[MAXLENGTH], 
s8[MAXLENGTH], s9[MAXLENGTH], st[MAXLENGTH] ; 
    char s10, s11, s12, s14, s15, s16, s17, s18, s19, 
s22[MAXLENGTH],s24,s25,s26,s27,s28, 
s29[MAXLENGTH],s30,s31[MAXLENGTH],s32,s33,s34[MAXLENGTH],s35,s36,s37[
MAXLENGTH]; 
 
    /*  
     * Open the input vhdl file for reading  
     */ 
      
    FILE *fp; 
    fp = fopen(cktname,"r");     
 
    if(NULL == fp) 
      { 
 printf("Error Reading input file!\n"); 
 exit(1) ; 
      } 
 
    /* 
     * Scan the VHDL input file; start storing the values after 
     * the last "begin" statement. This is done by first counting 
     * the number of "begin" statements in the file and storing 
     * the value in file_start. The file is then closed and opened 
     * again so that we know at which position the last "begin" 
     * statement is, and can start storing the VHDL file from there. 
     */ 
      
    file.start = 0; 
    file.end = 0; 
    file.sig = 0; 
    int help = 0; 
    int file_comp; 
    do{ 
 file_comp = fscanf(fp,"%s",&start); 
 if(!strcmp(start,"begin"))   
   { 
     file.start++; 
   } 
 else if(!strcmp(start, "end")) 
   { 
     file.end++; 
   } 
 else 
 { 
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 } 
       }while( file_comp != EOF); 
        
       fp = fopen(cktname,"r"); 
       file_comp = 0; 
 
/* Count the number of signal statements in the VHDL file */        
        
       do{ 
 file_comp = fscanf(fp,"%s",&start); 
 if(!strcmp(start,"signal"))   
   { 
     file.sig++; 
   } 
       }while( file_comp != EOF); 
       
     fp = fopen(cktname,"r"); 
     file_count = 0;  
      
     while(1) 
      { 
       fscanf(fp,"%s",&start); 
 if(!strcmp(start,"begin"))   
   { 
     file_count++; 
   } 
 if(file_count == file.start) 
 { 
     start_scan = true;  
     break; 
 } 
      } 
    
            
    int gatenum = ZERO;  
    int netnum  = ZERO; 
    int file_done; 
    int outnum = ZERO; 
    int in_num = ZERO; 
 
    while(start_scan) 
      { 
 printf("\n"); 
 
 /* Start scanning in one word at a time, after the last "begin" statement. 
  * Only scan until a ");" or ";" is found. This represents one line statement 
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  * in VHDL. 
  */ 
   
 *buf = NULL; 
 do{ 
  file_done = fscanf(fp, "%s", &buf_temp); 
  strcat(buf, buf_temp); 
  strcat(buf," "); 
  if(!strcmp(buf_temp,");") || !strcmp(buf_temp,";"))   
    { 
       break; 
    } 
 }while(file_done != EOF); 
  
 printf("\n%s \n ", buf); 
  
 sscanf( buf, "%s %s", &gnamefield, &st); 
// printf("\n%s %s\n ", gnamefield, st); 
 
// strcpy(gates[gatenum].contents, strchr(buf, ':')); 
// printf("%s\n", gates[gatenum].contents); 
 
 /* 
  * If the first field is not "end" then store it as the 
  * name of the gate 
  */ 
  
 if(!strcmp(gnamefield, "end")) 
   { 
     break; 
   } 
 else 
   { 
     strcpy (gates[gatenum].name, gnamefield) ; 
   } 
             
    if(strcmp(st, "<=")) 
    {   
 sscanf( buf, "%s %s %s %s %s %s", &gnamefield, &s2, &s5, &s7, &s9, &s8); 
    
 printf("\nGates name %s\n", gates[gatenum].name); 
  
 strcpy(gates[gatenum].redun, s2); 
// printf("%s \n ", gates[gatenum].redun); 
  
 /* 
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  * String s5 hold the gate kind field 
  */ 
   
 strncpy(gates[gatenum].kind, s5, (strlen(s5)-1)); 
 strcpy(gates[gatenum].kindname, s5); 
  
 /* 
  * We now determine the number of inputs and outputs for this gate by 
  * looking at what type of gate it is (from s5), then comparing it to 
  * what we got in the first funtion above. Also if input or output is 
  * listed first (gates[gatenum].sig_order). 
  */ 
   
    strcpy(elim, strchr(buf, '('));   
    sscanf( elim, "%s %s", &selim, &elim2); 
       strcpy(gates[gatenum].tri_elim, elim2); // This is to see if IN1 is listed first. 
Used to determine the Sig_order for the TRIBUF. 
      
 for(i = 0; i < file.num_component; i++) 
 { 
  if(!strcmp(s5, components[i].kind)) 
  { 
   gates[gatenum].num_inputs = components[i].num_inputs; 
   gates[gatenum].num_outputs = components[i].num_outputs; 
   if(!strcmp(s5, "TRIBUF")) 
         { 
            if(!strncmp(gates[gatenum].tri_elim, "IN1", 3)) 
            { 
    strcpy(gates[gatenum].sig_order, "out"); 
      } 
      else 
      { 
    strcpy(gates[gatenum].sig_order, components[i].identity ); 
      } 
   } 
   else 
   { 
    strcpy(gates[gatenum].sig_order, components[i].identity ); 
   } 
  } 
 } 
 
 printf("The number of gate inputs are : %d\n",gates[gatenum].num_inputs); 
 printf("The number of gate outputs are : %d\n",gates[gatenum].num_outputs); 
 printf("SI order : %s\n", gates[gatenum].sig_order); 
 /* 
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  * Store the kind and type of gate. 
  */ 
   
 if(!strncmp(gates[gatenum].kind, "AND", 3)) 
   { 
     gates[gatenum].type = 100; 
     if(gates[gatenum].num_inputs == 1) 
     { 
      strcpy(gates[gatenum].ttlname, "LCELL"); 
     } 
     else if(gates[gatenum].num_inputs == 2) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_and2"); 
     } 
     else if(gates[gatenum].num_inputs == 3) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_and3"); 
     } 
     else if(gates[gatenum].num_inputs == 4) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_and4"); 
     } 
     else if(gates[gatenum].num_inputs == 5) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_and5"); 
     } 
     else if(gates[gatenum].num_inputs == 6) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_and6"); 
     } 
     else if(gates[gatenum].num_inputs == 7) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_and7"); 
     } 
     else if(gates[gatenum].num_inputs == 8) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_and8"); 
     } 
     else if(gates[gatenum].num_inputs == 9) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_and9"); 
     } 
     else if(gates[gatenum].num_inputs == 10) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_and10"); 
     } 
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     else if(gates[gatenum].num_inputs == 11) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_and11"); 
     } 
     else if(gates[gatenum].num_inputs == 12) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_and12"); 
     } 
     else 
     {} 
   } 
 else if(!strncmp(gates[gatenum].kind, "NAND",4)) 
   { 
     gates[gatenum].type = 101; 
     if(gates[gatenum].num_inputs == 1) 
     { 
      strcpy(gates[gatenum].ttlname, "LCELL"); 
     } 
     else if(gates[gatenum].num_inputs == 2) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nand2"); 
     } 
     else if(gates[gatenum].num_inputs == 3) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nand3"); 
     } 
     else if(gates[gatenum].num_inputs == 4) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nand4"); 
     } 
     else if(gates[gatenum].num_inputs == 5) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nand5"); 
     } 
     else if(gates[gatenum].num_inputs == 6) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nand6"); 
     } 
     else if(gates[gatenum].num_inputs == 7) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nand7"); 
     } 
     else if(gates[gatenum].num_inputs == 8) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nand8"); 
     } 
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     else if(gates[gatenum].num_inputs == 9) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nand9"); 
     } 
     else if(gates[gatenum].num_inputs == 10) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nand10"); 
     } 
     else if(gates[gatenum].num_inputs == 11) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nand11"); 
     } 
     else if(gates[gatenum].num_inputs == 12) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nand12"); 
     } 
     else 
     {} 
   } 
 else if(!strncmp(gates[gatenum].kind,"OR", 2)) 
   {          
     gates[gatenum].type = 102; 
     if(gates[gatenum].num_inputs == 1) 
     { 
      strcpy(gates[gatenum].ttlname, "LCELL"); 
     } 
     else if(gates[gatenum].num_inputs == 2) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_or2"); 
     } 
     else if(gates[gatenum].num_inputs == 3) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_or3"); 
     } 
     else if(gates[gatenum].num_inputs == 4) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_or4"); 
     } 
     else if(gates[gatenum].num_inputs == 5) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_or5"); 
     } 
     else if(gates[gatenum].num_inputs == 6) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_or6"); 
     } 
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     else if(gates[gatenum].num_inputs == 7) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_or7"); 
     } 
     else if(gates[gatenum].num_inputs == 8) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_or8"); 
     } 
     else if(gates[gatenum].num_inputs == 9) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_or9"); 
     } 
     else if(gates[gatenum].num_inputs == 10) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_or10"); 
     } 
     else if(gates[gatenum].num_inputs == 11) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_or11"); 
     } 
     else if(gates[gatenum].num_inputs == 12) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_or12"); 
     } 
     else 
     {} 
   } 
 else if(!strncmp(gates[gatenum].kind, "NOR", 3)) 
   { 
     gates[gatenum].type = 103; 
     if(gates[gatenum].num_inputs == 1) 
     { 
      strcpy(gates[gatenum].ttlname, "LCELL"); 
     } 
     else if(gates[gatenum].num_inputs == 2) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nor2"); 
     } 
     else if(gates[gatenum].num_inputs == 3) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nor3"); 
     } 
     else if(gates[gatenum].num_inputs == 4) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nor4"); 
     } 
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     else if(gates[gatenum].num_inputs == 5) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nor5"); 
     } 
     else if(gates[gatenum].num_inputs == 6) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nor6"); 
     } 
     else if(gates[gatenum].num_inputs == 7) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nor7"); 
     } 
     else if(gates[gatenum].num_inputs == 8) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nor8"); 
     } 
     else if(gates[gatenum].num_inputs == 9) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nor9"); 
     } 
     else if(gates[gatenum].num_inputs == 10) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nor10"); 
     } 
     else if(gates[gatenum].num_inputs == 11) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nor11"); 
     } 
     else if(gates[gatenum].num_inputs == 12) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_nor12"); 
     } 
     else 
     {} 
   } 
 else if(!strncmp(gates[gatenum].kind,"XOR",3)) 
   { 
     gates[gatenum].type = 104; 
     if(gates[gatenum].num_inputs == 1) 
     { 
      strcpy(gates[gatenum].ttlname, "LCELL"); 
     } 
     else if(gates[gatenum].num_inputs == 2) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xor2"); 
     } 
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     else if(gates[gatenum].num_inputs == 3) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xor3"); 
     } 
     else if(gates[gatenum].num_inputs == 4) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xor4"); 
     } 
     else if(gates[gatenum].num_inputs == 5) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xor5"); 
     } 
     else if(gates[gatenum].num_inputs == 6) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xor6"); 
     } 
     else if(gates[gatenum].num_inputs == 7) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xor7"); 
     } 
     else if(gates[gatenum].num_inputs == 8) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xor8"); 
     } 
     else if(gates[gatenum].num_inputs == 9) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xor9"); 
     } 
     else if(gates[gatenum].num_inputs == 10) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xor10"); 
     } 
     else if(gates[gatenum].num_inputs == 11) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xor11"); 
     } 
     else if(gates[gatenum].num_inputs == 12) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xor12"); 
     } 
     else 
     {} 
   } 
 else if(!strncmp(gates[gatenum].kind,"XNOR",4)) 
   { 
     gates[gatenum].type = 105; 
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     if(gates[gatenum].num_inputs == 1) 
     { 
      strcpy(gates[gatenum].ttlname, "LCELL"); 
     } 
     else if(gates[gatenum].num_inputs == 2) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xnor2"); 
     } 
     else if(gates[gatenum].num_inputs == 3) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xnor3"); 
     } 
     else if(gates[gatenum].num_inputs == 4) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xnor4"); 
     } 
     else if(gates[gatenum].num_inputs == 5) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xnor5"); 
     } 
     else if(gates[gatenum].num_inputs == 6) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xnor6"); 
     } 
     else if(gates[gatenum].num_inputs == 7) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xnor7"); 
     } 
     else if(gates[gatenum].num_inputs == 8) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xnor8"); 
     } 
     else if(gates[gatenum].num_inputs == 9) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xnor9"); 
     } 
     else if(gates[gatenum].num_inputs == 10) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xnor10"); 
     } 
     else if(gates[gatenum].num_inputs == 11) 
     { 
      strcpy(gates[gatenum].ttlname, "stdmr_xnor11"); 
     } 
     else if(gates[gatenum].num_inputs == 12) 
     { 



 152

      strcpy(gates[gatenum].ttlname, "stdmr_xnor12"); 
     } 
     else 
     {} 
   } 
 else if(!strncmp(gates[gatenum].kind, "INV", 3)) 
   { 
     gates[gatenum].type = 106; 
     strcpy(gates[gatenum].ttlname, "stdmr_inv"); 
   } 
 else if(!strncmp(gates[gatenum].kind, "FLIP", 4)) 
   { 
     gates[gatenum].type = 107; 
     strcpy(gates[gatenum].ttlname, "stdmr_flip_flop"); 
   } 
 else if(!strncmp(gates[gatenum].kind, "TRIBU", 5)) 
   { 
     gates[gatenum].type = 108; 
     strcpy(gates[gatenum].ttlname, "TRI"); 
   } 
 else if(!strncmp(gates[gatenum].kind, "FILTE", 5)) 
   { 
     strcpy(gates[gatenum].ttlname, "LCELL"); 
   } 
 else if(!strncmp(gates[gatenum].kind, "DELA", 4)) 
   { 
     strcpy(gates[gatenum].ttlname, "LCELL"); 
   } 
 else 
   { 
 //    printf("Error in input file at %s\n", gates[gatenum].name); 
 //    exit(1); 
   } 
  
     printf("Gate kind : %s\n", gates[gatenum].kind); 
      
  
// printf("Gate output is : %s\n", &temp_out); 
 
 int inctr = 0 ; 
 
 /*  
  * Now that we have got the number of inputs and outputs for this 
  * gate, the next input number of fields(...ofcourse not 
  * counting the "(" and other fields) will be net names. But first 
  * we need to take care of the order. i.e. input or output first. 
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  */   
   
  /* sscanf does not work like fscanf. It reads the buffer from the start again. 
   * Thus have to get rid of the stuff before the "(", i.e. after the port map. 
   */ 
   
 strcpy(temp4, strchr(buf, '(')); 
   
 if((!strcmp(gates[gatenum].sig_order, "in"))) 
 {  
           
  /* 
   * Now perform the output net operations. 
   */ 
    
    sscanf( temp4, "%s %s %s %s", &s31, &temp2, &temp3, &temp_out); 
       strcpy(temp4, strstr(temp4, temp_out));   
    
   /* 
   * Check if the output net has been scanned before. If scanned 
   * get the net number and store it in the variable 
   * "scannet" 
   */ 
   
  for (i = 0; i < MAXNETS ; i++) 
    {  
       if (! strcmp( nets[i].name, temp_out)) 
         { 
    scanned = true ; 
    scannet = i ; 
    break ; 
         } 
       else 
         { 
    scanned = false ; 
         } 
    } 
  
  /*  
   * same as what we had done for inputs 
   */  
    
  if(!scanned) 
   {   
       /* 
        * Store the name of the net scanned 
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        */ 
       strcpy ( nets[netnum].name, temp_out ) ; 
       /* 
        * Store only the outputs of all gates 
        */ 
       strcpy( nets[outnum].outname, temp_out); 
        
       if(!strcmp(gates[i].kind, "IN")&&(gates[i].num_inputs!=1)) 
       { 
       nets[netnum].int_output = true; 
   } 
 
       /* 
        * Add the net number to the output net of gate 
        */ 
       gates[gatenum].out_netnum = netnum; 
 
       /* 
        * Store the gate number as the gate whose output is this 
        * net 
        */ 
       nets[netnum].fan_out_gateid = gatenum; 
       /* 
        * Increae the number of nets scanned 
        */ 
       netnum++; 
       outnum++; 
       
    } 
  
  /*  
   * Net has been scanned before  
   */ 
  else 
    { 
       /* 
        * scan the net number as the number of its output net 
        */ 
       gates[gatenum].out_netnum = scannet; 
       /* 
        * Store the gate number as the gate whose output is this 
        * net 
        */ 
       nets[scannet].fan_out_gateid = gatenum; 
  }      
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   for( j = 1; j < gates[gatenum].num_outputs; j++) 
    { 
     sscanf( temp4, "%s %s %s %s %s", &s31,&temp1, &temp2, &temp3, 
&temp_out); 
       strcpy(temp4, strstr(temp4, temp_out));     
   /* 
   * Check if the output net has been scanned before. If scanned 
   * get the net number and store it in the variable 
   * "scannet" 
   */ 
   
  for (i = 0; i < MAXNETS ; i++) 
    {  
       if (! strcmp( nets[i].name, temp_out)) 
         { 
    scanned = true ; 
    scannet = i ; 
    break ; 
         } 
       else 
         { 
    scanned = false ; 
         } 
    } 
  
  /*  
   * same as what we had done for inputs 
   */  
  if(!scanned) 
   {   
       /* 
        * Store the name of the net scanned 
        */ 
       strcpy ( nets[netnum].name, temp_out ) ; 
 
       /* 
        * Add the net number to the output net of gate 
        */ 
       gates[gatenum].out_netnum = netnum; 
        
       if(!strcmp(gates[i].kind, "IN")&&(gates[i].num_inputs!=1)) 
       { 
       nets[netnum].int_output = true; 
   } 
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       /* 
        * Store the gate number as the gate whose output is this 
        * net 
        */ 
       nets[netnum].fan_out_gateid = gatenum; 
       /* 
        * Increae the number of nets scanned 
        */ 
       netnum++; 
       
    } 
  
  /*  
   * Net has been scanned before  
   */ 
  else 
    { 
       /* 
        * scan the net number as the number of its output net 
        */ 
       gates[gatenum].out_netnum = scannet; 
       /* 
        * Store the gate number as the gate whose output is this 
        * net 
        */ 
       nets[scannet].fan_out_gateid = gatenum; 
  }     
    }  
     
    strcpy(temp4, strstr(temp4, temp_out)); 
 
    for( j = 0; j < gates[gatenum].num_inputs; j++) 
    { 
     
    /* sscanf does not work like fscanf. It reads the buffer from the start again. 
     * Thus have to get rid of the stuff before the inputs. 
     */ 
          
     sscanf( temp4, "%s %s %s %s %s", &s31,&s37, &temp2, &temp3, 
&temp_in); 
        printf("Input Net name : %s and its number %d\n",&temp_in,j); 
      strcpy(temp4, strstr(temp4, temp_in)); 
    //  printf("%s\n", &temp4); 
     
      /* 
       * Check if the net has been scanned before. If scanned 
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       * get the net number and store it in the variable 
       * "scannet" 
       */ 
      for (i = 0; i < MAXNETS ; i++) 
        {  
   if (!strcmp ( nets[i].name, temp_in)) 
     { 
        scanned = true ; 
        scannet = i ; 
        break ; 
     } 
   else 
     { 
        scanned = false ; 
     } 
        } 
 
 
      /* 
       * Net not scanned before 
       */ 
      if(!scanned)  
        { 
   /* 
    * Store the name of the net scanned 
    */ 
   strcpy(nets[netnum].name, temp_in) ; 
    
   strcpy(nets[in_num].inname, temp_in) ; 
    
   /* 
    * Add the net number to the input list of the gate 
    */ 
   gates[gatenum].input_list[inctr] = netnum ; 
 //  printf("Net number %d\n", netnum); 
   /* 
    * Add the gate number to the input list of the net 
    */ 
   nets[netnum].fan_in_gateid[nets[netnum].fan_out] = gatenum ; 
   /* 
    * Increase the count of nets scanned 
    */ 
   netnum++ ; 
   in_num++; 
   inctr++ ; 
        } 
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      /*  
       * Net has been scanned before  
       */    
     else 
        { 
         /* 
    * Add the net number to the input list of the gate 
    */ 
   gates[gatenum].input_list[inctr] = scannet ; 
   /* 
    * Since it has been scanned before increase the 
    * fanout of the net 
    */ 
   nets[scannet].fan_out++ ; 
   /* 
    * Add the gate number to the input list of the net 
    */ 
   nets[scannet].fan_in_gateid[nets[scannet].fan_out] = gatenum; 
   inctr++; 
        }      
     } 
   } 
    
       /* 
 * If the "in" signal is listed first, then do this. 
 */ 
    
 else  
 { 
        
    /* sscanf does not work like fscanf. It reads the buffer from the start again. 
     * Thus have to get rid of the stuff before the inputs. 
     */ 
      
    sscanf( temp4, "%s %s %s %s", &s31, &temp2, &temp3, &temp_in); 
        printf("Input Net name : %s and its number %d\n",&temp_in,0); 
      strcpy(temp4, strstr(temp4, temp_in)); 
    //  printf("%s\n", &temp4); 
     
      /* 
       * Check if the net has been scanned before. If scanned 
       * get the net number and store it in the variable 
       * "scannet" 
       */ 
      for (i = 0; i < MAXNETS ; i++) 
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        {  
   if (!strcmp ( nets[i].name, temp_in)) 
     { 
        scanned = true ; 
        scannet = i ; 
        break ; 
     } 
   else 
     { 
        scanned = false ; 
     } 
        } 
 
 
      /* 
       * Net not scanned before 
       */ 
      if(!scanned)  
        { 
   /* 
    * Store the name of the net scanned 
    */ 
   strcpy(nets[netnum].name, temp_in) ; 
    
   strcpy(nets[in_num].inname, temp_in) ; 
   /* 
    * Add the net number to the input list of the gate 
    */ 
   gates[gatenum].input_list[inctr] = netnum ; 
 //  printf("Net number %d\n", netnum); 
   /* 
    * Add the gate number to the input list of the net 
    */ 
   nets[netnum].fan_in_gateid[nets[netnum].fan_out] = gatenum ; 
   /* 
    * Increase the count of nets scanned 
    */ 
   netnum++ ; 
   inctr++ ; 
   in_num++; 
        } 
 
      /*  
       * Net has been scanned before  
       */    
     else 
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        { 
   /* 
    * Add the net number to the input list of the gate 
    */ 
   gates[gatenum].input_list[inctr] = scannet ; 
   /* 
    * Since it has been scanned before increase the 
    * fanout of the net 
    */ 
   nets[scannet].fan_out++ ; 
   /* 
    * Add the gate number to the input list of the net 
    */ 
   nets[scannet].fan_in_gateid[nets[scannet].fan_out] = gatenum; 
   inctr++; 
        }   
   
   for( j = 1; j < gates[gatenum].num_inputs; j++) 
    { 
     
    /* sscanf does not work like fscanf. It reads the buffer from the start again. 
     * Thus have to get rid of the stuff before the inputs. 
     */ 
      
    sscanf( temp4, "%s %s %s %s %s", &s31, &temp1, &temp2, &temp3, 
&temp_in); 
        printf("Input Net name : %s and its number %d\n",&temp_in,j); 
      strcpy(temp4, strstr(temp4, temp_in)); 
    //  printf("%s\n", &temp4); 
     
      /* 
       * Check if the net has been scanned before. If scanned 
       * get the net number and store it in the variable 
       * "scannet" 
       */ 
      for (i = 0; i < MAXNETS ; i++) 
        {  
   if (!strcmp ( nets[i].name, temp_in)) 
     { 
        scanned = true ; 
        scannet = i ; 
        break ; 
     } 
   else 
     { 
        scanned = false ; 



 161

     } 
        } 
 
 
      /* 
       * Net not scanned before 
       */ 
      if(!scanned)  
        { 
   /* 
    * Store the name of the net scanned 
    */ 
   strcpy(nets[netnum].name, temp_in) ; 
    
   strcpy(nets[in_num].inname, temp_in) ; 
   /* 
    * Add the net number to the input list of the gate 
    */ 
   gates[gatenum].input_list[inctr] = netnum ; 
 //  printf("Net number %d\n", netnum); 
   /* 
    * Add the gate number to the input list of the net 
    */ 
   nets[netnum].fan_in_gateid[nets[netnum].fan_out] = gatenum ; 
   /* 
    * Increase the count of nets scanned 
    */ 
   netnum++ ; 
   inctr++ ; 
   in_num++; 
        } 
 
      /*  
       * Net has been scanned before  
       */    
     else 
        { 
   /* 
    * Add the net number to the input list of the gate 
    */ 
   gates[gatenum].input_list[inctr] = scannet ; 
   /* 
    * Since it has been scanned before increase the 
    * fanout of the net 
    */ 
   nets[scannet].fan_out++ ; 
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//   nets[scannet].gate_in =  
   /* 
    * Add the gate number to the input list of the net 
    */ 
   nets[scannet].fan_in_gateid[nets[scannet].fan_out] = gatenum; 
   inctr++; 
        }      
     } 
           
  /* 
   * Now perform the output net operations. 
   */ 
    
//   strcpy(temp4, strstr(temp4, temp_in)); 
   
    for( j = 0; j < gates[gatenum].num_outputs; j++) 
    { 
     sscanf( temp4, "%s %c %s %s %s", &s31,&s37, &temp2, &temp3, 
&temp_out); 
       strcpy(temp4, strstr(temp4, temp_out));     
   /* 
   * Check if the output net has been scanned before. If scanned 
   * get the net number and store it in the variable 
   * "scannet" 
   */ 
   
  for (i = 0; i < MAXNETS ; i++) 
    {  
       if (! strcmp( nets[i].name, temp_out)) 
         { 
    scanned = true ; 
    scannet = i ; 
    break ; 
         } 
       else 
         { 
    scanned = false ; 
         } 
    } 
  
  /*  
   * same as what we had done for inputs 
   */  
  if(!scanned) 
   {   
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       /* 
        * Store the name of the net scanned 
        */ 
       strcpy ( nets[netnum].name, temp_out ) ; 
       /* 
        * Store only the outputs of all gates 
        */ 
       strcpy( nets[outnum].outname, temp_out); 
        
       if(!strcmp(gates[i].kind, "IN")&&(gates[i].num_inputs!=1)) 
       { 
       nets[netnum].int_output = true; 
   } 
       /* 
        * Add the net number to the output net of gate 
        */ 
       gates[gatenum].out_netnum = netnum; 
 
       /* 
        * Store the gate number as the gate whose output is this 
        * net 
        */ 
       nets[netnum].fan_out_gateid = gatenum; 
       /* 
        * Increae the number of nets scanned 
        */ 
       netnum++; 
       outnum++; 
       
    } 
  
  /*  
   * Net has been scanned before  
   */ 
  else 
    { 
       /* 
        * scan the net number as the number of its output net 
        */ 
       gates[gatenum].out_netnum = scannet; 
       /* 
        * Store the gate number as the gate whose output is this 
        * net 
        */ 
       nets[scannet].fan_out_gateid = gatenum; 
  }      
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    }  
         
   } 
     
 gatenum++; 
   printf("gate no %d No of nets = %d\n",gatenum, netnum); 
    
     } /*Closing the if(strcmp(st, "<=")) */ 
      
     else 
     { 
      sscanf( buf, "%s %s %s", &gnamefield, &s2, &temp_out); 
 printf("\nGates name %s\n", gates[gatenum].name); 
 strcpy(gates[gatenum].redun, s2); 
 strcpy(gates[gatenum].outname, temp_out); 
      printf("\n%s \n ", gates[gatenum].redun); 
      strcpy(gates[gatenum].buf, buf); 
      gatenum++; 
       
     // printf("%s\n", gates[gatenum].buf); 
     } 
      
    }  /*Closing the while(start_scan) */ 
     
    fclose(fp); 
    totalgates = gatenum; 
    totalnets = netnum; 
    totaloutputs = outnum; 
    totalinputs = in_num; 
    printf("Total no of gates is %d Total no of nets is %d\n\n",totalgates, totalnets);     
     
  } 
} 
 
/* 
 * This routine checks and sets int isinput, isoutput flag of that 
 * particular net. This is done to find out the primary inputs and 
 * primary outputs of the circuit 
 */ 
  
void SetNetInOut(Gate* gates, Net* nets) 
{ 
  int gatenum, netnum, outnum, in_num ; 
  int status, i ; 
/*   
  for (outnum = 0; outnum < totaloutputs; outnum++) 
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  { 
   printf("Output : %s and its number : %d\n", nets[outnum].outname, outnum); 
  } 
  for (in_num = 0; in_num < totalinputs; in_num++) 
  { 
   printf("Input : %s and its number : %d\n", nets[in_num].inname, in_num); 
  } 
*/ 
   
  for(netnum = 0 ; netnum < totalnets ; netnum++) 
    { 
      /* 
       * The net is a primary input net only if this net was not 
       * scanned as a output of any gate..or its fan_out_gateid still 
       * holds the default value which is "-1" (for some reason i 
       * chose -1 ;) ) 
       */ 
//        printf("Netnum %d => fanout : %d\n",netnum, nets[netnum].fan_out); 
/*    
    if( -1 != nets[netnum].fan_out_gateid ) 
 { 
   printf("Net %s is an internal signal\n", nets[netnum].name); 
 } 
  
      if( -1 == nets[netnum].fan_out_gateid ) 
 { 
   nets[netnum].isinput = true ; 
   printf("Net %s is a primary input\n", nets[netnum].name); 
   strcpy(primary[pri_in].name, nets[netnum].name); 
   pri_in++; 
 } 
      else 
 { 
    
    // A net is a primary output only if is not an input to any 
    // gates. 
     
    // NOTE: There is a flaw here, in-outs are left out this 
    // way. I am trying to fix this. 
    // 
 
   for(gatenum = 0; gatenum <= nets[netnum].fan_out; gatenum++) 
     {      
       if( -1 == nets[netnum].fan_in_gateid[gatenum] ) 
  { 
    status = 2 ; 
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  } 
       else 
  { 
    status = 0; 
    break ; 
  } 
     } 
   if(status == 2) 
     { 
       nets[netnum].isoutput = true; 
       printf("Net %s is a primary output\n", nets[netnum].name); 
     } 
 } 
 */ 
  
 for (i = 0; i < pri_inputs; i++) 
 { 
  if(!strcmp(nets[netnum].name, pri_in[i].name)) 
  { 
   nets[netnum].isinput = true; 
  } 
 } 
   
 for (i = 0; i < pri_outputs; i++) 
 { 
  if(!strcmp(nets[netnum].name, pri_out[i].name)) 
  { 
   nets[netnum].isoutput = true; 
  } 
 } 
  
     
     for (i =0; i < totalgates; i++) 
 { 
  if(!strcmp(nets[netnum].name, gates[i].outname)) 
  { 
   nets[netnum].isoutput = true; 
   printf("TRUE\n"); 
  } 
 }     
  
    } 
  return ; 
} 
 
  /*  
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   * This is a routine inserts the signals clock, reset and VDD as inputs to the 
   * DFF. 
   */ 
 
namespace DFlip_Flop 
{ 
     
  void dffsignal(Gate *gates, Net *nets) 
  {     
    int i, j; 
    bool scanned = false; 
    int scangate = 0; 
    printf("Total gates : %d\n", totalgates); 
    printf("Total nets : %d\n", totalnets); 
    /* 
    for(i = 0; i < totalgates ; i++) 
      { 
       if(!strncmp(gates[i].kind, "DF", 2)) 
        {          
               strcpy(nets[gates[i].input_list[1]].name, "clock"); 
               strcpy(nets[gates[i].input_list[2]].name, "VCC"); 
               strcpy(nets[gates[i].input_list[3]].name, "VCC");                       
        } 
       if(!strncmp(gates[i].kind,"XOR",3)) 
       {                     
               strcpy(nets[gates[i].input_list[1]].name, "GND");                       
        } 
       } 
       */         
   } 
} 
 
  /*  
   * This is a routine that removes (not really) the technology dependant delay 
components from the VHDL netlist, as 
   * obtained from MAXPLUS II or QUARTUS. Actually it reassigns the signals. 
   */ 
/* 
namespace Remove_Delay 
{ 
     
  void remove(Gate *gates, Net *nets) 
  {     
    int i, j, k, l;     
    
     for(i = 0; i < totalgates ; i++) 
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      {        
       l = 0;                
        if(strcmp(gates[i].kind, "IN")&&(gates[i].num_inputs==1)) 
        {          
         for(j = 0; j < totalgates ; j++) 
         { 
          for(k = 0; k < gates[j].num_inputs; k++) 
          { 
           if(!strcmp(nets[gates[i].out_netnum].name, 
nets[gates[j].input_list[k]].name)) 
           { 
           // strcpy( nets[gates[j].input_list[k]].name, 
nets[gates[i].input_list[0]].name ); 
          // printf("Gate delay num 
           l++; 
            
           } 
          }          
           
         } 
       }   
       
      } 
       
       
      //Get rid of the TRIBUF at the output. 
       
      for(i = 0; i < totalgates ; i++) 
      {             
       if(!strcmp(gates[i].ttlname, "TRI")) 
        { 
         for(j = 0; j < totalgates ; j++) 
         { 
             if((gates[j].num_inputs!=1)||!strcmp(gates[j].name, "IN")) // To get rid 
of the delay elements. 
             { 
          if(!strcmp(nets[gates[i].input_list[0]].name, 
nets[gates[j].out_netnum].name)) 
          { 
           strcpy(nets[gates[j].out_netnum].name, 
nets[gates[i].out_netnum].name); 
           nets[gates[j].out_netnum].isoutput = true; 
            
          // printf("%s input : %s\n",gates[i].name, 
nets[gates[i].input_list[0]].name); 
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          // printf("%s output : %s\n",gates[i].name, 
nets[gates[i].out_netnum].name); 
          // printf("%s output : %s\n",gates[j].name, 
nets[gates[j].out_netnum].name); 
          // printf("i = %d, j = %d\n\n", i, j); 
                   
          } 
             } 
         } 
          
        } 
      } 
             
   } 
} 
*/ 
 
/* 
 The following routine determines the no of modules required per redundant group 
according 
 to the STDMR algorith. 
*/   
   
namespace Redundant_Modules 
{ 
 void R_modules ( Gate *gates) 
 { 
    int gatenum; 
             
         /* Now we determine the no of redundant modules required for each gate 
            based on the activity of the most idle path according to STDMR. 
         */ 
          
         for (gatenum = 0; gatenum < totalgates; gatenum++) 
         { 
          if(!strcmp(gates[gatenum].redun, ":")) 
          { 
          gates[gatenum].add_redundancy = 1; 
          gates[gatenum].modules = 2; 
      } 
      else 
      { 
       gates[gatenum].add_redundancy = 0; 
      } 
         } 
      } 
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}  
 
/*  
 *  This routine inserts the redundant modules in the VHDL gatelevel netlist file. 
 *  The control circuitry is in accordingly. 
 */ 
 
namespace Insert_Redundancy 
{ 
  void InsertStdmr(Gate *gates, Net *nets, Multi *tempnets, char* cktname, char* outfile) 
  { 
    long int i, j, q, r, k = 0, count = 0, countn = 0, index, c = 0, b, d, e, f, g; 
    int a; 
    char temp[200]; 
    char *separate = " "; 
    char gateinstance[10][instance]; 
    char muxinstance[10][instance]; 
    char muxinput0[10][instance]; 
    char muxinput1[10][instance]; 
    char muxtemp[10][instance]; 
    char signals[1000][1000]; 
    bool linescan = false; 
    bool muxscan0 = false; 
    bool muxscan1 = false; 
    char buf_temp[MAXLENGTH]; 
    char buf_new[50]; 
    char line_temp[50]; 
    char buf[MAXLENGTH]; 
    char buf_smr1[MAXLENGTH], buf_smr2[MAXLENGTH], 
buf_smr3[MAXLENGTH] ; 
    char ent[10]; 
    int intro, aa; 
    bool sigscan = false; 
 
    FILE *fp,*fp1,*fp2,*fp3,*fp4; 
    fp = fopen("temp.out", "w+r");  /* Create and open a temporary file to write the output 
*/ 
    fp1 = fopen(cktname,"r"); /* Open the original file for reading */ 
    fp2 = fopen(outfile,"w+a"); /* open the file in write mode..to append it */ 
    fp3 = fopen("intro.txt","r"); /* Open the intro file */ 
    fp4 = fopen("components.txt","r"); /* Open the file with the component declarations */ 
     
    if(fp == NULL) 
      { 
        printf("Unable to Create File temp.out"); 
        exit(0); 



 171

      } 
    if(fp1 == NULL) 
      { 
        printf("Unable to Open the Original File..Exiting!!"); 
        exit(0); 
      } 
    if(fp2 == NULL) 
      { 
        printf("Unable to create the _smr File"); 
        exit(0); 
      } 
     
    /* At this stage the intro is added to the start of the VHDL file */ 
  
 for(i=0;i<34;i++) 
 { 
     fgets(buf,200,fp3); 
     fputs(buf, fp2); 
 } 
//printf("TEST 0\n");  
    /*  
     * Get rid of all the entities before the last (MAIN) entity. 
     * These are basically the entities that describes the components 
     * within the MAIN entity, but is not needed since we use the 
     * predefined components in the STDMR Library. 
     */ 
/*      
     int FPGA_count  = 0; 
        while(1) 
 { 
  fgets(buf,200,fp1); 
  sscanf( buf, "%s %s",&buf_new, &line_temp); 
  if(!strcmp(line_temp,"FPGA_Compiler_II;"))   
    { 
       FPGA_count++; 
    } 
    if(FPGA_count == (file.num_FPGA - 1)) 
    { 
     break; 
    } 
 } 
*/ 
 
//printf("TEST 1\n"); 
/* Now Start scanning the VHDL file until the first component of the last entity is found 
*/ 
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    r = 0; 
    int s = 0; 
    while(1) 
      {  
 fgets(buf,200,fp1); 
 sscanf( buf, "%s %s %s %s %s", &line_temp, &buf_temp, &buf_new, &temp, 
&ent); 
// printf("TEST 2\n"); 
 if(!strcmp(line_temp, "use")&&(s == 0)) 
 { 
  fprintf(fp2, "use IEEE.std_logic_1164.all;\n"); 
  fprintf(fp2, "library work;\n"); 
  fprintf(fp2, "use work.stdmr_package.ALL;\n\n"); 
  s++; 
 } 
 else if(!strcmp(line_temp, "entity")) 
 { 
  sprintf( buf_smr1, "%s %s_smr %s\n", &line_temp, &buf_temp, 
&buf_new); 
  fputs(buf_smr1, fp2); 
 } 
 else if(!strcmp(line_temp, "port")) 
 { 
  fprintf( fp2, " port (\n"); 
  fprintf( fp2, " s0 : in std_logic ;\n"); 
  fprintf( fp2, " s1 : in std_logic ;\n"); 
  fprintf( fp2, " clk_out : in std_logic ;\n"); 
 }   
 else if(!strcmp(line_temp, "end")&&(r == 0)) 
 { 
  fprintf( fp2, "%s %s_smr %s\n", &line_temp, &buf_temp, &buf_new); 
  r++; 
 }  
 else if(!strcmp(line_temp, "architecture")) 
 { 
  sprintf( buf_smr3, "%s %s %s %s_smr %s\n", &line_temp, &buf_temp, 
&buf_new, &temp, &ent); 
  fputs(buf_smr3, fp2); 
 } 
 else 
 {  
  fputs(buf, fp2); 
 } 
  
 if(!strcmp(ent,"is"))   
   { 
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     break; 
   } 
      } 
      fputs("\n", fp2); 
       
 /* Add the TTL components to the VHDL file */ 
    /*   
      for(i=0;i<142;i++) 
 { 
     fgets(buf,200,fp4); 
     fputs(buf, fp2); 
 } 
      fputs("\n", fp2); 
      fputs("\n", fp2); 
      */ 
/* Add the signals of the original VHDL file to the smr file at this stage */ 
//printf("TEST 2\n");       
      while(1) 
      {  
 fgets(buf,200,fp1); 
 sscanf( buf, "%s", &line_temp); 
// printf("%s", buf); 
 if(!strcmp(line_temp,"signal"))   
   { 
    break; 
   } 
      } 
 fputs(buf, fp2); 
 
      while(1) 
      {  
 fgets(buf,200,fp1); 
 sscanf( buf, "%s", &line_temp); 
 if(!strcmp(line_temp,"begin"))   
   { 
    break; 
   } 
 fputs(buf, fp2); 
      } 
       
      fclose(fp1); 
       
      /* 
       * The following section adds the input mux's to the primary inputs. 
       */ 
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      for ( a = 0; a < pri_inputs; a++) 
            {  
                printf("Net no %d and name = %s\n", a, pri_in[a].name); 
               
                sprintf( muxinput0[a], "inmux_0_%d : stdmr_mux port map( s0, clk_out, 
%s, %s_0);\n", a, pri_in[a].name, pri_in[a].name); 
                muxinput0[a][strlen(muxinput0[a])] = '\0'; 
              
                sprintf( muxinput1[a], "inmux_1_%d : stdmr_mux port map( s1, clk_out, 
%s, %s_1);\n", a, pri_in[a].name, pri_in[a].name); 
                muxinput1[a][strlen(muxinput1[a])] = '\0'; 
                 
                fputs(muxinput0[a], fp); 
         fputs(muxinput1[a], fp);                                              
            }     
        
    for(i = 0; i < totalgates ; i++) 
    { 
      /* 
       * Delete all the delay components, i.e. all components with a single input 
       * except the inverter (INV).      
       */ 
       /*  
      if(!(strcmp(gates[i].kind, "IN")&&(gates[i].num_inputs==1))) 
      { 
      // This is to get rid of the TRI buffer (at the output). 
        
       if(strcmp(gates[i].kind, "TRIBU")) 
       { 
        */ 
         
        for( b = 0; b < gates[i].modules; b++)    
       { 
        gateinstance[b][0] = '\0';  /*clear the gates string array*/ 
 } 
 for( b = 0; b < gates[i].modules; b++)    
       { 
        muxinstance[b][0] = '\0';  /*clear the mux string array*/ 
 } 
  
 for( b = 0; b < gates[i].modules; b++)    
       { 
        muxtemp[b][0] = '\0';  /*clear the mux string array*/ 
 } 
 //printf("TEST %d\n", i); 
 if( gates[i].add_redundancy == 0 ) 
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   { 
         fputs(gates[i].buf, fp); 
         fputs("\n", fp);     
   } 
 else 
   {                            
           /* Replicate the gate gates[i].modules times */    
            
           for ( a = 0; a < gates[i].modules; a++) 
            { 
                sprintf( gateinstance[a], "%s_%d : %s port map( ",gates[i].name, a, 
gates[i].ttlname); 
                gateinstance[a][strlen(gateinstance[a])] = '\0'; 
 
            } 
             
            for ( a = 0; a < 2*gates[i].num_inputs; a++) 
            { 
                sprintf( muxinstance[a], "mux2_%s_%d : stdmr_mux port map( 
",gates[i].name, a); 
                muxinstance[a][strlen(muxinstance[a])] = '\0';               
            } 
       /* 
        * Create 2 Input Mux's to each input of the gate. 
        */ 
                 
     for ( a = 0; a < gates[i].num_inputs; a++) 
            {                
                      sprintf( muxinstance[a] + strlen(muxinstance[a]), "s, clk_out, %s, %s_0", 
nets[gates[i].input_list[a]].name, nets[gates[i].input_list[a]].name); 
         
     } 
      
     for ( a = gates[i].num_inputs; a < 2*gates[i].num_inputs ; a++) 
            {              
                      sprintf( muxinstance[a] + strlen(muxinstance[a]), "s, clk_out, %s, %s_1", 
nets[gates[i].input_list[a - gates[i].num_inputs]].name, nets[gates[i].input_list[a - 
gates[i].num_inputs]].name); 
         
     } 
     
                          
            for(j=0; j < gates[i].num_inputs ; j++) 
       {    
        /* 
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         * Do if the gate is replicated or its inputs signals are internal. In the stdmr 
case 
         * the gate is always replicated. 
         */ 
               
             
if((gates[nets[gates[i].input_list[j]].fan_out_gateid].add_redundancy)||(nets[gates[i].input
_list[j]].fan_out_gateid == -1)) 
    { 
     for (b = 0; b < gates[i].modules; b++) 
     {  
                     sprintf( gateinstance[b] + strlen(gateinstance[b]), "%s_%d, ", 
nets[gates[i].input_list[j]].name, b); 
                   } 
                                                  
                   for (b = 0; b < gates[i].modules; b++) 
                   {  
                       strcpy( tempnets[b].name, nets[gates[i].input_list[j]].name); 
                   } 
                   
                   char tempc[MAXLENGTH]; 
                   for (b = 0; b < gates[i].modules; b++) 
                   {  
                     sprintf( tempc, "_%d", b);  
                     strcat(tempnets[b].name, tempc); 
                   } 
              /*  
       
                        for (b = 0; b < gates[i].modules; b++) 
                        {  
                          strcpy(signals[k],tempnets[b].name); 
                          k++; 
                        }  
                        */        
    }                 
                  else 
    { 
      for (b = 0; b < gates[i].modules; b++) 
      {  
                    sprintf( gateinstance[b] + strlen(gateinstance[b]), "%s, ", 
nets[gates[i].input_list[j]].name); 
                    }                     
    } 
  } 
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 /*****************************************************************
************************/       
        
       for(j=0; j < gates[i].num_inputs; j++) 
       { 
                
if((gates[nets[gates[i].input_list[j]].fan_out_gateid].add_redundancy)||(nets[gates[i].input
_list[j]].fan_out_gateid == -1)) 
    { 
                      
                   for (b = 0; b < gates[i].modules; b++) 
                   {  
                       strcpy( tempnets[b].name, nets[gates[i].input_list[j]].name); 
                   } 
                   
                   char tempc[MAXLENGTH]; 
                   for (b = 0; b < gates[i].modules; b++) 
                   {  
                     sprintf( tempc, "_%d", b);  
                     strcat(tempnets[b].name, tempc); 
                   } 
               
          
                        for (b = 0; b < gates[i].modules; b++) 
                        {  
                          strcpy(signals[k],tempnets[b].name); 
                          k++; 
                        }         
      
     
    } 
                 
                  else 
    {                         
                    for (b = 0; b < gates[i].modules; b++) 
      {         
                      sprintf( muxinstance[b] + strlen(muxinstance[b]), ", %s", 
nets[gates[i].input_list[j]].name); 
                        
                    } 
    }                     
       } 
        
        
               
            for(j = 0; j < gates[i].num_inputs; j++) 
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       { 
                for(index=0; index <= nets[gates[i].input_list[j]].fan_out;index++) 
    { 
                    if(!gates[nets[gates[i].input_list[j]].fan_in_gateid[index]].add_redundancy ) 
        { 
                        c = 0; 
        } 
                    else 
        {  
                        c = 2; 
                        break; 
        } 
    } 
       } 
    
            if(c != 0) 
       { 
        for (b = 0; b < gates[i].modules; b++) 
  {  
                  sprintf( gateinstance[b] + strlen(gateinstance[b]), "%s_%d 
);\n",nets[gates[i].out_netnum].name,b); 
               } 
                
               for (b = 0; b < 2*gates[i].num_inputs; b++) 
  { 
     
                   sprintf( muxinstance[b] + strlen(muxinstance[b]), " );\n"); 
               
               } 
                           
                                                         
            for (b = 0; b < gates[i].modules; b++) 
                {  
                    strcpy( tempnets[b].outname,nets[gates[i].out_netnum].name); 
                } 
                 
                 
                char tempc[MAXLENGTH]; 
                for (b = 0; b < gates[i].modules; b++) 
                {  
                  sprintf( tempc, "_%d", b);  
                  strcat(tempnets[b].outname, tempc); 
                } 
                   
                for(q = 0; q <= k; q++) 
    { 
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                    if(strcmp(tempnets[0].outname,signals[q]) == 0) 
        { 
                        r=2; 
                        break;        
        } 
                    else  
        r=0; 
    } 
       
                if(r==0) 
    { 
     for (b = 0; b < gates[i].modules; b++) 
                         {  
                          strcpy(signals[k],tempnets[b].outname); 
                          k++; 
                         }  
    } 
     
     
  
  /* 
   * The following prints out the multiplexers thats is added to each input 
gate. 
   */ 
   
       /* 
         for (b = 0; b < gates[i].num_inputs; b++) 
  {  
    if( nets[gates[i].input_list[b]].isinput == true) // Check if the net is a 
primary input, if yes, then print as is without the _0 or _1. 
           { 
   printf("%s \n", muxinstance[b]); 
                 fputs(muxinstance[b], fp); 
                  } 
                  else 
                  {} 
                } 
                 
                for (b = gates[i].num_inputs; b < 2*gates[i].num_inputs; b++) 
  {  
    if( nets[gates[i].input_list[b - gates[i].num_inputs]].isinput == true) // 
Check if the net is a primary input, if yes, then print as is without the _0 or _1. 
           { 
   printf("%s \n", muxinstance[b]); 
                 fputs(muxinstance[b], fp); 
                  } 
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                  else 
                  {} 
                } 
                */ 
                           
              
  for (b = 0; b < gates[i].modules; b++) 
  {  
                 fputs(gateinstance[b], fp); 
                } 
                 
                 
                 
 // The following prints out the multiplexers thats added to the output gate. 
 // Only if it contains a primary output net. 
    
       if(nets[gates[i].out_netnum].isoutput == true) 
       {   
                char tempcc2[MAXLENGTH] = "\0"; 
                char tempcc3[MAXLENGTH] = "\0"; 
                char tempcc4[MAXLENGTH] = "\0"; 
                 
                sprintf(gateinstance[0], "outmux_%d : stdmr_mux port map ( s1, ", count); 
  count++; 
   
                   for (b = 0; b < gates[i].modules; b++) 
                   {  
                     sprintf( tempcc2, "%s_%d ,",nets[gates[i].out_netnum].name, b);  
                     strcat(tempcc3, tempcc2); 
                   } 
                          
                sprintf( tempcc4, "%s );\n",nets[gates[i].out_netnum].name);  
                strcat(tempcc3, tempcc4); 
                strcat(gateinstance[0], tempcc3);    
           
                fputs(gateinstance[0], fp); 
               }  
       } 
    
            else 
       { 
        for ( b = 0; b < gates[i].modules; b++) 
        { 
                 sprintf( gateinstance[b] + strlen(gateinstance[b]), "%s_%d );\n", 
nets[gates[i].out_netnum].name,b); 
                } 
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                fputs(gateinstance[0], fp); 
                for (b = 0; b < gates[i].modules; b++) 
                { 
                 fputs(gateinstance[b], fp); 
                } 
       } 
  } 
//      }            
//       } 
//       else 
//       {} 
      } 
     
    /* If there is only one instance of this gate then only its first input is 
       listed in the signals part of the VHDL file. However, its fan out could 
       be more than one of it is the input of a gate that is replicated. Thus, 
       have to list its inputs as well. This problem is now solved. See  
       explanation above. 
    */ 
        
    fputs("\nend FPGA_Compiler_II;", fp); 
    fclose(fp); 
  
    fp = fopen("temp.out","r"); 
    int lineno = 0 ; 
    float newline = 0; 
    q = 0; 
    printf("Value of K = %d\n", k); 
    while(1) 
      { 
    //   printf("TEST IT 1??? %d\n", q); 
        fprintf(fp2,"signal   %s", signals[0]); 
        strcpy(lines[0].name, signals[0]); 
        q++; 
    //    printf("TEST IT 2 %d\n", q); 
         
          /* 
      * Check if the signal has been added to the file before. 
      */ 
       
        for(i=1; i < k; i++) 
   {    
            for (j = 0; j < k ; j++) 
       {  
  if (!strcmp (lines[j].name, signals[i])) 
    { 
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      linescan = true ; 
      lineno = i ; 
      break ; 
    } 
  else 
    { 
      linescan = false ; 
    } 
       }    
 //   printf("TEST IT 3 %d\n", i); 
      
      // String contents not scanned before 
       
     if(!linescan)  
       { 
   
  // Store the name of the signal scanned 
    
    strcpy(lines[i].name, signals[i]); 
    fprintf(fp2," ,%s", lines[i].name); 
    lineno++; 
    newline++; 
     
     
     // The following comparison is needed so that we only have 7 signals 
     // per line. 
      
     
    if(roundf(newline/7) == newline/7) 
    { 
     fprintf(fp2, "\n"); 
     fprintf(fp2, "       "); 
    } 
     
        } 
 
       
     // String contents has been scanned before, then do not add it to the file, i.e. 
     // do nothing. 
          
     else 
       { 
   
       } 
    } 
//   printf("TEST %d\n", -1); 
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//        fprintf(fp2," %s : std_logic;\n\n", signals[k-1]); 
        fprintf(fp2," : std_logic;\n\n"); 
        fprintf(fp2,"%s\n\n", "begin"); 
    
 while(1) 
   { 
            fgets(temp,200,fp); 
            if(strncmp(temp,"end FPGA_Compiler_II;",21) == 0) 
       { 
                fputs(temp,fp2); 
                break; 
       } 
            fputs(temp,fp2); 
   } 
 fclose(fp2); 
 fclose(fp); 
 break; 
      } 
  } 
} 
 
   
int main() 
{ 
  char cktname[MAXLENGTH] ; 
  char timing[MAXLENGTH]; 
  char basename[MAXLENGTH] ; 
  char outfile[MAXLENGTH] ; 
  char probfile[MAXLENGTH] ; 
 
  printf("Enter the circuit name without extension: \n") ; 
  scanf("%s", cktname) ; 
 
  strcpy(outfile, cktname) ; 
  strcpy(basename, cktname) ; 
  strcat(outfile,"_smr.vhd") ; 
  strcat(cktname, ".vhd") ; 
   
  Compo::num_compo (cktname) ; 
  Component_signals::in_out (cktname) ; 
  Circuit::BuildCkt (cktname) ; 
  SetNetInOut(gates, nets); 
//  Remove_Delay::remove(gates,nets); 
  DFlip_Flop::dffsignal(gates,nets); 
  Redundant_Modules::R_modules (gates); 
  Insert_Redundancy::InsertStdmr(gates, nets, tempnets, cktname, outfile); 
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  return 0 ; 
} 
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//This is the stdmr.h library file for the main Code. 
 
#include "iostream" 
#include "string" 
#include "cmath" 
#include "fstream" 
#include "stdio.h" 
#include "iomanip" 
#include "time.h" 
#include "strings.h" 
 
#define ZERO 0 
#define JUNK 2.0 
#define MAXINPUTS 100 
#define MAXGATES 5000 
#define MAXNETS 5000 
#define MAXLENGTH 1000 
#define MAXFANOUTS 1000 
#define SHORTLENGTH 1000 
#define instance 100000 
 
const int AND   = 100 ; 
const int NAND  = 101 ; 
const int OR    = 102 ; 
const int NOR   = 103 ; 
const int XOR   = 104 ; 
const int XNOR  = 105 ; 
const int INV   = 106 ; 
const int DFF = 107 ; 
const int TRIBU = 108; 
 
 
class Gate 
{  
public: 
  /* 
   * Gate name 
   */ 
    char name[MAXLENGTH] ; 
     
    char outname[MAXLENGTH]; 
     
   /* 
    * Used to eliminate the TRIBUF 
    */ 
    char tri_elim[MAXLENGTH] ; 



 186

     
  /* 
   * Individual Gate line contents 
   */   
   char contents[MAXLENGTH]; 
    
  /* 
   * Gates TTL part name 
   */ 
   char ttlname[MAXLENGTH]; 
         
  /* 
   * single assignment names 
   */ 
    char buf[MAXLENGTH] ; 
     
    char redun[10]; 
    /* 
     * Gate kind (AND, NAND etc...) 
     */ 
    char kind[SHORTLENGTH] ; 
     
     
    char kindname[SHORTLENGTH] ; 
     
    /*  
     * Gate signal order, i.e. is the input or output listed first. 
     */  
    char sig_order[SHORTLENGTH]; 
     
    /* 
     *Gate time information 
     */ 
     char time[MAXLENGTH] ; 
     /* 
     * Gate type 100 for and and so on 
     */ 
    int type ; 
    /* 
     * number of inputs 
     */ 
    int num_inputs ; 
    /* 
     * number of outputs 
     */ 
    int num_outputs ; 
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    /* 
     * List of inputs 
     */ 
    int input_list[SHORTLENGTH] ; 
    /* 
     * output net number 
     */ 
    int out_netnum ; 
    /* 
     * gate activity 
    */ 
    float activity; 
    /* 
     * No of redundant modules required. 
     */ 
    float modules; 
    /* 
     * flag to indicate whether this gate has to get redundancy. 
     */ 
     int add_redundancy;  
      
     bool sensitivity ; 
    /* 
     * flag to indicate whether this gate has to be triplicated ot no 
     */ 
    bool triplicate ; 
    /* 
     * Default constructor 
    /* 
     * Default constructor 
     */ 
    Gate () ; 
} ; 
 
Gate::Gate() 
{ 
    /* 
     * Assign default values 
     */ 
    add_redundancy = false; 
} 
 
 
class Net 
{ 
public: 
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    /* 
     * Net name 
     */ 
    char name[MAXLENGTH] ; 
     
    char outnew[MAXLENGTH]; 
     /*  
    Net timing information 
    */ 
     char timename[MAXLENGTH] ; 
     /*Net logic state per clock cycle 
     */ 
     char logic[MAXLENGTH]; 
      
     char output[MAXLENGTH]; 
    /* 
     * fan out the net 
     */ 
    int fan_out ; 
    /* 
     * Used to store the delay nets for comparison. 
     */ 
    char delay_name[MAXLENGTH]; 
    char outname[MAXLENGTH]; 
    char inname[MAXLENGTH]; 
    /* 
     * number of gates whose input is this net. Infact this array 
     * store the gate numbers 
     */ 
    int fan_in_gateid[MAXFANOUTS] ; 
    /* 
     * Gate number whose output is this net 
     */ 
    int fan_out_gateid ;  
    /* 
     * Signal probability value of the net 
     */ 
    float prob ; 
    /* 
     * flag to indicate if this net is a primary input 
     */ 
    bool isinput ; 
    /* 
     * flag to indicate if this net is a primary output 
     */ 
    bool isoutput ; 
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    bool int_output; 
    /*  
     * Net activity   
     */ 
    int activity; 
    /* 
     * Default constructor 
     */ 
     
    Net() ; 
}; 
 
Net::Net() 
{ 
  /* 
   * Assign default values 
   */ 
 
  int j ; 
  fan_out = 0 ; 
  fan_out_gateid = -1 ; 
  isinput = false ; 
  isoutput = false ; 
  int_output = false ; 
  prob = JUNK ; 
  for(j = 0 ; j <MAXFANOUTS ; j++) 
    { 
      fan_in_gateid[j] = -1 ; 
    } 
 
} 
 
class Multi 
{  
public: 
  /* 
   * name 
   */ 
    char name[MAXLENGTH] ; 
     
    char outname[MAXLENGTH]; 
     
    /* 
     * Default constructor 
     */ 
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    Multi () ; 
} ; 
 
Multi::Multi() 
{ 
    /* 
     * Assign default values 
     */ 
     
} 
 
class Sig 
{  
public: 
  /* 
   * name 
   */ 
    char name[MAXLENGTH] ; 
     
    char outname[MAXLENGTH]; 
     
    /* 
     * Default constructor 
     */ 
    Sig () ; 
} ; 
 
Sig::Sig() 
{ 
    /* 
     * Assign default values 
     */ 
     
} 
 
class Line 
{  
public: 
  /* 
   * name 
   */ 
    char name[MAXLENGTH] ; 
     
    /* 
     * Default constructor 
     */ 
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    Line () ; 
} ; 
 
Line::Line() 
{ 
    /* 
     * Assign default values 
     */ 
     
} 
 
class Files 
{  
public: 
  /* 
   * name 
   */ 
    int start ; 
    int end ; 
    int sig; 
    int num_entity ; 
    int end_entity ; 
    int num_FPGA ; 
    int num_component ; 
    int end_component ; 
     
    /* 
     * Default constructor 
     */ 
    Files () ; 
} ; 
 
Files::Files() 
{ 
    /* 
     * Assign default values 
     */ 
     
} 
 
class Component 
{  
public: 
    /* 
     * component kind (AND, NAND etc...) 
     */ 
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    char kind[SHORTLENGTH] ; 
    /* 
     * component signal identity (i.e. input or output) 
     */ 
    char identity[SHORTLENGTH] ; 
    /* 
     * number of inputs 
     */ 
    int num_inputs ; 
    /* 
     * number of outputs 
     */ 
    int num_outputs ; 
    /* 
     * Check if input or output is listed first 
     */ 
    bool sig_order ; 
     
   /* 
    * Used to eliminate the TRIBUF 
    */ 
    char tri_elim[MAXLENGTH] ; 
    /* 
     * Default constructor 
     */ 
    Component () ; 
} ; 
 
Component::Component() 
{ 
    /* 
     * Assign default values 
     */ 
     sig_order = false ; 
} 
 
class primary_in 
{  
public: 
    /* 
     * Insert only the primary inputs in the class. 
     */ 
    char name[MAXLENGTH] ; 
 
    primary_in () ; 
} ; 
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primary_in::primary_in() 
{ 
    /* 
     * Assign default values 
     */ 
} 
 
class primary_out 
{  
public: 
    /* 
     * Insert only the primary inputs in the class. 
     */ 
    char name[MAXLENGTH] ; 
 
    primary_out () ; 
} ; 
 
primary_out::primary_out() 
{ 
    /* 
     * Assign default values 
     */ 
} 
 
 
class gate_in 
{  
public: 
    /* 
     * Insert only the primary inputs in the class. 
     */ 
    char name[MAXLENGTH] ; 
 
    gate_in () ; 
} ; 
 
gate_in::gate_in() 
{ 
    /* 
     * Assign default values 
     */ 
} 
/* 
 * Declare an array of classes 
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 */ 
Gate gates[MAXGATES]; 
Net nets[MAXNETS]; 
Multi tempnets[MAXNETS]; 
Sig   temp[MAXNETS]; 
Line lines[MAXLENGTH]; 
Files file; 
Component components[MAXLENGTH]; 
primary_in pri_in[MAXNETS]; 
primary_out pri_out[MAXNETS]; 
 
/* 
 * Global variables 
 */ 
int totalgates = ZERO; 
int totalnets = ZERO; 
int totalouts = ZERO; 
int pri_inputs = ZERO; 
int pri_outputs = ZERO; 
int totaloutputs; 
int totalinputs; 
int clock_cycle; 
int outgates[2000]; 
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Appendix E 
Flatband diagram  [ZUKA02] 

The flatband diagram is by far the easiest energy band diagram of the MOS transistor. 

The term flatband refers to fact that the energy band diagram of the semiconductor is flat, 

which implies that no charge exists in the semiconductor. The flatband diagram of an 

aluminum-silicon dioxide-silicon MOS structure is shown in Figure E1. Note that a 

voltage, VFB, must be applied to obtain this flat band diagram. Indicated on the figure is 

also the work function of the aluminum gate, ΦM, the electron affinity of the oxide, χoxide, 

and that of silicon, χ, as well as the bandgap energy of silicon, Eg. The bandgap energy of 

the oxide is quoted in the literature to be between 8 and 9 electron volt. The reader should 

also realize that the oxide is an amorphous material and the use of semiconductor 

parameters for such material can justifiably be questioned.  

The flat band voltage is obtained when the applied gate voltage equals the workfunction 

difference between the gate metal and the semiconductor. If there is also a fixed charge in 

the oxide and/or at the oxide-silicon interface, the expression for the flatband voltage 

must be modified accordingly. This is necessary to offset any existing electric fields due 

to the presence of a fixed charge. 

 

Fig E1 Flatband energy diagram of a metal-oxide-semiconductor (MOS) structure 

consisting of an aluminum metal, silicon dioxide and silicon. 
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Appendix F 

The Accompanying CD-ROM 

A CD-ROM accompanies this thesis. This CD-ROM contains the following information: 

• This thesis document in “.doc” as well as “.pdf” format can be found in the 

“Thesis Document” directory. 

• Many of the documents referenced in this thesis can be found in the “Referenced 

papers and other useful documents” directory. 

• Source code for the SMR algorithm can be found in the “code” directory. 

• The images used in this thesis have been included in various formats in the 

“Thesis Diagrams” directory. 

• The papers published as part of this dissertation can be found in the directory 

“Published Work” 

• The PCB design files of the radiation test boards can be found in the directory 

“PCB Files” 

• The unpublished SMR papers can be found in the directory “SMR SEU mitigation 

papers” 

• Additional FPGA information can be found in the directory “FPGA info” 
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